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Abstract:

• The Birnbaum-Saunders model is a life distribution originated from a problem of
material fatigue that has been largely studied and applied in recent decades. A
random variable following the Birnbaum-Saunders distribution can be stochastically
represented by another random variable used as basis. Then, the Birnbaum-Saunders
model can be generalized by switching the distribution of the basis variable using
diverse arguments allowing to construct more general classes of models. Extreme value
distributions are useful to determinate the probability of events that are more extreme
than any that have already been observed. In this paper, we propose, characterize,
implement and apply an extreme value version of the Birnbaum-Saunders distribution.
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1. INTRODUCTION

Extreme value (EV) models are appropriate to establish the probability of
events that are more extreme than any other that have been observed. As an
example where these models can be used, suppose that a sea-wall projection re-
quires a coastal defense from all sea levels for the next 100 years. Thus, extremal
models are a precious tool that enables extrapolations of this type. Actually, the
EV theory is widely used by many researchers in applied sciences when faced with
modeling high values of certain phenomena. For instance, ocean wave, thermo-
dynamics of earthquakes, wind energy, risk assessment on financial markets, and
medical phenomena can be mentioned. Some books on EV theory are Leadbetter
et al. (1983), Galambos (1987), Embrechts et al. (1997), Beirlant et al. (2004),
and de Haan and Ferreira (2006). For a more practical view on this topic, see
Coles (2001), and for more recent references, see Ferreira and Canto e Castro
(2008), and Gomes et al. (2008a,b), among others.

Life distributions are usually positively skewed, unimodal, two-parameter
models and with non-negative support; see Marshall and Olkin (2007) and Saun-
ders (2007). A life distribution that has received a considerable attention in recent
decades is the Birnbaum-Saunders (BS) model. This model was originated from a
problem of material fatigue and has been largely applied to reliability and fatigue
studies; see Birnbaum and Saunders (1969). The BS distribution relates the total
time until the failure to some type of cumulative damage normally distributed.
This attention for the BS distribution is due to its many attractive properties
and its relationship with the normal distribution.

Extensive work has been done on the BS model with regard to its properties,
inference and applications. A comprehensive treatment on this model until mid
90’s can be found in Johnson et al. (1995, pp. 651-662). For more detail about
new applications of the BS model, see Leiva et al. (2009a). For applications in
fields beyond engineering allowing business, environmental and medical data to
be analyzed by using this model, see Leiva et al. (2007, 2008b, 2009b, 2010a,b,
2011), Podlaski (2008), Barros et al. (2008), Bhatti (2010), Ahmed et al. (2010),
and Vilca et al. (2010). Thus, at the present, the BS model can be widely used
as a statistical distribution rather than restricted to a life distribution.

Because a random variable (r.v.) following the BS distribution can be rep-
resented by another basis r.v., generalizations of this distribution can be ob-
tained switching the distribution of the basis variable by diverse arguments al-
lowing to construct more general classes of models. Several generalizations of
the BS distribution have been recently proposed by a number of authors, in-
cluding Dı́az-Garćıa and Leiva (2005), Sanhueza et al. (2008) and Gómez et al.
(2009), which allow to obtain a major degree of flexibility for this distribution.
Usual and generalized versions of the BS distribution are implemented in the
R software (http://www.R-project.org) by packages called bs and gbs, which
can be downloaded from http://CRAN.R-project.org; see Leiva et al. (2006)
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and Barros et al. (2009). These packages contain functions for computing prob-
abilities, estimating parameters, generating random numbers and carrying out
goodness-of-fit and hazard analysis. Leiva et al. (2008a) studied three generators
of random numbers from the BS and generalized BS (GBS) distributions.

The main aim of this work is to obtain an EV version of the BS distribu-
tion relevant not only by itself as a model, but also for a parametric statistical
analysis of extreme or rare events. The paper is organized as follows. In Section
2, we provide a preliminary notion of different aspects related to BS and EV
distributions. In Section 3, we characterize extreme value Birnbaum-Saunders
(EVBS) distributions. In Section 4, we focus on extremal domains of attraction
of a general class of BS models that we call BS type (BST) distributions. In
Section 5, we carry out a hazard analysis of EVBS distributions mainly based on
the hazard rate (h.r.). In Section 6, we discuss about the estimation procedure
based on the maximum likelihood (ML) method and model checking. In Section
7, we conduct out the numerical application of this work, which includes an ex-
ploratory data analysis (EDA) and a parametric statistical analysis based on the
EVBS distribution. Finally, In Section 8, we sketch some concluding remarks.

2. A PRELIMINARY NOTION

In this section, we provide preliminary aspects about BS, BST and EV
distributions.

2.1. BS and BST distributions

An r.v. T with usual BS distribution is characterized by its shape and scale
parameters α > 0 and β > 0, respectively. This is denoted by T ∼ BS(α, β),
where β is also the median of the distribution. BS and standard normal r.v.’s,
denoted respectively by T and Z for the moment, are related by

(2.1) T = β
(
αZ/2 +

√
{αZ/2}2 + 1

)2 and Z =
(√

T/β −
√
β/T

)
/α.

Let T ∼ BS(α, β). Then, the probability density function (p.d.f.) and cumulative
distribution function (c.d.f.) of T are respectively given by

(2.2) fT (t) = φ
(
a(t)

)
a′(t) and FT (t) = Φ

(
(a(t)

)
, t > 0,

where φ and Φ are the standard normal p.d.f. and c.d.f., respectively,

(2.3) a(t) ≡ at = (
√
t/β −

√
β/t)/α and a′(t) ≡ At = t−3/2(t+ β)/(2α

√
β),

where a′(t) = d a(t)/dt is the derivative of a(t) with respect to t. The quantile
function (q.f.) of T is expressed as

(2.4) t(q) ≡ tq = F−1
T

(
q
)

= β
(
α ξq/2 +

√
{α ξq/2}2 + 1

)2
, 0 < q < 1,
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where F−1
T

(t) := inf{x : F (x) ≥ t} is the generalized inverse function of the
c.d.f. of T and ξq is the qth quantile of the r.v. Z ∼ N(0, 1). Note from (2.4)
that, as mentioned, the median of T is t0.5 = β.

Important properties of T ∼ BS(α, β) are: (i) c T ∼ BS(α, c β), c > 0; (ii)
1/T ∼ BS(α, 1/β); and (iii) V = (T/β + β/T − 2)/α2 ∼ χ2(1), i.e., V follows the
χ2 distribution with one degree of freedom (d.f.).

The assumption given in (2.1) can be relaxed supposing that Z follows
any other distribution with p.d.f. fZ . Thus, we obtain the general class of BST
distributions earlier mentioned, which is denoted by T ∼ BST(α, β; fZ ) for an
associated r.v. T and whose p.d.f. is given by

(2.5) fT (t) = fZ
(
a(t)

)
a′(t), t > 0.

