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Abstract. We compute the tensorial gravitational perturbations of general spherically
symmetric black holes in d dimensions with string–theoretical α′ corrections. We then study the
scattering of minimally coupled massless scalar fields by such black holes. We obtain a general
formula for the low frequency absorption cross section for every black hole of this kind, which
we apply to known black hole solutions. In each case we compare the results for the absorption
cross section with the black hole entropy, obtained through Wald’s formula.

1. Introduction
The low frequency limit of the absorption cross section for minimally coupled scalar fields is
equal to the area of the black hole horizon, a result which can also be extended to higher spin
fields [1]. Equivalently, one can say that the low frequency cross section equals four times the
Bekenstein–Hawking black hole entropy: σ = 4GS.

This relation was only established classically. It is important to check if and how such
relation is maintained in the presence of higher derivative terms, namely string α′ corrections.
This question leads us to study α′ corrections to the absorption cross section. But such study
is interesting and important by its own, since gravitational wave astronomy is becoming an
experimental reality which could allow for the detection and measurement of (small) string
effects.

The first work to discuss the effects of leading α′ corrections quadratic in the Riemann tensor
in the absorption cross section of spherically symmetric black holes for generic d dimensions was
article [2], but just dealing with a particular black hole solution. Here we perform such study
for any d dimensional spherically symmetric black hole with such corrections.

This work is organized as follows. In section 2 we review the formalism for gravitational
perturbations of black holes in d spacetime dimensions, focusing specifically on the tensorial
perturbations. In section 3 we present the α′–corrected action and field equations we are about to
address and their generic spherically symmetric solution. We obtain the tensorial perturbations
to this solution and the respective tensor potential and master equation. In section 4 we solve
the master equation in different regions of spacetime, using different approximations: close to
the horizon, at asymptotic infinity and in the intermediate region. We present solutions, in
closed form, of the master equation for these three regions. After matching these three different
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solutions, we are able to obtain a general formula for the α′–corrected low frequency absorption
cross section. All we have been describing is performed for a generic spherically symmetric
metric; in section 5, we apply our result to known metrics with α′ corrections. We also compute
the α′–corrected entropy, to be compared to the cross section. We end by discussing our results.

2. General setup of the perturbation theory
2.1. Perturbations on a (d− 2)–sphere
We will study the behavior, under gravitational perturbations, of string–corrected black hole
solutions in a generic spacetime dimension d. For such analysis we use the framework developed
by Ishibashi and Kodama [3, 4, 5] for black holes. This framework applies to generic spacetimes
of the formMd = N d−n×Kn, with coordinates {xµ} =

{
ya, θi

}
. In here Kn is a manifold with

constant sectional curvature K. The metric in the total space Md is then written as

g = gab(y) dya dyb + r2(y) γij(θ) dθi dθj . (1)

For our purposes, we take n = d − 2 and the manifold Kn, describing the geometry of the
black hole event horizon, will be a (d− 2)–sphere (thus, with K = 1). Also, N d−n coordinates
will be {ya} = {t, r} , with

{
r, θi

}
being the usual spherical coordinates so that r(y) = r and

γij(θ) dθidθj = dΩ2
d−2.

Defining generic perturbations to the metric as hµν = δgµν , h
µν = −δgµν , we get for the

variation of the Levi-Civita connection

δΓρµν =
1
2

(∇µhνρ +∇νhµρ −∇ρhµν) (2)

From this variation and the Palatini equation

δRρσµν = ∇µ δΓρνσ −∇ν δΓρµσ, (3)

one can easily derive the variation of the Riemann tensor:

δRρσµν =
1
2

(
Rµνρλhλσ −Rµνσλhλρ −∇µ∇ρhνσ +∇µ∇σhνρ −∇ν∇σhµρ +∇ν∇ρhµσ

)
. (4)

General tensors, of rank at most equal to two, can be uniquely decomposed in tensor, vector and
scalar components, according to their tensorial behavior on the (d− 2)–sphere, the geometry of
the black hole event horizon [4]. In particular, this is also true for the perturbations to the metric,
but one should note that metric perturbations of tensor type only exist for dimensions d > 4,
unlike perturbations of vector and scalar type, which also exist for d = 4. This is because the 2–
sphere does not admit any tensor harmonics [6]. Tensor perturbations are therefore intrinsically
higher–dimensional.

