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THREE DIMENSIONAL MECHANICAL MODEL TO SIMULATE THE NSM FRP STRIPS SHEAR 

STRENGTH CONTRIBUTION TO A RC BEAM: PARAMETRIC STUD IES 

Vincenzo Bianco 1, J.A.O. Barros 2 and Giorgio Monti 3 

 

Abstract:  This paper presents the results of a parametric study carried out with a a mechanical model recently 

developed to simulate the shear strength contribution provided by a system of Near Surface Mounted (NSM) Fiber 

Reinforced Polymer (FRP) strips applied to a Reinforced Concrete (RC) beam. That model, developed fulfilling 

equilibrium, kinematic compatibility and constitutive laws of both materials, concrete and FRP, and local bond between 

themselves, takes into consideration the possibility that the NSM strips may fail due to: loss of bond (debonding), 

concrete semi-conical tensile fracture or strip tensile rupture. The model also takes into consideration: a) interaction 

between progressive force transferred by bond to the surrounding concrete and its tensile fracture and b) bi-directional 

interaction among adjacent strips placed on the two sides of the strengthened beam cross-section web. In the first part of 

the paper attention is focused on the bond-based behavior of a single NSM FRP strip mounted on a concrete prism. The 

influence of each geometrical-mechanical parameter on the peak force transferable through bond stresses to the 

surrounding concrete, excluding the possibility of either concrete fracture and strip rupture, is analyzed. In the second 

part of the paper attention is focused on the comprehensive behavior of a single NSM FRP strip mounted on a concrete 

prism. The influence of each geometrical-mechanical parameter on the peak force transferable to the surrounding 

concrete, also including the possibility of both concrete fracture and strip rupture, is analyzed. The third part of the 

paper is devoted at assessing the influence of each geometrical-mechanical parameter on the maximum shear strength 

contribution provided by a system of NSM FRP strips applied to a RC beam. The results of these studies are presented 

along with the main findings. 
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Introduction 

Shear strengthening of RC beams by NSM technique consists in gluing FRP strips by an adhesive into thin shallow slits 

cut onto the concrete cover of the beam web lateral faces. This technique has been extensively investigated in recent 
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years (e.g.: Mohammed Ali et al. 2006 and 2007, Bianco et al. 2006 and 2007, Dias et al. 2007, Dias and Barros 2008, 

Rizzo and De Lorenzis 2009; Dias and Barros 2011a,2011b). A three dimensional mechanical model was recently 

developed to simulate the NSM FRP strips shear strength contribution to a RC beam (Bianco 2008, Bianco et al. 2009a-

b). That model was developed fulfilling equilibrium, kinematic compatibility and constitutive laws of both materials – 

FRP and concrete – and bond between themselves. From a physical point of view that model assumes that, during the 

loading process of a RC beam strengthened in shear by the NSM technique, the strips effectively crossing the Critical 

Diagonal Crack (CDC) oppose its widening by anchoring to the surrounding concrete to which they transfer, through 

bond stresses, the force originating at their intersection with the CDC. The relative movement of the two parts into 

which the CDC divides the beam web, imposes on the strips’ available resisting bond lengths an increasing end slip 

(Bianco et al. 2009a). As function of the mechanical and geometrical properties characterizing a certain NSM shear 

strengthened RC beam, the failure mode assumed by each strip can be one of the following: a) complete extraction of 

the NSM FRP strip due to loss of bond throughout the strip available resisting bond length, in case where concrete 

mechanical properties are relatively high, which is, indeed, a very limit situation (debonding), b) concrete semi-conical 

fracture that reaches the strip free extremity (concrete semi-conical failure), c) concrete semi-conical fracture that stops 

progressing midway between loaded and free ends, with consequent debonding of the remaining portion of the available 

bond length (mixed-semi-cone-plus-debonding) and d) rupture of the strip independently of an initial concrete fracture 

(strip rupture). Note that the last three failure modes are brittle, while the first is more ductile (Bianco et al. 2009a). The 

mechanical model herein applied to carry out parametric studies takes also into account the possibility that strips placed 

on the two sides of the beam web can interact with each other. The analytical details of the mechanical model are herein 

omitted, for the sake of brevity, but they can be found elsewhere (Bianco 2008, Bianco et al. 2009a-b). The good 

predictive performance of this model was appraised on the basis of a large amount of experimental results (Bianco 

2008). 

In the first part of the paper, the model is applied to evaluate the influence of each geometrical-mechanical parameter on 

the peak force that a strip, near surface mounted on a concrete prism and subjected to an increasing imposed end slip, 

can transfer through bond stresses to the surrounding concrete. To that aim, the deformability of the concrete prism is 

accounted for, while the possibilities of either concrete fracture or strip rupture are excluded by assuming the tensile 

strength of both materials, concrete and FRP, infinitely large. 

In the second part of the paper, the model is applied to evaluate the influence of each geometrical-mechanical parameter 

on the ultimate load that a single strip, near surface mounted on a concrete prism and subjected to an increasing 

imposed end slip, can comprehensively transfer to the surrounding concrete. For this purpose, the possibilities of 

occurrence of either concrete semi-conical tensile fracture or strip tensile rupture are accounted for. 
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In the third part of the paper, the model is applied to evaluate the influence of each geometrical-mechanical parameter 

on the peak shear strength contribution provided by a system of NSM FRP strips to a RC beam. 

 

Bond-based behavior of a single NSM FRP strip subject to an imposed end slip 

Applying the model to the case of a single NSM FRP strip mounted on the surface of a concrete prism (Fig. 1), and 

neglecting the possibilities of either concrete semi-conical tensile fracture and strip rupture occur, it is possible to 

determine the bond-based constitutive law of the strip ( );bd
fi Rfi LiV L δ . This latter is the curve providing the bond-based 

force bd
fiV  that the generic i-th strip, with resisting bond length RfiL , can transfer, through bond stresses, to the 

surrounding concrete as function of the value of the increasing imposed end slip Liδ  (Fig. 1a-b). The bond-based 

constitutive law ( );bd
fi Rfi LiV L δ  of a given NSM FRP strip depends on the following parameters (Bianco et al. 2009a-b) 

(Fig. 1d-e): strip cross section thickness fa  and width fb ; strip resisting bond length RfiL ; concrete prism cross section 

thickness ca  and width cb ; concrete deformability fE  (which is function of the concrete compressive strength cmf ); 

strip’s Young’s Modulus fE  and values of bond stress (0 1 2, ,τ τ τ ) and slip ( 1 2 3, ,δ δ δ ) defining the local bond stress-slip 

relationship (Fig. 1e). The analytical details necessary to evaluate the constitutive law of a given NSM FRP strip are 

herein omitted, for the sake of brevity, but they can be found elsewhere (Bianco et al. 2009a-b). The constitutive laws 

