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Despite being known for decades (since 1934), electrospinning has emerged recently as a 
very widespread technology to produce synthetic nanofibrous structures. These structures 
have morphologies and fiber diameters in a range comparable with those found in the 
extracellular matrix of human tissues. Therefore, nanofibrous scaffolds are intended to 
provide improved environments for cell attachment, migration, proliferation and 
differentiation when compared with traditional scaffolds. In addition, the process 
versatility and the highly specific surface area of nanofiber meshes may facilitate their use 
as local drug-release systems. Common electrospun nanofiber meshes are characterized by 
a random orientation. However, in some special cases, aligned distributions of the fibers 
can be obtained, with an interconnected microporous structure. The characteristic pore 
sizes and the inherent planar structure of the meshes can be detrimental for the desired 
cell infiltration into the inner regions, and eventually compromise tissue regeneration. 
Several strategies can be followed to overcome these limitations, and are discussed 
in detail here.
Tissue engineering and regenerative medicine are
commonly defined as being an interdisciplinary
field that aims at the development of biological
substitutes that restore, maintain or improve tis-
sue function or a whole organ [1]. Efforts in this
have been directed to produce biocompatible
scaffolds that physically support cells and pro-
vide conditions for cell adhesion and growth,
mimicking the native extracellular matrix
(ECM) of tissues [2]. Those scaffolds can be
obtained from different materials, including bio-
degradable polymers, ceramics or composites
containing both polymer and ceramic phases.
Generally, those systems are aimed at being
resorbed under physiological conditions. The
degradation kinetics of ideal scaffolds should fol-
low the tissue growth kinetics in such a way that
the material is completely degraded when the tis-
sue is fully regenerated [1]. Moreover, appropriate
cytocompatibility, porosity, pore size, surface
properties and mechanical stability have been
defined as being critical requirements [3–5].

The cellular response to a biomaterial is
believed to be enhanced when the morphology
of the scaffold mimics the architecture of the
native tissue. This is typically thought of as
being associated with the material topography
and the highly specific surface area, which are
also characteristics of nanofiber meshes [6–11].
This hypothesis increased the interest for
nanofibrous scaffolds that can closely mimic
the surface structure and morphology of native

ECMs of many tissues. Different techniques,
such as self-assembly [12], phase separation [13]

and electrospinning [14], have been used to
develop nanofibrous scaffolds. In this review,
we intend to provide an updated overview of
the current state of the art on the applicability
of fibrous scaffolds produced by electrospin-
ning in tissue engineering. The simplicity of
this technique, its cost–effectiveness and versa-
tility to produce nanofiber meshes from many
polymers commonly proposed for tissue engi-
neering applications, helps in understanding
why electrospinning is currently the most-used
technique for producing scaffolds. Most of the
published works use electrospinning to pro-
duce random fiber meshes that may have
important limitations for cell migration and
colonization of the inner regions of the meshes,
eventually compromising its effectiveness for
some tissue- engineering applications.

Electrospinning technique
Conventional electrospinning involves drawing a
polymer solution droplet, dispensed by a syringe
pump, from a capillary. The solution undergoes
extensional flow and deposits into a collector by
the application of an external electrostatic field.
The process starts by the application of a strong
electric field to a droplet of the polymer solution
in the tip of the capillary. When the intensity of
the electric field generates a sufficient stress in
the droplet to overcome its surface tension, a
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tiny solution jet is ejected in the direction of the
collector. Before reaching the collector, the sol-
vent partially evaporates and the jet of solution is
subjected to intensive extensional strain, leading
to the deposition of long and thin fibers, eventu-
ally at the nanoscale. The most typical morpho-
logy obtained corresponds to a randomly aligned
and porous nonwoven mesh [15–18].

