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three different approaches: Dynamic Programming (DP), an Electromagnetism Algorithm (EMA) and an Evolutionary 

Algorithm (EVA). This paper presents an extension to the initial problem considering the value of money over time. This 
extended problem was implemented using the Java programming language, an Object Oriented Language, following 

the approaches previously used (DP, EMA and EVA). 
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1 Introduction 

This paper is concerned with the optimal resource 

allocation in stochastic activity networks, considering 

the time value of money. 

Studies of resource allocation and activity scheduling 

derive from studies of the famous „resource constrained 

project planning problem‟ (RCPSP) and its numerous 

offshoots, see the book by Demeulemeester and 

Herroelen (2002), chapters 6 to 8 for an excellent 

treatment of this topic under deterministic conditions. 

Research on the stochastic version of the problem is 

more scant. The particular model presented in this paper 
has its genes in previous treatments in which three 

approaches were used: Dynamic Programming (DP) 

(Tereso et al., 2004a; Tereso et al., 2006b), an 

Electromagnetism Algorithm (EMA) (Tereso et al., 

2004b; Tereso et al., 2006a) and an Evolutionary 

Algorithm (EVA) (Tereso et al., 2007). This paper adds 

the consideration of the time value of money when 

evaluating the cost involved in a project. 

There are at least two reasons for taking the time value 

of money into consideration. Firstly, long term projects 

that span several years (sometimes referred to as „mega 

projects‟) should take account of the changing value of 

money. For instance, the „Big Dig‟ project in Boston 

was conceived in the mid-80‟s and was completed in 

2007 – some 20 years later3. On the issue of „Cost and 
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Schedule Procedures‟ the introduction of the report 

referenced in the footnote states: 

“Since the project’s Final EIS approval by FHWA in 1985, 

costs (in constant dollars) have grown to more than three 
times the original estimate .... and the duration has 
increased by 6 years .... Analysis of the project’s 
performance presented to the committee by the CA/T 
project management team indicated that about half of the 
cost growth was caused by inflationfootnote (the original 
estimates were in 1982 dollars, as required by FHWA) 
and that a portion of this could be attributed to the 

extended schedule. ” 

The footnote referred to in the main text quoted above 

reads as follows: 

“The ‘absolute’ cost growth for this project, without 

considering the change in the value of money over time, is 

approximately $12.0 billion (current project cost estimate 
of $14.6 billion minus original project cost estimate of 
$2.6 billion). The project management team asserts that 
about half (approximately $6.5 billion) of that $12.0 
billion can be attributed to inflation from 1985, when 
expenditures on the project began. The estimate of the 
effect of inflation is derived from the Engineering News-
Record’s Building Cost Index (BCI) and Construction 

Cost Index (CCI) combined into a single index. An 
escalation because of inflation is calculated for each year 
of the project by applying the index to the actual or 
projected annual expenditures, thereby determining their 
value in 1982 dollars. These yearly escalations (actual or 
projected expenditures minus their 1982 value) were 
summed up to arrive at the total escalation of 

approximately $6.5 billion.” 

These quotes leave little doubt as to the need to take 

into account the time value of money in projects, 

especially if they span a long period of time.  
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Secondly, discounting future commitments is another 

way of expressing uncertainty in the total effort required 

to accomplish the planned activities in the distant future. 

Normally, one acknowledges the uncertainty in future 

engineering estimates of resources and their costs by 

hypothesizing a probability distribution; as will be seen 

below, the model we construct embeds such uncertainty 

in the estimate of the activity‟s work content to which 

we attribute a probability distribution. However, an 
alternate way of expressing such uncertainty is via 

discounting: an estimate of 100 man-days‟ effort three 

years hence accounts for only 72.90 man-days now at a 

discount rate of 0.9, and 42.19 man-days now at a 

discount rate of 0.75. Depending on the project 

manager‟s confidence in the accuracy of the engineering 

estimates of the work content, he may reflect such 

incertitude in his choice of the discount rate. Indeed, a 

discount rate of 0.3 would reduce the 100 man-days to 

an insignificant 2.70 man-days. 

Consideration of the time value of money has appeared 

predominantly in studies of unconstrained projects 4 

under completely deterministic conditions, and in 

studies concerned with „projects portfolio selection‟. 

The focus of the former studies has been on when to 

initiate each activity so as to maximize the net present 

value of the project; hence the name „the max-npv 

problem‟; see Herroelen et al. (1995), Vanhoucke et al. 

(2003), Wiesemann et al. (2010) and Sobel et al. (2009)5, 
and the references cited therein. The focus of the studies 

on portfolio selection, on the other hand, has been on 

the selection of the subset of projects from among a 

larger set that has the highest „promise of success‟, 

where „success‟ is also measured relative to the net 

present value; see Archer and Ghasemzadeh (1999), Ye 

and Tiong (2000), Better and Glover (2006), and the 

references cited therein. 

Our treatment differs from the norm of the studies in the 

max npv-problem in that it addresses the issue of the 

allocation of resources – which may be of limited 

availability – to the activities while taking into 

consideration the time value of money under stochastic 

conditions. To the best of our knowledge this has not 

been treated before. 

We devise three approaches to treat this problem: the 

discrete-time discounting version 1 and 2 and the 

continuous-time discounting.  

In this paper, following the introduction and review of 

the literature, we first briefly describe the implications 

of considering the time value of money in this type of 

problems, explaining how the present worth value of the 

cost may be evaluated. Then we explain how the three 
approaches were integrated with the previously 
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developed models. Finally, we present some 

experimental results and the conclusions. 

2 Problem Definition and Review of Prior 

Work 

The problem under study is a particular case of the 

RCPSP (Brucker et al., 1999), where the goal is to 

optimize the allocation of a single resource to the 

activities of a project so as to minimize the total cost. 
The graphic representation of the project is denoted by 

G(N,A) in which N is the set of nodes and A is the set 

of arcs in the activity-on-arc (AoA) mode of 

representation. This cost is composed of the resource 

cost and the tardiness cost. 

In our problem, each activity iA  has an associated 

work content  Wi , a random variable (r.v.), assumed to 

be exponentially distributed with parameter λi . 

𝑊𝑖~𝑒𝑥𝑝 𝜆𝑖 .                       (1) 
 

Let xi  represent the amount of resource allocated to 

activity i, restricted to lie between a lower and upper 

bound,  xi  [li, ui] with li≥0 and ui<+∞. We assume that 
the availabilities of the resources are unlimited. 

