It would not have been possible to run this marathon without the help and support of all the people that were around me, during the experience of pursuing my PhD. To all of them, I am truly grateful. Naturally, the names that will be mentioned here are those of the people that cannot be left unsaid – the special ones.

My foremost thank goes to my supervisor, Professor Paulo Mateus Mendes, for all his contributions of time, ideas, support and guidance to make my PhD a productive and stimulating experience. He has always helped me to become a more independent researcher and to think out of the box. The enthusiasm he has for his research was contagious and motivational.

An indebted thank to my co-supervisor, Professor José Higino Correia for his support and guidance and for giving me the pleasure of being his student and part of his research group.

I would also like to take this opportunity to express my appreciation to Professor Rajeev Ram for accepting me as a visiting student at his research group at MIT. It was a pleasure to be able to learn, discuss ideas and to be a part of his group. A special thanks, also, to my group colleagues, especially to Kevin Lee and Harry Lee for helping me with the research and for all the interesting brainstorming.

There is no doubt that I would have never been able to get with all the bureaucratic issues and questions regarding the MIT-Portugal Program without the help of Professor Eugénio Ferreira.

As a MIT-Portugal Program student, I had the privilege to become part of this network of professors, researchers and students. I strongly believe that this opportunity changed my way of facing research and prepared me for a new way of thinking. It was a pleasure to share my doctoral studies with my amazing colleagues from the Bioengineering focus area and to share all those crazy, funny and even stressful moments. A special thanks to Daniela Couto and João Guerreiro, my dearest friends and "10 Fulkerson" housemates. For the meals, the talks throughout the evening, the movies, the surprises..and most importantly, for being my family.

During the three years of lab work, I had the pleasure of the company of my laboratory colleagues Alexandre Ferreira da Silva, Amândio Barbosa, Carlos Pereira, Celso Figueiredo, Débora Ferreira, Helena Fernandez, João Ribeiro, Fábio Rodrigues, Doctor Luís Rocha, Manuel Silva, Doctor Nuno Dias, Pedro Anacleto, Sérgio Dias, Susana Catarino Rosana Dias, Rui Rocha. To them I need to thank for the fun breaks we did, the ideias exchanged, the lunchs we all had together, as well as the Thursday and, sometimes, Friday's Cake day!

I am especially grateful to Alexandre Ferreira da Silva and Débora Ferreira that have been accompanying me since the beginning of my Academia adventure. Both of them had helped me as group colleagues, and mostly, as true friends. Without my endless talks with Débora and our crazy stories, it would have been much more difficult to surpass this challenge. To Alexandre, I have to thank not only for listening to my stupid jokes, ideas, questions, but also for the strong support that he has always been able to give me. Furthermore, without his equipment, most of the experiments herein described would not have been possible. "Double 02, where are you?". As I always say: "Alexandre, és um anjo, a minha salvação" ^(C).

To the Industrial Electronics Department professors, technicians and secretaries, I express my gratitude for the availability of services. In particular, I would like to express my thankfulness to Professor Graça Minas, Professor Luis Rocha and Doctor Nuno Dias for providing some of the necessary equipment for the accomplishment of this PhD.

Now is the time of thanking all the beloved friends that helped me through this journey, either by sharing meals and coffees, watching movies, dancing, laughing, crying...everything. Frist, to my oldest, best and core friends, in particular Azz, Cris, Daniela, Betinha, Jonas, Jorge (my "brother" and my "pés-na-terra"), Liliana, Luisinho, Luis Carlos, Negras, Nhoca, Pãpã and Rui Pedro, Schroeder, Tiago, Renata and Valter thank you for being there and for all the patience and support.

I cannot proceed without saying a few words to some of them. Cris, Pãpã, Liliana thank you for being my best friends for a long long time. Each one of you contributed in a specific way, more than you can imagine. For you guys, our song "Amigos para sempre", with lyrics adapted, of course. And Daniela, I don't have the words..literally. Basically, you followed me (or vice-versa) in each step of our academia path, and always found a way to make me fell happier. From the first group works, to the last talks we had towards the end of writing this. Actually, right now I'm talking to you about not having words to describe how grateful I am. From the vast list of music we shared throughout these 4 years, I chose the one that always pushed us a step forward in thesis writing: *dance 'til you're dead, heads will roll*. Daniela, "Heads will Roll". Thank you for everything and how you always say "desculpa qualquer coisinha"

A new round of friends appeared, and since the group is almost 30 people, I will only mention a few names that cannot be forgotten, the funny guys: Gil, Manel, Mário, Mope and Zé. Thank you for all the fun moments, the dinners and the movies.