( );bd
fi Rfi LiV L δ  of NSM FRP strips of different values of RfiL can be plotted both in a bi-dimensional ( ;δbd

fi LiV ) and in a 

three-dimensional ( ; ;δbd
fi Rfi LiV L ) Cartesian orthogonal reference system. The peak bond-transferred force ,maxbd

fiV  

increases, by increasing RfiL , up to the value ( ),maxbd
RfefiV L  corresponding to the effective resisting bond length RfeL , 

which is the value of RfiL  beyond it any further increase of the resisting bond length RfiL  does not yield any further 

peak load gain. In a bi-dimensional representation (Fig. 1a), the point ( );bd
fi LiV δ  representative of the state of the NSM 

strip of resisting bond length RfiL  moves, for increasing values of Liδ , on the same branch, non-linear ascending or 

linear horizontal for values of ≤Rfi RfeL L  or >Rfi RfeL L , respectively, common for each value of RfiL , as long as RfiL  

is larger or equal to the value of the necessary bond transfer length ( )bd
tr LiL δ  (Bianco et al. 2009a-b). The ( )bd

tr LiL δ , 

which is function of Liδ  only, is the bond length that would be necessary to entirely transfer to the surrounding concrete 

a force equal to the one originating in the strip loaded end, due to the imposition of Liδ  (Bianco et al. 2009a). When the 

constitutive laws ( );bd
fi Rfi LiV L δ  of NSM FRP strips of different and increasing values of resisting bond length are 

represented in a three dimensional reference system, they form a continuous surface (Fig.1b). 
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The parametric study presented in this paragraph concerns the influence of each parameter on the peak bond-transferred 

force for different values of RfiL . Note that for each parameter was considered a range comprehending values a little 

beyond those having a strict physical confirmation, in order to assess not only their influence on the physical behavior 

of an NSM FRP strip, but also their influence from a mere analytical-numerical standpoint (Table 1). The results of the 

parametric studies are reported in the following. 

A variation of the concrete Young’s Modulus cE  does not yield any variation of ,maxbd
fiV , for whatever value of RfiL  

(Fig. 2a). An increase of the FRP Young’s Modulus fE  yields a resisting-bond-length-dependent increase of ,maxbd
fiV  

(Fig. 2d). In fact, ,maxbd
fiV  increases with fE , with a rate that is as higher as larger is the value of RfiL . Moreover, the 

curves providing ,maxbd
fiV  as function of fE  and RfiL  show two phases: a first one, coincident for all of the values of 

RfiL , for which an increase of fE  can be better felt since RfiL  is larger than the corresponding value of the effective 

resisting bond length ( )Rfe fL E  and a second one, different for all of the values of RfiL , in which an increase of fE  

can less be felt since RfiL  is smaller than ( )Rfe fL E . 

An increase of the strip cross section dimensions, either fa  or fb , yields a resisting-bond-length-dependent increase of 

,maxbd
fiV . In particular, for the case of the strip cross section thickness fa , the curves providing ,maxbd

fiV  as function of 

fa , for different values of RfiL , are superimposed as long as it is ( )Rfi Rfe fL L a≥  and present a different increasing 

rate, as larger RfiL  is, for values of ( )Rfi Rfe fL L a< . 

A variation of the prism cross section dimensions, either ca  or cb , does not yield any appreciable variation of ,maxbd
fiV , 

for whatever value of RfiL  (Fig. 2c,f). 

The peak bond-transferred load ,maxbd
fiV  increases by increasing the resisting bond length up to a certain value beyond 

which any further increase does not produce any further gain in terms of resistance (Fig. 1c). That threshold value of 

length, according to the terminology already adopted for the Externally Bonded Reinforcement (EBR), is herein labeled 

as effective resisting bond length RfeL . Note that for the values of the mechanical parameters herein adopted (Table 1), 

RfeL  is equal to 486 mm. 

As regards the influence of the parameters characterizing the local bond stress-slip relationship, it arises that ,maxbd
fiV  is 

marginally affected when a realistic range of 0τ  values is considered, for whatever value of RfiL  (Fig. 3a). The peak 

bond-transferred force ,maxbd
fiV  increases with a resisting-bond-length-dependent-rate by increasing the value of either 
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1τ  or 2τ . In particular, ,maxbd
fiV increases by increasing 1τ  with a rate that is larger as shorter is the value of RfiL , while 

,maxbd
fiV  increases with 2τ  with a rate that is higher as larger is the value of RfiL  (Fig. 3b-c). ,maxbd

fiV  decreases for 

increasing values of 1δ  with a resisting-bond-length-dependent-rate: in fact, the larger the value of RfiL , the smaller is 

the rate with which ,maxbd
fiV  decreases for increasing values of 1δ  (Fig. 3d). 

An increase of either 2δ  or 3δ  (Fig. 3e-f) yields an increase of ,maxbd
fiV  with a rate that is resisting bond length 

dependent. In particular, for the case of 3δ , the curves providing ,maxbd
fiV  as function of 3δ , for the different values of 

RfiL , are superimposed, presenting the same trend, as long as RfiL  is larger or equal to ( )3RfeL δ . 

Note that, for all of the parameters analyzed, the curves providing ,maxbd
fiV  as function of the generic parameter for the 

various values of RfiL  tend, by increasing the value of RfiL , to an envelope curve. Moreover, for values of RfiL  larger 

than a certain value, the curves providing ,maxbd
fiV  as function of the generic parameter are all superimposed to the 

envelope one. 

 

Comprehensive behavior of a single NSM FRP strip subject to an imposed end slip 

The model was also applied to study the comprehensive behavior of a single NSM FRP strip, mounted on a concrete 

prism and subjected to an increasing imposed end slip. For this purpose, the possibilities of both concrete semi-conical 

tensile fracture and strip tensile rupture were also taken into account. Typically, according to the model herein adopted 

(Bianco 2008, Bianco et al. 2009a), increasing the imposed end slip to the single NSM FRP strip, co-axial and 

progressively larger semi-conical concrete fractures subsequently form around the strip since the very first load steps 

(Fig. 4b,c). Contextually at the occurrence of each concrete semi-conical fracture, the initial value of the resisting bond 

length 0
RfiL  progressively reduces. Moreover, due to the formation of successive co-axial semi-conical fracture surfaces 

around the strip, the resulting concrete fracture envelope surface, which corresponds to the last and larger semi-conical 

surface, starting from the loaded end, progressively penetrates within the concrete prism (Fig. 4c). It can happen that the 

vertex of the last semi-conical concrete fracture surface places midway between the loaded and free end or reaches this 

latter. Moreover, contextually at the occurrence of each of those concrete fractures, the point representative of the state 

of the strip, with coordinates ( ); ;fi Rfi LiV L δ  leaps, for a constant value of Liδ , from the bond-based constitutive law 