In particular, if Z follows a standard symmetric distribution in the real num-
ber set, denoted by Z ∼ S(fZ ), we then find the GBS distribution, i.e., T ∼
GBS(α, β; g), where g is the kernel of the p.d.f. of Z given by fZ (z) = c g(z2), with
z ∈ R and c being the normalization constant, i.e., the positive value such that∫ +∞
−∞ g(z2) dz = 1/c; see Dı́az-Garćıa and Leiva (2005). Then, if fZ (z) = φ(z) =

exp(−z2/2)/
√

2π, for z ∈ R, the standard normal p.d.f., we obviously recover the
usual BS distribution, i.e., an r.v. T ∼ BST(α, β;φ) ≡ BS(α, β); see Birnbaum
and Saunders (1969). For the GBS case, V = (T/β + β/T − 2)/α2 ∼ Gχ2(1; fZ ),
i.e., V follows the generalized χ2 class of distributions with one d.f., which has
the χ2(1) distribution as a special case if fZ is the standard normal density; see
Sanhueza et al. (2008).

2.2. EV distributions and extremal domains of attraction

The central limiting result in EV theory states the following. Consider an
independent identically distributed sequence of r.v.’s {Xn, n ≥ 1}, with marginal
c.d.f. F . Hence, if there are constants an > 0 and bn ∈ R, and a non-degenerate
c.d.f. G such that, as n→∞,

P(max{X1, . . . , Xn} ≤ anx+ bn)→G(x),(2.6)

then G must be the c.d.f. of a generalized extreme value (GEV) r.v., depending
on a parameter γ ∈ R. The notation X ∼ GEV(γ) is used in this case and the
corresponding c.d.f. is given by

(2.7) G(x) ≡ Gγ(x) =
{

exp(−{1 + γx}−1/γ); 1 + γ x > 0, γ ∈ R \ {0},
exp(− exp(−x)); x ∈ R, γ = 0,

with G0(x) obtained from Gγ(x), for γ ∈ R \ {0}, as γ → 0. As a conse-
quence, we say that F belongs to the max-domain of attraction of Gγ , in short
F ∈ DM(Gγ). The parameter γ, known as the EV index, is a shape parameter
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that determines the right-tail behavior of F , being so a crucial parameter in EV
theory. Specifically, if γ < 0, we have the Weibull max-domain of attraction, i.e.,
light right-tails, with a finite right endpoint. In addition, γ = 0 corresponds to
the Gumbel max-domain of attraction (exponential right-tails). And if γ > 0,
we have the Fréchet max-domain of attraction corresponding to heavy right-tails
(polynomial tail decay), with an infinite right endpoint.

The GEV distribution with c.d.f. given in (2.7) is also known as the von
Mises-Jenkinson representation. This is a general form from which we derive the
three above mentioned distribution types, i.e.,

Gγ(x) =


Ψ−1/γ(−1− γx); γ < 0,
Λ(x); γ = 0,
Φ1/γ(1 + γx); γ > 0,

where, for % > 0, Ψ%(x) = exp
(
− {−x}%

)
with x < 0 (Weibull distribution for

maxima), Λ(x) = exp(− exp(−x)) with x ∈ R (Gumbel distribution for max-
ima), and Φ%(x) = exp

(
− x−%

)
with x > 0 (Fréchet distribution for maxima).

The Gumbel for maxima and the Fréchet for maxima are the commonly known
Gumbel and Fréchet distributions, respectively. Location (µ ∈ R) and scale
(σ > 0) parameters can be introduced in the GEV distribution by considering
Gγ({x− µ}/σ), denoted by X ∼ GEV(µ, σ, γ).

All results developed for maxima can easily be reformulated for minima be-
cause min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}. Actually, if we are interested
in the lower tail, we can rewrite a result similar to the one in (2.6) for minima,
with a limiting c.d.f. G(x) ≡ G∗γ(x), which is now denoted as X ∼ GEV∗(γ),
such that G∗γ(x) = 1−Gγ(−x), i.e.,

(2.8) G∗γ(x) =
{

1− exp
(
− {1− γx}−1/γ

)
; 1− γx > 0, γ ∈ R \ {0},

1− exp(− exp(x));x ∈ R, γ = 0.

As a consequence, we say that F belongs to the min-domain of attraction of G∗γ ,
in short F ∈ Dm(G∗γ). Analogously to the GEV distribution, the GEV∗ case
(minima) is a general form from which we derive the following three possible EV
limiting cases:

G∗γ(x) =


Ψ∗−1/γ(1− γx); γ < 0,
Λ∗(x); γ = 0,
Φ∗1/γ(−1 + γx); γ > 0,

where, for % > 0, Φ∗%(x) = 1− exp
(
− {−x}−%

)
with x < 0 (Fréchet distribution

for minima), Λ∗(x) = 1 − exp(− exp(x)) with x ∈ R (Gumbel distribution for
minima), and Ψ∗%(x) = 1 − exp

(
− x%

)
with x > 0 (Weibull distribution for

minima, commonly known as the Weibull distribution).
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3. EXTREME VALUE BS DISTRIBUTIONS

In this section, we propose and characterize the EVBS model based on
limiting EV models for maxima, as well as for minima, denoted as EVBS∗ distri-
butions. In addition, a shape analysis for the EVBS and EVBS∗ distributions is
provided. Specifically, consider that

Z ∼ GEV(γ) ≡ GEV(0, 1, γ),(3.1)

i.e., Z has c.d.f. as given in (2.7). Then,

T = β
(
αZ/2 +

√
α2Z2/4 + 1

)2 ∼ EVBS(α, β, γ).

Directly from the GEV p.d.f., gγ(t) = dGγ(t)/dt, associated with the GEV
c.d.f. Gγ(t) given in (2.7), and considering FT (t) = Gγ(at), tq = F−1

T (q) and
fT (t) = At gγ(at), with at and At as given in (2.3), the EVBS r.v. T can be
defined in the following ways:

I. The p.d.f. of T is given by

(3.2) fT (t) =
{
At (1 + γ at)

−1−1/γ exp
(
− {1 + γ at}−1/γ ), γ 6= 0,

At exp (− exp (−at)− at) , γ = 0,

where t > (α2β + 2βγ2)/(2γ2) −
√

(α4β2 + 4α2β2γ2)/γ4/2 if γ > 0; t > 0
if γ = 0; and 0 < t < (α2β + 2βγ2)/(2γ2) +

√
(α4β2 + 4α2β2γ2)/γ4/2 if

γ < 0.

II. The c.d.f. of T is expressed as

(3.3) FT (t) =

{
exp

(
−
{

1 + γ at
}−1/γ)

, γ 6= 0,
exp (− exp (−at)) , γ = 0;

III The q.f. of T is as given in (2.4) by replacing ξq with zq, the qth quantile
of the c.d.f. Gγ(x), as expressed in (2.7), i.e., zq = ({− log(q)}−γ − 1)/γ if
γ 6= 0, and zq = − log

(
− log(q)

)
if γ = 0.

Analogously, if we consider in (3.1) the GEV distribution for minima given
in (2.8), we use the notation T ∗ ∼ EVBS∗(α, β, γ) for an associated r.v. T ∗,
and, as before, noting that F

T∗ (t) = G∗γ(at) = 1 − Gγ(−at) and that f
T∗ (t) =

At g
∗
γ(at) = At gγ(−at), the EVBS* r.v. T ∗ can be defined in the following ways:

I’ The p.d.f. of T ∗ is given by

(3.4) f
T∗ (t) =

{
At (1− γ at)−1−1/γ exp

(
− {1− γ at}−1/γ ), γ 6= 0,

At exp (− exp (at) + at) , γ = 0,

where t > (α2β + 2βγ2)/(2γ2) −
√

(α4β2 + 4α2β2γ2)/γ4/2 if γ < 0; t > 0
if γ = 0; and 0 < t < (α2β + 2βγ2)/(2γ2) +

√
(α4β2 + 4α2β2γ2)/γ4/2 if

γ > 0.