To my second family, D. Sameiro, Sr. Fernandes, Adriana e Luís, thank you for all the support and love. For welcoming me in your home and in your lifes as a member of your family, a thousand thanks.

Now the most important people for me, my partners in life and to whom I dedicate this thesis: my family and boyfriend. The best family in the world, from my grandparents to my little nephews! To my mother, father, sister, brother-in-law, my beloved nephews António and Rodrigo (as minhas perdições ⁽ⁱ⁾), and Pedro, I cannot express how thankful I am. I feel like the luckiest person in this world to have you all in my life. Thank you for being there, for your unconditional love and support, for making me who I am, and for making this possible.

Pedro, the one that "suffered" the most, thank you for being unconditionally there as my boyfriend and my friend, right from the beginning of the most important years of my life. I owe you everything right now.

The final sentence should not be for anyone, but for my parents and my sister. They raised me, supported me, taught me, and, most of all, loved me unconditionally. A million times, thank you.

This work was supported by Portuguese Foundation for Science and Technology (SFRH/BD/42705/2007). The author would like also to acknowledge the MIT Portugal Program for supporting this work

Among all physiological functions, bioelectric activity may be considered one of the most important, since it is the backbone of many wearable technologies used for health condition diagnostic and monitoring. The existent bioelectric recording devices are difficult to integrate on wearable materials, mainly due to the number of electrical interconnections and components required at the sensing places. Photonic sensors have been presented in the medical field as a valuable alternative where features like crosstalk and attenuation, electromagnetic interference and integration constitute a challenge. Furthermore, photonic sensors have other advantages such as easy integration into a widespread of materials and structures, multiplexing capacity towards the design of sensing networks and long lifetime.

The aim of this work was to develop a multi-parameter bioelectric acquisition platform based on photonic technologies. The platform includes electro-optic (EO) and optoelectronic (OE) stages, as well as standard filtering and amplification. The core sensing technology is based on a Mach-Zehnder Interferometer (MZI) Modulator, which responds to the bioelectric signal by modulating the input light intensity. Only optical fibers are used as interconnections, and the subsequent signal conditioning and processing can be centralized in a common processing unit. The photonic and OE modules were designed to guarantee bioelectric signal detection using parameters compatible with existing technologies. Several considerations were made regarding noise-limiting factors, unstable operation and sensitivity. The EO modulator of choice was a Lithium Niobate (LiNbO₃) MZI modulator. The EO modulator was selected given its versatile geometry and potential to perform differential measurements and easiness to convert the resultant optical modulated signal into electrical values.

The OE conversion module developed includes a transimpedance amplifier (TIA), a notch and bandpass filter. In order to prevent a phenomenon called gain-peaking, the TIA was properly compensated, to insure a stable TIA operation and simultaneously avoid output signal oscillation. The performance of the TIA circuit was improved considering DC currents of 1.3 mA, which resulted in an additional high-pass filtering block. This allowed for a transimpedance gain of 1×10^5 V/A. The filtering stage was designed for removing unwanted signal artifacts, and included two bandpass filters (0.2 – 40 Hz; 5 - 500 Hz) and a notch filtered centered at 50 Hz and with 34 dB of attenuation.

The photonic platform prototype performance was evaluated, covering linearity, frequency response and sensitivity. Results have shown that the combination of the photonic and OE stages had a flat 60 dB frequency over the frequency range of 0.3 Hz to 1 kHz. With regard to system linearity, it was verified a linear relationship between the voltage input and output signal, with a gain of 60 dB. These results indicated a correct biasing of the MZI modulator. In order to study the minimum detected fields that can be achieved using the developed prototype, the filtering and amplification stages were also considered. The characterization was performed with an overall gain of 4000 V/V (72 dB) and the photonic platform showed sufficient sensitivity to detect signals as low as $20 \,\mu$ V.

