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Interest in soil contamination has been growing in recent years due to the ongoing degradation of soil
environments. Therefore, the development of remediation techniques and the study of contaminant sorption
and migration are areas of intense research.
In this study, the authors sought to evaluate the scenario of co-contamination of a loamy sand soil by multiple
heavy metals. To that end, the sorption and transport of five metals—Cr, Pb, Cd, Cu and Zn—was evaluated
using representative samples of a soil from the north of Portugal. The tests were conducted in batch and
continuous systems using single- and multiple-metal acid solutions to evaluate the effect of metal
competition. In accordance with the type of assay—batch or continuous—Langmuir or Convection Dispersion
Two-Site Nonequilibrium models were adjusted to explain the sorption/transport data. FTIR analyses were
performed on the final samples of the continuous systems.
Generally, the results revealed good fitting of the tested models for the metals in competitive and
noncompetitive scenarios, with the exception of Zn that was originally present in soil samples at higher
concentrations. As expected, the influence of competition was observed in both batch and continuous
systems, but with different tendencies. The FTIR spectra also revealed a strong influence of clay minerals and
organic matter on the sorption of the metals.
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1. Introduction

The release and disposal of heavy metals from anthropogenic
activities have been responsible for the increasing concentrations of
these contaminants in soil environments. The high loading of metals in
soils may affect the growth of plants and the health of animals, thereby
representing a significant threat to public health (Berti and Jacobs,
1996). Consequently, the development of effective strategies tomanage
heavymetal pollution is of great importance (Adhikari and Singh, 2003)
but requires extensive knowledge of the sorption and transport
behaviors of heavy metals and of the diverse variables affecting these
processes. Several studies have been performed in order to establish the
influence of different parameters on heavy metal sorption/desorption
(Appel and Ma, 2002; Fonseca et al., 2009b; Fontes et al., 2000; Hanna
et al., 2009; Lee et al., 2001; Liu et al., 2006; Sipos et al., 2008). Most of
these studies primarily reported the results of batch tests, giving
detailed information on the sorption process but little on the transport
of the heavy metals. Therefore, because the simultaneous presence of
competing metals is known to affect sorption processes and leaching
potentials through soil profiles, this study sought to evaluate the
retention of heavy metals using either batch or flow tests, simulating
single- andmulti-metal contamination, in order to obtainmore realistic
results (Serrano et al., 2005). However, it is also important to perform
these types of studies for different regions and soils, as the composition
of the soil matrix may result in unexpected behavior.

Some heavy metals such as cadmium (Cd), zinc (Zn) and copper
(Cu) can be found in fertilizers used on agricultural lands (Tran et al.,
1998; USEPA, 2009). In addition, Zn and Cu are also present in high
concentrations, along with lead (Pb), in roadside soils (Miller et al.,
1989). These four metals, together with chromium (Cr), are
frequently identified in wastes from several industrial activities
including electroplating, car manufacturing, and metallurgy (Covelo
et al., 2008; Lau and Stenstrom, 2005; USEPA, 2009). Thus, these five
metals can be readily found as co-contaminants in agricultural lands
as well as near roads and/or automotive facilities. For this reason, a
soil sample collected in a location of great agricultural activity near an
automotive facility was used to study the competitive and non-
competitive sorption and transport of Cr, Pb, Cd, Zn and Cu.

Batch tests were undertaken using single- and multiple-metal
solutions with equimolar concentrations of the aforementioned heavy
metals in order to study their sorption equilibria. The Langmuir
isotherm model was adjusted to the experimental data, allowing the
determination of the soil's maximum sorption capacity for each metal,
with and without competition. To evaluate the retention of each metal
in single- and multiple-metal flow systems, the respective solutions
were pumped through soil columns. Finally, the CXTFIT code was used
to fit the dimensionless two-site nonequilibriumconvection–dispersion
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equation to the breakthrough curves (Toride et al., 1995; van
Genuchten, 1981) in order to determine the retardation factor for
eachmetal under the tested conditions. Functional groupspresent in the
soil that may have some role in the sorption process were identified by
FTIR.