2.2. Tensorial perturbations of a spherically symmetric static metric
In this work we will only consider tensor type gravitational perturbations to the metric field,
for α′–corrected RµνρσRµνρσ black holes in string theory. One should consider perturbations to
all the fields present in the low–energy effective action (in our case, the metric and the dilaton),
but, as we will show later, one can consistently set tensor type perturbations to the dilaton field
to zero. These metric perturbations were studied in [4], where it is shown that they can be
written as

hij = 2r2(ya) HT (ya) Tij(θi), hia = 0, hab = 0, (5)
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with Tij satisfying (
γklDkDl + kT

)
Tij = 0, DiTij = 0, gijTij = 0. (6)

Here, Di is the covariant derivative on the (d−2)–sphere, associated to the metric γij . Thus,
the tensor harmonics Tij are the eigentensors of the (d − 2)–laplacian D2, whose eigenvalues
are given by kT + 2 = ` (`+ d− 3), with ` = 2, 3, 4, . . .. It should be further noticed that
the expansion coefficient HT is gauge–invariant by itself. This is rather important: when
dealing with linear perturbations to a system with gauge invariance one might always worry
that final results could be an artifact of the particular gauge one chooses to work with. Of
course the simplest way out of this is to work with gauge–invariant variables, and this is
precisely implemented in the Ishibashi–Kodama framework [3, 4, 5]. As it was noticed in [2],
the Ishibashi–Kodama gauge–invariant variables are also valid for higher derivative theories as
long as diffeomorphisms keep implementing gauge transformations. This is because up to now
we have only chosen the background metric we wish to perturb: so far, no choice of equations
of motion has been done.

Now we consider a static, spherically symmetric background metric. Such a metric is clearly
of the type (1), and is given by

ds2 = −f(r) dt2 + g−1(r) dr2 + r2dΩ2
d−2. (7)

One first needs to obtain the variation of the Riemann tensor under generic perturbations of
the metric. If one collects the expressions for hµν given in (5), their covariant derivatives, and
further the components of the Riemann tensor, and replaces them on the Palatini equation (4),
one obtains

δRijkl =
((

3g − 1
)
HT + rg∂rHT

)(
gilTjk − gikTjl − gjlTik + gjkTil

)
+

+ r2HT

(
DiDlTjk −DiDkTjl −DjDlTik +DjDkTil

)
, (8)

δRitjt =
(
−r2∂2

tHT +
1
2
r2ff ′∂rHT + rff ′HT

)
Tij , (9)

δRitjr =
(
−r2∂t∂rHT − r∂tHT +

1
2
r2 f

′

f
∂tHT

)
Tij , (10)

δRirjr =
(
−rg

′

g
HT −

1
2
r2 g
′

g
∂rHT − 2r∂rHT − r2∂2

rHT

)
Tij , (11)

δRabcd = 0, (12)

and further

δRij =
r2

f

(
∂2
tHT

)
Tij − r2g

(
∂2
rHT

)
Tij −

1
2
r2
(
f ′ + g′

)
(∂rHT ) Tij − r

(
f ′ + g′

)
HTTij +

+ (2− d) rg (∂rHT ) Tij + (2d− 4)HTTij + (6− 2d) gHTTij + kTHTTij , (13)
δRia = 0, δRab = 0, δR = 0. (14)

These are the equations we will need in order to perturb the α′–corrected field equations.

3. Gravitational perturbations to the α′–corrected field equations
The d–dimensional effective action with α′ corrections we will be dealing with is given, in the
Einstein frame, by

1
16πG

∫ √
−g
(
R− 4

d− 2
(∂µφ) ∂µφ+ e

4
d−2

φλ

2
RµνρσRµνρσ

)
ddx. (15)
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Here λ = α′

2 ,
α′

4 and 0, for bosonic, heterotic and type II strings, respectively. We are only
considering gravitational terms: we can consistently settle all fermions and gauge fields to zero
for the moment. That is not the case of the dilaton, as it can be seen from the resulting field
equations:

∇2φ− λ

4
e

4
2−d

φ
(
RρσλτRρσλτ

)
= 0, (16)

Rµν + λ e
4

2−d
φ

(
RµρστRνρστ −

1
2(d− 2)

gµνRρσλτRρσλτ
)

= 0. (17)

From (16) one sees that the correction term RρσλτRρσλτ acts as a source for the dilaton and,
therefore, one cannot set the dilaton to zero without setting this term to zero too. Still, as it was
shown in [13] and we will review later, for a spherically symmetric metric like (7), at order λ = 0
the dilaton is a constant (which can be always set to 0). The dilaton only gets nonconstant
terms at order λ; this is why we could neglect terms which are quadratic in φ while deriving
these field equations, since we are only working perturbatively to first order in λ.