8 Marta Ferreira, M. Ivette Gomes and Vı́ctor Leiva

II’ The c.d.f. of T ∗ is defined as

(3.5) F
T∗ (t) =

{
1− exp

(
− {1− γ at}−1/γ ), γ 6= 0,

1− exp (− exp (at)) , γ = 0.

III’ The q.f. of T ∗ is also as given in (2.4), but by replacing ξq with z∗q = z∗q (γ),
the qth quantile of the c.d.f. G∗γ(x), as expressed in (2.8), i.e., with zq(γ)
being the qth quantile of the c.d.f. Gγ(x), as given in (2.7), z∗q = −z1−q(γ) =
(1− {− log(1− q)}−γ)/γ if γ 6= 0, and z∗q = log

(
− log(1− q)

)
if γ = 0.

Next, as a direct application of the change of variable method, some prop-
erties of the EVBS and EVBS∗ distributions are provided.

Proposition 3.1. Let T ∼ EVBS(α, β, γ) and T ∗ ∼ EVBS∗(α, β, γ).
Then,

(i) c T ∼ EVBS(α, c β, γ) and c T ∗ ∼ EVBS∗(α, c β, γ), with c > 0;

(ii) 1/T ∼ EVBS∗(α, 1/β, γ) and 1/T ∗ ∼ EVBS(α, 1/β, γ).

Figure 1 (first and second panels) displays shapes for the EVBS and EVBS∗

densities for different values of their parameters. In all of these graphs, we con-
sider β = 1, without loss of generality, because β is a scale parameter, such
as proved in Proposition 3.1(i). In these plots, we further use the notation
EVBS(α, γ) ≡ EVBS(α, 1, γ). For the EVBS densities presented in Figure 1
(first panel), we see how the shape parameter α modifies the shape of this dis-
tribution. In the case of the parameter γ, we detect changes in the kurtosis, as
expected. Similar aspects are observed when we consider the EVBS∗ densities
presented in Figure 1 (second panel).

4. BST EXTREMAL DOMAINS OF ATTRACTION

In this section, we obtain the extremal domains of attraction for BST dis-
tributions.

We analyze the extreme domain of attraction of the c.d.f. of an r.v.

T = β
(
αZ/2 +

√
α2Z2/4 + 1

)2
, α > 0, β > 0,(4.1)

not necessarily following an EVBS distribution, whenever the c.d.f. of the r.v. Z,
compulsory given by

Z =
(√

T/β −
√
β/T

)
/α,

belongs to some extreme domain of attraction either for maxima or for minima.
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Figure 1: p.d.f. plots of the EVBS (1st panel) and EVBS∗ (2nd panel)
distribution for β = 1 and the indicated values of (α, γ), where
EVBS∗ ≡ EVBSmin.

4.1. Max-domains of attraction

We start with the Fréchet case and use the following necessary and sufficient
condition for F ∈ DM(Gγ) with γ > 0, derived in Gnedenko (1943) (see also de
Haan and Ferreira, 2006, Theorem 1.2.1-1):

F ∈ DM(Gγ), γ > 0 ⇐⇒ lim
t→∞

1− F (tx)
1− F (t)

= x−1/γ ,(4.2)

for all x > 0, and the right endpoint of F , namely xF := inf{x : F (x) ≥ 1}, is
necessarily infinity.

Theorem 4.1. Let the c.d.f. of the r.v. Z be in the Fréchet max-domain
of attraction, necessarily with a positive EV index, i.e., γZ > 0. Then, the c.d.f. of
the r.v. T given in (4.1) is also in the Fréchet max-domain of attraction, i.e.,
FT ∈ DM(Gγ

T
), with γT = 2γZ .

Proof: By hypothesis, FZ ∈ DM(Gγ
Z

) for γZ > 0. Thus, FZ satisfies
(4.2) for γZ . Then, we have that, as t→∞,

1− FT (tx)
1− FT (t)

=
1− FZ (atx)
1− FZ (at)

≈ 1− FZ ({tx/β}1/2/α)
1− FZ ({t/β}1/2/α)

≈ x−1/(2γ
Z

),

with the notation ut ≈ vt if and only if ut/vt → 1, as t→∞.
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For light right-tails, i.e., for the Weibull max-domain of attraction, we can
prove a result similar to that of Theorem 4.1, if we use the following necessary
and sufficient condition for F ∈ DM(Gγ) with γ < 0 (also derived in Gnedenko,
1943):

F ∈ DM(Gγ), γ < 0 ⇐⇒ lim
t→∞

1− F (xF − 1/{tx})
1− F (xF − 1/t)

= x1/γ ,(4.3)

for all x > 0, and the right endpoint of F , namely xF , is finite.

Theorem 4.2. Let the c.d.f. of the r.v. Z be in the Weibull max-domain
of attraction, necessarily with a negative EV index, i.e., γZ < 0. Then, the
c.d.f. of the r.v. T given in (4.1) is also in the Weibull max-domain of attraction
and γT = γZ .

Proof: We have

lim
t→∞

1− FT (tF − 1/{tx})
1− FT (tF − 1/t)

= lim
t→∞

1− FZ (atF−1/{tx})
1− FZ (atF−1/t)

,

with tF being the right endpoint of FT . But we can assume, without loss of
generality, that zF , the right endpoint of FZ , is null, i.e., zF = 0. Hence, tF = β
and, as t→∞,

1− FZ (atF−1/{tx})
1− FZ (atF−1/t)

≈ 1− FZ (−{αβtx}−1)
1− FZ (−{αβt}−1)

≈ x1/γ
Z .

We next work in the slight more restrictive class of twice-differentiable
c.d.f.’s F ∈ DM(Gγ), the so-called twice-differentiable domain of attraction of
Gγ , denoted by D̃M(Gγ). A possible characterization of the twice-differentiable
domain of attraction of Gγ is due to Pickands (1986). Let us then assume that
there exists F ′′, f = F ′, and consider the function

k(x) = −f(x)/{F (x) log(F (x))} =
{
− log(− logF (x))

}′
.

Hence, with γ(x) = {1/k(x)}′, we have

(4.4) F ∈ D̃M(Gγ) ⇐⇒ lim
x↑xF

γ(x) = γ.

Consequently, if xF = +∞, limx→∞ xk(x) = 1/γ, and if xF < +∞, limx↑xF

(xF − x)k(x) = −1/γ, i.e., limx→∞ k(x) = 0, if γ > 0, and limx↑xF k(x) = +∞,
if γ < 0. If γ = 0, we can have k(x) → 0, k(x) → +∞, or k(x) → c, for
0 < c < +∞. Observe also that, after some simple calculations, we can write

(4.5) γ(x) = F ′′(x)F (x) log(F (x))/f2(x)− log(F (x))− 1.
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Theorem 4.3. Let T ∼ BST(α, β; fZ ), with Z in the subset of the
max-domain of attraction of Gγ

Z
constituted by twice-differentiable c.d.f.’s, the

so-called twice-differentiable max-domain of attraction of Gγ
Z

, and assume that

c = lim
t↑tF

FZ (at) log(FZ (at))A′t/{A2
t fZ (at)}

is finite, where tF is the right endpoint of the r.v. T , at and At are as given in
(2.3), with A′t = dAt/dt. Then, FT ∈ DM(Gγ

T
), with γT = γZ + c.