Processing parameters
The submicrometer diameter of the fibers in the
nonwoven meshes produced by electrospinning
have a high surface area:volume ratio, which
raised the interest of these structures for biomed-
ical applications [19–21]. The properties of the
obtained meshes depend on various parameters
involved in the deposition process, namely the
type of polymer and its molecular weight, the
nature of the solvent used, the solution concen-
tration, the solution viscosity, applied voltage,
distance between the tip of the capillary and the
collector and collector type [10,14,22–26]. Several
works have demonstrated that electrospun fibers’
diameters can be varied using solutions with dif-
ferent polymer concentrations, and thus tuning
the solution viscosity [10,23,27]. In general, the
diameter of electrospun fibers increases propor-
tionally with the polymer concentration [10,27].
The porosity of the meshes can also be control-
led to some extent by adjusting both the solution
properties and the above referred operating
parameters [26,28]. The alignment of the fibers in
the mesh structure is also an important aspect to
be tailored. Static flat collectors, the most com-
monly used, cause the deposition of randomly
oriented fibers. When dynamic collectors are
used, such as rotating mandrels with controlled
rotary speed, some degree of alignment of the
fibers may be obtained within a tubular struc-
ture. Recent studies have shown that some cell
types elicit specific responses to aligned fibers,
preferring to grow along oriented regions of
nanofiber meshes [10,22,29–31].

Electrospun materials commonly 
used in TE
In the literature, several procedures have been
proposed for the electrospinning of fibers from
different materials currently used in tissue engi-
neering, such as synthetic [23,27,32,33] and natural
polymers [29,34–36], polymer blends [37–40], poly-
mer composites [41–43] and ceramics [44–46]. Since
most synthetic biodegradable or bioresorbable
polymers consist of polyesters, volatile organic
solvents are typically used in their processing.

The possible presence of residual solvents in the
electrospun fibers cannot be excluded, which
may eventually compromise their use in bio-
logical experiments. In the case of natural-origin
polymers, a stabilization process of the nanofiber
structure may be needed before performing bio-
logical experiments. Typical examples include
chitosan nanofibers, produced from a solution of
chitosan in trifluoroacetic acid [36,47], or silk
fibroin nanofibers, produced from a solution of
silk fibroin in formic acid [48,49]. A survey of the
polymers commonly used in tissue engineering
and already processed by electrospinning, includ-
ing the solvents used herein and the resulting
range of fiber diameters, are presented in Table 1.

The analysis of Table 1 allows one to conclude
that a broad list of solvents have been used for
each material and a wide distribution of fiber
diameters may be obtained, ranging from 40 nm
to a few microns. It should also be highlighted
that the meshes are typically characterized by a
heterogeneous distribution of fiber diameters.

Applications in tissue engineering
Tissue engineering strategies frequently propose
the use of synthetic 3D ECMs, such as scaffolds,
for the regeneration of human tissues. Many
concepts are also based on the use of cells iso-
lated from a small tissue biopsy. The synthetic
ECMs are intended to provide a temporary tem-
plate for cell seeding, proliferation and, when
using progenitor cells, differentiation. The con-
structs are used to develop a tissue precursor
in vitro, to be transplanted into the patient to
promote the formation of functional neotissue.
It is critical that this neotissue will structurally
integrate within the host tissues. Among the sev-
eral types of scaffolds proposed for tissue engi-
neering, electrospun meshes seem to have
specific advantageous properties and limitations,
which will be reviewed in the following section.

Extracellular matrices & 
electrospun nanofibers
The ECM of human tissues is a dynamic and hier-
archically organized structure composed of
polysaccharides (such as glycosaminoglycans) and
proteins (such as collagen and proteoglycans) syn-
thesized by the adjacent cells [39,50,51]. In this com-
plex structure, the collagen fibers provide strength
to the tissue and, more importantly, have many
cell-adhesive peptide moieties for cellular anchor-
ing. The hydrated gel composed of proteoglycans
and other proteins fills  the extracellular space, cre-
ating an appropriate microenvironment for tissue
Nanomedicine (2007)  2(6) future science groupfuture science group
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Table 1. Polymer na

Polymer Solve

PLA Chlor
dichlo

PGA HFIP [

PLGA Tetrah

PCL Chlor
chloro
methy

PHBV TFE [1

P(LLA-CL) Dichlo

Collagen HFP [1

Chitosan Acetic

Silk fibroin Wate

Hyaluronic acid Hydro

Gelatin HFP [9

Fibrinogen HFP [1

Chitin HFP [1

DMF: N,N-dimethylformam
PHBV: Poly(3-hydroxybutyr
P(LLA-CL): Poly(L-lactic acid
maintenance and remodeling in response to appro-
priate stimuli, while allowing for the diffusion of
nutrients, metabolites and signaling molecules.
Those components interact together to form an
interconnected nano- or micro-ranged fibrous net-
work bounded to the membranes of cells. Tissue
ECMs act as a scaffold to support and hold cells
together, to control the tissue’s structure and to
regulate cellular functions such as adhesion, migra-
tion, proliferation, differentiation and, ultimately,
tissue morphogenesis [52]. The ECM also serves as
a storage depot and a controlled-release system of
growth factors and signaling molecules.