In the present context, any black hole solution is built perturbatively in λ, and a solution
will only be valid in regions where r2 � λ, i.e., any perturbative solution is only valid for black
holes whose event horizon is much bigger than the string length.

We want to study scattering processes associated to solutions to the field equations above
and, therefore, they are the ones which we will perturb.

By perturbing (16) and (17) one gets

δ∇2φ − λ

4
e

4
2−d

φ δ
(
RρσλτRρσλτ

)
+

λ

d− 2
e

4
2−d

φ RρσλτRρσλτ δφ = 0, (18)

δRij + λ e
4

2−d
φ

[
δ (RiρστRjρστ )− 1

2(d− 2)
RρσλτRρσλτ hij−

− 1
2(d− 2)

gij δ
(
RρσλτRρσλτ

)]
+

4
d− 2

Rij δφ = 0. (19)

Using the explicit form of the Riemann tensor together with the variations (5) and (8–14),
one can compute the terms in (18) and (19). From (18), the information one obtains is that one
can consistently set δφ = 0, as expected for a tensorial perturbation of a scalar field.

Collecting the several expressions, the result for (19) finally becomes

(
1− 2λ

f ′

r

)
r2

f
∂2
tHT −

(
1− 2λ

g′

r

)
r2g ∂2

rHT −

−
[
(d− 2)rg +

1
2
r2
(
f ′ + g′

)
+ 4λ(d− 4)

g (1− g)
r

− 4λgg′ − λr
(
f ′2 + g′2

)]
∂rHT +

+
[
(` (`+ d− 3)− 2)

(
1 +

4λ
r2

(1− g)
)

+ 2(d− 2)− 2(d− 3)g − r
(
f ′ + g′

)
+

+ λ

(
8

1− g
r2

+ 2 (d− 3)
(1− g)2

r2
− r2

d− 2

[
f ′′ +

1
2

(
f ′g′

g
− f ′2

f

)]2
)]

HT = 0. (20)

This is a second order partial differential equation for the perturbation function HT . If we
now divide (20) by

(
1− 2λf

′

r

)
r2

f , we obtain an equation of the form

∂2
tHT − F 2(r) ∂2

rHT + P (r) ∂rHT +Q(r) HT = 0. (21)
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For our purposes, we would like to re–write the above equation (21) in a more tractable form,
as a Schrödinger–like master equation. In order to achieve so, we follow a procedure similar to
the one in [9], defining a gauge–invariant “master variable” for the gravitational perturbation as

Φ = k(r)HT , k(r) =
1√
F

exp
(
−
∫

P

2F 2
dr

)
, (22)

and replacing ∂/∂r by ∂/∂r∗, r∗ being the tortoise coordinate defined in this case by dr∗ = dr
F (r) .

It is then easy to see that an equation like (21) may be written as a master equation:

∂2Φ
∂r2
∗
− ∂2Φ
∂t2

=
(
Q+

F ′2

4
− FF ′′

2
− P ′

2
+

P 2

4F 2
+
PF ′

F

)
Φ ≡ VT [f(r), g(r)] Φ, (23)

with

VT[f(r), g(r)] =
1

16r2fg

[
(16`(`+ d− 3)f2g + r2f2f ′2 + 3r2g2f ′2 − 2r2f(f + g)f ′g′

− 4r2fg(g − f)f ′′ + 16rfg2f ′ + 4r(d− 6)f2gf ′

+ 4(d− 2)rf2gg′ + 4(d− 4)(d− 2)f2g2
]

+
λ

8r4fg

[
32`(`+ d− 3)f2(1− g)g + 16`(d+ `− 3)f2gf ′r

+ 3r3g2f ′2
(
f ′ − g′

)
− r3f2f ′2

(
f ′ − g′

)
− 2r3fgf ′

(
f ′ − g′

)
g′

+ 2r3fg2
(
−3f ′f ′′ + 2g′f ′′ + f ′g′′

)
− 4r3f2gf ′

(
f ′′ − g′′

)
− 2r3f2gg′

(
f ′′ − g′′

)
− 4r3f2g2

(
f (3) − g(3)