We assume that the duration of an activity is related to 

its work content and the resource allocated to it by the 

relationship  

𝑌𝑖 =
𝑊𝑖

𝑥𝑖
,                       (2) 

 

whence Yi is also a r.v. possessing the same distribution 

as Wi, modified by xi. 

As stated before, the total cost of the project is the sum 

of the resource cost, assumed quadratic in the allocation, 

for the duration of the activity, and the tardiness cost, 

assumed linear in the tardiness: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑟𝑐 + 𝑡𝑐,                       (3) 
 

where rc is the resource cost 

𝑟𝑐 =  𝑐𝑅  𝑥𝑖
2

𝑖∈𝐴

𝑌𝑖 =   𝑐𝑅𝑥𝑖 𝑊𝑖 ,
𝑖∈𝐴

 

                     

(4) 

and tc is the tardiness cost 

𝑡𝑐 =  𝑐𝐿 × 𝑚𝑎𝑥 0,ϒ𝑛 − 𝑇 ,                       (5) 
 

where cR  represents the unit resource cost, normalized 

to 1, and cL represents the marginal cost per period,  ϒn  

is the time of realization of the last node of the network 

(a r.v.) and T is the specified due date of the project. 

2.1 Problem Definition 



In addition to the above statement of our problem, we 

are also concerned with the time value of money. In 

particular, we are concerned with the present value (p.v.) 

of the project using a continuous discount rate, 

assuming disbursements and revenues at different 

epochs throughout the progress of the project. 

2.2 Review of Literature 

Consideration of the time value of money and its impact 

on the schedule of undertaking the various activities of 

the project has been the subject of three recent papers by 

Buss and Rosenblatt (1997), Creemers et al. (2008) and 

Sobel et al. (2009). All three deal with stochastic 

activity duration (not work content) which is assumed to 

be exponentially distributed, with positive (income) and 

negative (disbursement) cash flows and a penalty for 

tardiness in completing the project. The concern of all 
three contributions is with the manipulation of the start 

time of each activity, perhaps intentionally delaying 

some after being sequence-feasible, in order to 

maximize the net present value (NPV) of the project. 

Herein resides the main difference between these 

treatments and ours: we do not delay the start of any 

activity but assume that an activity shall be started as 

soon as it is precedence-feasible; our decision 

mechanism resides in varying the resource allocation 

within its permitted bounds to effect such maximization. 

The problem of optimal resource allocation without any 

consideration of the time value of money and from the 

vantage point of the activity‟s work content to minimize 

the project cost as specified in (3) above was addressed 

by Tereso et al. (2004a), in Matlab, using dynamic 

programming (DP), then in a distributed platform using 

Java (Tereso et al., 2006b). The computational burden 

imposed by the DP model stimulated treatment by other 

techniques and led to implementation of the 
Electromagnetism Algorithm (EMA), first in Matlab; 

see Tereso et al. (2004b), then in Java; see Tereso et al. 

(2006a), followed by implementation of the 

Evolutionary Approach (EVA) in Java (Tereso et al., 

2007). As expected, implementation of the EMA and 

EVA achieved better execution time results than DP, 

which was effective only in small networks. 

3 On The Present Worth of Resource Cost 

The resource allocation models presented in this section 

are: Dynamic Programming (DP), Electromagnetism 

Algorithm (EMA) and Evolutionary Algorithm (EVA). 

For each model we shall present two different 

approaches: Discrete-Time Discounting and 

Continuous-Time Discounting. In either approach the 

goal is to determine the resource allocation that 

optimizes the p.v. of the project. This section is devoted 

to a brief review of some basic concepts in “interest” 

and “discounting” which may not be familiar to all. 

 

In discrete-time discounting the duration of the activity 

is divided into discrete time intervals and discounting is 

applied to the receipts/disbursements in each interval. 

Suppose the annual interest rate is given as ia. Then the 

annual discount rate, denoted by β, is given by 

𝛽 =
1

1+𝑖𝑎
                                                      

                                 

(6) 

If one wishes to use a different time interval from a year 

(referred to in the sequel as a “period”) then one must 

evaluate the number of periods np  in a year. The period 

interest rate, denoted by ip , is given by the solution to 

the equation 

(1 + 𝑖𝑝)𝑛𝑝 = 1 + 𝑖𝑎 ,  

which  ⇒ 𝑖𝑝 = (1 + 𝑖𝑎)1 𝑛𝑝 − 1.                                                      
                                 

(7) 

The period discount factor, α , is evaluated from an 

expression similar to (6) but with ip  instead of ia . 
Alternatively, one may evaluate the period discount rate 

as the solution to the equation 

𝛼𝑛𝑝 = 𝛽.                        
                                 

(8) 

where α is the discount rate per period; 0 < α < 1. 

Assuming that the work content W  is expended 

uniformly over the activity duration  Y, then the work 

content in each period is W/Y, which, by the definition 

of  Y, is equal to x. The p.v. of the work content at the 

start of the activity (denoted by VW) at discount rate α 

is given by 

𝑉𝑊 = 𝑥 + 𝛼𝑥 + 𝛼2𝑥 + ⋯+ 𝛼𝑌−1𝑥                   
𝑌 𝑡𝑒𝑟𝑚𝑠

 

        = 𝑥
1−𝛼𝑌

1−𝛼
 .                        

                                  

(9) 

If the activity starts at time d then the p.v. of the activity 

work content, denoted by PVW, is given by 

𝑃𝑉𝑊 = 𝑉𝑊. 𝛼𝑑 .                          
                                  

(10) 

Assuming the unit resource cost is cR  and the cost is 
quadratic in the allocation for the duration of the 

activity, then the p.v. of the resource cost is given by 

𝑟𝑐 = 𝑐𝑅𝑥
2 .

𝑃𝑉𝑊

𝑥
= 𝑐𝑅 × 𝑥 × 𝑃𝑉𝑊 

                                  
(11) 

Without discounting we would have estimated the cost 

to be 

𝑟𝑐 = 𝑐𝑅 × 𝑥 × 𝑊,                                      (12) 
 

3.1 Discrete-Time Discounting 

3.1.1 Version 1 



3.1.2 Version 2 

After some analysis to the Discrete-Time Discounting 

model with a daily time interval, we concluded that, 

because of the relative smallness of the period to the 
overall planning horizon, it is almost the same as the 

Continuous-Time Discounting. Therefore a second 

version of this model is relevant to our analysis. 