The ECM interacts with the adjacent cells both
mechanically and chemically, remodeling the
architecture of the tissues. The structure of differ-
ent collagen types determines their function as
structural elements of the connective tissues [53].
Tendon ECM is composed of parallel and aligned
collagen fibrils, while those found on the skin are
mesh-like. In most connective tissues, the matrix
macromolecules are secreted by fibroblastic cells
into the extracellular space. In specialized types of
connective tissues, such as cartilage and bone, cells
of the fibroblast family (chondrocytes and osteob-
lasts, respectively) are responsible for ECM deposi-
tion. The matrix either becomes calcified into the
hard and tough structures of bone and teeth, or
can form the transparent matrix of cornea. ECM
can also adopt the cord-like organization that gives
tendons their tensile strength and elasticity.

In native tissues, the diameter of collagen fibrils
ranges between 30 and 300 nm. Electrospun
nanofibers, with diameters between 300 and
1000 nm, can provide appropriate micro-
environments for cell attachment, proliferation
and differentiation [2,54]. The versatility of the
process allowing the use of homo- and co-poly-
mers, blends of polymers and even polymer com-
positions with inorganic materials or other
additives also allow obtaining functionally active
meshes [23,27,32–46]. The ultra-thin fibers produced
by electrospinning, having a high surface area, fol-
low the structure of native ECM [55]. The
obtained meshes have high porosity with inter-
connected pores and, in association with their
high surface area, maximize the opportunities for
cell–synthetic ECM interactions.

Limitations of the electrospinning process
include the insufficient control over the fibers’
diameters and the mesh morphology, leading to
nonuniform nanofibrous structures. The size of
the pores is also, in many cases, insufficient for
allowing cell migration into the inner regions of
the meshes.

In vitro & in vivo applications
Electrospun polymeric nanofibers have been
proposed as scaffolds for tissue engineering of
skin, cartilage, bone, peripheral nerve system,
heart, blood vessels, ligament/muscle, kidney
and liver. In general, the electrospun nanofibrous

nofibers and solvents that are most commonly used.

nt Fiber diameters (nm)

oform/DMF [94], HFP [95], 
romethane/DMF [10,11]

800–3000 [94], 250–1250 [10], 235–3500 [11]

27,95,96] 220–880 [27]

ydrofuran/DMF [32,97], HFP [95] 500–800 [97], ∼760 [32]

oform/methanol [23], methylene chloride, 
form/DMF [98], tetrahydrofuran/DMF [33], 
lenechloride/DMF [99]

2000–10000 [23], 500–1200 [99]

00], chloroform [101] 100–2000 [100], 1000–4000 [101]

romethane/DMF [90] ∼470 [90]

4,29,102,103] 50–300 [29], 100–1200 [14], 300–375 [103]

 acid solution [104], TFA/dichloromethane [36] ∼130 [104], ∼300 [36]

r [34,105], formic acid [49] ∼575 [34], 30–120 [49], ∼700 [105]

chloric acid solution [106,107] 49–74 [106], 57–83 [107]

5,108], TFE [35] 77–485 [108]

09,110] 80–700 [109]

11] 40–640 [111]

ide; HIFP: Hexafluoroisopropanol; HFP: 1,1,3,3,3-hexafluoro-2-propanol; PCL: Polycaprolactone; PGA: Poly(glycolic acid); 
ate-co-3-hydroxyvalerate); PLA: Poly(lactic acid); PLGA: Poly(lactic-co-glycolic acid); 
)-co-poly(ε-caprolactone); TFA: Trifluoroacetic acid; TFE: 2,2,2-trifluoroethanol.
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matrices support cell adhesion, phenotype main-
tenance, proliferation and differentiation of stem
cells. In most of these studies, biodegradable pol-
ymer materials such as polycaprolactone (PCL),
polylactic acid (PLA), polyglycolic acid (PGA) or
its copolymers were used. A survey of electro-
spun scaffolds produced from different bio-
degradable polymers to target different tissues is
summarized in Table 2.

