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Abstract— This paper is concerned with the classification of
tumoral tissue in the small bowel by using capsule endoscopic
images. The followed approach is based on texture
classification. Texture descriptors are derived from selected
scales of the Discrete Curvelet Transform (DCT). The goal is to
take advantage of the high directional sensitivity of the DCT
(16 directions) when compared with the Discrete Wavelet
Transform (DWT) (3 directions). Second order statistics are
then computed in the HSV color space and named Color
Curvelet Covariance (3C) coefficients. Finally, these
coefficients are modeled by a Gaussian Mixture Model (GMM).
Sensitivity of 99% and specificity of 95.19% are obtained in the
testing set.

I. INTRODUCTION

NLIKE conventional endoscopy the endoscopic capsule

allows to examine the entire gastrointestinal tract (GI)

with a minimal invasive procedure, not requiring highly
trained personal for navigating the equipment and
diminishing the injury risks for the patients [1]. The patient
ingests the CE and the images are captured as the capsule
moves through the GI, propelled by peristalsis. More than
50.000 images are acquired per exam at a rate of two per
second for about 8 hours [2]. Usually the physician is
required to analyze this huge amount of data, selecting the
frames that he considers important regarding diagnosis
purposes. This task is prone to subjective errors, time
consuming (40-60 min) and increases costs. So, it’s
important to develop a computer assisted diagnosis tool to
assist in this task. The texture alteration of the small intestine
mucosa has been previously reported in the work of
Karkanis et al. [3] where the use of statistic textural
descriptors has been successfully applied in classification
schemes for identification of abnormalities in colonoscopy
videos. Therefore this is a promising classification technique
for automatic detection of abnormalities. The extraction of a
relevant feature set is usually done using wavelet methods.

During the past two decades, wavelets theory has been
widely used because wavelets provide a powerful tool for
multi-resolution analysis of images [4].

In two-dimensional case the commonly used separable
wavelets obtained by a tensor-product of 1D wavelets are
only good at capturing discontinuities at edge points, but do
not see the smoothness along edges. As a matter of fact,
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wavelets transform extracts directional details that only
capture horizontal, vertical and diagonal activities in an
image, and these three directions cannot in general provide
enough directional information in images. In an attempt to
overcome the weakness of traditional multiscale
representations using wavelets and to capture more
directional features in an image, Discrete Curvelet
Transform (DCT) has recently emerged as a new multi-
resolution analysis tool. This approach is proposed in this
paper to extract the textural descriptors from CE video
frames.

Texture classification techniques have been based on
several classifiers such as Multi layer Percepton (MLP)
networks, Radial Basis Functions (RBF’s) and Support
Vector Machines (SVM). These techniques have been
shown to have a great ability to differentiate the normal
regions of abnormal regions, presented by the images of the
CE. Unfortunately, these techniques have unavoidable
drawbacks when dealing with the modeling of statistical
dependence between the various features [5]. In fact
statistical dependence is not explicitly modeled in neural
based pattern recognition schemes. So, in order to cover this
drawback, we discuss in this paper, the use of Gaussian
Mixture Model (GMM), which allows extending the
approach to time series modeling by extending the GMM to
Hidden Markov Model (HMM). In this framework the
diagnosis will be based on frame sequence analysis, which
means that contextual information can be captured
improving the knowledge that can be wused in the
classification process. The Expectation-Maximization (EM)
Algorithm was used for finding maximum likelihood
estimates of the GMM parameters and can be easily
extended to the HMM framework.

The classification system described in this article uses
statistical texture descriptors extracted from Curvelet
Discrete Transform, and a Gaussian mixture model as a
pattern recognition module.

II. DISCRETE CURVELET TRANSFORM

In an attempt to overcome the weakness of traditional
multiscale representations and to capture more directional
characteristics in an image, curvelet transform has recently
emerged as a new multi-resolution analysis tool. In 2000,
Candes and Donoho introduced the Curvelet Transform [6].
The basic idea of curvelet transform is to represent a curve
as a superposition of functions of various lengths and widths
obeying a specific scaling law. Regarding 2D images, it can
be done first by decomposing an image into wavelet sub-



bands, i.e., separating the object into a series of disjoint
scales. Curvelet exhibits optimally sparse representation of
otherwise smooth objects, and as such it has generated a
great deal of interest in recent years [7].