In this second version, we assume that the cost of the 

work content of an activity is incurred at its completion. 

Thus we shall avoid the daily discounting, and the 

resulting model will be different with different results as 

well. 

To calculate the p.v. of the work content (VW) at the 

start of the activity, when the cost of the activity is 

incurred at its completion, we need to know its duration 

(Y). This is evaluated by the expression used before 

(Y = W x ). Then, using the periodic discount rate α and 
the cost of the activity we get: 

𝑉𝑊 = 𝑊𝛼𝑌 .                                          (13) 
 

And PVW is obtained as before (see expression (10)). 

So, if the unit resource cost is cr   then, the p.v. of the 

resource cost of this activity would be given by 

expression (11), which would give a result slightly 

lower than the value obtained in the previous version 

due to the delay in the cost encumbrance. 

3.1.3 Continuous-Time Discounting 

An alternate approach is to consider time as a 

continuum and the effort is continuously applied to the 

activity. 

The continuous discounting of $1 spent at time t  is 

given by e−ip t .  

For the whole year we have the sum 

𝑟𝑐 = 1 + 𝑒−𝑖𝑝 + 𝑒−2𝑖𝑝 + ⋯+ 𝑒−364𝑖𝑝  

=
1− 𝑒−𝑖𝑝  

365

1−𝑒−𝑖𝑝
.                                                 

(14) 

 

If the work content is continuously discounted each day, 

during 𝑛 days, then the p.v. of the work content would 

be 

𝑉𝑊 = 𝑥 + 𝑥𝑒−𝑖𝑝 + 𝑥𝑒−2𝑖𝑝 + ⋯+ 𝑥𝑒−(𝑌−1)𝑖𝑝  

= 𝑥 ×
1 −  𝑒−𝑖𝑝  

𝑛

1 − 𝑒−𝑖𝑝
. 

 

(15) 

If the activity starts approximately 𝑑 days from present 

time: 

𝑃𝑉𝑊 = 𝑉𝑊 × 𝑒−𝑑×𝑖𝑝  (16) 

 

So, if the unit resource cost is 𝑐𝑅  then, the p.v. of the 

resource cost of this activity would be given by 

expression (11). 

4 The Dynamic Programming Model  

The Dynamic Programming Model (DP) (Tereso et al., 

2004a) (Tereso et al., 2006b) divides the activities into 

two groups: those with fixed resource allocations, 

denoted by the set 𝐹, and those with yet-to-be-decided 

resource allocations, the decision variables, denoted as 

the set 𝐷, with 𝐹 ∪ 𝐷 = 𝐴, the set of all activities. The 

set 𝐷 is the set of activities on the longest path in the 

network (the path containing the largest number of 

activities). The set 𝐹  is its complementary set of 

activities in 𝐴.  A stage is defined as an epoch of 

decision making. We define stage (k) as the decision 

epoch of the allocation 𝑥𝑎  for each activity 𝑎 ∈ 𝐷 . In 

each stage only one decision variable is optimized since 

each uniformly directed cutset (u.d.c.) in the network 

contains exactly one activity in 𝐷; therefore there are as 

many stages as there are decision variables, which is 

equal to  𝐷 , the cardinality of the set 𝐷. There is also 
the concept of state, which is defined as a vector of 

times of realization of the set of nodes that allows us to 

decide on 𝑥𝑎  and evaluate the contribution of the stage, 

for 𝑎 ∈ 𝐷.  The stage corresponds to the project‟s 

evolution over time; the state specifies its condition (in 

particular, the time of realization of each “source” node 

in the u.d.c.), and the decision taken results in the “stage 

reward” (a cost, in our case) and moves the project to a 

new stage and a new state. Since we assume that the 
work content of each activity in the project is a random 

variable (r.v.), the realization of any stage or state shall 

also be a r.v., so is the cost incurred. 

In DP, the numbering of stages is done backwards. The 

decision variable of stage k is identified as x[k], where k 

means the number of stages that are still missing for the 

conclusion of the project (stages “to go” to project 

completion). So, in stage k = 1 , starting from the 

ending node 𝑛; the contribution of the stage is the sum 

of the resource cost (= x[1]W[1]) and the tardiness cost, 

if it exists (= cL × max{0, Υn − T}), in which Υn is the 

time of realization of node n, a r.v., and T is the target 

project completion time. Therefore, we obtain 

𝑓1 𝑠1 𝐹 = 𝑟𝑐𝑓 + 𝑚𝑖𝑛
𝑥 1 ∈𝐷

𝜀  𝑐𝑟𝑥 1 𝑊 1 + 𝑐𝐿 × 𝑈 , (17) 

 

where 

𝑈 = 𝑚𝑎𝑥{0, ϒ𝑛 − 𝑇} (18) 
 

In this stage we also add the resource cost of the fixed 

activities (𝑟𝑐𝑓). 

In all other stages, the contribution to the total cost is 

just the resource cost, a random variable equal 

to x[k]W[k], applied until sk = t1 = 0, using: 



𝑓𝑘 𝑠𝑘  𝐹 = 

𝑚𝑖𝑛
𝑥[𝑘]∈𝐷

𝜀  𝑐 𝑘   𝑥 𝑘  , 𝑠𝑘 + 𝜀𝑓𝑘−1 𝑠𝑘−1 𝐹  . (19) 

 

Using this method and a discrete time approach, we get 

for the first stage, 

𝑓1 𝑠1 𝐹 = 

𝑃𝑉𝑟𝑐𝑓 + 𝑚𝑖𝑛
𝑥 1 ∈𝐷

𝜀  𝑐𝑟𝑥 1 𝑃𝑉𝑊 1 + 𝑃𝑉 𝑐𝐿 × U  , (20) 

 

with 

PVrcf = ε cr xkPVWk

kϵF

=  cr xkε PVWk .
kϵF

 (21) 

 

In version 1 we will have 

𝑃𝑉𝑊𝑘 = 𝑥𝑘

1 − 𝛼𝑌

1 − 𝛼
× 𝛼𝑑  (22) 

 

and in version 2 

𝑃𝑉𝑊𝑘 = 𝑊𝛼𝑌𝛼𝑑  (23) 
 

where 𝑌 represents the time of the activity duration (a 

r.v.) and 𝑑 represents the time that the activity starts, 

and 

𝑃𝑉 𝑐𝐿 × U = 𝑐𝐿 × U × 𝛼ϒ𝑘   (24) 
 