Proof: By hypothesis, the necessary and sufficient condition (4.4) holds
for Z, with F , γ and γ(x) replaced with FZ , γZ and γZ (x), respectively. Now,
just observe that, by applying (4.5), and then (2.3)-(2.5) and A′t = −(

√
t/β +

3
√
β/t)/(4αt2), we have

γT (t) =
F ′′
T

(t)FT (t) log(FT (t))
f2
T

(t)
− log(FT (t))− 1

=
FZ (at) log(FZ (at))A′t

A2
t fZ (at)

+
F ′′
Z

(at)FZ (at) log(FZ (at))
f2
Z

(at)
− log(FZ (at))− 1.

On the basis of the limit in Theorem 4.3, the first term in the second line of (4.6)
approaches c as t ↑ tF . Because the following term approaches γZ , the result
follows.

Corollary 4.1. Under the conditions of Theorem 4.3, we have c = γZ
if γZ > 0 and c = 0 if γZ < 0.

Example 4.1. We now provide a few illustrations of Corollary 4.1:

(i) If Z has Fréchet or Pareto distributions (in the Fréchet max-domain of
attraction, i.e., γZ > 0), then the limit in Theorem 4.3 is c = γZ and
so γT = 2γZ . Indeed, as stated in Theorem 4.1, this result holds more
generally in DM(Gγ

Z
), with γZ > 0.

(ii) If Z has Weibull or uniform distributions (in the Weibull max-domain of
attraction, i.e., γZ < 0), then c = 0 and γT = γZ . In fact, as stated in
Theorem 4.2, this result holds more generally in DM(Gγ

Z
), with γZ < 0.

Remark 4.1. We further conjecture that, in Corollary 4.1, we can often
replace γZ < 0 by γZ ≤ 0. This is supported by the examples of an r.v. Z
either exponential or gamma, or Gumbel or normal, all in DM(G0), i.e., with
γZ = 0. Then c = 0 and γT = γZ = 0. Also, if Z has an exponential-type (ET)
distribution, with a finite right endpoint, i.e., FZ (x) = K exp(−c/{zF − x}), for
x < zF , c > 0, and K > 0 (again in the Gumbel max-domain of attraction), then
also c = 0 and γT = γZ = 0.
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Because in the twice-differentiable domain of attraction of Gγ the von Mises
condition is a necessary and sufficient to have limx↑xF γ(x) = γ, with γ(x) =
{1/k(x)}′ (see Pickands, 1986, Theorem 5.2), we can also state that

(4.6) F ∈ D̃M(Gγ) ⇐⇒ lim
x↑xF

(1− F (x))F ′′(x)/(F ′(x))2 = −γ − 1.

Therefore, we can still write the following result.

Theorem 4.4. Under the conditions and notations of Theorem 4.3, let
us assume that

c∗ = lim
t↑tF

(1− FZ (at))A′t/
(
A2
tF
′
Z

(at)
)
<∞.

Then, FT ∈ DM(Gγ
T

), with γT = γZ − c∗.

Proof: Just observe that

(4.7)
(1− FT (t))F ′′

T
(t)

F ′
T

(t)2
=

(1− FZ (at))(A′tF
′
Z

(at) +A2
tF
′′
Z

(at))
A2
tF
′
Z

(at)2

=
(1− FZ (at))A′t
A2
tF
′
Z

(at)
+

(1− FZ (at))F ′′Z (at)
F ′
Z

(at)2
.

By hypothesis, as t ↑ tF , the last term in (4.7) converges to −γZ − 1, and the
result follows.

Corollary 4.2. Under the conditions and notations of Theorem 4.4, if
we further assume that Z has an infinite right endpoint, then FT ∈ DM(Gγ

T
),

with γT = γZ , provided there exists a finite limit for (1− FZ (x))/F ′
Z

(x), as
x→∞.

4.2. Min-domains of attraction

We now analyze the domains of attraction for minima. To emphasize the
possible difference between the right and left EV indices, we denote this last one
as γ∗.

We reformulate conditions (4.2) and (4.3) for minima obtaining respectively

(4.8) F ∈ Dm(G∗γ∗), γ
∗ > 0 ⇐⇒ lim

t→−∞

F (tx)
F (t)

= x−1/γ∗ , ∀x > 0,

and

(4.9) F ∈ Dm(G∗γ∗), γ
∗ < 0 ⇐⇒ lim

t→−∞

F (xF − 1/{tx})
F (xF − 1/t)

= x1/γ∗ , ∀x > 0,
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where the left endpoint xF := inf{x : F (x) > 0} is finite; see, e.g., Galambos
(1987, Theorem 2.1.5). Observe that a BST r.v. T cannot be in the Fréchet min-
domain of attraction because its left endpoint is not −∞; see, e.g., Galambos
(1987, Theorem 2.1.4).

In the sequel, the notations Weibullmin, Frechetmin and Gumbelmin are used
for denoting Weibull, Fréchet and Gumbel distributions for minima, respectively,
with parameter γ∗, and zF and tF denoting the left endpoints of Z and T , re-
spectively.

Theorem 4.5. Let the c.d.f. of the r.v. Z be in the Weibull min-domain
of attraction, necessarily with a negative EV index, i.e., γ∗

Z
< 0. Then, the

c.d.f. of the r.v. T given in (4.1) is in the Weibull min-domain of attraction and
γ∗
T

= γ∗
Z

.

Proof: Assume, without loss of generality, that zF = 0, with zF being
the left endpoint of FZ (i.e., tF = β, with tF being the left endpoint of FT ). Then,

lim
t→−∞

FT (tF − 1/{tx})
FT (tF − 1/t)

= lim
t→−∞

FZ (at
F
−1/{tx})

FZ (at
F
−1/t)

= lim
t→−∞

FZ (−{αβtx}−1)
FZ (−{αβt}−1)

and the result follows from the fact that FZ satisfies (4.9) for γ∗
Z

.

Theorem 4.6. Let the c.d.f. of the r.v. Z be in the Fréchet min-domain
of attraction, necessarily with a positive EV index, i.e., γ∗

Z
> 0. Then, the

c.d.f. of the r.v. T given in (4.1) is in the Weibull min-domain of attraction, and
γ∗
T

= −2γ∗
Z

.

Proof: Consider, without loss of generality, tF = 0. Then, zF = −∞
and

lim
t→−∞

FT (tF − 1/{tx})
FT (tF − 1/t)

= lim
t→−∞

FZ (a−1/{tx})
FZ (a−1/t)

= lim
t→−∞

FZ (−{−βtx}1/2/α)
FZ (−{−βt}1/2/α)

= x−1/(2γ∗
Z

),

where the last step is due to the fact that FZ satisfies (4.8) for γ∗
Z

.