Cell lines or primary cells taken from their bio-
logical context do not adequately model the
in vivo tissue behavior. The difficulty to mimic
the in vivo microenvironment in cell culture sys-
tems justifies the interest in electrospun
nanofiber meshes. However, the merits of electro-
spun nanofiber meshes as adequate scaffolds still
need to be demonstrated upon implantation in
animal models.

The performance of electrospun polyurethane
(PU) nanofiber mesh as a wound-healing device
was examined in vivo using a pig model [56]. His-
tological results showed that the epithelialization
rate is increased and the obtained dermis structure
in wounds covered with electrospun nanofibrous
membrane is improved. In addition, this mesh as
a wound dressing demonstrated controlled evapo-
rative water loss and excellent oxygen permeabil-
ity, and allowed fluid drainage from the wound.
Furthermore, the mesh inhibits exogenous micro-
organism invasion into the wound. Another
in vivo study, using a rat model subjected to mid-
line celiotomy, examined the effect of using elec-
trospun, nonwoven, bioabsorbable polylactic-co-
glycolic acid (PLGA)-based membranes impreg-
nated with antibiotics (Mefoxin®, cefoxitin
sodium) as antiadhesion membranes [57]. Results
showed that the electrospun PLGA/PEG-PLA
membranes impregnated with 5 wt% Mefoxin
completely prevented cecal adhesions (0%) in rats
at the site of the injury. The performance of anti-
biotic (Biteral®, ornidazol) loaded PCL mem-
branes to prevent postsurgery abdominal
adhesions and to improve healing was recently
studied [58]. The rat model underwent defects on
the abdominal walls of the peritoneum. Capillar-
ies were formed predominantly at the edges of the
antibiotic-loaded PCL membrane in which
sutures were applied.

Another in vivo study aiming at studying
bone regeneration proposed PCL scaffolds
obtained by electrospinning seeded with mes-
enchymal stem cells (MSCs) [59]. The cell/scaf-
fold construct was cultured with osteogenic
supplements in a rotating bioreactor for
4 weeks, before implantation in the omenta of

rats during 4 weeks. The results showed ECM
formation throughout the constructs, minerali-
zation and type I collagen expression. The
authors concluded that bone grafts with bone-
like appearance could be developed from
electrospun nanofibrous scaffolds. Electrospun
silk fibroin (SF) membranes were tested as bone
periodontal regenerative implants [60]. This
study used calvaria defects in New Zealand
White rabbits and a complete bony union
across the defects was observed after 8 weeks. At
12 weeks, the defect had completely healed
with new bone and without any evidence of an
inflammatory reaction. These results strongly
suggest that the SF membrane can be useful as a
solution for guided bone regeneration.

In the regeneration of a nerve conduit, PLGA
(10:90) fibers were collected over a Teflon® tube
of 1.27 mm diameter and implanted into a rat
sciatic nerve [61]. The porous nanofibrous scaf-
fold allowed the diffusion of nutrients into the
lumen, facilitating nerve regeneration and,
simultaneously, acting as barrier to undesired
scar-tissue infiltration.

Potentialities of the 
electrospinning process
Development of hybrid 
polymeric matrices 
Nature tends to assemble structures with a min-
imum quantity of materials and with maximum
functionality. Indeed, natural ECM consists of
less than 1% solid materials, and yet contrib-
utes significantly to the mechanical and func-
tional properties of tissues. By understanding
the hierarchical tissue organization from the
molecular level up to macroscopic scale will
likely guide us to new designs of the synthetic
ECMs for use in regenerative medicine [62]. 