( );bd n
fi Rfi LiV L δ  of the previous value of resisting bond length n

RfiL  to the one corresponding to the new value of resisting 

bond length 1n
RfiL +  (Fig. 5). The leap of the point ( ); ;fi Rfi LiV L δ  representative of the state of the strip from one bond-
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based constitutive law to the other is only visible in a three dimensional representation, as long as the concrete fracture 

is superficial (Fig. 5c,e). Where superficial concrete fracture means that, each time the point representative of the state 

of the strip leaps from one bond-based constitutive law to another, the updated value of RfiL  is larger or equal to the 

necessary bond transfer length ( )bd
tr LiL δ  (Fig. 5c,e). On the contrary, the leap of the point ( ); ;fi Rfi LiV L δ  representative 

of the state of the strip from one bond-based constitutive law to the other is also visible in a two dimensional 

representation, as long as the concrete fracture is deep (Fig. 5a,d). Where deep concrete fracture means that, when the 

point representative of the state of the strip leaps to the last bond-based constitutive law, the new value of RfiL  is 

smaller than the necessary bond transfer length ( )bd
tr LiL δ  corresponding to the current value of δLi  (Fig. 5a,d). When 

the point ( ); ;fi Rfi LiV L δ  representative of the state of the strip eventually leaps on the bond-based constitutive law of a 

strip with null resisting bond length, the ultimate configuration is characterized by a semi-conical concrete fracture 

whose vertex coincides with the strip free end. It can also happen that, after an initial semi-conical concrete fracture, at 

a certain point of the loading process, the strip ruptures and the point ( ); ;fi Rfi LiV L δ  representative of the state of the 

strip abruptly falls on the plane ( );Rfi LiL δ  and the relevant force fiV  annuls (Fig. 5c,f). 

Note that, whatever the failure mode characterizing the specific single NSM FRP strip, due to the continuity 

characterizing the surface envelope of the bond-based constitutive laws, it always exists an equivalent value of the 

resisting bond length eq
RfiL , which is the value of the resisting bond length to which corresponds a bond-based 

constitutive law ( );δbd eq
fi Rfi LiV L  whose peak value ,maxbd

fiV  is equal to the peak value max
fiV  of the comprehensive 

constitutive law ( )0 ;fi Rfi LiV L δ  of the initial value of the resisting bond length 0
RfiL  (Fig. 5). 

Ultimately, the comprehensive constitutive law of a single NSM FRP strip mounted on a concrete prism can be one of 

the following types (Fig. 4a): (1) either rupture of the strip, preceded or not by a superficial semi-conical fracture, or 

deep concrete semi-conical fracture up to the free end; (2) deep concrete semi-conical fracture with the concrete fracture 

stopping midway between loaded and free end; superficial concrete fracture with the last value assumed by RfiL  shorter 

(3), equal (4) or larger (5) than the effective resisting bond length. 

In the following of this paragraph, a parametric study, regarding the influence of each of the geometrical-mechanical 

parameters on the peak value max
fiV  of the comprehensive constitutive law ( );fi Rfi LiV L δ  of a single NSM FRP strip, is 

presented. Note that even in this case, each parameter was varied within a range comprehending values a little beyond 

those having a strict physical confirmation, in order to asses not only their influence on the physical behavior of an 

NSM FRP strip, but also their influence from a mere analytical-numerical standpoint. 
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Besides the parameters already introduced in the previous paragraph, the comprehensive behavior of a single NSM FRP 

strip also depends on (Table 1): strip tensile strength fuf , angle between axis and generatrices of the concrete semi-

conical fracture surface α  (Fig. 4b,c). Among the derived parameters, the concrete average tensile strength ctmf , 

function of cmf  is, in the present work, obtained as function of the concrete compressive strength by means of the 

formulae reported by the CEB Fip Model Code 90. 

The curves representing the variation of max
fiV  with respect to the FRP strip tensile strength fuf  present a bi-linear 

elastic-perfectly-plastic behavior for whatever value of RfiL  (Fig. 6a). Along the first linear branch, the failure mode is 

rupture of the strip, due to the reduced value of the strip tensile strength trfV  ( ⋅ ⋅f f fua b f ). Along the second linear 

branch, the failure mode is governed by superficial concrete fracture for the shorter values of the initial resisting bond 

length and by deep concrete fracture for the larger values of the initial resisting bond length. Note that, since the value 

of fuf  does not affect the pure bond-based behavior of a NSM FRP strip, for a given value of 0RfiL  and for values of 

fuf  larger than the one in correspondence of which the strip no longer ruptures, the ultimate configuration and the 

relevant peak load max
fiV  no longer change by increasing fuf . Note also that the curves providing the values of max

fiV  as 

function of fuf  for the various values of 0RfiL  tend to a limit curve which defines the envelope of the various curves. In 

fact, for the values herein assumed for the other parameters, the curve providing max
fiV  as function of fuf  is exactly the 

same regardless of the value assumed by 0
RfiL  for values of 0

RfiL  larger than 400 mm (Fig. 6a). 

The curves ( )max 0;fi f RfiV E L  providing max
fiV  as function of the strip Young’s Modulus fE  present a pseudo bi-linear 

trend for whatever value of 0RfiL . Along the first branch, the ultimate behavior is characterized by superficial concrete 

fracture and, since the equivalent values of the resisting bond length are larger or equal to the corresponding values of 

the effective resisting bond length ( ( ) ( )≥eq
Rfi f Rfe fL E L E ), the same trend characterizing the pure-bond behavior can be 

found (Fig. 6d). Nevertheless, due to the reduction of 0
RfiL  ascribed to the superficial concrete fracture, the maximum 

value of max
fiV , for a given value of 0

RfiL , is smaller than the maximum of ,maxbd
fiV  for the same value of 0RfiL . The 

pseudo horizontal branches of the curves ( )max 0;fi f RfiV E L  correspond, for the shorter values of 0
RfiL  ( 350mm< ), to a 

deep concrete fracture failure mode and, for the longer values of 0
RfiL  ( 350mm≥ ), to the rupture of the strips. The 

horizontal branches of the curves ( )max 0;fi f RfiV E L  tend, for increasing values of 0RfiL , to the limit curve corresponding to 
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the value of the strip rupture capacity 42.0tr
fV kN= . Note that, on the horizontal branches of the curves ( )max 0;fi f RfiV E L  

for the shorter values of 0RfiL , despite a fluctuation, due to concrete fracture, around an average value, max
fiV  is almost 

constant even if, by increasing fE , concrete fracture deepens and eq
RfiL  progressively becomes a smaller aliquot of 0

RfiL . 