)
+ 18r2fg2f ′2 − 12r2f2gf ′2 − 10r2f2gg′2 − 2r2fg2f ′g′

+ 2r2(4d− 13)f2gf ′g′ + 8r2f2g2f ′′ + 8(d− 5)r2f2g2g′′

+ 4r(d− 4)2f2g2(f ′ + g′) + 8rf2g2(g′ − f ′)
+ 8(d− 4)rf2g(f ′ + g′ − 4gg′) + 16(d− 5)(d− 4)f2g2(1− g)

]
. (24)

Equation (24) gives the generic expression for the potential for tensor–type gravitational
perturbations of any kind of static, spherically symmetric R2 string–corrected black hole in
d–dimensions of the form (7). We are now ready to start studying scattering processes in the
background of such a black hole.

4. Scattering by spherically symmetric α′–corrected black holes
The master equation (21) (or equivalently (20)), describing gravitational tensorial perturbations,
is also the equation allowing for a study of scattering of tensor–type gravitational waves by the
corresponding black hole solution (in our case, d−dimensional spherically symmetric black holes
with string R2 corrections): the perturbation function can then be seen as a wave function.
The master equation (21) also describes a minimally coupled massless scalar field on the the
background of such black holes. In this case the integer ` = 0 can be arbitrary: it does not need
to be greater than one, as in the case of the tensorial perturbations.

Knowing the master equation, we are able to compute the absorption cross section, a quantity
which is directly related to the greybody factors. A classical result in Einstein gravity is that,
for any spherically symmetric black hole in arbitrary dimension, the absorption cross section
of minimally coupled massless scalar fields is equal to the area of the black hole horizon [1], or
equivalently σ = 4S, S being the Bekenstein–Hawking entropy. In order to extend such study to
an effective theory with string R2 corrections, we shall use the technique of matching solutions,
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which was first developed for Einstein gravity in d = 4 in [10], and later extended to arbitrary
d dimensions in [11]. That was also the technique which was used in [2], where for the first
time black hole scattering with R2 α′ corrections was studied. In that paper, a formula for the
absorption cross–section was derived for a particular d–dimensional solution [7]. We are looking
for a general formula for the absorption cross section, applicable to a general solution like (7).
The idea of this technique is to separately solve the master equation above in different regions
of the parameter r, where in each region we take a different approximation in order to simplify
the equation.

We will be considering scattering at low frequencies, RHω � 1. The low frequency
requirement is necessary in order to use the technique of matching solutions: it is precisely
when the wavelength of the scattered field is very large, compared to the radius of the black
hole, that one can actually match solutions near the event horizon to solutions at asymptotic
infinity [10, 11]. At low frequencies, only the mode with lowest angular momentum contributes
to the cross section [1]. This is the context we will be considering; from now on, we will always
take ` = 0.

We assume that the solutions to the master equation are of the form Φ(r∗, t) = eiωtφ(r∗),
such that ∂Φ

∂t = iωΦ (the same being valid for HT (r, t)). This way the master equation looks
like Schrödinger equation.

We consider a generic metric of the form of (7). We make the general assumption that the
functions f(r), g(r) have the form

f(r) = f0(r)
(

1 +
λ

R2
H

fc(r)
)
, g(r) = f0(r)

(
1 +

λ

R2
H

gc(r)
)
. (25)

The function f0(r) is a solution to the classical Einstein equations, while the functions fc(r), gc(r)
encode the α′ higher–derivative corrections.

The spherically symmetric solution to the vacuum Einstein equation in d dimensions is the
Tangherlini solution, with

f0(r) =: fT0 (r) = 1−
(
RH
r

)d−3

, (26)

RH being the horizon radius. For later convenience and application to more general black holes,
we will allow for a multiplicative factor c(r), which would encode string effects:

f0(r) = c(r)

(
1−

(
RH
r

)d−3
)
. (27)

This will be the form of the function f0(r) we will be considering.

4.1. Scattering close to the event horizon
We start by solving the master equation near the black hole event horizon. In this region, the
functions f(r), g(r) from (25) have the form

f(r) ' f ′0(RH)
(

1 +
λ

R2
H

fc(RH)
)

(r −RH) , g(r) ' f ′0(RH)
(

1 +
λ

R2
H

gc(RH)
)

(r −RH) .