A critical issue in tissue engineering is to learn
how to engineer biomaterials that help in recapit-
ulating the early events of morphogenesis that
lead to the formation of the hierarchical organiza-
tion of the ECM and drive the cells to build fully
functional adult tissues. Recently, in our group,
an innovative use of the electrospinning tech-
nique was proposed to produce nanofibers on
starch-polycaprolactone (SPCL) microfiber
meshes combining nano- and microfibers in the
same 3D scaffold architecture [63,64]. The
micro–nanofibrous architecture was composed of
electrospun nanofibers randomly deposited over
a wet-spun mesh structure produced from micro-
fibers, with a refined structure resembling nano-
bridges connecting the microfibers. The concept
Nanomedicine (2007)  2(6) future science groupfuture science group
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Table 2. Polymer na

Cultured cells

Fibroblasts

Keratinocytes

Chondrocytes

Fibrochondrocytes

Mesenchymal stem cells

Osteoblasts

Neural stem cells

Cardiomyocytes

Arterial smooth muscle 

Vascular endothelial cell

Myoblasts

Ligament fibroblasts

Porcine bone marrow 
stromal cells

Kidney cells

Hepatocytes

EVOH: Poly(ethylene-co-vin
with calcium phosphate; PC

grafted with poly(acrylic a
PEG–PLA: Poly(ethylene gl
PLLA: Poly(L-lactic acid); PN
PU: Polyurethane; SPCL: St
was to provide a dual structure aiming at facilitat-
ing the adhesion of two different cell popula-
tions. Indeed, the unique architecture that is
generated supports and guides osteoblast-like
cells (SaOs-2 cell line), bone marrow stromal cells
(BMSCs), human umbilical vein endothelial cells
(HUVECs) and microvascular endothelial cells
(HPMEC-ST1.6R cell line). It was observed that
endothelial cells have a distinctive preference for
nanofibers, all other cell types preferred attaching
to microfibers. These results showed that the
micro–nanostructures are interesting candidate
scaffolds for vascularized tissues such as bone.

Incorporation of biologically active factors
Drug-release systems can be very useful in the
context of tissue engineering. Tissue engineer-
ing scaffolds would be greatly enhanced if they
were designed with the capacity to locally

release molecules, such as growth factors, ena-
bling cell-guiding activity when seeded at the
surface of the scaffolds. Thus, a controlled and
local release of biologically active factors would
significantly improve the efficacy of the tissue-
engineering scaffolds and would probably ena-
ble the use of much lower quantities of those
expensive proteins [62].

Many strategies can be used to control the
release of proteins and growth factors from scaf-
folds. When biodegradable polymers are used, a
common approach is to load the growth factors
on the material and use the combined effects of
diffusion and erosion to mediate the release
kinetics. In the case of diffusion, the surface
area and wettability are important parameters
controlling the release kinetics. Nanofiber
meshes  inherently have an appropriate struc-
ture to maximize surface area. The other main

nofibers as tissue engineering scaffolds.

Scaffold material Potential application 
in tissue engineering

PLGA [97], PLGA–chitin nanoparticles [112], 
PLGA–dextran [113], EVOH [114], polyamide [115], 
silk fibroin [49] 

Skin

PLGA and PLGA–chitin nanoparticles [112], 
silk fibroin [49,116], collagen type I [102]

PCL [117,118], SPCL [118], collagen type II, chitosan/PEO [119,120] Cartilage

PCL [22,72]

PCL [22,33,121]

PCL–CaP [93], PCL–CaCO3 [122], PCL–HA [42], 

PNmPh [123], chitosan/PEO [120], PCL [33,124], 
PLLA [125], PCL–gelatin [35] 

Bone

PLLA [10,126,127] Nerve

PCL coated with collagen type I [128], PLLA, PLGA, PEG–PLA [129] Cardiac

cells PLA [130], P(LLA-CL) [30,131,132], EVOH [114], PLGA–collagen [133], 
PLGA–collagen type I–elastin [134], PCL, collagen type I [14] and III [135]

Vascular

s P(LLA-CL) [131,132,136], PLLA [11], PNmPh [123], 
PET–gelatin [92], P(LLA-CL)–collagen type I [90], PLGA–collagen [133], 
PLGA–collagen type I–elastin [134]

DegraPol® or PEU [137] Ligament/Muscle

PU [69]