This is due to the fact that, by increasing fE , the values of the resisting bond lengths necessary to transfer the same 

value of ,maxbd
fiV  reduce (Bianco 2008). 

The curves ( )max 0;fi f RfiV a L  and ( )max 0;fi f RfiV b L  providing the value of max
fiV  as function of the strip cross section 

dimensions present, for whatever value of 0
RfiL , a pseudo bi-linear trend (Fig. 6b,e). Along the first branch of those 

curves, due to the reduced area of the strip cross section, the failure mode is rupture of the strip and max
fiV  increases 

linearly for increasing values of either fa  or fb . Along the second branch of those curves, the ultimate configuration is 

of the mixed-semi-cone-plus-debonding type and, for the shorter values of 0RfiL , the failure mode is superficial concrete 

fracture while for the longer values of 0RfiL , the failure mode is deep concrete fracture. The horizontal branches of those 

curves tend, for increasing values of 0RfiL , to the limit curve corresponding to the value of approximately 

max 62.0fiV kN= . From a certain value of 0RfiL  on ( 0 350RfiL mm≥  for fa  and 0 400RfiL mm≥  for fb ), the curves above 

overlap on the limit curve and the maximum value of max
fiV  does not further increase for increasing values of 0

RfiL . 

The curves ( )max 0;fi c RfiV a L  and ( )max 0;fi c RfiV b L  providing the value of max
fiV  as function of the concrete prism cross 

section dimensions present, for whatever value of 0
RfiL , a pseudo bi-linear trend (Fig. 6c,f). Along the first branch of 

those curves, since the prism cross section is small, the successive co-axial semi-conical fracture surfaces, whose axis is 

a progressively larger amount of 0RfiL , soon intersect the concrete prism faces (Fig. 4b,c). Thus, the concrete semi-

conical fracture capacity cf
fiV , obtained integrating the concrete average tensile strength throughout the surface resulting 

from the intersection of the right semi-conical surface with the prism faces, is very low (Bianco et al. 2009a-b). Due to 

the small value of the concrete fracture capacity, along the first branch of the curves ( )max 0;fi c RfiV a L  and ( )max 0;fi c RfiV b L , 

the failure mode is very deep concrete fracture with the vertex of the last semi-conical fracture surface reaching the strip 

free end (Fig. 4b,c). Along the second branch of those curves, for increasing values of either ca  or cb , and for the 

shorter values of 0RfiL , concrete fracture becomes, as long as the largest semi-conical surface intersects the prism walls, 

progressively more superficial. From the value of either ca  or cb , in correspondence of which the largest semi-conical 



 9

surface no longer intersects the prism faces, the ultimate configuration and the corresponding value of max
fiV , for a given 

value of 0
RfiL , remains practically unchanged. Along the second branch of those curves, for values of 0

RfiL  larger than a 

certain value ( 0 300RfiL mm≥  for ca  and 0 250RfiL mm≥  for cb ), the failure mode is governed by the strip rupture and 

those branches overlap on the limit curve corresponding to the value of max 42.0tr
fi fV V kN= =  (Fig. 6c,f). 

The curve ( )max 0
fi RfiV L  providing the value of max

fiV  as function of the value of 0RfiL  also presents a pseudo bi-linear 

trend (Fig. 7c). Along the first branch, the failure mode is concrete semi-conical fracture, either superficial or deep, with 

an ultimate configuration of the mixed-semi-cone-plus-debonding type. Along the second branch, the failure mode is 

rupture of the strip. Note that even in this case as for the pure bond behavior, it is possible to single out an effective 

value value of 0
RfiL , which can be labeled as comprehensive effective resisting bond length 0

RfeL , beyond which any 

further increase of 0
RfiL  does not produce any further gain in terms of max

fiV . In general, the comprehensive effective 

resisting bond length 0
RfeL , due to the occurrence of one of either concrete fracture or strip rupture, is shorter than the 

effective resisting bond length RfeL  (see also Fig. ). 

The curves ( )max 0;fi RfiV Lα  and ( )max 0;fi cm RfiV f L  providing the value of max
fiV  as function of either of the parameters 

defining the concrete mechanical properties, either cmf  or α , present, for whatever value of 0RfiL , a nonlinear trend in 

which, in the most general case, three successive branches can be singled out (Fig. 7a,b). Along the first branch, for 

small values of either cmf  or α , since concrete mechanical properties are very low, concrete fracture is so deep to 

reach the strip free extremity. This first branch of the curve is continuous since, going from one value to the other of the 

parameter analyzed (cmf  or α ), the peak value max
fiV  is always equal to the concrete semi-conical fracture capacity 

cf
fiV  associated to the maximum semi-conical surface that can form inside the concrete prism. Along this first branch, 

the concrete fracture capacity ( )0cf
fi RfiV L , integral of ctmf  on the maximum semi-conical surface varies with continuity 

for an increase of either ( )ctm cmf f  or α . In this latter case, ( )0cf
fi RfiV L  varies with continuity if either the maximum 

semi-conical surface intersects (for larger values of α ) or not (for smaller values of α ) the concrete prism faces (Fig. 

4). By increasing the values of either cmf  or α , concrete fracture progressively becomes more superficial and the 

equivalent value of the resisting bond length becomes a progressively larger aliquot of 0
RfiL . Along the second branch of 

the curves ( )max 0;fi RfiV Lα  and ( )max 0;fi cm RfiV f L  the ultimate configuration is of the mixed-semi-cone-plus-debonding 
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type. Such second branch is characterized by a two-fold fluctuation of the values max
fiV , by varying either of the 

parameters analyzed (cmf  or α ) and for a given value of 0RfiL , around the values corresponding to an average and 

continuous curve: a micro-fluctuation ad a macro-fluctuation. The former is a fluctuation that has a numerical origin 

and is due to the way in which the concrete semi-conical fracture phenomenon was modeled (Bianco 2008). The latter, 

which consists in the presence of some steps upwards, is due to the fact that, for increasing values of the concrete 

mechanical properties, the number of successive reductions of 0
RfiL  (Fig. 4), contextual to the occurrence of successive 

concrete semi-conical fractures, reduces for increasing values of either of the parameters analyzed (cmf  or α ). Along 

the third branch, attained indeed only for the larger values of 0
RfiL  and for increasing values of the concrete mechanical 

properties, the ultimate configuration is composed of a superficial semi-conical concrete fracture followed by the 

rupture of the strip itself. Such third branch is therefore horizontal and equal to the value of the strip rupture capacity 

that, for the values herein assumed for the other parameters, is equal to 42.0kN . The curves ( )max 0;fi RfiV Lα  and 

( )max 0;fi cm RfiV f L , for increasing values of 0RfiL , progressively become closer to each other up to overlapping on a limit 

curve for values of 0
RfiL  larger than a certain limit value that, for the values herein assumed for the other parameters, is 

equal to 450 mm for α  and to 300 mm for cmf . Note that the curves ( )max 0;fi cm RfiV f L  start from a value of cmf  equal to 

8.0MPa . This is due to the fact that the concrete average tensile strength ctmf  was calculated from the concrete 

average compressive strength by means of the formulae reported by the CEB-FIP Model Code 90 that provide values of 

ctmf  larger than zero for values of cmf  larger than 8.0MPa . Note also that, if either cmf  or α  were increased 

infinitely, for a given value of 0
RfiL , the value of max

fiV  would tend to the corresponding bond-based peak load 

( ),max 0bd
fi RfiV L , as long as this latter is smaller than the strip rupture capacity. 