So the Continuous Curvelet Transform (CCT) can be
defined by a pair of windows W(r), a radial window, and
V(t), an angular window. These are smooth, nonnegative,
and real-valued, with W taking positive real arguments and
supported on » € (1/2, 2) and V taking real arguments and
supported on ¢ € [-1, 11. These windows will always obey
the admissibility conditiors:
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where |j/2| is the integer part of j/2, r and & are polar
coordinates in frequency domain. The support of this
window is called polar wedge which depends on the support
of Wand V.
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Fig. 1a) shows the polar wedge represented by U; in the
frequency domain. Hence, in Fourier space curvelets are

supported by “parabolic” wedges, and the shaded area
represents such a generic wedge.
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Fig. 1 a) Curvelet wedge in frequency domain; b) Basic wedge of the digital
coronization process

Reference [8] proposes two different schemes for the
discretization of the CCT, namely the USFFT algorithm and
the wrapping algorithm. Both rely in the transformation of
the frequency coronae of the CCT of Fig. 1b) in a
“Cartesian coronae”, which are based on concentric
squares  (instead of circles) and shears, in a process
designated by digital coronization. The motivation for this
digital coronization is the fact that coronae and rotations
are not especially adapted to Cartesian arrays, which
difficult their computation. Since it is stated that the
wrapping algorithm may be simpler to understand and
implement, this approach was chosen to calculate the
Discrete Curvelet Transform (DCT) in the present work.
Further details about the CCT and its discretization can be
found in [8]. In the proposed approach, the CE frames were
processed with the wrapping algorithm for three scales, with
sixteen angles.

IITI. GAUSSIAN MIXTURE MODEL

Mixture Models are a composite density model which
comprises a number of component functions, usually
Gaussians. These component functions are combined to
provide a multimodal density [9]. They can be employed to
model the texture descriptors of an image captured by CE in
order to perform tasks such as the classification of the state
of the intestine mucosa. Mixture models are a semi-
parametric alternative to non-parametric histograms [10]
(which can also be used as densities) and provide greater
flexibility and precision in modelling the underlying
statistics of sampledata.

Once a model i: generated, conditional probabilities can
be computed for textiral descriptors [9]. Let the probability
density function pp %) of vector observations X (corresponds
tc the curve ets CCeffcients) be a mixture with /4 component
densites:

™

px = p&i %
=1

where a mixing paraxetyr ¢ corresponds to the prior
probability of observaiion X has been generated by the
density j and where Zj"f__.l ¢; = L .Each mixture component is

a Gaussian with mean w-2et<r f1 and covariance matrix X:
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The Expectation-Maximisation (EM) algorithm [11] is a
two step based procedure that iteratively maximizes the
likelihood of the training data.

IV. STATISTICAL TEXTURE DESCRIPTORS

Various statistical features can be extracted from the
curvelet domain as texture descriptors, and the most
common are the mean, standard deviation, energy and
entropy of each DCT sub-band [12].

Although the images captured by the capsule are square,
the information is restricted to a circular area in the center of
the image, by restrictions in the acquisition process. Given
the scale anisotropy of the DCT, the calculation of textural
descriptors will be made only for the coefficients
corresponding to the circular region of CE frames, M.

The nropnsed texture descriptors on this paper can be
calulat:d as
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where P(i,j) is the pixel at position (i,j).

The most important scales of the DCT, regarding texture
encoding information are those in which high frequencies
are present. As suggested in [13] the most relevant
information for classification purposes are encoded as high
frequency content in the scale corresponding to the highest
level of detail. Thus, for the scales whose coefficients
correspond to low and medium frequency content (coarsest
scale coefficients), the texture descriptors weren’t computed.
Besides, the coarsest scale coefficients of the DCT do not
possess directional sensitivity as a consequence for not being
directional.