2. Material and methods

2.1. Soil characterization

Several representative soil samples of a loamy sand soil were
collected at Póvoa de Varzim, Oporto, Portugal (41°25′15.58”N and
8°45′58.27″O), homogenized and characterized as described else-
where (Fonseca et al., 2009a, 2009b). The particle distribution was
determined by means of laser granulometry (Beckman-Coulter mod.
LS230). The soil pH was determined according to US EPA method
9045D (USEPA, 2004). The ammonium acetate (Hendershot et al.,
1993) and the Tinsley (Tinsley, 1950) methods were used to quantify
the cationic exchange capacity and the organic matter content of the
soil, respectively. Moreover, the concentration of each element—Cr,
Cd, Pb, Zn, and Cu—was determined by flame atomic absorption
(Varian SpectraAA-400), after microwave digestion (Aurora Instru-
ments MW600) with nitric acid using US EPA method 3051A (USEPA,
2007). Iron and manganese oxides were determined by the
dithionite–citrate method (Mehra and Jackson, 1958). Finally, the
carbonate content and mineral composition were determined with a
Scheibler calcimeter and by X-ray diffraction analysis (Philips
PW3710), correspondingly. Table 1 summarizes the physical and
chemical characterization performed for the studied soil.

2.2. Batch experiments

Sorption isotherm assays for Cr, Pb, Cd, Zn and Cu, with either single
or mixed solutions, were performed using the batch equilibrium
technique. The experiments were conducted by adding 20 mL of each
metal solution or an equimolar solution of the fivemetals to 2 g of soil in
50 mL polypropylene centrifuge tubes. The experiments were per-
formed using seven different solutions, prepared on a molar concen-
tration basis, in order to prevent mass effects (Echeverria et al., 1998).
The heavymetal concentration range [0.05 mM–0.48 mM]was selected
considering the legislated limit for Pb, as this was the heaviest metal
tested. Except for theCr solutions,whichwereprepared frompotassium
dichromate salt, the solutions were prepared using nitrate salts of the
desired heavy metals in a background of 0.01 M of CaCl2. This
background was used to improve centrifugation and minimize cation
exchange (OECD, 2000). The solutionswere acidifiedwith concentrated
HNO3 (65%), in order to avoid the precipitation of metal cations
(pH≤2). It should be noted that the initial concentration of everymetal
Table 1
Chemical and physical properties of soil.

Clay (%) 2.58
Silt (%) 23.06
Sand (%) 74.36
pH (H2O) 5.9
Cationic exchange capacity/(cmolc kg−1) 12.52
Organic matter content/(%) 3.5
[Feox]/(g kg−1) 3.82
[Mnox]/(g kg−1) 0.10
[Cr]/(mmol kg−1) 0.17
[Pb]/(mmol kg−1) 0.58
[Zn]/(mmol kg−1) 4.21
[Cd]/(mmol kg−1) 0.01
[Cu]/(mmol kg−1) 0.54
[CaCO3]/(mg kg−1) 0.0
Clay mineralsa Smectite, illite, kaolinite

a Average of clay minerals content: smectite (18%); illite (31%); kaolinite (41%).
was determined by flame atomic absorption spectroscopy after the
preparation of the solutions.

Preliminary studies showed that over the concentration range
tested, Cr reached sorption equilibrium after 192 h, the longest
equilibration time of the five metals studied (Fonseca et al., 2009a;
Serrano et al., 2005; Usman, 2008; Vega et al., 2006). Therefore, all the
batch equilibrium tests, including blanks, were undertaken in an
orbital mixer (Certomat® S) for 192 h at room temperature (25±0.5
°C) and at a shaking speed of 100 rpm. The polypropylene tubes
containing the soil–solution mixtures were then centrifuged at
5000 rpm for 5 min, and an aliquot of the supernatant was collected
in pre-acidified sample tubes (2% HNO3). These samples were stored
at 4 °C for future analysis by flame atomic absorption spectroscopy.
The pH of the supernatant was measured and was always approxi-
mately 6±0.5.

