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ABSTRACT 
 

 

  

 Among all physiological functions, bioelectric activity may be considered one of the 

most important, since it is the backbone of many wearable technologies used for health 

condition diagnostic and monitoring. The existent bioelectric recording devices are difficult to 

integrate on wearable materials, mainly due to the number of electrical interconnections and 

components required at the sensing places. Photonic sensors have been presented in the 

medical field as a valuable alternative where features like crosstalk and attenuation, 

electromagnetic interference and integration constitute a challenge. Furthermore, photonic 

sensors have other advantages such as easy integration into a widespread of materials and 

structures, multiplexing capacity towards the design of sensing networks and long lifetime. 

The aim of this work was to develop a multi-parameter bioelectric acquisition platform 

based on photonic technologies. The platform includes electro-optic (EO) and optoelectronic 

(OE) stages, as well as standard filtering and amplification. The core sensing technology is 

based on a Mach-Zehnder Interferometer (MZI) Modulator, which responds to the bioelectric 

signal by modulating the input light intensity. Only optical fibers are used as interconnections, 

and the subsequent signal conditioning and processing can be centralized in a common 

processing unit. The photonic and OE modules were designed to guarantee bioelectric signal 

detection using parameters compatible with existing technologies. Several considerations 

were made regarding noise-limiting factors, unstable operation and sensitivity. The EO 

modulator of choice was a Lithium Niobate (LiNbO3) MZI modulator. The EO modulator was 

selected given its versatile geometry and potential to perform differential measurements and 

easiness to convert the resultant optical modulated signal into electrical values.  

The OE conversion module developed includes a transimpedance amplifier (TIA), a 

notch and bandpass filter. In order to prevent a phenomenon called gain-peaking, the TIA was 

properly compensated, to insure a stable TIA operation and simultaneously avoid output 

signal oscillation. The performance of the TIA circuit was improved considering DC currents 

of 1.3 mA, which resulted in an additional high-pass filtering block. This allowed for a 

transimpedance gain of 1x105 V/A. The filtering stage was designed for removing unwanted 

signal artifacts, and included two bandpass filters (0.2 – 40 Hz; 5 - 500 Hz) and a notch 

filtered centered at 50 Hz and with 34 dB of attenuation. 
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The photonic platform prototype performance was evaluated, covering linearity, 

frequency response and sensitivity. Results have shown that the combination of the photonic 

and OE stages had a flat 60 dB frequency over the frequency range of 0.3 Hz to 1 kHz.  With 

regard to system linearity, it was verified a linear relationship between the voltage input and 

output signal, with a gain of 60 dB. These results indicated a correct biasing of the MZI 

modulator. In order to study the minimum detected fields that can be achieved using the 

developed prototype, the filtering and amplification stages were also considered. The 

characterization was performed with an overall gain of 4000 V/V (72 dB) and the photonic 

platform showed sufficient sensitivity to detect signals as low as 20 µV. 

To assess the bioelectric signal acquisition performance, the developed photonic 

platform was tested in a real scenario through the acquisition of different bioelectric signals – 

Electrocardiogram (ECG), Electroencephalogram (EEG) and electromyogram (EMG). The 

results were compared with signals obtained from standard platforms using the same 

conditions. The developed photonic platform demonstrated the capability of recording signals 

with relevant and clinical content, providing enough sensitivity, frequency response and 

artifact removal. The photonic platform showed good results in various clinical scenarios, 

such as the evaluation of normal heart and muscle functions, as well as monitoring the 

consciousness state of patients.  

As a final conclusion, a photonic platform for bioelectric signal acquisition was 

developed and tested; its application in wearable health systems was demonstrated.  
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RESUMO 
 

 

 De todas as funções fisiológicas, a actividade bioeléctrica é considerada uma das mais 

importantes, uma vez que representa a base para muitos sistemas vestíveis, utilizados para 

monitorização e diagnóstico no sector médico. Os dispositivos existentes - baseados em 

aquisição electronica - apresentam algumas desvantagens essencialmente relacionadas com a 

dificuldade de integração em materiais vestíveis, a quantidade de interligações e os 

componentes necessários nos locais de medição. Os sensores fotónicos têm vindo a ser cada 

vez mais utilizados no sector médico, uma vez que conseguem ultrapassar as desvantagens de 

atenuação e interferência electromagnética. Para além disso, este tipo de sensores apresenta 

uma fácil integração em diversos materiais, durabilidade e capacidade de multiplexagem, 

especialmente concebidas para redes de sensores. 