(28)
This means at the precise location of the horizon, the potential (24) vanishes; and as long as
r−RH
RH

� (RHω)2 one will have VT(r)� ω2 and in this near–horizon region one may neglect the
potential VT(r) in the master equation. One thus obtains, very close to the event horizon,(

d2

dr2
∗

+ ω2

)(
k(r)HT (r)

)
= 0. (29)
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In this same region, with f0 given by (27), k(r) may be taken as a constant. One also has
f0(r) ' f ′0(RH) (r −RH) , f ′0(RH) = (d−3)c(RH)

RH
, and

r∗(r) =
RH

(d− 3)c(RH)

(
1− λ

R2
H

fc(RH) + gc(RH)
2

)
log
(
r −RH
RH

)
+O (r −RH) . (30)

The solutions to (29) are plane waves. As we are interested in studying the absorption cross
section, we shall consider the general solution for a purely incoming plane wave:

HT (r∗) = Aneare
iωr∗ . (31)

Using (30) in (31), one finally obtains in this region

HT (r) ' Anear

(
1 + i

RHω

(d− 3)c(RH)

(
1− λ

R2
H

fc(RH) + gc(RH)
2

)
log
(
r −RH
RH

))
. (32)

4.2. Scattering at asymptotic infinity
We now analyze the solution to the master equation close to infinity.

In this article we consider asymptotically flat black holes which, at infinity, behave like flat
Minkowski spacetime. This is equivalent to saying that, in the metric (7), functions f(r), g(r)
tend to the constant value 1 in the limit of very large r, and their derivatives tend to 0 in the
same limit. From (24) we see that, asymptotically, the potential VT(r) behaves at most as 1/r2,
and therefore it vanishes in the limit r →∞.

In this limit, with vanishing potential, the master equation reduces to a simple free–field
equation whose solutions are either incoming or outgoing plane–waves in the tortoise coordinate.
One can also solve the master equation in the original radial coordinate in terms of Bessel
functions, obtaining [1, 10, 11]

HT (r) = (rω)(3−d)/2 [AJ(d−3)/2 (rω) +BN(d−3)/2 (rω)
]
.

At low–frequencies, with rω � 1, such solution becomes

HT (r) ' Aasymp

1

2
d−3
2 Γ

(
d−1

2

) +Basymp

2
d−3
2 Γ

(
d−3

2

)
π (rω)d−3

+O (rω) . (33)

In order to compute the absorption cross–section, we will need to relate the coefficients Aasymp

and Basymp to Anear, obtained in (32). This can be done by the technique of matching near–
horizon to asymptotic solutions, and requires us to solve the master equation in an intermediate
region, between the event horizon and asymptotic infinity [10, 11]. This is what we will do in
the following.

4.3. Scattering in the intermediate region
We now consider the intermediate region: far from the horizon, but not asymptotic infinity.
We keep working in the low–frequency regime, but this time there are no restrictions to the
magnitude of the potential, which may be large (but it is always regular, as one can see from
(24)).

We want to solve the master equation or, equivalently, equation (21). Since we work
perturbatively in λ, we define the expansion

HT (r) = H0(r) + λH1(r), k(r) = k0(r) + λk1(r)
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and the previous assumptions (25) for f, g. Taking the λ = 0 terms for f, g and from (24),
we get from (23) the following equation for H0(r), written in the r coordinate (where if λ = 0
d
dr∗

= f0
d
dr ):

[
−f0(r)

d

dr

(
f0(r)

d

dr

)
+ f0(r)

(
(d− 2)(d− 4)f0(r)

4r2
+

(d− 2)f ′0(r)
2r

)](
r

d−2
2 H0(r)

)
= 0, (34)

whose most general solution is1

H0(r) = A0
inter +B0

inter

∫
d r

rd−2f0(r)
. (35)

In order to solve for H1(r), we take for F, P,Q similar expansions as we did for HT , k :
F = F0 + λF1, P = P0 + λP1, Q = Q0 + λQ1. We then expand every term of (21). To zero order
in λ we obtain

H ′′0 −
P0

F 2
0

H ′0 −
Q0

F 2
0

H0 = 0, (36)

which is completely equivalent to (34), with solution (35).
The terms of first order in λ are −F 2

0H
′′
1 −F 2

1H
′′
0 +P0H

′
1 +P1H

′
0 +Q0H1 +Q1H0, which may

be rewritten as

H ′′1 −
P0

F 2
0

H ′1 −
Q0

F 2
0

H1 = R(r), R(r) = −
(
F1

F0

)2

H ′′0 +
P1

F 2
0

H ′0 +
Q1

F 2
0

H0 (37)

This is a second–order linear nonhomogeneous differential equation for H1. The homogeneous
part is exactly the same as the differential equation (36) for H0, with general solution (35),
replacing H0(r), A0

inter, B
0
inter by H1(r), A1

inter, B
1
inter.