The concentration of metal adsorbed onto the soil at equilibrium—

S/(mmol kg−1)—was calculated as:

S¼ Ci−Cð ÞV =W ð1Þ

where C is the concentration of metal in the solution at equilibrium
(mM); Ci is the initial concentration of metal in the liquid phase
(mM); V is the volume of metal solution (L) andW is the weight of the
soil sample (kg). The results were plotted in a graph of S versus C and
the Langmuir isotherm model was fitted to data:

S = SmaxbCð Þ= 1 + bCð Þ ð2Þ

Smax is themaximummass of metal that can be sorbed by a givenmass
of the sample (mg kg−1); b is a constant related to the binding
strength (L mg−1) (Fonseca et al., 2009a; Langmuir, 1918; Sparks,
1995).

2.3. Continuous flow experiments

All column experiments, including duplicates, were conducted at
room temperature—25±1 °C—in acrylic columns 2.5 cm in diameter
by 25 cm deep. The packed soil in the columns had a mean bulk
density of (2.3±0.3) g cm−3 and a bed height of (22±1) cm. Single-
metal solutions with 0.05 mM of each metal—Cr, Pb, Cd, Zn and Cu—
and also a mixed solution with equimolar concentrations of the five
metals, each with a pH lower than 2, were passed through the
columns for approximately 35 h at an average flow rate of (15±0.2)
mL min−1. To ensure saturation flow conditions and, consequently,
the absence of immobile regions, the columns were operated in an
upward flow mode (Papelis and Um, 1999). The samples were
collected in 50 mL polypropylene tubes, and an aliquot was acidified
with 2% (v v= ) of concentrated HNO3 (65%) for final analyses by flame
atomic absorption spectroscopy. The pH of the effluent samples was
also measured. The dimensionless two-site nonequilibrium convec-
tion–dispersion equation (TSM) was then fitted to the obtained
experimental breakthrough curves (C/C0 versus t) using the CXTFIT
model (Toride et al., 1995), in order to determine the retardation
factor—R—the coefficient of partitioning between the equilibrium and
nonequilibrium phases—β—and the mass transfer coefficient for
transfer between the two phases—ω. The hydraulic parameters,
namely the dispersion coefficient—D/(cm2 h−1)—and the pore
water velocity—v/(cm h−1)—were determined independently for
each column. Specifically, the equilibrium convection–dispersion
equation (CDE)was fitted to the breakthrough curves of a nonreactive
tracer—CaCl2 (0.01 M). Consequently, a residence time of approxi-
mately 50 min was estimated for the flow experiments. The detailed
procedure has been described elsewhere by Fonseca et al. (2009b).

After each displacement experiment, the soil bed was collected
and homogenized, three samples of each column were digested
(Fonseca et al., 2009b; USEPA, 2007), and the metal concentration in
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each sample was determined through flame atomic absorption
spectroscopy. These samples were also analyzed by transmission
FTIR (FTIR BOMEM MB 104) on pressed KBr pellets (100 mg of KBr
and 1 mg of sample). Background correction for atmospheric air was
used for each spectrum. Spectra were obtained in the range 500–4000
wavenumbers with a minimum of 10 scans and a resolution of
4 cm−1.

3. Results and discussion

3.1. Soil characterization

According to the data compiled in Table 1, it can be inferred that
the studied soil is slightly acidic loamy sand. It has considerable
organic matter content, but low cationic exchange capacity and no
carbonate (Fonseca et al., 2009a). Kaolinite was found to be the
predominant mineral composing the clay fraction of the soil sample.
Finally, all the heavy metals were found in concentrations below the
national legislated limit for soils with pH between 5.5 and 7.