To assess the bioelectric signal acquisition performance, the developed photonic platform was tested in a real scenario through the acquisition of different bioelectric signals – Electrocardiogram (ECG), Electroencephalogram (EEG) and electromyogram (EMG). The results were compared with signals obtained from standard platforms using the same conditions. The developed photonic platform demonstrated the capability of recording signals with relevant and clinical content, providing enough sensitivity, frequency response and artifact removal. The photonic platform showed good results in various clinical scenarios, such as the evaluation of normal heart and muscle functions, as well as monitoring the consciousness state of patients.

As a final conclusion, a photonic platform for bioelectric signal acquisition was developed and tested; its application in wearable health systems was demonstrated.

RESUMO

De todas as funções fisiológicas, a actividade bioeléctrica é considerada uma das mais importantes, uma vez que representa a base para muitos sistemas vestíveis, utilizados para monitorização e diagnóstico no sector médico. Os dispositivos existentes - baseados em aquisição electronica - apresentam algumas desvantagens essencialmente relacionadas com a dificuldade de integração em materiais vestíveis, a quantidade de interligações e os componentes necessários nos locais de medição. Os sensores fotónicos têm vindo a ser cada vez mais utilizados no sector médico, uma vez que conseguem ultrapassar as desvantagens de atenuação e interferência electromagnética. Para além disso, este tipo de sensores apresenta uma fácil integração em diversos materiais, durabilidade e capacidade de multiplexagem, especialmente concebidas para redes de sensores.

O principal objectivo da presente tese foi desenvolver uma plataforma de aquisição de biopotenciais baseada em sensores fotónicos. A plataforma inclui um bloco responsável por efectuar a conversão electro-óptica (EO) do biopotencial medido, assim como a optoelectrónica (OE) necessária para transformar o sinal óptico para o domínio electrico.

A tecnologia que está na base do mecanismo de transdução desta plataforma consiste em moduladores Mach-Zehnder (MZI), cujo princípio é modular a intensidade da luz em resposta a um sinal electrico. As interconexões e transdução são efectuadas apenas por fibra óptica, sendo que o processamento e acondicionamento do sinal pode ser centralizado numa unidade de processamento transversal a todos os sinais.

Os módulos correspondentes aos blocos EO e OE foram desenvolvidos de forma a garantir a detecção do biopotencial utilizando características compatíveis com a tecnologia disponível. Foram efectuadas várias considerações relativamente aos factores que limitam o funcionamento adequado da plataforma fotónica, mais especificamente no que diz respeito a níveis de ruído, instabilidade e resolução. O modulador EO seleccionado foi um MZI de niobato de litio (LiNbO₃). A escolha deste modulador teve como principal motivo a possibilidade de efectuar medições diferenciais, geometria versátil e a facilidade de converter o sinal óptico resultante para o domínio eléctrico.

Os módulos de conversão OE desenvolvidos incluem um amplificador de transimpedância (TIA) e filtros passa-banda e notch. Para assegurar o funcionamento estável do TIA e evitar um fenóneno designado por *gain-peaking* (ganho de pico), foi necessário compensar devidamente o circuito. A performance do TIA desenvolvido foi optimizada para

currentes DC na ordem dos 1.3 mA, resultando na adição de um filtro passa-alto de forma a atingir ganhos de transimpedância de 1×10^5 V/A. Os blocos de filtragem para remover as componentes de interferencia indesejados incluiram dois filtros passa-banda (0.2 – 40 Hz; 5 – 500 Hz) e um filtro notch centrado nos 50 Hz filtered e com um factor de atenuação de 34 dB.