According to the method of variation of constants, a particular solution to the
nonhomogeneous equation (37) is given by

Hpart

1 (r) = v1(r) + v2(r)
∫

d r

rd−2f0(r)
. (38)

To obtain the most general solution to (37) one just needs to add to Hpart

1 (r) the most
general solution (35) to the homogeneous equation (36), including the contributions H0, H1

as H = H0 + λH1 :

H(r) = (Ainter + λv1(r))+(Binter + λv2(r))
∫

d r

rd−2f0(r)
= Ainter +Binter

∫
d r

rd−2f0(r)
+λHpart

1 (r).

(39)
To summarize: we were able to solve the master equation in the intermediate region. This

is a linear nonhomogeneous equation; for its general solution, we should add to the solution
to the homogeneous equation a particular solution Hpart

1 (r), which we found by the method of
variation of constants. We checked that this particular solution Hpart

1 (r) vanishes at infinity and
at the black hole horizon; close to these regions, we can ignore Hpart

1 (r) and simply consider the
solution to the homogeneous equation. This will be a key feature for the matching process.

1 The integrals in this subsection are all meant to be indefinite.
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4.4. Calculation of the absorption cross section
We are now ready to start the matching process, using f0 given by (27).

If we evaluate (39) near the horizon, we obtain

HT (r) ' Ainter +
Binter

(d− 3)Rd−3
H c (RH)

log
(
r −RH
RH

)
+ · · · . (40)

Evaluating (39) at asymptotic infinity, one may match the coefficients above to the ones in
(33), yielding

Aasymp = 2
d−3
2 Γ

(
d− 1

2

)
Ainter = 2

d−3
2 Γ

(
d− 1

2

)
Anear,

Basymp = − πωd−3

2
d−3
2 (d− 3)Γ

(
d−3

2

)Binter = − iπ (RHω)d−2

2
d−1
2 Γ

(
d−1

2

) (1− λ

R2
H

fc(RH) + gc(RH)
2

)
Anear.(41)

Computing the low frequency absorption cross section is now a simple exercise in scattering
theory [10, 11]. Near the black hole event horizon, from (31), the incoming flux per unit area is

Jnear =
1
2i

(
H†T (r∗)

dHT

dr∗
−HT (r∗)

dH†T
dr∗

)
= ω |Anear|2 . (42)

The outgoing flux per unit area at asymptotic infinity, where r∗ and r coincide, is, from (33),

Jasymp =
1
2i

(
H†T (r)

dHT

dr
−HT (r)

dH†T
dr

)
=

2
π
r2−dω3−d |AasympBasymp| . (43)

In order to compute the cross section, this same flux per unit area at asymptotic infinity must
be integrated over a sphere of (large) radius r, and the result should be divided by the incoming
flux per unit area:

σ =
∫
rd−2JasympdΩd−2

Jnear

=
2
π
ω2−d |AasympBasymp|

|Anear|2
Ωd−2. (44)

Replacing the results from (41), the final result is

σ = AH

(
1− λ

R2
H

fc(RH) + gc(RH)
2

)
, (45)

where AH = Rd−2
H Ωd−2 is the horizon area.

4.5. The α′ corrections to the temperature
The temperature T of a black hole given by a metric of the form (7) is given by T =
limr→RH

√
g

2π
d
√
f

d r . In the case f, g are given by (25), this temperature comes as

T =
f ′0(RH)

4π

(
1 +

λ

R2
H

fc(RH) + gc(RH)
2

)
. (46)

We see that the α′ correction to the temperature is the same we obtained to the absorption
cross section in (45), but with opposite sign: when one of these quantities increases, the other
one decreases by the same magnitude. This means the product σT does not get α′ corrections
to first order.
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5. Application to concrete string-corrected black hole solutions
We now apply our result to the computation of the absorption cross section for a few specific
black hole solutions in string theory. Although our result can of course be applied to concrete
solutions in specific d dimensions, we prefer to consider in this article only solutions in which d
remains arbitrary.