The peak force max
fiV  that an NSM FRP strip of a given resisting bond length 0

RfiL  can resist does not vary by increasing 

the value of the parameter 0τ , characterizing the adopted local bond stress-slip relationship, for whatever value of the 

initial resisting bond length 0RfiL  (Fig. 8a). Actually, the parameter 0τ  was already found not to affect the peak bond-

transferred force ,maxbd
fiV  (Fig. 3a). Nonetheless, due to the occurrence of other phenomena such as either concrete 

tensile fracture or strip rupture, the peak value of the curve ( )max 0
0;fi RfiV Lτ  is lower than the peak value of the 

corresponding curve ( ),max
0;

bd
fi RfiV Lτ  for a value of 0

Rfi RfiL L= . For the shorter values of 0RfiL , the failure mode is 
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governed by concrete tensile fracture, either superficial or deep while, for values of 0RfiL  larger or equal to a certain 

value, the failure mode is the strip rupture. 

The values of the parameters 1τ  and 2τ  have a negligible influence on the peak value of the comprehensive constitutive 

law of a NSM FRP strip of a given resisting bond length 0
RfiL  (Fig. 8b,c). In fact, the curves ( )max 0

1;fi RfiV Lτ  and 

( )max 0
2;fi RfiV Lτ  do not show appreciable variations, by increasing either 1τ  or 2τ , for whatever value of 0RfiL . For the 

shorter values of 0
RfiL , the failure mode is governed by concrete tensile fracture, either superficial or deep while, for 

values of 0
RfiL  larger or equal to a certain value, the failure mode is the strip rupture. 

Each of the bond slip values characterizing the local bond stress-slip relationship, either 1δ  or 2δ  or 3δ , has a marginal 

influence on the peak value of the comprehensive constitutive law of a NSM FRP strip of a given value of the initial 

resisting bond length 0RfiL  (Fig. 8d-f). For the shorter values of 0RfiL , the failure mode is governed by concrete tensile 

fracture, either superficial or deep while, for values of 0
RfiL  larger or equal to a certain value, the failure mode is the 

strip rupture. Note that the curves providing max
fiV  as function of either of the various parameters defining the local 

bond stress-slip relationship tend, for increasing values of 0
RfiL , to overlap to the limit curve corresponding to the strip 

rupture max tr
fi fV V= . 

 

NSM FRP strips’ shear strength contribution to a RC beam 

The mechanical model adopted in the previous paragraphs, when applied faithfully to its original features (Bianco 2008, 

Bianco et al. 2009a), allows the shear strength contribution provided by a system of NSM FRP strips to a RC beam fV  

to be evaluated as function of the CDC opening angle γ  (Fig. 9). The relation ( )fV γ  may be evaluated for whatever 

relative geometrical position that the occurred CDC should assume with respect to the system of NSM FRP strips. 

Nonetheless, in the present work, three geometrical configurations only ( 1,2,3k = ) were taken into consideration: 

( 1k = ) the minimum number of strips that can effectively cross the CDC with the first one placed at a distance equal to 

the strips’ spacing fs  from the CDC origin; ( 2k = ) an even number of strips symmetrically placed with respect to the 

crack axis; ( 3k = ) an odd number of strips with the central one attaining the maximum available bond length by being 

located along the crack axis (Bianco 2008). To evaluate the relationship ( ),f kV γ  it is necessary to introduce, besides 

the input parameters already introduced in the previous paragraphs, also the following ones (Figure 9): the beam web 

cross section depth wh  and width wb , the CDC inclination angle θ  with respect to the beam longitudinal axis, the strips 
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inclination angle with respect to the beam longitudinal axis β  and the CDC opening angle increment γɺ . The typical 

relationship ( ),f kV γ , sum of the contribution of the strips effectively crossing the CDC, is characterized by abrupt 

decays of fV  that correspond to the failure of the various strips (Fig. 9c-f). Typically, according to that model, during 

the loading process of a RC beam strengthened in shear, co-axial semi-conical concrete fractures form around each of 

the strips effectively crossing the CDC since the first load steps. Due to the formation of successive co-axial semi-

conical fracture surfaces around each of the strips, the resulting concrete fracture envelope surface, starting from the 

CDC, progressively penetrates within the web core on either side of the CDC plane (Bianco et al. 2009a). 

The mechanical model mentioned above, was applied to evaluate the influence of each of the input parameters (Table 2) 

on the peak NSM FRP strips shear strength contribution to a RC beam max
,f kV  and the obtained results are presented 

below. 

The Reference Beam (RB) assumed for the parametric studies along with the range of values assumed for each 

parameter, are listed in Table 2. The values of the parameters characterizing the RB have been chosen in such a way to 

result approximately the average values of those that can be met in real practice. In some cases, the specific parameter is 

varied within a range that comprehends values a little beyond those having a strict physical confirmation, in order to 

assess not only their influence on the physical behavior of RC beams strengthened in shear by the NSM technique, but 

also their influence from a mere analytical-numerical standpoint. The range of variation of cmf  was limited to the 

values 10-90 MPa (Table 2) for which concrete can be considered as structural concrete, in accordance to the 

international regulations (e.g. CEB-FIP Model Code 1990). 

The load step γɺ  slightly influences, for the range of values in which it was herein varied (0.0001°-0.01°), the peak 

NSM shear strength contribution max
,f kV  (Fig. 10a). In this scenario, it is deemed reasonable to assume a value of the 

load step equal to 0.01γ = °ɺ  since it guarantees a good compromise between accuracy of prediction and computational 

demand. 

The peak NSM shear strength contribution max
,f kV  decreases by assuming increasing values of the CDC inclination angle 

θ  since, other parameters being the same, the number of strips effectively crossing the CDC decreases (Fig. 10b). 