For the other stages: 

𝑓𝑘 𝑠𝑘  𝐹 = 𝑚𝑖𝑛
𝑥[𝑘]∈𝐷

𝜀  𝑃𝑉𝑊 𝑘   𝑥 𝑘  , 𝑠𝑘 

+ 𝜀𝑓𝑘−1 𝑆𝑘−1 𝐹   
(25) 

 

If we use this method and a continuous time approach, 

we need to use this equation: 

𝑃𝑉𝑊𝑘 = 𝑥𝑘 ×
1 −  𝑒−𝑖𝑝  

𝑌

1 −  𝑒−𝑖𝑝  
×  𝑒−𝑑×𝑖𝑝  (26) 

 

where Y represents the activity duration, 𝑑 the time that 

the activity starts and 𝑖𝑝  the periodic interest rate, and 

𝑃𝑉 𝑐𝐿 × U = 𝑐𝐿 × U × 𝑒−ϒ𝑘×𝑖𝑝  . (27) 

 

5 The Electromagnetism Algorithm 

The Electromagnetism Algorithm (EMA) is based on 

the principles of electromagnetism and it was developed 
by Birbil and Fang (2003). Those principles say that two 

particles experience forces of mutual attraction or 

repulsion depending on their charges. 

This algorithm is divided in four phases that are: 

initialization of the algorithm, calculation of the vector 

of total force exerted on each particle, movement along 

the direction of the force, and application of 

neighborhood search to exploit the local minima (Birbil 

et al., 2004). 

The initialization disperses randomly the m particles in 

the n-dimensional space (hyper-cube); each particle is a 

vector of dimension |A| with a fixed allocation of the 

resources to the activities.  For each particle the value of 

the objective function is calculated and the best point is 

saved in xbest . 

In the next step, the vector of total force exerted on each 

particle (xi) is calculated. The charge of each particle 

determines the level of attraction or repulsion between 
any two particles of the population in the n-dimensional 

space. The charge is calculated as: 

𝑞𝑐 = exp  −n ×
𝑓 𝑥𝑐 − 𝑓 𝑥𝑏𝑒𝑠𝑡  

  𝑓 𝑥𝑘 − 𝑓 𝑥𝑏𝑒𝑠𝑡   m
𝑘=1

 ,  

𝑐 = 1,2, … , 𝑚 . 

(28) 

 

As the value of the objective function becomes better, 

the value of those charges increases. 

The total force exerted on a particle, 𝐹𝑐 , is determined 

by: 

𝐹𝑐 =   𝑥𝑏 − 𝑥𝑐 

𝑚

𝑏≠𝑐

𝑞𝑐𝑞𝑏

 𝑥𝑏 − 𝑥𝑐 2
, 

                                                       𝑐 = 1,2, … , 𝑚 . 

(29) 

 

After determining Fc , it is just necessary to move the 
particle according to: 

𝑥𝑚 ′
= 𝑥m + 𝛽

𝐹𝑐

 𝐹𝑐 
 𝑅𝑁𝐺 , (30) 

 

where  β  is a random parameter that influence the 

movement length. 

For our purpose, to obtain the minimum cost of the 

project, we have to evaluate the total cost after each 

iteration, keeping the best one stored for later use. 

The total cost of the project is given by the sum of the 

p.v. of the resource cost (RC) and the tardiness cost 

(TC), 

𝑃𝑉𝐶 =  𝑃𝑉𝑅𝐶𝑎 + 𝑃𝑉𝑇𝐶

𝑛

𝑎=1

. (31) 

                                   

If we use this method and a discrete time approach we 

need to evaluate the p.v. of the resource cost and the p.v. 

of the corresponding tardiness cost. 



The p.v. of the resource cost is given by 

PVRC =  cR × xa × PVWa

n

a=1

 (32) 

 

where 𝑐𝑅  is the constant of proportionality. 

In version 1 we will have 

PVWa = xa
1−αY

1−α
× αd , (33) 

 

and in version 2  

PVWa = WαYαd, (34) 

 

in which Y represents the time of the activity duration 

and d represents the time that the activity starts. 

The p.v. of tardiness cost is evaluated using: 

PVTC = cL × max 0, ϒn − T × αϒn  . (35) 

 

If we use this method and a continuous time approach 

we need to evaluate the p.v. of the resource cost and the 

p.v. of the corresponding tardiness cost. 

The p.v. of the resource cost is given by 

𝑃𝑉𝑅𝐶 =  𝑐𝑅 × 𝑥𝑎 × 𝑃𝑉𝑊𝑎

𝑛

𝑎=1

 (36) 

 

where  𝑐𝑅  is the constant of proportionality, and 

PVWa = xa ×
1− e−ip  

Y

1− e−ip  
× e−d×ip  ,  (37) 

 

in which 𝑌 represents the activity duration, 𝑑 represents 

the time that the activity starts and 𝑖𝑝 the interest rate 

per period. 

The p.v. of the expected tardiness cost is evaluated 

using: 

PVTC = cL × max 0, ϒn − T × e−ϒn ×ip   (38) 

6 The Evolutionary Algorithm 

The Evolutionary Algorithm (EVA) is based on the 
natural evolution of the species, and it was developed by 

(Costa and Oliveira, 2001). It is usually used in 

optimization problems and it is based on the population 

evolution. In this kind of problem, it is very easy to be 

trapped in a local optimum, so it is crucial to use global 

optimization methods in order to achieve the best global 

solution. 

Nowadays there are two important approaches to EVA: 

Evolutionary Strategies (EVA-ES) and Genetic 

Algorithms (EVA-GA). In our study we adopted the 
EVA-ES because several studies (Hoffmeister and Bäck, 

1991) (Dianati et al., 2002) indicate that ES‟s are 

usually more efficient than GA in terms of the number 

of objective function evaluations, especially in 

continuous optimization problems. 

The solution is obtained evaluating the fitness of the 

individuals and selecting the best ones to pass to the 

next generation. Thus, we start to generate an initial 

population (ancestors) of size μ that will create a new 

population (descendents) of size  λ,  after applying 

mutation and recombination operations. In each 

generation, λ  descendents are generated from μ 

ancestors, and the best individuals are chosen to go to 

the next generation. All of these individuals are 

represented by vectors of real decision variables. 