5.1. The Callan–Myers–Perry black hole
The Callan–Myers–Perry solution was the first d–dimensional black hole solution with R2

corrections to be obtained (in [7]). It is a simple generalization of the Tangherlini solution
of the form (25), with f0 = fT0 given by (26) and

fc(r) = gc(r) = fCMP
c (r) := −(d− 3)(d− 4)

2

(
RH
r

)d−3 1−
(
RH
r

)d−1

1−
(
RH
r

)d−3
, (47)

from which we obtain, using (45), the absorption cross section [2]

σCMP = AH

(
1 +

(d− 1)(d− 4)
2

λ

R2
H

)
. (48)

5.2. The string-corrected dilatonic d–dimensional black hole
The Callan–Myers–Perry solution expresses the effect of the string R2 corrections, but it does
not consider any other string effects, namely the fact that string theories live in dS spacetime
dimensons (dS = 10 or 26 on heterotic or bosonic strings, respectively), and have to be
compactified to d dimensions on a dS − d–dimensional manifold. When passing from the
string to the Einstein frame, the volume of the compactification manifold becomes spatially
varying. In the simple case when such manifold is a flat torus, that volume depends only on the
d−dimensional part of the dilaton φ and, after solving the α′–corrected field equation (19) the
metrics of the compactification manifold and of the d–dimensional spacetime decouple.

The explicit solution was worked out in [13]. The general solution for the dilaton, in the
background of the spherically symmetric Tangherlini black hole (26), is necessarily of order λ :
φ(r) := λ

R2
H
ϕ(r), with ϕ(r) given by

ϕ(r) =
(d− 2)2

4

[
ln

(
1−

(
RH
r

)d−3
)
− d− 3

2

(
RH
r

)2

− d− 3
d− 1

(
RH
r

)d−1

+ B

((
RH
r

)d−3

;
2

d− 3
, 0

)]
, (49)

B(x; a, b) =
∫ x

0 t
a−1 (1− t)b−1 dt being the incomplete Euler beta function.

The d–dimensional part of the metric is of the form (7), with f, g given by (25), f0 = fT0
given by (26) and

gc(r) = fCMP
c (r), fc(r) = fCMP

c (r) + 4
ds − d

(ds − 2)2

(
ϕ− rϕ′

)
. (50)
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Evaluating these functions at the horizon allows us to obtain, again from (45) 2,

σ = AH

(
1 +

(
(d− 1)(d− 4)

2

+
ds − d

(ds − 2)2

(d− 2)2

4(d− 1)

(
3d2 − 6d− 1 + 2(d− 1)

(
ψ(0)

(
2

d− 3

)
+ γ

)))
λ

R2
H

)
. (51)

We have numerically evaluated the λ–correction for the cross section: it is always positive, for
every relevant value of d.

5.3. The double–charged black hole
In article [14] one can find black holes in any dimension formed by a fundamental string
compactified on an internal circle with any momentum n and winding w, both at leading order
and with leading α′ corrections. One starts with the Callan–Myers–Perry solution in the string
frame [7], which is of the form (7), with f, g replaced by fCMP

S , gCMP
S , given by

fCMP
S (r) = fT0

(
1 + 2

λ

R2
H

µ(r)
)
,

gCMP
S (r) = fT0

(
1− 2

λ

R2
H

ε(r)
)
,

ε(r) =
d− 3

4

(
RH
r

)d−3

1−
(
RH
r

)d−3

[
(d− 2)(d− 3)

2
− 2(2d− 3)

d− 1
+ (d− 2)

(
ψ(0)

(
2

d− 3

)
+ γ

)

+ d

(
RH
r

)d−1

+
4

d− 2
ϕ(r)

]
,

µ(r) = −ε(r) +
2

d− 2
(ϕ(r)− rϕ′(r)). (52)

fT0 is given by (26) and ϕ(r) is given by (49).
This metric is lifted to an additional dimension by adding an extra coordinate, taken to be

compact (this means to produce a uniform black string). One then performs a boost along
this extra direction, with parameter αw, and T–dualizes around it (to change string momentum
into winding), obtaining a (d + 1)–dimensional black string winding around a circle. Finally
one boosts one other time along this extra direction, with parameter αp, in order to add back
momentum charge. One finally obtains a spherically symmetric black hole in d dimensions with
two electrical charges.