Next, we again work in the slight more restrictive class of twice-
differentiable c.d.f.’s, such as in Subsection 4.1. Analogously to the domain of
attraction for maxima, the von Mises condition in (4.6), reformulated for minima,
enables us to state that

F ∈ D̃m(G∗γ∗) ⇐⇒ lim
x↓x

F

F (x)F ′′(x)/(F ′(x))2 = γ∗ + 1,(4.10)

where xF is the left endpoint of F and D̃m(G∗γ∗) denotes the twice-differentiable
domain of attraction of G∗γ∗ .
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Theorem 4.7. Let T ∼ BST(α, β; fZ ), with Z in the subset of the min-
domain of attraction of G∗γ∗

Z
constituted by the twice-differentiable c.d.f.’s, the

so-called twice-differentiable min-domain of attraction of G∗γ∗
Z

, and assume that

d = lim
t↓t

F

FZ (at)A′t/
(
A2
tF
′
Z

(at)
)

is finite, where tF is the left endpoint of T , at and At are as given in (2.3), with
A′t = dAt/dt. Then, FT ∈ D∗m(G∗γ∗

T
), with γ∗

T
= γ∗

Z
+ d.

Proof: The result is easy to prove because

FT (t)F ′′
T

(t)
fT (t)2

=
FZ (at)(A′tfZ (at) +A2

tF
′′
Z

(at))
A2
t fZ (at)2

=
FZ (at)A′t
A2
t fZ (at)

+
FZ (at)F ′′Z (at)
fZ (at)2

.

Corollary 4.3. Under the conditions of Theorem 4.7, we have d = 0 if
γ∗
Z
< 0 and d = −3γ∗

Z
if γ∗

Z
> 0.

Example 4.2. We next provide a few illustrations of Corollary 4.3:

(i) If Z has a Weibull distribution for minima (in the Weibull min-domain
of attraction, i.e., γ∗

Z
< 0), or exponential, Pareto or uniform distribution

(also in the Weibull min-domain of attraction, with γ∗
Z

= −1), or even a
Gamma(p, q) distribution (in the Weibull min-domain of attraction, with
γ∗
Z

= −1/p), then d = 0 and γ∗
T

= γ∗
Z

. Indeed, as stated in Theorem 4.5,
this result holds more generally in Dm(G∗γ∗

Z
), with γ∗

Z
< 0.

(ii) If Z has a Fréchet distribution for minima (in the Fréchet min-domain of
attraction, i.e., γ∗

Z
> 0), then d = −3γ∗

Z
and γ∗

T
= −2γ∗

Z
. In fact, as stated

in Theorem 4.6, this result holds more generally in Dm(G∗γ∗
Z

), with γ∗
Z
> 0.

(iii) If Z has an ET distribution as in Remark 4.1 (in the Fréchet min-domain
of attraction, with γ∗

Z
= 1), then d = −3γ∗

Z
= −3 and γ∗

T
= −2, i.e., T

belongs to the Weibull min-domain of attraction.

Remark 4.2. Similarly to what we did in Remark 4.1, we further con-
jecture that, in Corollary 4.3, we can often replace γ∗

Z
< 0 by γ∗

Z
≤ 0. This is

supported by the fact that if Z has a Gumbel distribution for minima, or any of
the limiting distributions for maxima (Fréchet, Gumbel, Weibull), or a normal
distribution (all in the Gumbel min-domain of attraction, i.e. γ∗

Z
= 0), then the

limit in Theorem 4.7 is d = 0 and γ∗
T

= γ∗
Z

= 0.
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5. HAZARD ANALYSIS

We may define a hazard as a dangerous event that could conduct to an
emergency or disaster. The origin of this event may be due to a situation that
could have an adverse effect. Thus, a hazard is a potential and not an actual pos-
sibility, i.e., it can be statistically evaluated. A hazard analysis is the assessment
of a risk that is present in a particular environment. Therefore, hazard assess-
ment allows us to evaluate potential risk by the estimated frequency or intensity
of the r.v. of interest. In this section, we study the EVBS h.r. and its change
point, denoted by tc. Such a change point, being defined as a point where the
h.r., h(t) = f(t)/(1−F (t), attains either a maximum or a minimum value, is the
solution of the equation f(tc) = −f ′(tc)/h(tc), whenever F is twice-differentiable,
and such a solution exists.

5.1. Hazard rate

Statistically, a hazard analysis can be carried out by the h.r. function.
Apart from hazard rate, this function is also known as chance function, fail-
ure rate, force of mortality, intensity function, or risk rate, among other names.
In actuarial science, for example, the h.r. is the annualized probability that a
person at a specified age will die in the next instant, expressed as a death rate
per year. For more details about the concept of h.r., see Marshall and Olkin
(2007, pp. 10-13).

A nice property of the h.r. is that it allows us to characterize the behavior of
statistical distributions. For example, the h.r. may have several different shapes
such as increasing (IHR), constant (exponential distribution), decreasing (DHR),
bathtube (BT), inverse bathtube (IBT or upside-down) approaching to a non-
null constant and IBT approaching to zero. An incorrect specification of the
h.r. could have serious consequences in the analysis; see, e.g., Bhatti (2010) for a
study about this issue.

The h.r. of the r.v. T is given in general by hT (t) = fT (t)/RT (t), for t > 0,
and 0 < FT (t) < 1, where RT (t) = 1− FT (t), for t > 0, is the reliability function
(r.f.), and fT and FT are the p.d.f. and c.d.f. of the r.v. T .

5.2. TTT curve

The h.r. of an r.v. T can be characterized by its corresponding total time
on test (TTT) function given by

H−1
T

(u) =
∫ F−1

T
(u)

0
(1− FT (y)) dy

or by its scaled version given by WT (u) = H−1
T

(u)/H−1
T

(1), for 0 ≤ u ≤ 1,
where once again F−1

T
is the generalized inverse function of the c.d.f. of T .
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Now, WT can be empirically approximated, allowing to construct the empiri-
cal scaled TTT curve by plotting the consecutive points

[
k/n,Wn(k/n)

]
, where

Wn(k/n) = {
∑k

i=1 T(i) + (n− k)T(k)}/
∑n

i=1 T(i), for k = 1, . . . , n, with T(i) being
the corresponding ith ascending order statistic, for 1 ≤ i ≤ n.

From Figure 2 (left), we observe different theoretical shapes for the scaled
TTT curve. Thus, a TTT plot expressed by a curve that is concave (or convex)
corresponds to the IHR (or DHR) class. A concave (or convex) and then convex
(or concave) shape for the TTT curve corresponds to a BT (or IBT) hazard rate.
A TTT plot represented by a straight line is an indication that the exponential
distribution must be used. Thus, a graphical plot of the empirical scaled TTT
curve could provide to us the type of distribution that the data have. See also in
Figure 2 the theoretical scaled TTT curves for EVBS (center) and EVBS∗ (right)
models. In these plots, we again use the notation EVBS(α, γ) ≡ EVBS(α, 1, γ)
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Figure 2: theoretical scaled TTT curves for a general model with the in-
dicated h.r. shape (left), for the EVBS(0.5, γ) model for the in-
dicated values of γ (center), and for the EVBS∗(0.5, γ) distri-
bution for the indicated values of γ (right).

5.3. EVBS hazard rate

The normal distribution is in the IHR class. The gamma and Weibull
distributions can be either in IHR or DHR classes (of course, the case of the
exponential distribution with constant h.r. is considered by these two models).
However, the lognormal (LN) distribution has a non-monotonic h.r., because it
is initially increasing until its change point and then it decreases to zero, i.e.,
the LN model is in the IBT h.r. class. The BS h.r. behaves similarly to the LN
h.r., i.e., it is initially increasing until its change point and then decreasing not
to zero, but to a positive constant. Thus, although BS, gamma, LN and Weibull
distributions have densities with similar shapes, their h.r.’s are totally different.