The mutation and recombination processes are used to 

preserve the genetic diversity between ancestors and 

descendents so that the algorithm will not be trapped in 

a local minimum. 

The nomenclature often used for representing ES is 

based on the number of the ancestors μ, on the number 

of the descendents λ and on the type of selection chosen. 

If we adopt the (μ + λ)  nomenclature, after the 

descendent population has been generated they are 

added to the ancestors population and then the μ best 

individuals are selected to go to the next generation. 

 

Figure 1 – (μ+λ) nomenclature. 

Alternatively, if we adopt the (μ, λ) nomenclature, after 

the descendent population has been generated the μ best 

individuals are selected for the next generation. 

 

 

Figure 2 - (μ,λ) nomenclature 

The total cost of the project when using this method is 
given by the same formulas used in EMA, applied to 



both versions of the Discrete Time Approach and to the 

Continuous Time Approach. 

7 Results 

7.1 Experiment layout 

The program was tested on a set of fourteen projects 

(see main characteristics in table 1) that range in size 

from 3 to 49 activities6. The networks chosen enabled 

analysis of a spectrum of different network complexities. 

These networks were also used in prior studies (Tereso 

et al., 2006a; Tereso et al., 2007; Tereso et al., 2006b), 

allowing for comparison of performance and results. 
Each activity i has stochastic work content Wi, assumed 

to be exponentially distributed (as in prior studies). 

Table 1 – Main Characteristics of the Networks Tested 

Net 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

|A| 3 5 7 9 11 11 12 14 14 17 18 24 38 49 

T 16 120 66 105 28 65 47 37 188 49 110 223 151 221 

cL 2 8 5 4 8 5 4 3 6 7 10 12 5 5 

 

The due date T was selected to be slightly greater 

[1.04,1.09] than the length of the “critical path” in the 

CPM calculations, assuming the mean work content and 

the quantity of resource 𝑥𝑖  equal to 1, thus the duration 

of each activity is fixed at 𝑦 = 𝑊 , without considering 

the time value of money. The tardiness cost cL  was 

chosen to be 2 to 12 times the marginal resource cost cR, 

which was normalized at 1.  

Both in the EMA and EVA tests, we generated a set of 

work contents randomly (100) to represent the possible 

values for each activity and then we kept these values 

for all the experiments, for each network. The results 

presented were obtained by evaluation the mean of four 

runs.  

7.2 Results 

The results reported here were obtained using an Intel 

Core 2 6400 CPU at 2.13 GHz with 1GB of RAM under 

Microsoft Windows XP Professional SP3. 

In our case, some values are equal in all runs (annual 

interest rate=8.6957%, unitary resource cost=$1 and 

number of periods in a year=365). 

Appendix A presents an example of application of the 

three models and also a brief algorithm description. 

Appendix B explains the impact on the results of taking 

discounting into account. Appendix C presents the 

execution times obtained in all the experiments. 

For the networks tested, using Dynamic Programming, 

the results are shown in tables 2 and C1. The work 

contents and realization times were discretized at 4 

points. The range of the decision variables (fixed 

                                                        
6 See full characteristics of the networks tested in 

www.dps.uminho.pt/pessoais/anabelat  

variables) was discretized at 5 (3) points. For the larger 

networks we could not get results due to excessive time 

to complete experiment. The program was aborted after 

8 hours running. 

Table 2 - Total Cost: Dynamic Programming 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(*) – Program aborted after 8 hours running. 

For the Electromagnetism Algorithm, with the number 

of particles equal to 15, we got the results shown in 

tables 3 and C2. The total cost reported is the mean of 

the values obtained in the 4 runs. 

Table 3 - Total Cost: Electromagnetism Algorithm 

Net 
No 

discounting 
Discrete 

Version 1 
Discrete 

Version 2 
Continuous 

1 $43.945 $43.537 $43.314 $43.728 

2 $337.025 $339.608 $324.178 $326.310 

3 $225.952 $218.901 $221.431 $220.266 

4 $406.242 $387.221 $388.199 $389.353 

5 $138.008 $133,808 $134.877 $135.987 

6 $263.557 $253.173 $248.337 $251.678 

7 $158.929 $156.139 $155.176 $156.772 

8 $94.510 $94.442 $93.175 $93.681 

9 $801.433 $750.093 $743.219 $746.081 

10 $106.720 $105.945 $105.298 $105.508 

11 $453.402 $443.930 $443.159 $444.894 

12 $1,381.696 $1,167.805 $1,157.423 1.175,338 

13 $811.971 $795.434 $776.087 $774.685 

14 $532.055 $546.510 $511.184 $518.341 

 

For the Evolutionary Algorithm, using 15 generations, a 

population of descendents and ancestors equal to 15, a 

recombination population equal to 10 and the type of 

selection (μ, λ), we got the results shown in tables 4 and 

C3. The total cost reported is, as above, the mean of the 

4 runs. 

 

 

 

 

 

 

 

Net 
No 

discounting 

Discrete 

Version 1 

Discrete 

Version 2 
Continuous 

1 $43.326 $43.240 $43.188 $43.240 

2 $297.513 $294.629 $293.330 $294.629 

3 $197.979 $197.070 $196.623 $197.070 

4 $385.321 $382.813 $381.082 $382.813 

5 $135.340 $134.974 $134.886 $134.974 

6 $293.851 $292.599 $291.886 $292.599 

7 $161.825 $161.352 $161.125 $161.352 

8 $123.931 $123.671 $123.533 $123.671 

9 (*) (*) (*) (*) 

10 (*) (*) (*) (*) 

11 (*) (*) (*) (*) 

12 (*) (*) (*) (*) 

13 (*) (*) (*) (*) 

14 (*) (*) (*) (*) 

http://www.dps.uminho.pt/pessoais/anabelat


Table 4 - Total Cost: Evolutionary Algorithm 

Net 
No 

discounting 

TC – EMA 
Discrete 

Version 1 

TC – EMA 
Discrete 

Version 2 

TC – EMA 
Continuous 

1 $44.499 $44.065 $44.097 $44.469 

2 $343.077 $336.700 $338.077 $348.476 

3 $238.832 $233.379 $229.840 $227.811 

4 $413.791 $406.344 $402.645 $407.611 

5 $148.573 $156.557 $143.630 $142.791 

6 $266.330 $257.522 $255.039 $262.052 

7 $166.982 $164.889 $160.329 $166.183 

8 $106.403 $102.360 $102.608 $97.008 

9 $814.795 $785.968 $787.030 $788.552 

10 $116.157 $111.512 $113.428 $112.399 

11 $489.945 $470.083 $475.137 $475.716 

12 $1,518.377 $1,430.934 $1,437.272 $1,434.103 

13 $903.669 $829.685 $830,003 $824.082 

14 $569.911 $549.359 $551.289 $525.174 

 

8 Conclusion 

We started by comparing the results for the three 

algorithms without considering the time value of the 

money, and as expected the costs are higher (see tables 

2, 3 and 4) than the costs obtained when using 

discounting; and the execution times are smaller (see 

tables C1, C2 and C3). This happens because when we 

consider the time value of money we discount the costs 
to the present time, turning them smaller and we need to 

do more evaluations, so it takes longer to achieve 

comparable results. 