O protótipo da plataforma fotónica, mais especificamente o modulo EO e OE (saída do TIA) foi submetido a diferentes testes com o principal objectivo de caracterizar o desempenho do sistema ao nível da resposta em frequência, linearidade e resolução. Os resultados obtidos demonstratam uma resposta em frequência com um agama dos 0.3 Hz aos 1 kHz com um ganho de 60 dB. Relativamente à linearidade, foi demonstrado que a relação entre o sinal de entrada (biopotencial) e o sinal à saída do TIA apresentam uma relação linear. Os testes realizados para confirmar o mínimo sinal detectado pela plataforma fotónica desenvolvida foram efectuados incluindo os estágios de filtragem e amplificação, resultando num ganho global de 4000 V/V. O sinal minimo detectável foi de 20 μ V, a uma frequência de 10 Hz.

Por último, a plataforma desenvolvida foi testada em cenários reais na aquisição de diferentes biopotenciais – Electrocardiograma (ECG), Electroencefalograma (EEG) e Electromiograma (EMG). Os resultados obtidos foram comparados com plataformas convencionais nas mesmas condições. A plataforma fotónica apresentou boa capacidade para adquirir biopotenciais com conteúdo clínico relevante, assegurando a sensibilidade, resposta em frequência e remoção de artefactos desejável.

TABLE OF CONTENTS

1.	Introduction1						
	1.1.	Weara	able Devices	2			
		1.1.1	Applications	2			
		1.1.2	Design Requirements	5			
		1.1.3	State of the Art	6			
		1.1.4	Integration	8			
	1.2	Weara	able Photonic Systems	9			
		1.2.1	Bioelectric Signal Photonic Sensing	10			
		1.2.2	EO Sensing Methodologies	11			
		1.2.3	Bioelectroptic Sensing – State of the Art	12			
	1.3	Motiv	ation and Objective	12			
	1.4	Thesis	s Organization	14			
	Refe	ences		15			
•	***			10			
2.	Wea	Wearable Bioelectric Signal Acquisition19					
	2.1	Bioele	ectric Signals	20			
		2.1.1	Origin	20			
		2.1.2	Main Bioelectric Signals	21			
		2.2.3	Bioelectric Signals Main Properties and Challenges				
	2.2	Stand	lard Bioelectric Signal Acquisition System	32			
		2.2.1	Skin-electrode Interface				
		2.2.2	Bioelectrodes				
		2.2.3	Bioelectric Signal Amplification	40			
		2.2.4	Bioelectric Signal Sensor Transfer Function	41			
	2.3	Weara	able Bioelectric Acquisition Systems	41			
		2.3.1	System Components	42			
		2.3.2	Wearability Requirements	43			
		2.3.3	Performance Requirements	44			
	2.4	Weara	able Photonic Systems	47			
		2.4.1	Main Properties	47			
		2.4.2	Main Applications	47			
		2.4.3	Photonic Bioelectric Systems Principle	48			

References

31	Photo	nnic Sensor Theory	5
5.1	3 1 1	Linear Electro-Ontic Effect	5
	312	Linear Dicetto-Optic Direct.	54 54
	313	EQ Materials and Modulators	5 54
	3.1.5	Mach-Zehnder Interferometer	57
3.2	Photo	onic Acquisition System Architecture	58
3.3	Photo	onic Acquisition Stage	59
	3.3.1	Optical signal source	59
	3.3.2	MZI Modulator	60
	3.3.3	Photoreceiver	6.
	3.3.4	Other Optical Components	64
3.4	Photo	nic System Modeling and Performance Analysis	64
	3.4.1	Electrical Equivalent Circuit	64
	3.4.2	Photonic System Model	65
	3.4.3	Limitation Factors	66
	3.4.4	Performance-driven Parameters	68
3.5	Evalu	ation performance	69
	3.5.1	Theoretical Calculations	7(
	3.5.2	Photonic System Simulation	72
3.6	Photo	onic System Overview	7 4
Defer	ences		75

4.1	OE Conversion Module		
	4.1.1	Current-to-Voltage Conversion	
	4.1.2	Signal Processing	
4.2	OE C	Conversion System	84
4.2	OE C 4.2.1	Conversion System TIA Design	84
4.2	OE C 4.2.1 4.2.1	Conversion System TIA Design Circuit Dimensioning	

4.3	Elect	rical Processing Unit	88
	4.3.1	Band-pass Filtering	89
	4.3.2	Notch Filtering	91
	4.3.3	Voltage Amplifiers	93
4.4	Perfo	rmance Simulation of Overall OE System	93
4.5	PCB I	Design	95
Refer	ences		95

