
A Relational Model for Confined Separation Logic

Wang Shuling
LMAM and Department of Informatics

School of Mathematical Sciences
Peking University, Beijing, China

joycy@math.pku.edu.cn

L. S. Barbosa and J. N. Oliveira
CCTC and Department of Informatics

Minho University
Portugal

{lsb,jno}@di.uminho.pt

Abstract

Confined separation logic is a new extension to sepa-
ration logic designed to deal with problems involving dan-
gling references within shared mutable structures. In par-
ticular, it allows for reasoning about confinement in object-
oriented programs. In this paper, we discuss the semantics
of such an extension by defining a relational model for the
overall logic, parametric on the shapes of both the store and
the heap. This model provides a simple and elegant inter-
pretation of the new confinement connectives and helps in
seeking for duals. A number of properties of this logic are
proved calculationally.

1. Introduction

Reference aliasing is a well known problem in object ori-
ented programming, where shared mutable structures are
pervasive and access to a particular object may break an-
other’s integrity or leak sensitive information of the whole
system 1. In this domain, the extensive body of research on
encapsulation mechanisms to support data abstraction is of
limited help because usually such mechanisms correspond
directly to language constructs, and such is not the case in
reference based programs.

Confinement of objects to specific partitions of the
global reference space have become, therefore, a major
research issue in object-orientation. Static access modi-
fiers found in current languages (such as the private and
protected tags in JAVA) restrict only the visibility of
methods, attributes, or variables, but do not constrain ob-
ject references. Confined types [7], ownership [16] and
universes [15] are fine-grained notions of confinement for
aliasing control by enforcing static scoping of dynamic ob-
ject references. However, they are either incomplete or too

1Reference [28] reports on how the possibility of forging cryptographic
authentication in a particular system arose as an unexpected consequence
of a leaked reference to an internal data structure.

restrictive. This entails the need for a formal approach to
confinement independent of syntactic restrictions and en-
abling one to assess different confinement schemes.

An interesting attempt in this direction is [4], which re-
sorts to denotational semantics. The approach formalises
type-based full encapsulation but only to address object rep-
resentation independence. Moreover, a number of strong
syntactic restrictions are imposed which exclude useful pro-
gram idioms.

Our own contribution, partly presented in this paper,
goes in a similar direction, but adopts a different approach.
Our starting point is separation logic [24], an extension of
Hoare Logic where formulæ are interpreted over suitable
models of stores and heaps. In particular, it introduces a
new form of conjunction, denoted p ∗ q, which asserts that
p and q hold for disjoint parts of the heap.

Separation logic has been extensively used to reason
about pointer-based programs [24, 23, 8], fine-grained con-
currency [17], and object orientation [21, 13, 14]. It can
guarantee domain disjointness of object heaps and, there-
fore, prevent aliasing between objects laying in separated
heaps. However, no attention is paid to the behavior of out-
going dangling references of separated heaps which may in-
troduce subtle forms of indirect aliasing. As an illustration
consider the following Hoare triple

{p} x := new C(. . .); {p ∗ x 7→ {. . .}}

where {. . .} denotes the object created. C may be, for ex-
ample, a node type used as an element of a linked stack.
Then, the purpose of this piece of code is to allocate a node
and use it as a link to a stack. Note, however, that such an
object could not be put into a protection domain, because
the post-condition of new does not assert the absence of any
reference from the part of the heap which validates p to the
new object.

The point is that, besides the domain separation of two
heaps, we often need to express the restrictions upon out-
going references from heaps. In the example above, in fact
we have more information about the relationship between

the two heaps, ie., the original heap and the one where the
new object lives. In particular, we know, that as the object
has just been created, no older one has a reference to it.
Therefore it is safe to put the new object into a protection
domain, and not break confinement.

To express this sort of situations, we propose an ex-
tension to classical separation logic which introduces two
new forms of separating conjunction: a notIn variant, repre-
sented by ¬., asserting that no outgoing reference from the
part of the heap where the first argument holds points to the
part where the second argument holds, and a In variant, .,
which ensures that all outgoing references from the part of
the heap characterised by the first argument converge into
the one where the second argument holds. With this new
form of separating conjunction, the Hoare triple above can
be re-written as

{p} x := new C(. . .) {p ¬. x 7→ {. . .}}

The new operator not only warranties heap domain disjoint-
ness, but also enforces the new post-condition.

Report [26] introduces the basic intuitions on such con-
fined separation logic and discusses its application to con-
crete programming problems. It also shows how a number
of formal schemes for confinement in the literature [9, 4, 7,
15], can be unified from a semantic point of view.