After doing an analysis to the Discrete Time Approach 

model with a daily time interval (discrete version 1), 

and comparing with the Continuous Time Approach 

model, we concluded that these two approaches are very 

similar.  So, we decided to create a second version using 
the Discrete Time Approach model where we will only 

pay the work content of an activity when it is finished 

(discrete version 2). This avoids the daily discount and 

these two models will be different and have different 

results as well, as can be seen, in particular on the DP 

Model (table 2). 

In table 2, which represents the DP results, we verify 
that the higher total cost considering discounting is 

given by the discrete-time approach (version 1), where 

we assume the work content is incurred at the start of 

the activity and by the continuous-time approach, which 

does the discount without establishing time intervals. 

There is no difference between these two approaches, 

because the number of periods per year used in the 

discrete-time approach is 365, staying very close to 

continuous time. The cost for the second version of 

discrete-time approach, where it is assumed that the 

work content is appointed to the end of the activity, is 

always smaller, but the different is not very high. This is 
because the time intervals used are not very large and 

the cost of the resource used is small. 

When we analyze the total cost results presented on 

table 3 (EMA) and table 4 (EVA) we verify that the 

difference in the results is higher between the two 

approaches. This happens because these two algorithms 

have a random component that conditions the results. In 

the calculation of the resultant force (in the EMA) as 

well as in the formation of new generations (in the EVA) 

the random factor is always present. This random factor 

helps these algorithms not to be stuck in local minima. 

For the smaller networks, DP achieved better results 

than EMA and EVA, but when networks increase their 

number of activities, DP results are worst than EMA 

and EVA, in terms of cost and also in terms of 

execution times.  This is because the DP Model has to 

discretize the stochastic continuous variables during 

execution and the search space may not be well covered 

when the number of discretized points is small. The 

number of points used is a compromise between better 

results and slower execution time. The time needed to 

do the search also increases exponentially when the 

number of activities increases. This is because the 
number of nested cycles also increase, making the 

algorithm less efficient. In EMA and EVA we represent 

the stochastic variables using simulation and their 

search has a random component which allows exploring 

other regions of the search space, making these 

algorithms more efficient for larger networks.      

Comparing the EMA and the EVA algorithm, we can 
conclude that EMA reached better results in terms of 

cost, but EVA was faster. Both of them are superior to 

the DP model, for larger networks, as concluded before. 

We also conducted another experiment modifying 

network 1 in order to illustrate better the difference 

between taking discounting into account or not (see 

appendix B).  Considering the results obtained, the 

following remarks are pertinent. Firstly, as expected, the 
optimal cost under discounting is less than that without 

discounting. However, the magnitude of the difference 

is rather surprisingly large, amounting to approximately 

111% of its value, despite the closeness of the daily 

discount factor  to 1. Secondly, the optimal resource 

allocation without discounting is maximal for activity 1, 

almost „normal‟ for activity 2 (very close to 1.0), and 

less than „normal‟ for activity 3; which reflects the 

„anxiety‟ at the start of the project relative to activity 1. 

This is quite different from the optimal resource 

allocation with discounting which is minimal for 
activities 1 and 3 and slightly above minimal for activity 

2, which reflects the „steadiness‟ in the decision brought 

about by discounting the future. Thirdly, the „PERT-

based‟ estimate of cost is closer to the undiscounted cost 

(difference = $122) than the discounted cost (difference 

= $1912), as expected, since in the PERT calculations 

we didn‟t use discounting. If nothing else, this simple 

example forcefully illustrates the difference in decision 

as well as in value when analysis is conducted taking 

the time value of effort into account. This result reflects 

the inherent tendency of the PERT calculations to 
under-estimate the expected completion time of the 

project. In a sense, the `PERT-based' estimate of cost is 

based on a myopic view of the future, which is akin to 

what discounting does. 



This paper presented the results for the resource 

allocation problem in stochastic activity networks as in 

previous papers of the same first author (Tereso, 2002; 

Tereso et al., 2003; Tereso et al., 2004a; Tereso et al., 

2004b; Tereso et al., 2008; Tereso et al., 2006a; Tereso 

et al., 2007; Tereso et al., 2006b; Tereso et al., 2009), 

but introduced a new component on the models: the 

time value of money. This model may be better suited 

for representing real life situations, when this factor is 
important to be considered. 
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Appendix A: Application Example 

We will try to explain better how the models were 
applied using the simpler network tested (figure A1). 

 

Figure A1 - Example network 1 

The due date of this network T is 16 and the tardiness 

penalty cL is 2 per unit time. The remaining parameters 

are represented in table A1. These parameters are the 

parameter (λ) of the exponential distribution that 

represents the Work Content of each activity, and the 

minimal and maximal amount of resource to allocate to 

each activity (min and max). The expected duration of 

activity 1 is 1/λ =1/0.2 = 5, and for activity 2 and 3, 10 

and 14.29 respectively. In this way, the PERT expected 

duration for this network is 15. The due date of the 

project is selected to be a value above the PERT 
expected duration (approximately 5% more). 