Photonic Platform Experimental Results97			
5.1	Photo	onic Sub-system Characterization	9
	5.1.1	Optical Signal Source	99
	5.1.2	MZI Modulator	10
	5.1.3	Photoreceiver	10
	5.1.4	OE conversion and Filtering	10
5.2	Photo	onic Platform Overall Response	10
	5.2.1	Linearity and Frequency Response	10
	5.2.2	Sensitivity	10
	5.2.3	Power consumption	10
5.3	Perfo	rmance Assessment for Bioelectric Signal Acquisition	10
	5.3.1	ECG	10
	5.3.2	EEG	11
	5.3.3	EMG	11
	5.3.4	Bioelectric Signal Acquisition Overview	11
5.4	Senso	or Integration Strategies	11
	5.4.1	PAAM Hydrogel-based Sensor	11
	5.4.2	PAAM Hydrogel Electroactive Properties	11
Refe	rences		11

6.1	Photo	nic Platform Design	12
	6.1.1	EO conversion module	120
	6.1.2	OE Conversion Module	12
	6.1.3	Photonic Platform Performance and Validation	

6.3	Future Work	
	6.3.1 Photonic System Clinical Validation	
	6.3.2 Miniaturization and Integration	
Refe	rences	
Annex I	PCB Design	
Annex II	International Publications	

LIST OF FIGURES

Figure 1.1	Ten leading causes of death in high-income countries in 2008. Data is taken over a sample population of 100000 inhabitants
Figure 1.2	Main requirements for wearable devices acceptance by users and clinicians/technicians
Figure 1.3	Categories of Wearable Devices and examples. Examples from the 1st generation of wearable devices from the left to the right are a a) wrist-worn device AMON, b) a braincap with a wireless Electroencephalography acquisition module and c) a ring monitoring sensor. The 2nd generation includes d) a monitoring t-shirt Lifeshirt, e) a sensorized T-shirt developed within the VTAM project and f) a sensor jacket for context awareness. The 3rd generation examples are g) a shirt developed by Smartex within the European integrated project WEALTHY, h) SmartShirt developed by Sensatex and i) sensorized leotard developed
Figure 1.4	Optical sensor acquisition block diagram10
Figure 1.5	Photonic platform for bioelectric signal acquisition on wearable devices, developed in this thesis
Figure 2.1	Action potential generation mechanism. Each step is represented in the action potential plot, as a colored region
Figure 2.2	Heart anatomy and major bioelectric events of a typical ECG 22
Figure 2.3	Einthoven lead system: a) limb leads, and b) chest leads (leads are incrementally numerated from V1 to V6)
Figure 2.4	Brain main lobes and associated functions25
Figure 2.5	EEG brain waves according to different states of consciousness
Figure 2.6	International 10-20 system of EEG electrode placement
Figure 2.7	EMG signals from a) a static contraction and b) a series of contraction and relaxation
Figure 2.8	Example of an EOG signal obtained with three electrodes
Figure 2.9	Bioelectric signal acquisition typical setup

Figure 2.10	a) Human skin cross section. b) Skin-electrode interface and equivalent circuit for wet and dry electrodes
Figure 2.11	Skin-electrode interface and equivalent circuit for capacitive electrodes35
Figure 2.12	Skin-electrode impedance as a function of signal frequency35
Figure 2.13	a) Equivalent circuit of bioelectric signal electrode –electrolyte interface; b) Impedance plot for equivalent circuit
Figure 2.14	Architectural layer of an ideal wearable bioelectric system
Figure 2.15	a) Extrinsic and b) Intrinsic light modulation schemes49
Figure 3.1	a) Longitudinal and b) Transverse EO modulation
Figure 3.2	MZI a) geometry and functioning, and b) cross-section view of single and dual drive configuration
Figure 3.3	Photonic sensor design for bioelectric acquisition
Figure 3.4	LiNbO ₃ MZI modulator geometry61
Figure 3.5	MZI transfer function obtained through (3.7), and considering an IL of 6 dB and a v _{bias} from -0,2 to 6V
Figure 3.6	Equivalent electrical circuit of the LiNbO3 MZI modulator
Figure 3.7	Photonic setup used in the simulation software OptiSystems73
Figure 3.8	Simulation results for MZI single drive configuration, in:a) Optical; and b) Electrical domain. Inset in b) representsthe raw signal obtained at the output of the TIA
Figure 3.9	Simulation results for MZI dual drive configuration in:a) Optical; and b) Electrical domain. Inset in b) representsthe raw signal obtained at the output of the TIA
Figure 4.1	Standard circuit of a transimpedance amplifier with photodiode in the photovoltaic mode
Figure 4.2	Bode plot of NG and opamp Open Loop Gain. The inset shows the gain peaking effect on the I-V response curve
Figure 4.3	TIA circuit with phase compensation and photodiode electrical equivalent81
Figure 4.4	TIA circuit schematic, with DC suppression block and compensation block