The peak NSM shear strength contribution max
,f kV , for the range of values herein assumed for the other parameters, 

increases linearly for increasing value of the web cross section depth wh  (Fig. 10c), since both the number of strips 

effectively crossing the CDC and their available bond lengths increase in turn. Actually, up to a certain value of wh , the 

linear increase of max
,f kV  is primarily due to the increase of the strips available bond lengths while, for larger values of 



 13 

wh , since the strips available bond lengths start to be larger than the comprehensive effective resisting bond length (Fig. 

7c), the linear increase of max
,f kV  is due to the increase in the number of strips effectively crossing the CDC. 

By increasing the RC beam web cross section width wb  (Fig. 10d), the peak NSM shear strength contribution max
,f kV  

presents a two-phases behavior with an almost clear-cut division between themselves in correspondence of a value of 

approximately 15wb cm= . For values of the web width 15wb cm≤ , by increasing wb , max
,f kV  increases almost linearly 

up to a maximum while, for values of the web width 15wb cm> , any further increase of wb  does not yield any further 

increase of max
,f kV . This is due to the fact that, for 15wb cm≤ , the strips symmetrically placed on the opposite sides of 

the strengthened web interact transversally with each other while, for values of 15wb cm> , due to the lack of 

interaction between strips placed on the opposite sides of the beam web, any further increase of wb  does not produce 

any change in the overall response. 

The peak NSM shear strength contribution max
,f kV  presents, with respect to either of the CFRP strip’s cross-section 

dimensions ( fa  or fb ), a three-phases trend (Fig. 10e-f). In the first phase ( 1.5fa mm≤  or 8fb mm≤ ), the prevalent 

failure mode is tensile rupture of the strips and max
,f kV  increases almost linearly by increasing either fa  or fb . In fact, 

after a soon and shallow concrete fracture, most of the strips crossing the CDC rupture due to their reduced cross-

section area. In the intermediate stretch (1.5 4.5fa mm< ≤  or 8 12fb mm< ≤ ) max
,f kV  increases, by increasing either 

fa  or fb , by a decreasing rate since the number of strips undergoing rupture progressively reduces and the number of 

strips failing for concrete fracture, either superficial or deep and up to the free end, increases. Along the third stretch 

( 4.5fa mm>  or 12fb mm> ), all of the strips effectively crossing the CDC fail for either deep or superficial concrete 

fracture and their contribution max
fiV  to the overall shear strength contribution max

,f kV  no longer depends on either fa  or 

fb  (Fig. 6). However, for very large values of either of the strip cross-section dimensions, the model progressively 

loses accuracy underestimating the concrete fracture capacity since the approximation of the concrete fracture surface as 

a semi-cone whose axis lies on the web face (Fig. 4) may no longer be acceptable (Bianco et al. 2009a). 

By increasing the spacing fs  between adjacent strips, even though the contribution provided by the single strip max
fiV  

would increase as a consequence of the increase of the cross section of the relevant concrete prism (Figs. 9a and 4b-c), 

the overall contribution to the peak NSM shear strength max
,f kV  significantly decreases (Fig. 11a) since the number of 

strips effectively crossing the CDC decreases in turn. For the third geometrical configuration ( 3k = ), for which, from a 
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certain value of fs  on, the number of strips effectively crossing the CDC remains unchanged and equal to one central 

strip only, the same plastic stretch, already highlighted for the single strip (Fig. 6c) can be found again. 

By increasing the value of the inclination of the strips with respect to the beam axis β , the peak NSM shear strength 

contribution decreases (Fig. 11b) mainly because, other parameters being the same, both the number of strips effectively 

crossing the CDC and their initial available bond lengths decrease. 

The strip's Young’s Modulus fE  has, on the whole and for the values assumed in the present study 

( 100 250fE GPa= ÷ ), a negligible influence on max
,f kV  (Fig. 11c). In fact, for the range of values of fE  analyzed, 

already the single strip peak contribution max
fiV  does not vary for increasing values of fE , for each value of 0RfiL  and 

whatever the ultimate configuration (Fig. 6d). Thus, even the overall shear strength contribution max
,f kV  does not vary for 

increasing values of fE , within that range. 

The trend of the peak NSM shear strength contribution max
,f kV  with respect to the strip tensile strength fuf  shows two 

phases separated by an almost clear-cut turning point approximately in correspondence of the value of 3.0 GPa 

(Fig. 11d). For values of fuf  smaller than 3.0 GPa, the ultimate behavior is governed by the prevalent rupture of the 

strips. For values of fuf  equal to or larger than 3.0 GPa, the ultimate behavior is governed by concrete fracture and, 

whatever the depth of concrete fracture penetration, each strip’s peak contribution does not change for increasing values 

of fuf , whatever their 0
RfiL  (Fig. 6a). 

The variation of max
,f kV  with respect to the concrete mechanical properties, either cmf  or α , presents a non-linear trend 

in which three successive stretches can be singled out (Fig. 11e-f). For values of 30ºα ≤  and 30cmf MPa≤ , the 

prevailing failure mode of most of the strips effectively crossing the CDC is concrete tensile fracture reaching the 

strips’ free ends (Fig. 7a-b). Along the second stretch, for values of 30º 40ºα< ≤  and 30 60cmf MPa< ≤ , by 

progressively increasing the concrete mechanical properties, either cmf  or α , concrete fracture progressively becomes 

shallower (Fig. 4c) and max
,f kV  increases by a decreasing rate. In fact, along the second stretch, since the curve ( )max

fiV α  

or ( )max
fi cmV f  are characterized by a 0RfiL -dependent rate (Fig. 7a-b), and max

,f kV  is equal to the sum of the contribution 

max
fiV  of strips with different values of 0RfiL , max

,f kV  increases by a decreasing rate. Along the third stretch, for values of 

40ºα >  and 60cmf MPa> , max
,f kV  does not further vary for increasing values of either cmf  or α . In fact, for values of 
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40ºα >  and 60cmf MPa> , the peak of the single strips’ contribution max
fiV  does not vary, independently of the 

failure mode (Fig. 7a-b). 

As already found out for a single NSM FRP strip subjected to an increasing imposed end slip (Fig. 8), the values of the 

parameters defining the local bond stress-slip relationship do not affect, for the values of the other parameters herein 

assumed, the peak NSM FRP strips shear strength contribution (Fig. 12). In fact, due to the occurrence of other 

phenomena such as either concrete semi-conical tensile fracture or strip rupture, the peak bond-transferred force 

,maxbd
fiV  that the initial values of the resisting bond length would be capable of transferring, can never be attained. 