PLGA [138]

Polyamide [115] Kidney

PCLEEP–PAA–AHG [139], PPC [140] Liver

yl alcohol); P(LLA-CL): Poly(L-lactic acid)-co-poly(ε-caprolactone); PCL: Polycaprolactone; PCL–CaP: PCL nanofibers coated 
L–CaCO3: PCL nanofibers with calcium carbonate; PCLEEP–PAA–AHG: Poly(ε-caprolactone-co-ethyl ethylene phosphate) 

cid) and covalently conjugated with galactose ligands; PCL–HA: PCL nanofibers with hydroxyapatite; 
ycol)–poly(lactic acid); PET: Poly(ethylene theraphtalate); PEU: Polyesterurethane; PLGA: Poly(lactic-co-glycolic acid); 
mPh: Poly[bis(p-methylphenoxy) phosphazene; PEO: Poly(ethylene oxide); PPC: Poly(propyl carbonate);  

arch–PCL.
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parameter, hydrophilicity, is less important in
the case of nanofiber meshes than in compact
structures because of the porosity. In addition,
the hydrophilicity can be optimized by using
surface-modification methods.

The electrospinning processing, being solvent
based, allows the mixing of drugs and bioactive
agents before the production of the electrospun
nanofibers. However, the solvent needs to be
harmless for the loaded bioactive agent, and must
not compromise its functionality. Depending on
the chemical interactions between drug and poly-
mer carrier, different modes of interaction may be
explored [65]:

• Drug as particles or inclusions trapped in the
nanofiber structure;

• Drug and its carriers in nanofibers, resulting
in a nonwoven nanofiber mesh with two types
of fibers; 

• Blend of drugs and carrier materials integrated
into one mesh of composite nanofibers;

• Carrier material electrospun into a tubular form
in which the drug particles are encapsulated.

Nanoscale drug-release systems can be tailored
to tune the release kinetics, to regulate local distri-
bution and to minimize toxic side effects, thereby
enhancing the effectiveness of the bioactive agent
released [62]. Electrospinning also allows control
of the fiber diameter, to some extent, and control
the release of kinetics by the diameter of the fib-
ers, both in diffusion- and in degradation-con-
trolled release. Moreover, the electrospinning
process, being based in solvents, does not involve
high temperatures, which is particularly useful for
heat-sensitive drugs. Furthermore, it enables min-
imizing the initial burst release and the possibility
of delivering uniform and highly controlled doses
of bioactive agents at the wound site by tuning
the surface properties of the nanofiber [66]. A sur-
vey of the electrospun nanofiber meshes proposed
as drug-delivery systems are listed in Table 3.

In summary, the analysis of Table 3 suggests
that many studies explored the loading of anti-
biotics onto nanofiber meshes, but only a few
reported the loading of antitumor or growth
factors or other specific drugs. The materials
that have been proposed as nanofiber drug carri-
ers are restricted to the group of biodegradable
synthetic polymers.

Nanofiber alignment & co-electrospinning
The nanofiber-based meshes more frequently
reported in the literature are nonwoven and
randomly aligned. Those structures may be

desirable for some tissue applications. However,
some human tissues have typically preferential
orientations and frequently highly aligned
structures, with a precisely defined architecture.
This common observation leads to particular
interest in aligned fiber orientations in the
meshes to be used as scaffold for specific tissues.
It may be hypothesized that controlled orienta-
tion of nanofibers may be required to create
scaffolds to use in targeting specific tissue-engi-
neering applications. The fiber orientation may
influence cell attachment and growth and also
provide stimulation for the spatial distribution
of cells, guidance, cell-mediating activity and
gene expression [67].