 O principal objectivo da presente tese foi desenvolver uma plataforma de aquisição de 

biopotenciais baseada em sensores fotónicos. A plataforma inclui um bloco responsável por 

efectuar a conversão electro-óptica (EO) do biopotencial medido, assim como a 

optoelectrónica (OE) necessária para transformar o sinal óptico para o domínio electrico.  

 A tecnologia que está na base do mecanismo de transdução desta plataforma consiste 

em moduladores Mach-Zehnder (MZI), cujo princípio é modular a intensidade da luz em 

resposta a um sinal electrico. As interconexões e transdução são efectuadas apenas por fibra 

óptica, sendo que o processamento e acondicionamento do sinal pode ser centralizado numa 

unidade de processamento transversal a todos os sinais.  

 Os módulos correspondentes aos blocos EO e OE foram desenvolvidos de forma a 

garantir a detecção do biopotencial utilizando características compatíveis com a tecnologia 

disponível. Foram efectuadas várias considerações relativamente aos factores que limitam o 

funcionamento adequado da plataforma fotónica, mais especificamente no que diz respeito a 

níveis de ruído, instabilidade e resolução. O modulador EO seleccionado foi um MZI de 

niobato de litio (LiNbO3). A escolha deste modulador teve como principal motivo a 

possibilidade de efectuar medições diferenciais, geometria versátil e a facilidade de converter 

o sinal óptico resultante para o domínio eléctrico.  

 Os módulos de conversão OE desenvolvidos incluem um amplificador de 

transimpedância (TIA) e filtros passa-banda e notch. Para assegurar o funcionamento estável 

do TIA e evitar um fenóneno designado por gain-peaking (ganho de pico), foi necessário 

compensar devidamente o circuito. A performance do TIA desenvolvido foi optimizada para 
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currentes DC na ordem dos 1.3 mA, resultando na adição de um filtro passa-alto de forma a 

atingir ganhos de transimpedância de 1x105 V/A. Os blocos de filtragem para remover as 

componentes de interferencia indesejados incluiram dois filtros passa-banda (0.2 – 40 Hz; 5 – 

500 Hz) e um filtro notch centrado nos 50 Hz filtered e com um factor de atenuação de 34 dB.  

 O protótipo da plataforma fotónica, mais especificamente o modulo EO e OE (saída do 

TIA) foi submetido a diferentes testes com o principal objectivo de caracterizar o desempenho 

do sistema ao nível da resposta em frequência, linearidade e resolução. Os resultados obtidos 

demonstratam uma resposta em frequência com um agama dos 0.3 Hz aos 1 kHz com um 

ganho de 60 dB. Relativamente à linearidade, foi demonstrado que a relação entre o sinal de 

entrada (biopotencial) e o sinal à saída do TIA apresentam uma relação linear. Os testes 

realizados para confirmar o mínimo sinal detectado pela plataforma fotónica desenvolvida  

foram efectuados incluindo os estágios de filtragem e amplificação, resultando num ganho 

global de 4000 V/V.  O sinal minimo detectável foi de 20 µV, a uma frequência de 10 Hz.  

  Por último, a plataforma desenvolvida foi testada em cenários reais na aquisição de 

diferentes biopotenciais – Electrocardiograma (ECG), Electroencefalograma (EEG) e 

Electromiograma (EMG). Os resultados obtidos foram comparados com plataformas 

convencionais nas mesmas condições. A plataforma fotónica apresentou boa capacidade para 

adquirir biopotenciais com conteúdo clinico relevante, assegurando a sensibilidade, resposta 

em frequência e remoção de artefactos desejável. 
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