Let T ∼ EVBS(α, β, γ). Then, directly from the definition of the p.d.f.,
fT (t), and the c.d.f., FT (t), of the r.v. T ∼ EVBS(α, β, γ), given in (3.2) and
(3.3), respectively, we have that:

A. The r.f. of T is expressed as RT (t) = 1− FT (t), with FT (t) given in (3.3).
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B. Again with at and At as given in (2.3), the h.r. of T is defined as

hT (t) =
fT (t)
RT (t)

=
{
At (1 + γ at)

−1−1/γ/
(

exp({1 + γ at}−1/γ)− 1
)
, γ 6= 0,

At exp(−at)/exp(exp(−at))− 1, γ = 0,

where t > (α2β + 2βγ2)/(2γ2) −
√

(α4β2 + 4α2β2γ2)/γ4/2 if γ > 0; t > 0
if γ = 0, and 0 < t < (α2β + 2βγ2)/(2γ2) +

√
(α4β2 + 4α2β2γ2)/γ4/2 if

γ < 0.

C. With the notation btc = 1 + γatc , the change point tc of the h.r. of T is
obtained as the solution of the equations:

{[
A′tc − (Atc)2(1 + γ)b−1

tc

][
exp(b−1/γ

tc )− 1
]

+(Atc)2(1 + γatc)−1−1/γ exp(b−1/γ
tc )

}
b
−1−1/γ
tc = 0, γ 6= 0

(Atc)2
[
1 + (exp(−atc)− 1) exp(exp(−atc))

]
+A′tc

[
exp(exp(−atc))− 1

]
= 0, γ = 0.

Let T ∗ ∼ EVBS∗(α, β, γ). Then, now, directly from the definition of the p.d.f.,
f
T∗ (t), and the c.d.f., F

T∗ (t), of the r.v. T ∗ ∼ EVBS∗(α, β, γ), given in (3.4) and
(3.5), respectively, we have that:

D. The r.f. of T ∗ is expressed as R
T∗ (t) = 1− F

T∗ (t), with F
T∗ (t) as given in

(3.5).

E. Again with at and At as given in (2.3), the h.r. of T ∗ is defined as

h
T∗ (t) =

f
T∗ (t)
R
T∗ (t)

=
{
At (1− γ at)−1−1/γ , γ 6= 0,
At exp (at) , γ = 0,

where 0 < t < (α2β + 2βγ2)/(2γ2) +
√

(α4β2 + 4α2β2γ2)/γ4/2 if γ > 0;
t > 0 if γ = 0, and t > (α2β + 2βγ2)/(2γ2) −

√
(α4β2 + 4α2β2γ2)/γ4/2 if

γ < 0.

F. The change point tc of the h.r. of T ∗ is obtained as the solution of the
equations:{

(1− γatc)−1−1/γ
[
A′tc + (1 + γ)(Atc)2(1− γatc)−1

]
= 0, γ 6= 0

(Atc)2 +A′tc = 0, γ = 0.

As can be seen in Figure 3, the EVBS and EVBS∗ h.r.’s present several
different shapes going through all the h.r. shape classes mentioned above. In
these plots, once again, we use the notation EVBS(α, γ) ≡ EVBS(α, 1, γ). The
h.r. of T can also approach ∞, zero or a positive constant, as t → ∞. These
are strong points in favor of our models, as they become interesting for modeling
purposes.
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Figure 3: h.r. plots of the EVBS (1st panel) and EVBS∗ (2nd panel) dis-
tributions for β = 1, and the indicated values of (α, γ), where
EVBS∗ ≡ EVBSmin.

6. ESTIMATION AND MODEL CHECKING

In this section, we present some results related to estimation aspects and
model checking for EVBS distributions.

6.1. ML estimation

As is well-known, ML estimates are obtained from the solution of the system
˙̀(θ) ≡ 0, where ˙̀(θ) denotes the score vector of first derivatives of the logarithm
of the likelihood function, namely `(θ). In our case, if we consider the EVBS
model (the procedure is similar for the EVBS∗ model), this function is given by
`(θ) =

∑n
i=1 `i(θ), where, for i = 1, . . . , n,

`i(θ) =
{

log (Ati)− (1 + 1
γ ) log(1 + γ ati)− (1 + γ ati)

−1/γ , γ 6= 0,
log(Ati)− exp(−ati)− ati , γ = 0,
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with θ = [α, β, γ]>. The score vector ˙̀(θ) = ∂`(θ)/∂θ = [ ˙̀
θ1 ], with θ1 = α, β, or

γ, is given by

−n
α +

n∑
i=1

(
{1+γ}ati
α{1+γati}

− 1
αati{1 + γati}−1−1/γ

)
n∑
i=1

(
− α

2β

ati√
ti
β

+
√

β
ti

+ {1+γ}
2αβ{1+γati}

{√
ti
β +

√
β
ti

}
−

√
ti
β

+
√

β
ti

2αβ {1 + γati}−1−1/γ
)

n∑
i=1

(
− {1+γati}

−1/γ

γ2

{
log
(
1 + γati

)
− γati

1+γati

}
− {γ+1}ati

γ{1+γati}
+ log(1+γati )

γ2

)


,

whenever γ 6= 0 and, if γ = 0, is given by
−n
α −

n∑
i=1

(
1
α exp(−ati)ati− 1

αati
)

n∑
i=1

(
− 1

2αβ exp(−ati)
{√

ti
β +

√
β
ti

}
+ 1

2αβ

{√
ti
β +

√
β
ti

}
− α

2β

ati√
ti/β+

√
β/ti

)
 .

In this case, the system of likelihood equations ˙̀(θ) ≡ 0 does not produce an
explicit solution so that a numerical procedure is necessary. To this end, initial
values for the parameters α, β and γ can be obtained using the methods to
be described in Subsection 6.2. In addition, these likelihood equations seem to
be often unstable. We propose to use the following approach for solving this
problem of instability. The approach consists of obtaining the optimum value
for the parameter γ assuming it to be known, for example, following a similar
algorithm to that proposed by Rinne (2009, pp. 426-433) and called by him
as non-failing (NF); see also Barros et al. (2009). In these works, they fixed
values for their parameter, in our case γ, within a set of several possible values
for this parameter, and they then estimate the structural parameters, in our
case, α and β. Finally, we consider the fixed γ that maximizes the likelihood
function. Specifically, this approach is based on a partition of the real number
set into a suitable amount of sub-intervals. Fixing γ in each of these intervals, we
estimate α and β by using the ML method and then we look for the value of γ
that maximizes the likelihood function. In this case, the NF algorithm is given by:

NF1 For a fixed value of γ:
NF1.1 Estimate the parameters α and β of the EVBS model using the

estimates of α and β from the procedure to be described in Subsection
6.2 as starting values.

NF1.2 Compute the associated likelihood function.
NF2 Choose the value of γ that maximizes the likelihood function and then

consider the obtained ML estimates of α and β as result.