It is expected that textural descriptors correlate among the
different color channels as supposed in [3] and these
correlations allow distinguishing normal from abnormal
texture patterns. Thus, in the present work it is proposed an
analogous framework, named as Color Curvelet Covariance
(3C) coefficients, where the classification feature is the
covariance of textural descriptors in the different color
channels. In this framework, the high directional sensitivity
of the DCT will be expected to lead to more vigorous
descriptors than a similar scheme used in textural descriptors
taken frem Discyste Wavelst Trensform ceefficients. The
Color Ciurvelet Covariaice of ¢ txture Jleswcriptar can be
calculatel &s:
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where . stands for the multiplication operation, a, b
correspond to the different color channels in the covariance
computation, F,, is the statistic textural descriptor, o is the
angle of the DCT coefficients, s is the DCT scale and
E{F,(as,a)} the average of the statistical textural descriptor
F,, over the different angles o, in the color channel a or b.
See that if i=j, the previous equation is nothing more than
the variance of the textural descriptor F,, with the DCT angle
a. In opposition, CCC(i,j,s,m), for #, gives a measure of
the likeness of the variation of the textural descriptor F,,
taken from the DCT coefficients at different angles, between
two color channels.

As the value of the statistical descriptor F,, already has
useful information for the texture classification process, and
as the proposed CCC (i,j,s,m) features only report for the
covariance of F,, between color channels, it is proposed to
also include in the feature set the average value E{F,,}. This
portion is the mathematical expectancy for the value of F,
and so does not have as much information as the sequence of
the different F,, values taken from the DCT coefficients at
different angles, but the insertion of the full sequence would
lead to feature vectors with very high dimensionality, which
would compromise the training of the classifier and the
speed of the classification step.

V. IMPLEMENTATION AND RESULTS

The set of experimental data was built with frames of
video capsule endoscopy segments from different patients.

The data set consists of 400 normal frames, which were
divided into two sets, one for the Gaussian training and
another for the test; and 200 abnormal frames, which were
also equally divided into two sets. An example of each type
of frame from CE that was used for the experiment is shown
in Fig. 2.

PillCam™ 5B PillCam™ 58

Fig. 2. Example of a normal (a) and an intestinal tumor (b) CE frames

A 2.4 GHz Pentium Core Duo processor-based, with 3 GB
of RAM, was used with MATLAB to run the proposed
algorithm and the average processing time is approximately
1.5 seconds per frame. As the proposed algorithm has not
been optimized for speed, the processing can still be
improved. The DCT calculation was done with the routines
implemented in the tool CurveLab (available for research
purposes at www.curvelet.org). In the proposed approach,
the CE frames were processed with the wrapping algorithm
with sixteen angles, leading to finest detail coefficients in
the DCT domain for each color channel. The selected color



space was the HSV, since is more similar to the
physiological perception of human eye [14], and therefore
more satisfactory than the standard RGB color space. To
evaluate the performance of GMM as a classification system
in this approach, we used the values of sensitivity and
specificity from previous work [15] that calculated the
coefficients with the DCT, as well, but used the Multi layer
Percepton, as a classification system. The feature set was
constructed with the Color Curvelet Covariance values,
since it was shown in [15], that the Color Curvelet
Covariance features can be successfully used for CE frames
classification purposes and that the best statistical textural
descriptors in the present framework are the mean and the
standard deviation of the DCT coefficients.

Instead of measuring the rate of successful recognized
patterns, more reliable measures for the evaluation of the
classification performance can be achieved by using the
sensitivity (true positive rate) and the specificity (100-false
positive rate) measures.

Table 1 shows the results for the different classification
systems. Note that the proposed system has a significant
better sensitivity than the MLP, but in terms of specificity it
is slightly poorer.

TABLE
CLASSIFICATION PERFORMANCE OF DIFFERENT SYSTEMS
Feature Set GMM MLP
Specificity (%) 95.19 95.9
Sensitivity (%) 99 95.9

VI. CONCLUSION AND FUTURE WORK

This paper proposes modeling the Color Curvelet
Correlation (3C) coefficients by a Gaussian Mixture Model.
3C coefficients are obtained by processing endoscopic
capsule imaging in the HSV color space. Although the
results can be highly dependent on the used database GMM
classification seems to be superior to MLP classification.
The advantage of using GMM is that statistical dependence
can be explicitly modeled if full covariance matrices are
used. Additionally context information can be easily
included if GMM is changed to HMM modeling. Inclusion
of context information will be considered as near future
developments and is frequently used by physicians for
improving the diagnosis.
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