Considering the conventional electrospinning
setup, a few variables have a critical role in deter-
mining the nanofiber orientation; the type of col-
lector used is very important. Initial attempts to
produce oriented electrospun nanofibers were
based in high-speed rotating cylinders as
collectors [68]. Using this method, the extent of
fiber alignment achieved is limited. Many studies
have explored nanofiber alignment in electro-
spinning through the use of rotating belts or cylin-
ders as collectors [10,22,30,69–72]. Studies using these
aligned meshes suggest that some cells interact
with the nanofibrous scaffolds and may show
preferential grow in the direction of the fiber ori-
entation. Using a radically different method, by
varying the geometrical configuration of electri-
cally conductive collectors, it was demonstrated
that the orientation of electrospun nanofibers
could also be obtained without the rotation of the
collector [73]. The collector in this case consisted
of two conductive strips separated by a gap of var-
iable width (up to several centimeters). Using this
method, long electrospun fibers could be uniaxi-
ally aligned [74–76]. Another significant progress in
collecting parallel-aligned electrospun nanofibers
was obtained using a novel approach to position
and align individual nanofibers over a tapered and
grounded wheel-like bobbin [77]. Recently,
another method was described consisting of a
fiber bundle with a diameter in the micron range
with aligned nanofibers between two parallel steel
blades [78]. A similar. structure, composed of
aligned nanofibers, was also reported, involving
two grounded circular disks equidistant from the
spinneret, with rotation of one of those collector
discs [79].

The setup for electrospinning typically
involves a single capillary as the spinneret, and
thus allows the generation of fibers with a partic-
ular composition in each fabrication run. The
Nanomedicine (2007)  2(6) future science groupfuture science group
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nanofibers have a solid inner structure and a
smooth surface. Core/shell or hollow nanofibers
can also be fabricated by co-electrospinning of
two different polymeric solutions. The solutions
can be selected to be immiscible and forced to
flow through a spinneret composed of two coax-
ial capillaries [80–85]. These structures have partic-
ular interest as drug-delivery systems, since the
release kinetics can be fine tuned by the proper-
ties of the polymer in the shell or by its
thickness [86]. The use of a natural polymer in
the shell of core–shell nanofibers could also
improve the cytocompatibility of synthetic poly-
mers (in the core of the composite nanofiber).
Using this method, strong inflammatory reac-
tions could be avoided and the mechanical prop-
erties of natural-based nanofibers could be
improved. It is also possible to speculate that the
fabrication of hollow nanofibers with multiple
walls by using more complex spinnerets com-
posed of more than two coaxial capillaries may
be technically feasible [17]. Recently, the encapsu-
lation of viable cells into poly(dimethyl siloxane)
fibers obtained by coaxial electrospinning
technology was reported [87].

Conclusion
Numerous studies reported the use of electrospun
fiber meshes in tissue engineering. However, some
technical barriers remain uncrossed and many
possible configurations of the process were not
fully exploited. Despite the high level of porosity
and high specific surface area of the nonwoven
fiber meshes, the pore size is usually too narrow to
allow cell migration through the inner regions of
the fiber-mesh scaffolds. This is the most serious
limitation of these structures, and may compro-
mise its use in the regeneration of tissues. Varia-
tions in the electrospinning setup or in the
deposition pattern may be valuable strategies to
control porosity. Strategies already suggested in the
literature include the use of porogen agents such as
salt particles [88] or chemical blowing agent [89].
Most biological studies with electrospun nanofiber
meshes show that cells tend to stay at the surface of
the meshes. This behavior is observed even when
the pore size is sufficiently large to allow cells to
migrate into the inner regions of the mesh scaf-
folds. Coating with cell-affine materials such as
collagen was proposed to facilitate cell ingrowth
into the core of meshes [90,91].

Table 3. Nanofiber meshes as drug-delivery systems.

Incorporated drug Scaffold material Potential application 
as drug-delivery 
system

Tetracycline hydrochloride PEVA, PEVA/PLA, PLA [21] Antimycotic

Mefoxin® (cefoxitin) PLA [141], PLGA [26], 
PLGA/PLA/PEG-b-PLA (80:5:15) [20] 

Antibiotic

Cefazolin PLGA [142]

Itraconazole HMPC [143]

Gentamycin sulfate PCL [144]

Biteral (ornidazol) PCL [58]

Rifampin (rifadin) PLLA [145]

Paclitaxel PLLA [145], PLGA [146] Antitumor

Ibuprofen PLGA, PEG-g-CHN [147] Anti-inflammatory

Paracetamol PDLLA [148] Analgesic and antipyretic

Heparin PCL [149], PEO-LMWH, PLGA [150] Anticoagulant

Resveratrol (phytoalexin) PCL [144] Antioxidant

Bone morphogenetic protein-2 Chitosan [151] Growth factor

Human nerve growth factor PCLEEP [152]