6.2. Starting estimation

Firstly, to find initial values for the numerical optimization procedure
needed for the ML estimation of the EVBS distribution parameters described
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in Subsection 6.1, we introduce a graphical method analogous to the probability
plots; see Leiva et al. (2008a). This method is useful for goodness-of-fit and can
also be used as an estimation method or, at least, to find initial values for an
iterative procedure. The method consists of transforming the data forming pairs
of values that should follow a linear relationship if these data would come from
the EVBS distribution. Then, by using a simple linear regression method, the
slope and the intercept of this linear relationship are estimated. The line is used
for goodness-of-fit such as a quantile versus quantile (QQ) plot. Specifically, if we
consider the EVBS c.d.f. as given in (2.2), but with Φ replaced by FZ , we have
t = β + α

√
β
√
t F−1

Z
(FT (t)), where F−1

Z
is the generalized inverse c.d.f. of the

generator EV distribution and FT is the EVBS c.d.f. However, it is difficult to
derive a linear function over t in the above expression, which is fundamental for
probability plots. We consider p =

√
t F−1

Z
(FT (t)) obtaining the linear function

y ≈ a+ b x, where x = p, y = t, the intercept is a = β, and the slope is b = α
√
β.

Now, suppose we have n ordered observations, say t(1) ≤ . . . ≤ t(n). Because we
can estimate FT (t(i)) by pi = (i − 0.3)/(n + 0.4), for i = 1, . . . , n, the graphi-
cal plot of t(i) versus p̄i, where p̄i =

√
t(i) F

−1
Z

(pi) is approximately a straight
line whenever the data come from some EVBS distribution. Goodness-of-fit can
be visually and analytically studied using the coefficient of determination of the
fit of regression. Therefore, the parameters α and β of this distribution can be
estimated by using the least square method obtaining β̄ = ā and ᾱ = b̄/

√
ā.

Secondly, to find an initial value for the parameter γ, we can use a landmark
from the EV theory. This landmark is the result about the limiting generalized
Pareto (GP) behavior of the scaled excesses; see, e.g., Balkema and de Haan
(1974) and Pickands (1975). This enables the development of the so-called ML
EV index estimators, which we can take as an initial value for γ to be used
for the numerical optimization procedure needed for the ML estimation of the
EVBS distribution parameters. We refer the peaks over threshold methodology
of estimation (see Smith, 1987) as well as the methodology used by Drees et al.
(2004), named peaks over random threshold in Araújo Santos et al. (2006).

6.3. Model checking

Once the EVBS distribution parameters are estimated, a natural ques-
tion that arises is checking how good is the fit of the model to the data. We
can use the invariance property of the ML estimators for fitting the p.d.f. and
c.d.f. of the EVBS model. Also, to compare the EVBS distributions to other
distributions, we can use model selection procedure based on loss of information,
such as Akaike (AIC), Schwarz’s Bayesian (BIC) and Hannan-Quinn (HQIC)
information criteria. These criteria allow us to compare models for the same
data set and are given by AIC = −2`(θ̂) + 2d, BIC = −2`(θ̂) + d log (n), and
HQIC = −2`(θ̂) + 2d log(log (n)), where, as mentioned, `(θ̂) is the log-likelihood
function for the parameter θ associated with the model evaluated at θ = θ̂, n is
the sample size, and d is the dimension of the parameter space.
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AIC, BIC and HQIC are based on a penalization of the likelihood function
as the model becomes more complex, i.e., with more parameters. Thus, a model
whose information criterion has a smaller value is better. This is an important
point, because the EVBS distribution has more parameters than the usual BS
distribution. Because models with more parameters always provide a better fit,
AIB, BIC and HQIC allow us to compare models with different numbers of pa-
rameters due to the penalization incorporated in such criteria. This methodology
is very general and can be applied even to non-nested models, i.e., those models
that are not particular cases of a more general model; see Vilca et al. (2011) and
references therein.

Generally, differences between two values of the information criteria are not
very noticeable. In that case, the Bayes factor (BF) can be used to highlight such
differences, if they exist. To define the BF, assume the data D belong to one of
two hypothetical models, namely M1 and M2, according to probabilities P(D|M1)
and P(D|M2), respectively. Given probabilities P(M1) and P(M2) = 1 − P(M1),
the data produce conditional probabilities P(M1|D) and P(M2|D) = 1−P(M1|D),
respectively. Then, the BF that allows to us comparing M1 (model considered as
correct) to M2 (model to be contrasted with M1) is given by

B12 =
P(D|M1)
P(D|M2)

.(6.1)

Based on (6.1), we can use the approximation

(6.2) 2 log(B12) ≈ 2
[
`(θ̂1)− `(θ̂2)

]
− [d1 − d2] log (n),

where `(θ̂k) is the log-likelihood function for the parameter θk under the model
Mk evaluated at θk = θ̂k, dk is the dimension of θk, for k = 1, 2, and n is the
sample size. Notice that the approximation in (6.2) is computed subtracting the
BIC value from the model M2, given by BIC2 = −2`(θ2) + d2 log (n), to the BIC
value of the model M1, given by BIC1 = −2`(θ1) + d1 log (n). In addition, notice
that if model M2 is a particular case of M1, then the procedure corresponds
to applying the likelihood ratio (LR) test. In this case, 2 log(B12) ≈ χ2

12 −
df12 log(n), where χ2

12 is the LR test statistic for testing M1 versus M2 and
df12 = d1 − d2 are the d.f.’s associated with the LR test, so that one can obtain
the corresponding p-value from 2 log(B12) ·∼ χ2(d1 − d2), with d1 > d2.

In general, the BF is informative because it presents ranges of values in
which the degree of superiority of one model with respect to another can be
quantified. An interesting interpretation of the BF is displayed in Table 1; see
Vilca et al. (2011) and references therein.
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Table 1: interpretation of 2 log(B12) associated with the BF.
2 log (B12) Evidence in favor of M1

< 0 Negative (M2 is accepted)
[0, 2) Weak
[2, 6) Positive
[6, 10) Strong
≥ 10 Very strong

7. APPLICATION

In this section, to illustrate some of the results obtained in this study, we fit
the EVBS∗ model (for minimum) to a real data set corresponding to air pollutant
concentrations. We assume that the data are uncorrelated and independent and,
therefore, a diurnal or cyclic trend analysis is not necessary. This assumption has
been supported by some authors for different reasons; see, e.g., Vilca et al. (2010)
and references therein. For example, environmental data are sometimes reported
as average or total values and so spatial-time dependence is missing. In this
analysis, we first discuss an implementation in R code of the EVBS model. Next,
the data set upon analysis is introduced. Then, an EDA is produced. Finally,
estimation and EVBS model checking are carried out.

7.1. Implementation in R code

Several R packages for analyzing data from different distributions are avail-
able from CRAN (for example, the bs and gbs packages). An R package named
evbs to analyze data from EVBS models is being developed by the authors, whose
“in progress” version is available upon request. This package contains diverse in-
dicators and methodologies useful for EVBS distributions. In addition, the evbs
package incorporates the scaled TTT curve as a descriptive tool to identify the
possible shape of the hazard rate.