Figure 4.5	Block diagram of the acquisition electronics, including an optional voltage amplifier
Figure 4.6	Circuit schematic of the Sallen-key band-pass filter
Figure 4.7	Frequency response of the band-pass filter for: ECG and EEG filter obtained in a)Matlab [®] from the transfer function and b) TINA [®] from circuit simulation; EMG filter obtained in c) Matlab [®] from the transfer function and d) TINA [®] from circuit simulation. Arrows indicate the low and high cut-off frequencies
Figure 4.8	Circuit schematic of twin-t notch filter
Figure 4.9	Frequency response of the notch filter obtained in a) Matlab [®] from the transfer function and b) TINA [®] from circuit simulation. Arrows indicate the notch frequency
Figure 4.10	Frequency response obtained in TINA [®] for the overall acquisition electronics setup using band–pass filter for a) ECG and EEG acquisition $(0.2 - 40 \text{ Hz})$; and b) 5 – 500 Hz93
Figure 4.11	Simulation results obtained in TINA [®] for the overall acquisition electronics setup in terms of a) Input noise; and b) SNR94
Figure 4.12	PCB of the OE system designed for bioelectric signal acquisition. a) top view and b) bottom view
Figure 5.1	Photonic stage prototype: a) optical signal source and b) MZI modulator98
Figure 5.2	Prototype of the OE stage comprising PIN photodiode, TIA, band-pass and notch filter, and an optional voltage amplifier. The instrumentation amplifier (INA119) is also included in this module, although it's only used for comparison purposes
Figure 5.3	C-band broadband ASE light source power spectrum. Measurements were performed with a power supply of 5V/1A100
Figure 5.4	Relationship between optical power fluctuation and output voltage100
Figure 5.5	MZI EO transfer function. Arrows indicate linear modulation regions101
Figure 5.6	Output voltage of the photonic sensor when using a MZI a) single-drive and b) dual-drive configuration

List	of	Tab	les
LIDU	01	1 40	100

Figure 5.7	Photonic platform linear response. The output voltage is detected at the output of the TIA
Figure 5.8	Frequency response of the photonic platform. The output is considered at the end of the TIA106
Figure 5.9	Photonic platform output voltages with 10 Hz –modulation signals with amplitudes of: a) 1 mV; b) 100 μ V; c) 50 μ V and d) 20 μ V. Signals were processed using 50 Hz-notch filters, 0.5 to 35 Hz band-pass filter107
Figure 5.10	Gain deembedded ECG signals obtained with: a) standard BrainVision recording setup and b) photonic platform109
Figure 5.11	ECG signals obtained using: INA119 a) after filtering and b) raw signal at the INA119 output; and photonic platform c) after filtering and d) TIA output
Figure 5.12	ECG signals spectrum power obtained using: INA119 a) after filtering and b) raw signal at the INA119 output; and photonic platform c) after filtering and d) TIA output
Figure 5.13	Gain deembedded EEG signals obtained with a) standard BrainVision recording setup; and photonic platform in the following conditions:b) awake and concentrated in an object; c) relaxed and with eyes closed; and d) sleeping
Figure 5.14	Gain deembedded EMG signals obtained with: a) standard BrainVision recording setup and b) photonic platform113
Figure 5.15	Experimental setup for testing the electroactive properties of PAAM gel115
Figure 5.16	PAAM hydrogel frequency response116
Figure 6.1	Thesis milestones towards the development of a photonic platform for bioelectric acquisition
Figure 6.2	Smart material based on photonic platform technology developed in this thesis. Optical components can be embedded in a substrate material124
Figure 6.3	Schematic representation of the prospective integration of the photonic platform in a wearable monitoring garment. Three different solutions can be obtained with the photonic platform for monitoring EEG, ECG and EMG124
Figure 6.4	EO and OE functions merged into a single integrated device. Main limiting factors are optical signal generation and photodetection126

