CAREN - A Java based Apriori Implementation for
Classification Purposes

Paulo J Azevedo

Technical Report - January 2003

Abstract

In this document a java based implementation of the well know Apriori al-
gorithm is described. The association rule generator is constructed toward the
generation of classifiers. A detailed description of the data structures to store
the itemsets is given along with the most important steps of the algorithm.
Benchmarking and discussion on the main features is also presented.

1 Introduction

The Apriori algorithm [Agrawal & Srikant94] is considered the classic approach for
the derivation of association rules. Association rules are rules of the form

a&a & ... &a, —>c

Rules of this format describe association (or simply co-occurrence) between atomic
elements present in data. These elements can be items bought in supermarket or
genes present in a certain chromosome, or simply a pair of attribute/value items from
a relational database table. Rules are made out of itemsets present in the dataset, i.e.
combination of items. For instance, itemset ajasas...a,c gave rise to the former rule.
Quality of rules are measure through statistics metrics like support and confidence.
Support describes incidence of the itemset in the dataset and confidence measure the
predictability strength of the rule. Support is calculated by itemset counting among
the transactions contained in the dataset. The main task of generating association
rules is itemset counting. From the perspective of itemset counting, apriori is consid-
ered a bottom-up breath-first search algorithm.

Apriori counts itemsets by generating candidates and performing databases scans.
For each group of itemsets (candidates) with cardinality k, a database scan is made.
Itemsets who satisfy a minimal occurrence constraint are considered frequent. Candi-
dates to frequent itemsets of size k are generated from frequent itemsets of cardinality
k-1. The operation to generate candidates reduces to a joining between itemsets.

Apriori implements a downward closure property claiming that: "an itemset can
only be frequent if all its subsets are frequent". Thus, only k-itemsets that have
all its subsets of size k-1 frequent should be counted. In summary, for candidates
generation one needs two procedures. First, joining frequent itemsets of size k-1 to
generate candidates of size k, and secondly, check that all subsets of size k-1 belonging
to candidate of size k are frequent itemsets.

The Caren system supports two version of the Apriori implementation. One is
target for attribute/value format datasets and the other is for basket format datasets.

The first is oriented for ASCII files with several columns representing different at-
tributes. The latter is traditionally oriented to represent supermarket shop baskets
where each line is number with a transaction number and contains a set of products.

Datasets are always disk-resident. This means that a pass through the dataset is
done using disk access. This option was taken bearing in mind the processing of large
datasets. Thus, memory constraint are imposed by the size of the itemsets present
and counted in the dataset, and not by the size of the dataset.

G

Figure 1: Trie representing itemsets {4, B,C, D, AB, AC,AD,BD,ABD}

2 Data Structures

Itemsets are stored in a t¢rie structure (also know as prefix-tree) [Brin et al.97]. This
data structure is organized as an directed acyclic graph where nodes represent items
names. A sequence of nodes represents an itemset. Fach node contains a counter
representing the incidence of the itemset. In the case of the attribute/value version,
items are represented by pairs of nodes. Each pair is composed of an attribute node
and a value node.

Figure 1 pictorially represents itemsets {A, B,C,D,AB,AC,AD,BD,ABD}. The
depth on the trie indicates the size of the itemset. That is, nodes of the depth 2

R S
B D
4 J

Figure 2: Joining AB with AD to obtain ABD

represent 2-itemsets. Thus, when counting 2-itemsets only nodes of depth 2 in the
trie are visited. Notice that items are always lexicographically ordered along the same
level (depth).

3 Generating Candidates

One major advantage of a trie-based representation arises from the fact that frequent
itemsets and apriori candidates are materialized into the same nodes. Thus, there
is no duplication of an itemset when it turns from candidate to frequent itemset.
Candidates are "generated” by joining itemsets of the same depth. For instance to
derive the candidate ABD we could join AB with AD. It is a straightforward process
since it is a simple copying of nodes from the same level where we want to expand.
The new copies are located in the sequel of the expanded node e.g. in figure 2 AB is
the expended node and D is copied, obtaining ABD. Obviously it requires checking
for subset occurrence to ensure that a generated candidate has all its subsets as
frequent itemsets (this is referred as the prune step in |[Agrawal & Srikant94]). Since
k is the number of subsets of size (k-1) that a k-itemset contains, performing subset
verification is reduced to subset finding in the try. That is, traversing the try looking
for subsets belonging to the candidate. For instance, to verify that ABD is a valid
candidate we count the number of subsets of size 2 present in the trie. It is a valid
candidate if the number of subsets is 3, which actually is since AB, AD and BD
occurs.

Trie structures are quite convenient for counting itemsets in a transaction (this
operation is referred as subset in [Agrawal & Srikant94]). Checking which candidates
a transaction contains is obtained by traversing the transaction guided by the trie.
The trie is traversed according to the sequence of itemsets that exist in the transaction.

Whenever a node is visited, its counter is incremented. We assume that transactions
are ordered according to the order of the trie i.e. lexicographical order. The depth
explored in the trie coincides with the size of the candidates of be counted.