7.2. The data set

The data correspond to daily ozone concentrations that were collected in
New York during May-September, 1973. These data were taken from Nadarajah
(2008) and have been provided by the New York State Department of Conserva-
tion. This set of daily ozone level measurements (in ppb = ppm ×1000), that we
call from now simply ozone, are: 41, 36, 12, 18, 28, 23, 19, 8, 7, 16, 11, 14, 18, 14, 34,
6, 30, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37, 20, 12, 13, 49, 32, 64, 40, 77,
97, 97, 85, 10, 27, 7, 48, 35, 61, 79, 63, 16, 108, 20, 52, 82, 50, 64, 59, 39, 9, 16, 78, 35,
66, 122, 89, 110, 44, 65, 22, 59, 23, 31, 44, 21, 9, 45, 168, 73, 76, 118, 84, 85, 96, 78, 91,
47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13, 46, 18, 13, 24, 16, 23, 36, 7, 14, 30, 14, 18, 20,
11, 135, 80, 28, 73, 13.
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7.3. Exploratory data analysis

Firstly, an analysis of autocorrelation indicates that there is not such auto-
correlation so that the dependence over time can be discarded. Thus, the use of
a methodology based on univariate random samples is adequate for ozone. Sec-
ondly, Table 2 presents a descriptive summary of these data and Figure 4 (left)
displays their histogram. This table and histogram indicate a positively skewed
distribution. Thirdly, the TTT plot shown in Figure 4 (right) indicates that ozone
seems to have a h.r. that is coherent with that of the EVBS distributions. How-
ever, maybe the more relevant aspect of the EDA of these ozone levels is noted
when we analyze the original boxplot and the adjusted boxplot for asymmetric
distributions. Interestingly, the original boxplot displayed in Figure 4 (first plot
on the center figure) shows some atypical observations lying on the right-tail of
the distribution of ozone, but this boxplot was constructed for symmetric data.
When we produce the adjusted boxplot for asymmetric distributions using ozone,
there are not atypical observations on the right-tail. Nevertheless, this type of
observations appear on the left-tail of the distribution of the data; see Figure 4
(second plot on the center figure). For more details about this adjusted boxplot
for asymmetric data, see Hubert and Vandervieren (2008), an R package called
robustbase and its function adjbox. Therefore, the EDA provides to us diverse
evidences for supporting the use of the EVBS model to describe ozone.

Table 2: descriptive statistics for ozone (in ppb = ppm ×1000).
Median Mean SD CV CS CK Range Min. Max. n
31.50 42.13 32.99 78.30% 1.21 3.11 167.00 1.00 168.00 116
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Figure 4: histogram (left), an indicated boxplot (center) and TTT plot
(right) for ozone.

The EVBS∗ distribution should accommodate the observations concen-
trated on the left-tail well. Then, we think the EVBS∗ distribution based on
the Gumbelmin should be an appropriate model for describing ozone. Because
this model belongs to the Gumbel min-domain of attraction (see Subsection 4.2),
we carry out a semi-parametric EV test to analyze whether ozone belongs to this
domain or not. Specifically, we want to test H0: F ∈ Dm(G∗γ), with γ ≥ 0. For
details about this test, see Dietrich et al. (2002). In Figure 5, we see the sample
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path of the test statistic as a function of the k largest order statistics and the
critical value (horizontal line) above which we reject the null hypothesis. We do
not reject H0 for 1 ≤ k ≤ 60, which is a credible result in EV theory to keep this
hypothesis. Observe that we cannot have γ > 0 because the left endpoint −∞
does not make sense for these data (the daily ozone measures must be greater or
equal to 0).

20 40 60 80 100 120
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Figure 5: sample path of the extreme value condition test applied to the
ozone data (horizontal line: critical value above which we reject
F ∈ Dm(G∗

γ), with γ ≥ 0).

Next, we fit the EVBS∗ model based on the Gumbelmin distribution to
ozone. The GEV and the GP models are also considered in this comparative
study of alternative models. In addition, a skew-normal BS (SNBS) model is also
fitted, because according to Vilca et al. (2011), a SNBS distribution has heavier
tails than the usual BS distribution. This characteristic can also be obtained by,
for instance, a BS model based on the Student-t distribution. Moreover, when
the distribution of the data is concentrated on the left-tail, a SNBS distribution
should be a better alternative than the usual BS distribution or a BS model based
on any symmetric distribution, such as the Student-t model. In fact, if ozone
comes from a SNBS model and we fit the usual BS distribution, we overestimate
the lower percentiles. However, the EVBS distributions introduced here are also
good alternatives for modeling data following a distribution with heavier tails
than the usual BS distribution.

7.4. Estimation and checking model

To find the ML estimates of the EVBS distribution parameters, we use the
procedure given in Subsections 6.1 and 6.2. Thus, based on ozone, we obtain the
ML estimates along with the values of AIC, BIC, HQIC and BF used for model
selection; see Table 3.
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Table 3: ML estimates, information criteria and Bayes factors in the in-
dicated models for ozone.

Distribution θ̂1 θ̂2 θ̂3 −` AIC BIC HQIC 2 log (B12)

EVBS∗(α, β, γ) 0.80 45.68 0.00 541.31 1088.62 1088.81 1084.51 –
GEV(µ, σ, γ) 24.00 18.34 0.36 543.78 1093.55 1093.75 1089.44 4.93
GP(σ, γ) – 52.49 -0.25 546.19 1096.37 1096.50 1093.63 5.00
SNBS(α, β, λ) 1.27 14.84 1.07 545.61 1097.21 1097.40 1093.10 8.59
BS(α, β) 0.98 28.02 – 549.10 1102.19 1102.32 1099.45 10.82

From Table 3, we note that the EVBS∗ model based on the Gumbelmin

distribution has lower values of AIC, BIC and HQIC with respect to the BS, EV,
GP and SNBS models for ozone data. This is a first indication of the superiority
of the proposed model. Then, we use the BF to establish the magnitude of
the differences between the values of the BIC of the proposed model and of its
competitors. Thus, according to Table 1 and the BF’s (approximated by the
BIC’s) also given in Table 3, we detect for the EVBS∗ model (i) a very strong
evidence in its favor with respect to the BS model, (ii) a strong evidence with
respect to the SNBS model and (iii) a positive evidence with respect to the GEV
and GP models. This is a second more power indication of the superiority of
the proposed model. Now, from Figure 6 (center), we see the excellent coherence
between the empirical and EVBS theoretical c.d.f.’s. for ozone. Moreover, a QQ
plot for the EVBS distribution shown in Figure 6 (right) confirms such a coherence
between the EVBS∗ model and the data. In fact, the histogram and the estimated
EVBS∗ p.d.f. based on the Gumbelmin distribution provided in Figure 6 (left) also
shows an excellent fit of the EVBS∗ model to these ozone data. Therefore, we
conclude that the EVBS∗ distribution provides a much better fit than the other
considered models for the ozone data analyzed in this study.
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Figure 6: histogram with estimated EVBS∗ (Gumbelmin) density (left),
empirical and theoretical c.d.f. plots (center) and QQ plot
(right) for ozone.
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8. CONCLUDING REMARKS

This article has dealt with an extreme value version of the Birnbaum-
Saunders distribution. Specifically, we have found the density of the extreme
value Birnbaum-Saunders distribution and discussed its shape. We have obtained
the cumulative distribution function and quantile function of this distribution as
well as highlighted some of their properties. Extremal domains of attraction for
Birnbaum-Saunders type distributions have been studied. A characterization of
the hazard rate of extreme value Birnbaum-Saunders distributions has been also
carried out. We have developed an R package with the obtained results and used
part of it for analyzing a real data set of ozone concentrations. This analysis has
allowed us to show the adequacy of these new statistical distributions.
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