LIST OF TABLES

Table 1.1	Different EO transducer effects applied in the sensing mechanism for wearable devices
Table 2.1	Types of bioelectric signals and main characteristics
Table 2.2	Bioelectric signal-specific features and design considerations40
Table 2.3	Sources of interference in wearable bioelectric signal recording45
Table 2.4	Photonic sensors comparison considering wearability
Table 3.1	EO materials and main properties
Table 3.2	Performance-driven parameters for each photonic sensor component
Table 3.3	Photonic stage parameters used for theoretical calculations and simulations70
Table 3.4	Parameters assumptions for theoretical calculations
Table 3.5	Theoretical output voltage for each bioelectric signal72
Table 3.6	Photonic system properties overview75
Table 4.1	Design consideration for TIA design
Table 4.2	TIA circuit requirements for gain and bandwidth
Table 4.3	TIA phase compensation results for a selected range of R_f
Table 4.4	Performance results simulated in TINA for different C ₁ values88
Table 4.5	Optimum resistor and capacitor values for band-pass filter90
Table 5.1	Experimental and rated values for important figure of merits of the EO setup102
Table 5.2	Experimental values of peak MZI optical output power (Peak P _{out}), output electrical current (I _{ph}) and responsivity (R) for different amplitude input modulating signals

Table 5.3 Summary of notch and band-pass filter performance	
	(S- simulations; E – Experimental)104
Table 5.4	Measured current and power consumption of the photonic
	platform and conventional setup108

Symbol	Description	Unit
Α	Area of electrodes	m^2
A _{diff}	Differential gain	-
BW	Bandwidth	Hz
С	Cardiac equivalent vector	-
С	Speed of light	m/s
C_c	Virtual capacitor	F
C_{C}	Compensation capacitor	F
C_{cm}	Opamp common mode capacitance	F
C_{diff}	Opamp differential capacitance	F
C _{DL}	Double-layer capacitance	F
C _{eo}	Electro-optic modulator capacitance	F
C_{ep}	Epidermis capacitance	F
$\mathrm{C_{f}}$	Transimpedance amplifier feedback capacitor	F
C_i	Transimpedance amplifier input capacitance	F
C_{j}	Photodiode junction capacitance	F
CNR	Carrier-to-noise Ratio	dB
СР	Carrier power	W
d	Electro-optic modulator electrode spacing	m
d_{eo}	Electro-optic crystal waveguide spacing	m
Е	Electric-field	V/m
E_{hc}	Half-cell potential	V
f_c	Frequency of light	Hz
(f_{GBW}) :	Opamp gain-bandwidth product	Hz
f_n	Filter natural frequency	Hz
f_{notch}	Notch frequency	Hz
f_p	High-frequency pole	Hz
G_{ph}	Photodiode gain	Hz
G_{TIA}	Transimpedance amplifier gain	V/A
h	Planck's constant	J. s
i _{bias}	Input bias current	А
i _D	Photodiode current source	А
i _{dark}	Photodiode dark current	А