Contrasting with the original Apriori approach, CAREN does not generate and
materializes subsets out of each transaction. Rather it inspects each transaction
checking for candidates (driven by the Trie-structure) without any additional subset
generation. Considerer the itemsets of figure 2 and a transaction with the items
ABCD. We start from A on the trie and try to match the itemset beginning at node
A in the transaction. Thus, node A is visited together with AB, (ABD is not visited
since the size is bigger than 2), AC and AD, by this order. Then we follow to node
B. Since candidates of size 2 are being counted, only the counters for itemsets AB,
AC, AD and BD are incremented.

Some authors e.g. [Hipp et al.00], claim that a major drawback of trie-based rep-

resentations is that itemsets that are not prefixes of a candidate in the trie impose
an overhead when counting occurs. In fact this is a pertinent overhead and bench-
marking had shown some performance degradation. We also observed that candidate
counting is not particularly efficient in this approach (neither is in the original Apri-
ori implementation). However, in the near future we will present a novel proposal for
candidate counting with the aim of overcoming both overheads.
Filtering itemsets that are large [Agrawal & Srikant94| (support > minsup) and con-
sequently are preserved in the trie is also very simple to implement. For iteration k,
the nodes of depth k in the trie are visited and the support constraint is applied to
each counter. CAREN also implements some database trimming by excluding count-
ing transactions that cannot contain candidates e.g. testing transactions size against
candidates size.

In terms of itemset counting and considering this itemset representation, the Apriori
1
algorithm has a O(kn — 5/{:2 + —k) behavior where n is the size of the transaction

and k the biggest itemset present in the dataset.

4 Discretization Processes

With the purpose of dealing with numeric attributes, CAREN has two discretization
processes implemented. The first is a binary discretization method which mimics the
discretization approach of the C4.5 [Quinland93]. Given a class attribute (default is
the last described attribute of the dataset) and a target attribute, the process selects
a pivot value among the range of values in the domain of the target attribute. The se-
lection is performed following an entropy measure, guided by the class attribute. The
pivot value defines two partitions in the attribute data. In the sequel, this attribute
is interpreted as having only two artificial values: “< pivot” and “> pivot”. The class
and target attributes are loaded into an array to perform the entropy based count-
ing and pivot selection. Thus, some memory restrictions exists for this discretization
method.

The second method is the discretization method described in [Srikant & Agrawal96].
The basic idea is to derived intervals from the range of values present in the attribute
to be discretized. The new derived intervals replace the old range of values in the
attribute. The size and number of intervals obey to a principle of information loss

(partial completeness measurements). The user supplies a parameter K (level of
partial completeness) which represents the degree of freedom for the partition process.
K is used in the configuration of intervals for each discretized attribute. The loss of
information grows with the size of K. Partitioning is always equi-depth. That is, the
discretization process always generates intervals of equal size.

The number of partitions (intervals) is given by the formula:

where n is the number of quantitative attributes, m is the minimal support value
and K is the partial completeness value. After generating partitions, intervals can be
merged according to a Maximal support constraint. Adjacent intervals are merged
provided the resulting interval support does not overcome maximal support.

Discretization is always performed after 1-itemset counting and before pruning.
The convenience of this situation comes from the fact that at this point attribute
values are already available and easy to handle. After the discretization is performed
the new derived values have to be counted. This happens for each discretized attribute
in the itemsets trie. New attribute values derived by the discretization processes are
represented as constraint e.g. X < pivot, X € [a,b]. This requires reformulation of
the counting process. Counting is implemented by checking the constraint against
each of the original dataset values. Hence, discretized attributes are always slower
to count since we pass from a simple equality checking to a constraint satisfaction
checking.

5 Rules Generation

Rules are generated according to the standard algorithm [Agrawal & Srikant94]:

1) For each frequent itemset [generate all [C a.
2) For each a generate a rule

a= (Il —a)
if s(1)/s(a) > minconf

where minconf is the confidence filter.

At the moment, Caren only generates rules where || — a| = 1 due to the purpose of
this implementation (generate classification rules where the consequent is the class
attribute). Moreover, rules where consequents have more than one item are quite dif-
ficult to interpret. However, we are planning to expand, in the future, the generation
procedure to derive rules where |l —a| > 1. Rules are stored in a Hash table where the
keys represent the head of the rule. The corresponding values are lists of pointer to
arrays. Each array represents the set of items that composed a rule’s body. The node
(in the list) representative of the pointer also contains the support and confidence of
the rule. The complete rules hash table can be saved via the normal Java Streams.
It can also be reloaded by a classifier that can reorganize the rules according to some
classification strategy (for instance to implement a decision list formed out of a set of
classification rules). Figure 3 pictorially represents the hash table for a set of associ-

ation rules. Notice that a keys corresponds to several rule bodies, where each body
is a set of items stored in an array.