Table A1 - Parameters for network 1 

Activity 1 2 3 

λ 0.2 0.1 0.07 

xmin 0.5 0.5 0.5 

xmax 1.5 1.5 1.5 

 

A1: The Dynamic Programming Model 

First we determine the longest path in the network 

shown in heavy lines in figure A1. The activities along 

the longest path are the decision variables; set D =
 x1 , x2 . The set of fixed activities is the set F =  x3 . 
For simplicity reasons we will illustrate the application 

of the models without considering the time value of 

money. The inclusion of this component is achieved 
through the use of the equations presented in sections 3, 

4 and 5. The activities on the set F were discretized in 3 

points {0.5, 1.0, 1.5} and the activities on the set D in 5 

points {0.5, 0.75, 1.0, 1.25, 1.5}. The Work Contents 

were discretized in 4 values each with probability 0.25, 

with the same expected value as 𝜀(𝑊𝑎)  for instance,   

W2 ~ exp(0.1) was assumed to take only four values: 

{1.3695, 4.7675, 10.00, 23.8629}, all with equal 

probability. To be sure, the average of these four values 

is 10, which is the expected value of the r.v.. For each of 
the values of the fixed activities we evaluate the 

resource cost of the fixed activities, by the following 

expression. For example, considering x3 = 0.5 we will 

have:  

𝑟𝑐𝑓 =  𝑐𝑅𝑥𝑖 𝜀 𝑊𝑖 = 1 ∗ 0.5 ∗
1

0.07
= 7.143,

𝑖∈𝐹

 

The DP iterations are initiated at stage 1 which is 

defined by the decision variable 𝑥2 (the allocation to 

activity 2). The state may be defined by 𝑡2, the time of 
realization of node 2. We have that 

𝑓1 𝑠1 𝐹 = 𝑟𝑐𝑓 + 𝑚𝑖𝑛
𝑥2

𝜀  𝑐𝑟𝑥2𝑊2 + 𝑐𝐿 × U  

Where 

𝑈 = max⁡(0, ϒ3 − 𝑇) 

And 

ϒ3 = max⁡ 𝑡2 +
𝑊2

𝑥2

;  
𝑊3

𝑥3

  

In this case we only have two stages. Stage 2 is the final 

stage.  

𝑓2 𝑠2 𝐹 = 𝑚𝑖𝑛
𝑥1

𝜀  𝑥1 ∗ 𝑊1 + 𝜀𝑓1 𝑠1 𝐹   

t2 is determine to be in the range between the  minimal 

and maximal possible durations of activity 1. Then this 

range is also discretized. All the variables represented in 

upper case are random variables that were discretized 

for simplicity. In order to do evaluations with this kind 

of variables we need to keep also the associated 

probabilities and do the correct evaluation of the sum or 

maximum of two random variables, as needed. 

After all the evaluations, the final result obtained for 

this network was $43.326 with 𝑥1 = 1 and 𝑥3 = 1.  The 

value of 𝑥2 depends on the time of realization of node 2, 

a r.v.. 

A2: The Electromagnetism Algorithm 

The Electromagnetic Algorithm works in a different 
way compared to the DP model. Instead of discretizing 

the random variables, namely the Work Content of each 

activity, their possible values are obtained though 

simulation.  To start the algorithm, we generate 

randomly K (=100) vectors of work contents. These 

vectors were stored and used in all runs, for the same 

network, to keep the objective function stable. Then we 

generated m (=15) vectors of X (allocation quantities); 

m represents the size of the population of particles.  For 

each vector of particles (X) and for each vector of work 

3 

1 2 

3 

2 

1 



contents (W) the total cost is evaluated, using the 

equation (here without the discounting factors): 

c =  cR × xa × Wa + cL × max 0, ϒn − T 

n

a=1

 

The objective function value of each particle is the 

mean cost of all W‟s. Charges and forces are then 

evaluated. Points are moved to obtain a set of new m 

points. This process continues until the limit number of 

iterations is reached. In figure A2 we present the generic 

algorithm that describes the steps of this process. 

1. Generate 𝐾 vectors of 𝑊 = (𝑤1 . . 𝑤𝑛 ) randomly 

2. Generate 𝑚 vectors of 𝑋 = (𝑥1 . . 𝑥𝑛 ) to start with 

3. For each vector 𝑋 

4.       For each vector 𝑊 

5.             𝑟𝑐 =  𝑐𝑅 × 𝑥𝑎 ×  𝑊𝑎  

6.             𝑡𝑐 =  𝑐𝐿 × 𝑚𝑎𝑥 {0, ϒ𝑛  − T} 

7.             𝑐 =  𝑟𝑐 +  𝑡𝑐 

8.       End for 

9.       𝑓 =  
𝑐

𝐾
  

10.     Evaluate charges 
11.     Evaluate forces 

12. End for 

13. Move the points 

14.Go to step 3 until nº of iterations specified is reached 

Figure A2 - The EMA algorithm 

Suppose one of the work contents generated is equal to: 

W1 = {6, 12, 15} 

And one of the particles generated is: 

X1 = {1.5, 0.5, 0.5} 

For W1 and X1, we first evaluate the duration of the 

activities as being 

𝑦𝑎 =
𝑊𝑎

𝑥𝑎

= {4, 24, 30} 

Using CPM we evaluate ϒ n = 30. 

The resource (with cR=1) and tardiness costs for this 

particle are: 

rc = 1.5 × 6 +  0.5 × 12 + 0.5 × 15 = 22.5 

𝑡𝑐 = 2 × max 0, 30 − 16 = 28 

The total cost is then the sum of these two costs, 50.5. 

The algorithm proceeds repeating this kind of 

evaluations for each work contents generated. The 

objective function value (cost) of each particle will be 

the mean of the cost values obtained for each vector of 

work contents.  

Then the particles will attract and repel each other, 

originating movements that will produce other particles. 

At the end of this process convergence to the minimum 

is expected. In the case of network 1, the result obtained 

was a total cost equal to $43.945 with the following 

values for the allocation variables X* = (0.500, 0.695, 

0.914). 

A3: The Evolutionary Algorithm 

The evolutionary algorithm is basically applied in the 

same way as the electromagnetic algorithm. The Work 
Contents generated for the EMA are also used for the 

EVA. Then the initial population, of size λ = 15 , of 

ancestors is generated, and through mutation and 

recombination operations,  λ descendents are generated 

from μ = 10  ancestors, and the best individuals are 

chosen to go to the next generation. The generic 

algorithm that describes the steps of this process can be 

seen in figure A3. 