3.2. Batch experiments

Fig. 1 shows the isotherm curves obtained for each metal in
competitive (multiple-metal) and noncompetitive (single-metal)
systems. Generally, the isotherm curves have the shape of an L-
curve isotherm, resulting from the relatively high affinity of the soil
particles for the metal at low surface coverage, an affinity that
decreased as the surface became saturated (Echeverria et al., 1998;
Sposito, 1989). For the noncompetitive sorption of Pb and the
competitive sorption of Cr, the isotherms obtained took the form of
nearly vertical lines, or H-type isotherms. These are usually produced
by inner-sphere surface complexation or by significant van der Waals
interactions in the adsorption process (Sposito, 1989). Finally, the
curves obtained for the noncompetitive sorption of Cu and Zn
revealed an S-type curve. This is related to the low affinity between
the soil particles and the metal at low concentrations due to the
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Fig. 1. Adsorption isotherms obtained for the tested metals in competitive and noncompet
confidence interval for a level of confidence of 95%.
interference of other substances, such as soluble organic matter, that
can compete with soil particles for the metal cations (Sposito, 1989).
Except for Cr, all the other equilibria were reached more slowly in the
case of competitive sorption (Figure 1) as the ions competed for
sorption sites (Markiewiez-Patkowska et al., 2005). Nevertheless, the
higher sorption density of Cu may also be due to the formation of Cu–
Cr precipitates, since the soil–solution at the end of the experiment
had a pH of approximately 6 (Sun et al., 2006). This could also explain
the higher retention of Cr when in competition with Cu and other
metals (Yolcubal and Akyol, 2007).

As mentioned before, the experimental isotherm obtained for the
sorption of Pb in the absence of competition was a nearly vertical line
(Figure 1), revealing its total sorption and its high affinity for the soil
despite the variation in the solution concentration. Given this
observation and the values of the Langmuir affinity constant—b—
determined for each metal in both systems (Table 2), a sorption trend
can be defined as: CrNPbNCdNCuNZn. This trend can be mainly
explained by the conventional hard–soft acid–base (HSAB) principle
and the nature of the ions studied. The “hard” ions are those with high
electronegativity, low polarizability and small ionic size. These ions
prefer hard ligands but form weak complexes with them. However,
the “soft” ions have greater affinity for “soft” sites and are more
strongly bounded (Ghosh and Biswas, 2003; Liu et al., 2006; Puls and
Bohn, 1988; Sparks, 1995). It should be noted that, at low pH values,
Cr6+ exists mainly as an oxyanion, which is adsorbed at positively
charged sites. In fact, the equilibrium pH values of the sorption
experiments, including the blank, were between 5.5 and 6.5,
indicating the degree of protonation of the soil surface. Furthermore,
oxyanions are “soft” bases and, according to the Pearson concept, can
react strongly with Lewis acid sites created by inner-sphere surface
complexation (Bailey et al., 1960; Banks et al., 2006; Fonseca et al.,
2009b; Pearson, 1963; Sposito, 1989).

As the working concentration range is very narrow in these studies,
the experimental maximum sorption capacities observed (Figure 1)
differ largely from the estimated values (Table 2), because the trend of
the isothermcurves forhigher concentrations is unpredictable.However,
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Table 3
Quality of fit and parameter estimates based on the two-site chemical nonequilibrium
convective dispersion equation, for mono- and multi-metal flow systems. The standard
deviations were under 10%.

Parameters Mono-metal Multi-metal

Cr
R 107 502
β 0.11 0.00
ω 0.13 0.17
r2 0.924 0.73

Pb
R 34 39
β 0.63 0.62
ω 0.01 0.02
r2 0.999 0.995

Zn
R 6 –

β 0.18 –

ω 100 –

r2 0.887 0.030
Cd

R 27 13
β 0.99 0.72
ω 100 0.58
r2 0.987 0.996

Cu
R 49 198
β 0.99 0.09
ω 60 0.03
r2 0.998 0.993

Table 2
Values of Langmuir and Sips equations parameters determined in the mono- andmulti-
metal batch systems, for each tested metal. The standard deviations were under 10%.