 

Conclusions 

A mechanical model, recently developed to evaluate the NSM FRP strips shear strength contribution to a RC beam 

throughout its loading process, was herein applied to carry out parametric studies. These latter encompass the studies of 

the influence of each geometrical-mechanical parameter on: 1) the peak load that a single NSM FRP strip can transfer, 

through bond stresses, to the surrounding concrete, neglecting both concrete semi-conical fracture and strip rupture; 2) 

the peak load that a single NSM FRP strip can comprehensively transfer, taking also into account the possible 

occurrence of either concrete fracture or strip rupture; 3) the peak shear strength contribution that a group of NSM FRP 

strips can provide to a RC beam. 

The bond-based constitutive law of a single NSM FRP strip, which is the curve providing the force that a strip with a 

given value of resisting bond length can transfer, through bond stresses, as function of the imposed end slip, forms a 

continuous surface when plotted in a three-dimensional graph for increasing values of resisting bond length. The peak 

bond-transferred force, which is the peak value of the strip’s constitutive law, increases, for increasing values of the 

resisting bond length, only up to a certain threshold, labeled effective resisting bond length, beyond which any further 

length increase does not produce any further force gain. The peak bond-transferred force increases, with a rate that is as 

larger as larger is the value of the resisting bond length, for increasing values of either the strip’s Young’s Modulus or 

the strip’s cross section dimensions. The peak bond-transferred force increases also, with a rate that is as larger as larger 

is the value of the resisting bond length, for increasing values of most of the parameters defining the local bond-stress 

slip relationship. 

The comprehensive behavior of a single NSM FRP strip subjected to an increasing imposed end slip is characterized by 

the formation of successive co-axial semi-conical concrete fractures which can stop progressing midway between 

loaded and free end, maybe followed by strip rupture if the strip rupture capacity is attained, or progress up to the free 

end. Contextually at the occurrence of each concrete fracture, the initial value of the resisting bond length progressively 
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reduces and the point describing the strip’s comprehensive constitutive law in a three dimensional representation leaps 

from one bond-based constitutive law to another. 

If either the concrete fracture reaches the strip’s free end or the strip ruptures, the strip’s comprehensive constitutive law 

abruptly annuls. Since the bond-based constitutive law of an NSM FRP strip forms a continuous surface for increasing 

values of the resisting bond length, it is always possible to single out an equivalent value of the initial resisting bond 

length whose bond-based constitutive law has a peak value equal to the peak load of the comprehensive constitutive law 

of the initial resisting bond length. 

The dependence of the peak value of the comprehensive constitutive law on most of the input parameters shows a non-

linear, initial resisting-bond-length-value-dependent and pseudo elasto-plastic trend. The non-linearity is due to the fact 

that, for a given value of initial resisting bond length, for increasing values of the studied parameter, both the failure 

mode and the ultimate configuration attained by the strip progressively change. 

The peak value of the comprehensive constitutive law increases by increasing the initial value of the resisting bond 

length up to a certain value, labeled effective value of the initial resisting bond length, beyond which any further length 

increase does not yield any further force gain. 

The influence of each one of the parameters defining the local bond stress-slip relationship on the peak value of the 

comprehensive constitutive law of a single NSM FRP strip with a given value of initial resisting bond length is 

negligible. In fact, the premature occurrence of either concrete semi-conical fracture or strip rupture does not allow to 

attain the peak bond-transferred force that a single strip, with the given value of initial resisting bond length, would be 

capable to attain. 

The behavior of a system of NSM FRP strips contributing to the shear strength of a RC beam is extremely complex 

since the strips effectively contributing to the beam shear strength, intersecting the CDC plane, are: 1) characterized by 

different values of the initial resisting bond length, 2) not necessarily orthogonal to the CDC, 3) subjected to different 

values of imposed end slip and 4) bi-directionally interact between each other. 

The curve providing the NSM FRP strips shear strength contribution as function of the CDC opening angle is 

characterized by abrupt force reductions due to the strips’ failure, whatever the failure mode they singly undergo. The 

dependence of the peak NSM shear strength contribution on most of the input geometrical-mechanical parameters is 

extremely non-linear. 

As already outlined for the comprehensive behavior of a single NSM FRP strip, a variation of each of the parameters 

defining the local bond stress-slip relationship yields a negligible variation of the peak NSM shear strength contribution, 

due to the premature occurrence of either concrete semi-conical fracture or strip rupture. 
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TABLE CAPTIONS 

Table 1 – Values for the input parameters adopted for the parametric studies regarding the behavior of a single NSM 

FRP strip. 

Table 2 – Values for the input parameters adopted for the parametric studies regarding the peak shear strength 

contribution provided by a system of NSM FRP strips to a RC beam. 

 

Table 1 – Values for the input parameters adopted for the parametric studies regarding the behavior of a single NSM 

FRP strip. 

 
fE  

GPa 

fuf  

GPa 

cmf  

MPa 

α  

º 

fa  

mm 

fb  

mm 

ca  

cm 

cb  

cm 

RfiL  

cm 

0τ  

MPa 

1τ  

MPa 

2τ  

MPa 

1δ  

mm 

2δ  

mm 

3δ  

mm 

Reference Strip 150 3.0 35.0 28.5 1.4 10.0 15.0 15.0 4.0 2.0 20.1 9.0 0.07 0.83 14.1 

Range of variation 0-300 0-5.0 20-70 0-50 0.0-7.0 0-35 2-40 2-40 0-150 0.5-10.0 9.0-50.0 3.0-19.0 0.05-0.8 0.2-13.0 2.0-25.0 

 

 

Table 2 – Values for the input parameters adopted for the parametric studies regarding the peak shear strength 

contribution provided by a system of NSM FRP strips to a RC beam. 

 
γɺ  

° 
θ  
° 

wh  

cm 
wb  

cm 
fa  

mm 

fb  

mm 

fs  

cm 

β  

° 
fE  

GPa 

fuf  

GPa 
cmf  

MPa 

α  
° 

0τ  

MPa 
1τ  

MPa 
2τ  

MPa 
1δ  

mm 
2δ  

mm 
3δ  

mm 

Reference 
Beam 

0.01 45.0 50.0 20.0 1.4 10.0 20.0 45.0 150.0 3.0 35.0 28.5 2.0 20.1 9.0 0.07 0.83 14.1 

Range of 
Variation 

1-10-4 20-50 20-70 5-40 1.0-5.5 5-35 5-80 45-90 100-250 1.0-5 10-90 10-45 0.5-5 9.5-35 3.0-19 0.05-0.8 0.2-10 2.0-20 
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FIGURE CAPTIONS 

Fig. 1. Bond-based behavior of a single Near Surface Mounted (NSM) FRP strip on a concrete prism: a-b) constitutive 

law ( );δbd
fi Rfi liV L  both in a bi-dimensional and in a three dimensional representation; c) dependence of the maximum 

bond-transferred force ,maxbd
fiV  on the resisting bond length RfiL ; d) concrete prism with a single NSM FRP strip and e) 

adopted local bond stress-slip relationship. 