Caren implements rule filtering through the values of minimal confidence. However
we plan to have in the future other strength metrics for rule selection. At the moment
it is possible to perform rule filtering by measuring redundancy between rules. Instead
of measure strength of rules we detect redundancy among rules with the same conse-
quent and related antecedent. The used metric is improvement [Bayardo et al.00]. A
rule gives rise to improvement if it increases the strength measure (in our case con-
fidence) when compared to a simplification. Given a minimal value of improvement,
Caren selects only specific rules that contribute to a significant predictive advantage
(or are in fact relevant to the analysis).

Several different output formats are implemented in Caren. Rules can be accessed
as a Java Stream file (that can be loaded by another Java application) or as a text file
in several different formats. At the moment, Caren generates ASCII and CSV format
for describing generated rules. A Prolog format is available, where rules are repre-
sented by Prolog clauses. PMML file format (a XML format to represent predicative
models) is also available.

— HashTable
anteced1 anteced2 anteced3
consecl
consec2
item1
item?
item3

item_n

Figure 3: Hash Table for Association Rules

6 Benchmarking

Results presented here refer to values based on average time from batches of 10 runs.
Datasets are stored in ASCII files and all scans are performed from disk. The hardware
used is a PC INTEL P3 based clocked at 1.2 GHz under RedHat Linux. Java runtime

1.2e+07

T1012D100K ——
TL0I4D100K - J
TL0I6D100K ---—--- ;
T10I8D100K

| T2016D100K ————' |
- T2018D100K -

8e+06 - F

6e+06 - R B

Time (secs)

4e+06 | ! B

2e+06 H B

2 15 1 0,75 0,5 0,33 0,25
Support (%)

Figure 4: Number of rules generated

environment is JDK1.3.1 02. Time data is obtained by the Linux #ime command.
For accuracy sake we use the user time produced by this command. This clears up
the twisting caused by the unstable system time. Each run calculates all frequent
itemsets for a specific minsup and derive all rules for a value of minconf = 50%. It
also includes writing all derived rules to a text format file. The synthetic datasets
from [Agrawal & Srikant94] were used. Considering file T10I8D100K, T10 refers to
datasets with an average transaction size 10 and (T20 means size 20). I8 means
an average size of maximal potentially frequent itemsets of 8. All datasets have
100,000 transactions (D100K). Results show that this apriori implementation scales
linearly with values of minimal support and frequent itemsets size. Notice how well
computational time mimics the graph of number of derived rules (figure 4).

7 Conclusions

Caren was developed with the aim of producing a tool capable of generating classi-
fication rules. That is, rules that could be used with a classification purpose where
a classifier makes use of these rules in the form of a decision list. Caren is a disk-
based rule engine where the dataset is always consulted from the disk. One should
bear in mind this fact and that Caren is Java-based implementation, when comparing
performance with implementations like [Agrawal & Srikant94] or even [Hipp et al.00].
However, benchmarking shown that the algorithm scales along the number of derived
rules (calculated frequent itemsets), which is the expected apriori behavior.

Future work will be carried on along the lines of performance improvement. As
an example we plan to add new "tricks” for clever itemset counting (or not counting),
novel itemsets representations and new mechanisms for candidate counting using im-
proved transactions representation.

Acknowledgments: Thanks to Alipio Jorge for all the suggestions. This work
is supported by the POSI/2001/CLASS Project sponsored by Fundacao Ciéncia e
Tecnologia.

500 ‘
T10I2D100K ——
T1014D100K ----=

450 | T106D100K -- |
T10I18D100K -

400 [g

Time (secs)

0 L L
1 0,75 0,5 0,33 0,25

Support (%)

Figure 5: Performance over T10 datasets

8000 |
T20I6D100K ——
T20I8D100K ------- y

7000 |
6000 |
5000

4000

Time (secs)

3000

2000

1000

0
1 0,75
Support (%)

Figure 6: Performance over T20 datasets

05 0,33 0,25

References

[Agrawal & Srikant94| Agrawal R., Srikant R.
Fast Algorithms for Mining Association Rules
in Proceedings of the 20th International Conference on Very Large
Databases, Santiago, Chile, Sept. 1994

[Bayardo et al.00] Bayardo R., Agrawal R., Gunopulos D.
Constraint-Based Rule Mining in Large, Dense Databases

in Journal of Data Mining and Knowledge Discovery, Vol 4, Number
2/3, pag 217-240, July 2000.

[Brin et al.97] Brin S., R. Motwani J. Ullman and S. Tsur
Dynamic Itemset Counting and Implication Rules for Market Basket
Data
in Proceedings of ACM SIGMOD International Conference in Man-
agement of Data, 1997

[Hipp et al.00] Hipp J., Guntzer U., Nakhaeizadeh G.
Algorithms for Association Rule Mining - A General Survey and
Comparison
in SIGKDD Explorations June 2000, Vol 2, Issue 1, 2000.

[Quinland93] Quinland J. R.,
C4.5: Programs for Machine Learning
Morgan Kaufman 1993.

[Srikant & Agrawal96| Srikant R., Agrawal R.
Mining Quantitative Association Rules in Large Relational Tables

in Proceedings of the SIGMOD International Conference in Manage-
ment of Data, 1996

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