Langmuir Mono-metal Multi-metal

Cr
Smax 3.10 –

b 1364 –

r2 0.964 –

Pb
Smax – 14.0
b – 183
r2 – 0.793

Zn
Smax 9879 17.0
b 0.04 21.0
r2 0.831 0.971

Cd
Smax 10 10
b 41 30
r2 0.988 0.991

Cu
Smax 9977 8531
b 0.1 0.1
r2 0.735 0.956
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it is clear from the experimental data (Figure 1) that all themetals at the
tested concentration range were totally sorbed in this soil, in either
noncompetitive or competitive scenarios.

3.3. Flow experiments

In Fig. 2, the breakthrough curves obtained for each metal in
competitive and noncompetitive flow tests are shown. The respective
adjusted two-site adsorption models are also presented. Generally,
the fit provided by the two-site adsorption model was good, as
demonstrated by the correlation coefficient values in Table 3.
However, the breakthrough curve of Zn in the competitive sorption
experiment could not be fit using this model. Values of relative
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Fig. 2. Experimental breakthrough curves obtained for each metal in competitive and nonco
the confidence interval for a level of confidence of 95%.
concentration much higher than 1 were obtained for this assay, with
more expression in the first 5 h before the breakthrough point of the
other metals (Figure 1). The Zn cations can be easily exchanged when
competing with other metal cations (Covelo et al., 2004). Therefore, it
can be assumed that a fraction of the highly concentrated native Zn
(Table 1) was washed out from the column, increasing its concentra-
tion in the effluent, especially before the saturation of the exchange-
able surfaces.
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Examining the single-metal systems, it is evident that the highest
retardation factor—R—was obtained for Cr, whose affinity for the soil
was already shown to be the highest among the metals studied
(Table 3). Cr oxyanions were specifically sorbed to sites with high
dissociation constants, making them less vulnerable to leaching.
However, the batch tests revealed that the other metals were sorbed
at less energetic sites, making themmore susceptible to acid leaching. A
trend in relative metal mobility under the conditions studied can be
defined as: ZnNCdNPbNCuNCr, which is slightly different from what
would be expected after the analysis of the affinity constants (b)
obtained in the batch tests (Table 2), although it is known that the
sorption and transportation of heavy metals in dynamic environments
do not always occur under equilibrium conditions (Sposito, 1989). In
fact, compared with Cd and Cu, the values of the partitioning coefficient
between the equilibrium and nonequilibrium phases—β—obtained for
Cr and Zn were significantly lower (Table 3). This suggests that the
sorption of these metals occurs instantaneously at equilibrium sites but
is time-dependent at the remaining sites, with higher sorption energy
(Toride et al., 1995). However, the values found for the mass transfer
coefficients (ωN1) suggest that not only Cd and Cu cations but also Zn
cations are promptly sorbed at equilibrium sites. The results with
respect to Pb transport and sorption are less conclusive. The mass
transfer coefficient points to a nonequilibrium process (ωb1), but the
value of β reveals that a larger amount of these cations are sorbed at
equilibrium sites than at nonequilibrium sites (Candela et al., 2007;
Seuntjens et al., 2001; van Genuchten, 1981). According to the batch
experiment results, both Cr and Pb cations were retained at sites with
high sorption energies; therefore, sorption at nonequilibrium sites
seems to bepredominant, as this reaction is kinetically controlled.When
in competition, the mass transfer coefficient did not vary significantly
for Cr and Pb, as thesemetals seemed to be sorbedmore specifically. By
contrast, the value of this variable decreases for the Cd and Cu cations,
probably because competition stimulates the specific sorption of these
ions.