Fig. 2. Variation of the peak bond-transferred force by a single NSM FRP strip as function of: a) concrete Young’s 

Modulus cE , b) strip thickness fa , c) concrete prism thickness ca , d) FRP Young’s Modulus fE , e) strip width and f) 

concrete prism width. 

Fig. 3. Influence of the parameters defining the local bond stress-slip relationship on the peak force ,maxbd
fiV  that a 

single NSM FRP strip can transfer, through bond stresses, to the surrounding concrete. 

Fig. 4. Comprehensive behavior of a single NSM FRP strip: a) possible comprehensive constitutive law types, b) 

successive and co-axial semi-conical fracture surfaces occurring around the NSM strip and c) progressive reduction of 

the resisting bond length and penetration of the semi-conical fracture within the concrete prism. 

Fig. 5. Comprehensive constitutive law ( );fi Rfi LiV L δ  of a single NSM FRP strip: a,d) deep concrete fracture, b,e) 

superficial concrete fracture and c,f) strip rupture after a superficial concrete fracture. 

Fig. 6. Variation of the peak force that a single strip can comprehensively transfer to the surrounding concrete 

( )max 0
fi RfiV L , as function of: FRP’s a) tensile strength fuf  and d) Young’s Modulus fE , strip cross section b) thickness 

fE  and e) width fE  and concrete prism cross section c) thickness ca  and f) width cb . 

Fig. 7. Variation of the peak force that a single strip can comprehensively transfer to the surrounding concrete 

( )max 0
fi RfiV L , as function of:  a) the angle between axis and generatrices of the semi-conical concrete fracture surface α , 

b) concrete average compressive strength cmf  and c) initial resisting bond length 0RfiL . 

Fig. 8. Variation of the peak force that a single strip can comprehensively transfer to the surrounding concrete 

( )max 0
fi RfiV L , as function of the parameters defining the adopted local bond stress-slip relationship. 

Fig. 9. NSM FRP strips shear strength contribution to a RC beam: (a-b) schematic representation of the beam web 

shear-strengthened by NSM FRP strips, (c-d) NSM shear strength contribution to the adopted Reference Beam for two 

values of the CDC inclination angle and (e-f) for two values of the beam web depth. 

Fig. 10. Influence on the peak NSM shear strength contribution max
,f kV  of: a) load step γɺ ; b) CDC inclination angle θ ; 

c) beam cross section depth wh  and d) width wb ; e) strip cross section thickness fa  and f) width fb . 
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Fig. 11. Influence on the peak NSM shear strength contribution max
,f kV  of: a) strips’ spacing fs ; b) strips’ inclination 

angle β ; c) strip’s Young’s Modulus fE ; d) strip’s strength fuf ; e) concrete compressive strength cmf  and f) of the 

concrete fracture angle α . 

Fig. 12. Influence on the peak NSM shear strength contribution max
,f kV  of the local bond stress slip relationship 

parameters: a) 0τ , b) 1τ , c) 2τ , d) 1δ , e) 2δ  and f) 3δ . 
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Fig. 1. Bond-based behavior of a single Near Surface Mounted (NSM) FRP strip on a concrete prism: a-b) constitutive 

law ( );δbd
fi Rfi liV L  both in a bi-dimensional and in a three dimensional representation; c) dependence of the maximum 

bond-transferred force ,maxbd
fiV  on the resisting bond length RfiL ; d) concrete prism with a single NSM FRP strip and e) 

adopted local bond stress-slip relationship. 
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Fig. 2. Variation of the peak bond-transferred force by a single NSM FRP strip as function of: a) concrete Young’s Modulus cE , b) strip thickness fa , c) concrete prism thickness 

ca , d) FRP Young’s Modulus fE , e) strip width and f) concrete prism width. 
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Fig. 3. Influence of the parameters defining the local bond stress-slip relationship on the peak force ,maxbd
fiV  that a single NSM FRP strip can transfer,  

through bond stresses, to the surrounding concrete. 



 26 

 

 

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

δ
Li

 [mm]

V
fi b

d  [
kN

]

a) b) c)

0
RfiL

ca

cb
fa fb

front view

bottom viewtop 
view

lateral
view

( )Rfi nL t

ca

0t nt

mt rt

0r m nt t t t> > >
 

Fig. 4. Comprehensive behavior of a single NSM FRP strip: a) possible comprehensive constitutive law types, b) successive and co-axial semi-conical fracture surfaces occurring 

around the NSM strip and c) progressive reduction of the resisting bond length and penetration of the semi-conical fracture within the concrete prism. 
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Fig. 5. Comprehensive constitutive law ( );fi Rfi LiV L δ  of a single NSM FRP strip: a,d) deep concrete fracture, b,e) superficial concrete fracture and c,f) strip rupture after a superficial 

concrete fracture.
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Fig. 6. Variation of the peak force that a single strip can comprehensively transfer to the surrounding concrete ( )max 0
fi RfiV L , as function of: FRP’s a) tensile strength fuf  and d) 

Young’s Modulus fE , strip cross section b) thickness fE  and e) width fE  and concrete prism cross section c) thickness ca  and f) width cb . 
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Fig. 7. Variation of the peak force that a single strip can comprehensively transfer to the surrounding concrete ( )max 0
fi RfiV L , as function of:  a) the angle between axis and generatrices 

of the semi-conical concrete fracture surface α , b) concrete average compressive strength cmf  and c) initial resisting bond length 0RfiL . 
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Fig. 8. Variation of the peak force that a single strip can comprehensively transfer to the surrounding concrete ( )max 0
fi RfiV L , as function of the parameters defining the adopted local 

bond stress-slip relationship. 
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Fig. 9. NSM FRP strips shear strength contribution to a RC beam: (a-b) schematic representation of the beam web shear-strengthened by NSM FRP strips, (c-d) NSM shear strength 

contribution to the adopted Reference Beam for two values of the CDC inclination angle and (e-f) for two values of the beam web depth. 
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Fig. 10. Influence on the peak NSM shear strength contribution max
,f kV  of: a) load step γɺ ; b) CDC inclination angle θ ; c) beam cross section depth wh  and d) width wb ; e) strip cross 

section thickness fa  and f) width fb . 
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Fig. 11. Influence on the peak NSM shear strength contribution max
,f kV  of: a) strips’ spacing fs ; b) strips’ inclination angle β ; c) strip’s Young’s Modulus fE ; d) strip’s strength 

fuf ; e) concrete compressive strength cmf  and f) of the concrete fracture angle α . 
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Fig. 12. Influence on the peak NSM shear strength contribution max
,f kV  of the local bond stress slip relationship parameters: a) 0τ , b) 1τ , c) 2τ , d) 1δ , e) 2δ  and f) 3δ . 