1. Generate 𝐾 vectors of 𝑊 = (𝑤1 . . 𝑤𝑛 ) randomly 

2. Generate 𝑚 vectors of 𝑋 = (𝑥1 . . 𝑥𝑛 ) to start with 

3. For each vector 𝑋 
4.       For each vector 𝑊 

5.             𝑟𝑐 =  𝑐𝑅 × 𝑥𝑎 ×  𝑊𝑎  

6.             𝑡𝑐 =  𝑐𝐿 × 𝑚𝑎𝑥 {0, ϒ𝑛  − T} 

7.             𝑐 =  𝑟𝑐 +  𝑡𝑐 
8.       End for 

9.       𝑓 =  
𝑐

𝐾
 

12. End for 

10. Apply mutation 

11. Apply recombination 

13. Generate the next population 

14. Go to step 3 until stop criteria is reached. 

Figure A3 - The EVA algorithm 

In the case of network 1, the result obtained was a total 

cost equal to $44.499 with the following values for the 

allocation variables X* = (1.296, 0.944, 0.989). 

Appendix B: Impact of taking discounting 

into account 

As a simple illustration of the impact of taking the time 

value of effort into account consider the miniscule 

project composed of three activities in figure A1, but 

with the following parameters: due date T = 1600, 
penalty for tardiness cL = 2 and the new parameters of 

table B1 (where we included the expected duration at 

x=1). 

Table B1 – New parameters for network 1 

Activity 1 2 3 

λ 0.002 0.001 0.0007 

xmin 0.5 0.5 0.5 

xmax 1.5 1.5 1.5 

Expected duration at x=1 500 1000 1428.57 

 



Based on the „PERT-type‟ calculations7 , the „Critical 

Path‟ is of expected duration 1500 days, with variance 

given by 

1

0.0022
+

1

0.0012
= 1,250,000 𝑑𝑎𝑦𝑠2 

and the expected tardiness is given by 𝐿 𝑧0 , in which 

𝐿   is the standard loss function (under the standard 

normal distribution), 

𝐿 𝑧0 =   𝜏 − 𝑧0 𝜑 𝜏 𝑑𝜏
∞

𝜏=𝑧0

=   𝜏𝜑 𝜏 𝑑𝜏
∞

𝜏=𝑧0

− 𝑧0 1 − (𝑧0) 

=  𝜑 𝑧0 − 𝑧0 1 −(𝑧0)  

in which 𝜑 𝜏  is the standard normal density function, 

with the last equality a consequence of a well-known 

property of the standard normal distribution. With the 

due date given at 1600, we have 

𝑧0 =  1600 − 1500  1,250,000 = 0.089443,  which 

yields 𝐿 𝑧0 = 0.355856, which, in turn, translates into 

expected tardiness of ≈ 298 days. Hence the expected 

cost would be 

𝐶𝑃𝐸𝑅𝑇  1,1,1 = $3524.29 

Now we seek the optimal resource allocation without 

and with discounting at the annual interest rate of 

𝑖𝑎 = 8.6957%, or daily discount rate of 𝛼 = 0.9998. 8 

The results, secured by the Electromagnetism Approach,  

are as follows: 

 Opt. Resource Allocation X Opt. Cost C(X) 

Without discounting (1.499, 0.951, 0.865) 3402.223 

With discounting (0.501, 0.635, 0.555)  1612.047 

 

 

 

 

 

 

 

 

 

 

                                                        
7 Still assuming the „normal‟ resource allocation x = 1 for all three 

activities. 
8 Secured from ∝=  

1

1+𝑖𝑎
 

1
365 

 

Appendix C: Execution Times 

 

Table C1 - Execution Time: Dynamic Programming 

(*) – Program aborted after 8 hours running 

 

 

Table C2 - Execution Time: Electromagnetism 

Algorithm 

Net No discounting 
Discrete 

Version 1 

Discrete 

Version 2 
Continuous 

1 0.235s 0.485s 0.468s 0.453s 

2 1.109s 1.781s 1.750s 1.718s 

3 2.953s 4.906s 4.890s 4.719s 

4 7.844s 10.984s 10.937s 10.782s 

5 13.891s 19.422s 19.297s 18.922s 

6 16.484s 22.140s 21.922s 21.500s 

7 25.344s 31.188s 31.078s 30.328s 

8 35.531s 43.172s 43.625s 42.781s 

9 53.609s 1m 00.047s 59.328s 59.109s 

10 1m 39.125s 1m 52.422s 1m 52.250s 1m 49.985s 

11 2m 54.750s 3m 02.235s 3m 02.609s 2m 59.797s 

12 27m 43.625s 9m 55.781s 10m 02.172s 9m 50.984s 

13 55m 18.406s 56m 47.266s 55m 43.859s 54m 46.610s 

14 5h 26m 15.860s 5h 28m 26.969s 5h 26m 15.860s 5h 25m 36.891s 

 

Table C3 - Execution Time: Evolutionary Algorithm 

Net No discounting 
Discrete 
Version 1 

Discrete 
Version 2 

Continuous 

1 0.172s 0.390s 0.406s 0.375s 

2 0.594s 1.046s 1.031s 1.016s 

3 1.469s 2.265s 2.250s 2.157s 

4 3.187s 4.406s 4.328s 4.297s 

5 4.984s 6.516s 6.735s 6.500s 

6 5.875s 7.500s 7.531s 7.437s 

7 8.593s 9.906s 10.156s 9.844s 

8 10.985s 12.828s 12.891s 12.875s 

9 15.391s 17.735s 18.062s 17.328s 

10 25.812s 28.578s 28.797s 27.984s 

11 43.344s 45.266s 46.422s 44.766s 

12 5m 29.094s 1m 58.485s 2m 00.656s 1m 55.766s 

13 7m 29.469s 7m 27.453s 7m 59.016s 7m 05.031s 

14 35m 59.500s 37m 08.063s 38m 41.781s 36m 34.500s 

 

Net 
No 

discounting 
Discrete 
Version 1 

Discrete 
Version 2 

Continuous 

1 0.000s 0.001s 0.001s 0.001s 

2 0.032s 0.063s 0.063s 0.047s 

3 0.062s 0.093s 0.094s 0.078s 

4 2.546s 3.359s 3.312s 3.031s 

5 8.266s 11.000s 11.187s 10.719s 

6 1m 31.094s 1m 53.359s 1m 54.296s 1m 49.594s 

7 10m 36.156s 11m 58.671s 11m 44.734s 11m 42.546s 

8 52m 18.594s 1h 01m 25.859s 1h 00m 40.860s 56m 47.453s 

9 (*) (*) (*) (*) 

10 (*) (*) (*) (*) 

11 (*) (*) (*) (*) 

12 (*) (*) (*) (*) 

13 (*) (*) (*) (*) 

14 (*) (*) (*) (*) 