The values obtained for the retardation factor—R—estimated for Cr
and Cu transport in the competitive systemwere much higher than the
values obtained for the other metals. This strengthens the aforemen-
tioned hypothesis of the precipitation of a Cu–Cr solid in the column,
which is especially reasonable given that the pH of the effluent in the
first 5 hwas above 6 (Figure 3) due to the low acid-buffering capacity of
the soil (Fonseca et al., 2009b; Sun et al., 2006). It should be noted that
the hydroxides of the testedmetals do not precipitate in the pH range at
whichexperimentswere conducted (Cherry, 1982). Finally, as expected,
the Cd retardation factor decreased when Cd was in competition with
other cations for sorption sites (Markiewiez-Patkowska et al., 2005;
Serrano et al., 2005; Vega et al., 2006). Pb ions experienced a slightly
higher retardation in the competitive scenario, as this metal is adsorbed
specificallyon siteswithhighdissociation constants. As canbeobserved,
the curve correspondent to the competitive scenario in Fig. 2 grewmore
slowly, suggesting increasing sorption density at high-energy sites
(Sposito, 1989; Strawn and Sparks, 2000).
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Fig. 3. Variation of the effluent pH during the course of a competitive flow test. The
experiment was performed in duplicate with a standard deviation of less than 10%.
3.3.1. FTIR spectral analysis
Fig. 4 shows the FTIR spectra obtained for an uncontaminated soil

sample and from the single-metal contaminated and co-contaminated
soil samples collected from the soil bed columns. The bands of clay
minerals represented by the SiO–H stretches at 3706 cm−1 and
3622 cm−1 (kaolin) and the Si–O–Si stretch at 1030 cm−1 were
slightly different from the spectra of the contaminated samples
(Smidt and Meissl, 2007). The authors have reported similar results
previously, when studying the noncompetitive sorption of chromium,
and attributed these to the sorption of metals at the edges of the clay
minerals (Alvarez et al., 2004; Fonseca et al., 2009b). However, the
acidic character of the inlet solutions may have enhanced the
dissolution of silicates, as these peaks decreased for the contaminated
sample. However, the peaks do not overlap, revealing the persistence
of these edges, even if they are less concentrated. There are two bands
at approximately 2900 cm−1, attributed to the C–H stretch of
aliphatic structures, and a band at approximately 1634 cm−1 that
change in all spectra (Carballo et al., 2008). However, the change is
more evident in the cases of Pb and Cr. Pb forms strong complexes
with soil organic matter and can compete with most other metals for
sorption sites (Strawn and Sparks, 2000). Cr transport can also be
significantly retarded by the presence of organic matter, as this
material has been reported to reduce Cr6+ to Cr3+ under acidic
conditions or to complex chromium oxyanions, as mentioned
previously (Banks et al., 2006; Jardine et al., 1999). In this particular
case, the bands assigned at 1634 cm−1 and 1384 cm−1 may also be
related to the interactions with the free water and the organic matter
fractions (Haberhauer and Gerzabek, 1999). The bands at 692 cm−1

and 797 cm−1 commonly associated with inorganic materials tended
to overlap for the contaminated samples, probably due to the
presence of heavy metal complexes (Du et al., 2007).

4. Conclusions

The batch and continuous tests showed that this type of soil—
loamy sand—has a high affinity for all the tested metals but a different
maximum sorption capacity for each one. An affinity trend was
Fig. 4. FTIR spectra of uncontaminated and contaminated soil samples collected from
each column after the flow tests.
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defined as: CrNPbNCdNCuNZn, according to the respective Langmuir
constant—b. Similarly, a trend of the maximum sorption capacities of
the soil—Smax values—was described as: Cu≈ZnNCdNPbNCr. The
results of the flow tests showed that in dynamic systems, reactions
were not in equilibrium, and therefore, the trend of the retardation
factor was different: ZnNCdNPbNCuNCr.

Generally, in competitive situations, the heavy metals were less
strongly sorbed by soil, due to the competition for sorption sites.
However, Cr and Cu seemed to precipitate as a Cu–Cr solid, due to the
increase in the soil pH. Also, Zn is less effectively retained in flow
systems, mainly due to the acid leaching of Zn ions, which were highly
concentrated in this soil.

The existence of competition among heavy metals does not always
reduce their retention in soil, depending on the concentration, pH and
types of metals involved. Other processes besides adsorption may also
occur, thereby influencing the selection of decontamination techniques.
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