Bovine serum albumin PVA [153], PCL/PEG(shell)-
dextran/BSA(core) [86]

Protein

Plasmid DNA PLA-PEG, PLGA [154], LEL [155] DNA

HMPC: Hydroxypropylmethylcellulose; LEL: Poly(lactide)-b-poly(ethylene glycol)-b-poly(lactide); 
PCL: Polycaprolactone; PCLEEP: PCL/ethyl ethylene phosphate; PEO–LMWH: Poly(ethylene glycol) functionalized 
with low-molecular-weight heparin; PEG-b-PLA: Poly(ethylene glycol)-b-PLA; PEG-g-CHN: Poly(ethylene glycol)-g-
chitosan; PEVA: Poly(ethylene-co-vinyl acetate); PLA: Poly(lactic acid); PLGA: Poly(lactic-co-glycolic acid); 
PLLA: Poly(L-lactic acid); PVA: Poly(vinyl alcohol).
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Other limitations of the electrospun nanofiber
meshes in tissue engineering is the typical 2D
thin structure. Fibrous meshes are generally
obtained as planar sheets, which may limit the
applicability of these structures to the regenera-
tion of layered tissues. During processing, the
time of deposition may be increased in order to
produce 3D structures. However, in practice this
is not feasible, since this way it is progressively
more difficult to control the fiber-deposition
process. By complementing or associating
electrospinning with other techniques, it may be
possible to obtain macroporous structures with
tissue-scale motifs, this being a promising strat-
egy to produce scaffolds that combine good
mechanical properties and adequate topography
for cell fixation. In our understanding, much
more effort is required to produce 3D stable
macroporous structures, exploring the advan-
tages of electrospun fiber meshes and avoiding
their limitations. The production of mesh struc-
tures together with well-controlled properties
and architecture of individual fibers, such as
alignment, would enable the production of
structures that would have a huge impact in the
tissue-engineering field.

Appropriate biomaterials tuned for specific
cell types also have unsolved challenges. As previ-
ously mentioned, different cell types behave and
react according to the fiber composition [11].
Efforts to improve cell attachment may include
bulk modification [34,42] or surface activation
[8,27,90,92,93] of the fiber meshes (Figure 1). Both
strategies have been followed to improve interac-
tions of specific cell types with the surface of
fiber meshes. Eventual residual solvent in the
meshes is another subject that is not sufficiently

discussed and that might considerably affect the
cell viability and the efficacy of these meshes as
supports for tissue engineering.

Future perspective
Most of the electrospun fibers proposed for tissue
engineering are obtained from synthetic materi-
als. More efforts should be devoted to the devel-
opment of natural-origin polymers (e.g., chitin,
chitosan, alginate, starch, hyaluronic acid and
dextran), so that a better biological compatibility
and performance can be achieved.

It is unclear, at this stage, as to what extent
the aggregation and conformation of polymer
chains are affected by the electrospinning proc-
ess. Those changes are mainly related to the sol-
vent used. The solvents have a crucial role since
they are expected to solvate the polymer mole-
cules, thus forming the electrified solution jet.
A systematic study regarding the influence of
the type of solvent and polymer concentration
on the polymer-chain conformation and, con-
sequently, in the properties of the nanofiber
meshes, is needed.

A number of authors successfully encapsu-
lated drugs into electrospun fibers by mixing or
dissolving the drugs in the electrospun polymeric
solution. However, the encapsulation of proteins
is yet to be studied in detail, despite their bio-
chemical importance as signaling agents for tis-
sue engineering applications. Controlling fiber
orientation of the tissue nanofibrous meshes is of
major relevance and a challenging task in tissue
engineering scaffolding. Regarding the in vivo
testing, only a few studies were published and
long-term performance of as-spun or modified
fibers is yet to be published.

Figure 1. SEM micrographs of electrospun poly(ε-caprolactone) nanofiber meshes 
before (A) and after biomimetic coating (B).
 

SEM: Scanning electron microscopy.

5 µm5 µm
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