IL	Insertion loss	dB
i _{leakage}	Photodiode leakage current	А
(i_{ph})	Photodiode output current	А
L	Electro-optic modulator electrode length	m
l	Electro-optic crystal waveguide length	m
L _{AB}	Lead between point A and B	m
V_{AB}	Potential difference between point A and B	V
v_{BIO}	Electrical potential of bioelectric signal	V
n	Refractive index of an electro-optic medium	-
n_e	Refractive index of the extraordinary ray of light	-
NEP	Noise equivalent power	$V/Hz^{1/2}$
NF_{ph}	Noise figure associated with the photodetector	dB
NF_{TIA} is the	Effective noise figure of the transimpedance amplifier	dB
n_0	Refractive index of the ordinary ray of light	-
q	electron charge	С
P _{in}	Input power of light	W
Pout	Modulated output power	-
R	Responsivity	A/W
R _C	Compensation resistor	Ω
R _{CT}	Double-layer resistance	Ω
R _{ep}	Epidermis resistance	Ω
R_{f}	Transimpedance amplifier feedback resistor	Ω
r_k	Kerr coefficient	m/V
RIN	Relative intensity noise	Hz^{-1}
r_p	Pockels coefficient	m/V
\mathbf{R}_{sh}	Photodiode shunt resistance	Ω
R _{TIAeq}	Effective resistance load of the photodetector	Ω
R_s	Resistance associated with electrolyte	Ω
R_{ut}	Resistance associated with underlying tissue	Ω
S _{MZI}	modulation efficiency	W/V
Т	Temperature	Κ
T_{f}	Transmission factor	-
V _{bias}	Bias voltage	V
V_{cm}	Common-mode potential	V
v_{in}	Input modulating voltage	V
V_{it}	Elecro-optic modulator total input voltage	V
$v_{maxtrans}$	Bias voltage at maximum transmission	V

V_{min}	Minimum detected voltage	V
$v_{mintrans}$	Bias voltage at minimum transmission	
v_{out}	Transimpedance amplifier output voltage	V
v_{th}	Thermal voltage	V
v_+	Noninverting electrical potential at the input of the	V
	amplifier	
v_{-}	Inverting electrical potential at the input of the amplifier	V
V_{π}	Half-wave voltage	V
W	Electro-optic crystal width	m
Z_t	Total impedance	Ω
Z_{in}	Input impedance	Ω
$\Delta \phi$	Phase variation	rad
\mathcal{E}_{O}	Medium permittivity	-
\mathcal{E}_r	Relative static permittivity	-
η	Quantum efficiency	-
λ	Wavelength	m
ϕ	Phase shift	rad
ω_H	High-pass cut-off frequency	rad/s
ω_L	Low-pass cut-off frequency	rad/s

LIST OF TERMS

<u>Term</u>	Designation
Ag	Silver
ASE	Amplified spontaneous emission
AV	Atrioventricular node
BCI	Brain-computer interface
CdTe	Cadmium telluride
Cl	Chloride
CMMR	Common-mode rejection ratio
CMOS	Complementary metal-oxide-semiconductor
CW	Continuous wave
EAP	Electroactive polymer
ECG	Electrocardiogram
ECoG	Electrocortigram
EEG	Electroencephalograms
EMG	Electromyogram
EO	Electro-optic
EOG	Electroocculogram
ENG	Electroneurogram
ERG	Electroretinogram
GTWM	Georgia Tech Wearable Motherboard
IC	Integrated circuit
InGaAs	Indium gallium arsenide
KD*P	Potassium dideuterium phosphate
LA	Left arm
LL	Left leg
LED	Light-emitting devices
LiNbO ₃	Lithium niobate
LiTaO3	Lithium tantalite
MM	Multimode

List of Terms	Photonic platform for bioelectric signal acquisition in wearable devices
MRI	Magnetic resonance imaging
MZI	Mach-Zehnder interferometer
MU	Motor units
OE	Optoelectronic
OSA	Optical spectrum analyzer
РСВ	Printed circuit board
PC-CLD-1	Polycarbonate with CDL-1 chromophore
PDA	Personal digital assistant
PIC	Photonic integrated circuit
PM	Polarization maintaining
PMMA-CDL1	Poly(methylmethacrylate) with CDL-1 chromophore
PVDF	Polyvinylidene fluoride
RA	Right arm
RF	Radiofrequency
SA	Sinoatrial node
Si	Silicium
SLED	Superluminescent light-emitting diode
SM	Single mode
SNR	Signal-to-noise ratio
TF	Transfer function
TIA	Transimpedance amplifier
UV	Ultraviolet
WHO	World Health Organization
ZnTe	Zinc telluride