The whole process is worked out in detail in [14]; the final metric, in the Einstein frame, is
of the form (7), with f, g given by (25), but this time with f0 given by

f I0 =
fT0√

∆(αn)∆(αw)
, ∆ (x) := 1 +

(
RH
r

)d−3

sinh2 x,

2 The digamma function is given by ψ(z) = Γ′(z)/Γ(z), Γ(z) being the usual Γ function. For positive n, one
defines ψ(n)(z) = dn ψ(z)/d zn. This definition can be extended for other values of n by fractional calculus analytic
continuation. These are meromorphic functions of z with no branch cut discontinuities.
γ is Euler’s constant, defined by γ = limn→∞

(∑n
k=1

1
k
− lnn

)
, with numerical value γ ≈ 0.577216.
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fT0 being given by (26). This is clearly a metric of the type (27), with c(r) = 1√
∆(αn)∆(αw)

. fc, gc

are given by

f Ic (r) =
1

2∆(αn)∆(αw)

(
2
(
2− fT0

) (
∆(αn) sinh2(αw) + ∆(αw) sinh2(αn)

)
µ(r)

+ 4

(
1−

(
RH
r

)2(d−3)

sinh2(αw) sinh2(αn)

)
µ(r)

+ (d− 3)2fT0

(
RH
r

)2(d−2)

sinh2(αw) sinh2(αn)− 4∆(αn)∆(αw)ϕ(r)

)
,

gIc (r) =
1

2∆(αn)∆(αw)

(
2
(
∆(αn) sinh2(αw) + ∆(αw) sinh2(αn)

)
µ(r)fT0

+ (d− 3)2fT0

(
RH
r

)2(d−2)

sinh2(αw) sinh2(αn) + 4∆(αn)∆(αw) (ϕ(r)− ε(r))

)
.(53)

After determining the respective limits when r → RH , (45) allows us to obtain

σ = AH

1 +
λ

R2
H

3d3 − 16d2 + 19d− 2 + 2(d− 2)(d− 1)
(
ψ(0)

(
2
d−3

)
+ γ
)

4(d− 1)

 . (54)

We have again numerically evaluated the λ–correction for the cross section: like in the previous
case, it is always positive, for every relevant value of d.

5.4. Comparison with the entropy
As we have seen, in classical Einstein gravity the low frequency limit of the absorption cross
section of minimally coupled massless fields, for any spherically symmetric black hole in arbitrary
d dimensions, equals the area of the black hole horizon [1]. In terms of a physical quantity, the
Bekenstein–Hawking entropy, this statement may be written as σ|α′=0 = 4G S|α′=0 .

It is an interesting physical question to figure out if such relation is preserved in the presence
of α′ corrections, i.e. to verify if the corrections to the cross sections we have been obtaining
and to the black hole entropy are the same. The α′–corrected entropy can be obtained through
Wald’s formula

S = −2π
∫
H

∂L
∂Rµνρσ

εµνερσ
√
h dΩd−2, (55)

L being the α′–corrected lagrangian (15) and H the black hole horizon, with area AH =
Rd−2
H Ωd−2 and metric hij induced by the spacetime metric gµν . This entropy has been computed

for a generic metric of the form (7) with first order α′ corrections in [13, 12], the result being

S =
1

4G

∫
H

(
1 +

λ

R2
H

(d− 3)(d− 2)
) √

h dΩd−2 =
AH
4G

(
1 + (d− 3)(d− 2)

λ

R2
H

)
. (56)

From the cases we have studied, we conclude that the relation σ = 4GS is not verified, at
least for a generic black hole solution, in the presence of α′ corrections.
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6. Conclusions
We have obtained a general formula for the low frequency absorption cross section for spherically
symmetric d–dimensional black holes with leading α′ corrections in string theory, which we
applied to three different known black hole solutions. We have compared the values of the α′

corrections to the cross section with those for the black hole entropy, having obtained different
results. There are examples where such agreement has been found for supersymmetric black holes
in d = 4 and 5 (for a discussion see [12]); the cases we have studied are all nonsupersymmetric
and in generic d. It is important to figure out in general when such agreement is verified or not:
does it depend on the spacetime dimension or on the amount of supersymmetry preserved by
the black hole solution? These are topics which currently keep being researched.
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