This paper goes further in this research direction by in-
troducing a semantic model for this logic which is generic
in the sense that it abstracts away from the specific heap
structure, regarded as a mapping from a type K of refer-
ences to a type parametric construction F(K) on K, for F
a polynomial relator [6]. Typical heap models used in both
classical separation logic [24] and its OO-extensions [21,
13, 14] arise by instantantiation. Moreover, instead of the
usual set-theoretic semantics, we propose binary relations
between heaps and stores as semantic domain for predi-
cates. In this way, well known properties of separating con-
junction (often presented without proof, as for example the
existence of a formal dual implication) can be proved once
and for all in the generic model. In such a setting we give
compact and effective proofs of several properties of the
logic connectives of confined separation logic. In particular,
all conjunction variants proposed are shown to be adjoint to
specific forms of implication. Due to space limitations, it is
not possible to put together in a single paper the presenta-
tion of the semantic model and its application to handling
specific confinement problems in object-oriented program-
ming. Therefore, our focus in the sequel will be on formal
semantics, applications being deferred to a follow-up paper
[25].

The key technique in our approach is the so-called point-
free (PF) transform [20], which essentially means the con-
version of predicate logic formulæ into binary relations by
removing bound variables and quantifiers — a technique

which, initiated in the 19c 2, eventually lead to what is
known today as the algebra of programming [6, 3]. Such
technique, which has been found fruitful for “theory refac-
toring” in other domains [19, 20], is based on the principle
that “everything is a binary relation” once logical expres-
sions are PF-transformed. One thereafter resorts to the pow-
erful calculus of binary relations [1, 6] until a solution for
the problem is found, which is mapped back to logics if re-
quired. At this point, another calculus — the Eindhoven
quantifier calculus [3, 2] — is applied. In proceeding this
way, as we expect the reader will appreciate in the sequel,
elegant expressions replace lengthy formulæ and easy-to-
follow calculations replace pointwise proofs with lots of
“· · · ” notation, case analyses and natural language expla-
nations for “obvious” steps.

This paper is structured as follows. After a brief intro-
duction to the relational calculus and the pointfree trans-
form in section 2, section 3 introduces a generic model for
confined separation logic upon which its semantic proper-
ties can be established. This is done in sections 4 and 5.
Conclusions and pointers to future work are discussed in
sections 6 and 7.

2 Relational calculus

This section is a self-contained introduction to the frag-
ment of the relational calculus, and the pointfree transform,
used in the paper. The reader is referred to [6, 3] for a de-
tailed account.

Relations. Let B A
Roo denote a binary relation on

datatypes A (source) and B (target). The underlying partial
order on relations is written R ⊆ S (read: “R is at most
S”), meaning that S is either more defined or less deter-
ministic than R, that is, b R a⇒ b S a holds, for all a, b.
R ∪ S denotes the union of two relations and > is the

largest relation of its type. Its dual is ⊥, the smallest such
relation (the empty one). Equality on relations is established
by ⊆-antisymmetry.

Relations can be combined by three basic operators:
composition (R · S), converse (R◦) and meet (R ∩ S). R◦,
the converse of R is such that a(R◦)b iff bRa holds. Meet
corresponds to set-theoretical intersection and composition
is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse

2The idea of encoding predicates in terms of relations was initiated by
De Morgan in the 1860s and followed by Peirce who, in the 1870s, found
interesting equational laws of the calculus of binary relations [22]. The
pointfree nature of the notation which emerged from this embryonic work
was later further exploited by Tarski and his students [27]. In the 1980’s,
Freyd and Scedrov [10] developed the notion of an allegory (a category
whose morphisms are partially ordered) which finally accommodates the
binary relation calculus as special case.

commutes both with composition and with itself

(R · S)◦ = S◦ ·R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. kerR = R◦ · R and imgR = R · R◦. A
relationR is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function
iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦ ·R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that > is the kernel of every constant function,

1 A
!oo included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders≤ andv, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · v ⊆ ≤ · g (3)
f◦· v = ≤ · g (4)

Actually, (3) is equivalent to v ⊆ f◦ ·≤ · g . For
f = g, this establishes v to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois
connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) v a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,v := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦ ·R · g)a

TRUE b > a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ()◦ ()◦

Shunting rule (h·) (h◦·) NB: h is a function

Right-division (·R) (/ R) read “. . . overR”

difference (− R) (R ∪)

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f commutes with join and upper-adjoint g com-
mutes with meet, wherever these exist; and two cancellation
laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) v a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p . q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬. q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p /. q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v 7→ e | p ∗ p | p−∗ p

| p . p | p /. p | | p ¬. p | p

Recall from e.g [24] that singleton assertion e1 = e2
means both expressions have the same value, while v 7→ e
is valid in a singleton heap which stores the value of e in
the address refered by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ /

Aliases = ∈·σ
�

Atom+Address

∈v
Address

H
/ Atom+Address

(7)

where ∈ is a membership relation which spots addresses (of
type Address) in objects of type Atom + Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ //

∈G·σ
$$

G(B,K)

∈G

��
K

K

∈F·H
::

H
/ F(A,B,K)

∈F

OO

where V is the type of variable names and K is the type of
references (addresses). As explained in section 1, generic-
ity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of
interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [11] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)

reachability relation among references and fact k(∈G · σ)x
asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B+K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F
by F (A,B,K) = A ⇀ (K + B) whereA is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖H2
def
= H1 ·H◦2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the ref-
erent of reference k in heap H”, we get

〈∀ b, a : : b(H1 ·H◦2)a⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 ·H◦2)a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦2a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not necessarily
simple) relations:

R ‖ S def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For example, we
have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T
≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥
≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥
≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥
≡ { by (9) }

R ‖ T ∧ S ‖ T

Finally, we define relation H ∗ (H1, H2) to mean that H is the
union of separate H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖H2) ∧ (H = H1 ∪H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with prop-
erties of dangling references. Such relations will be used in the
sequel to define the new forms of separating conjunction. Again
the definitions are independent of the concrete shape F of the heap.
Thus,

H1 ¬. H2
def
= H1 ‖H2 ∧ H2 · ∈F ·H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separate H2.
Back to pointwise notation, the fact that pathH2 ·∈F ·H1 is empty,
corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H def
= kerH ∩ id is the coreflexive representing the do-

main of relation H . Similarly, for the other variants:

H1 . H2
def
= H1 ‖H2 ∧ ∈F ·H1 ⊆ H◦2 ·> (14)

H1 /. H2
def
= H1 ‖H2 ∧ ∈F ·H1 ⊆ (H1 ∪H2)◦ ·> (15)

In words, H1 . H2 requires all outgoing references of H1 go into
separated H2, and H1 /. H2 says that all outgoing references in
H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions in
terms of predicates on pairs (σ,H), we resort to binary relations
between heaps and stores. Thus, assertion

H[[p]]σ (16)

asserts predicate p holds on state (σ,H). So [[p]] is a binary rela-
tion. The semantics of elementary assertions is given as follows 3

H[[e1 = e2]]σ
def
= e1(kerσ)e2 (17)

H[[emp]]σ
def
= H ⊆ ⊥ (18)

H[[v 7→ e]]σ
def
= H = σe · σv◦ (19)

Notice that (19) is equivalent, by (1), to H = σ · e · v◦ · σ◦.
First-order connectives are easy to specify in terms of relations,
for example, [[p ∧ q]]

def
= [[p]] ∩ [[q]] or [[p ∨ q]] def

= [[p]] ∪ [[q]].
Preorder→ on assertions is defined by

p→ q
def
= [[p]] ⊆ [[q]] (20)

so that it can be distinguished from standard logic implication⇒.
Its anti-symmetric closure will be denoted by symbol↔. The defi-
nition of separating conjunction resorts to the separability relation
and relational split (defined by (a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]] def
= (∗) · 〈[[p]], [[q]]〉 (21)

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

which is the PF-transform of

H[[p ∗ q]]σ def
=

〈∃H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬. q]] def
= (∗) · Φ¬. · 〈[[p]], [[q]]〉 (22)

(Recall from section 2, that Φ¬. is the coreflexive associated to
predicate ¬. (13) on heap pairs.) A consequence of Φ¬. being
coreflexive is that p ¬. q → p ∗ q holds. Carrying on, we define:

[[p . q]]
def
= (∗) · Φ. · 〈[[p]], [[q]]〉 (23)

[[p /. q]]
def
= (∗) · Φ/. · 〈[[p]], [[q]]〉 (24)

Clearly . ⊆ /. and therefore, p . q → p /. q holds. Moreover,
since Φ.,Φ/. are coreflexive, we have p/.q → p∗q and p.q →
p ∗ q. Finally, the relational semantics of p is given by [[p]]

def
=

NA ∩ [[p]], where relation H NA σ (read “H is not accessible from

σ”) is H NA σ
def
= H · ∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage of our
relational model and establish upper adjoints for each form of
conjunction considered in confined separation logic. We begin
by dealing with the well-known (but usually stated without a for-
mal proof) fact that (p∗) and (p−∗) constitute a Galois connection
(GC). Our method differs from the standard practice in that, in-
stead of postulating the definition of (p−∗) and then verifying that
it adjoins with (p∗), we actually calculate the definition by re-
garding the GC itself as an equation whose unknown is the upper
adjoint. So, our starting point is equation

(p ∗ x)→ y ≡ x→ (p−∗ y) (25)

where we know everything apart from (p−∗). At PF-level, the
calculation is quite simple and stems from a more basic GC where
relational split performs the role of lower adjoint,

〈R,S〉 ⊆ X ≡ S ⊆ R IX (26)

The intuition behind relational combinator I is captured by its
pointwise expansion 4

b(R I S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (27)

4The quantified expression stems from the pointfree π◦2 \(π◦1 ·R⇒S).

We reason:

(p ∗ x)→ y

≡ { (20) }

[[p ∗ x]] ⊆ [[y]]

≡ { (21) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (26) }

[[x]] ⊆ [[p]] I ((∗) \ [[y]])

≡ { introduce p−∗ y st [[p−∗ y]] = [[p]] I ((∗) \ [[y]]) }

[[x]] ⊆ [[p−∗ y]]

≡ { (20) }

x→ (p−∗ y)

To spell out the pointwise meaning of p−∗y we resort to the Eind-
hoven quantifier calculus [3]:

H[[p−∗ y]]σ

≡ { above }

H([[p]] I ((∗) \ [[y]]))σ

≡ { (27) }

〈∀H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀H0 : H0[[p]]σ : 〈∀H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [3] }

〈∀H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { ? definition (11) and one-point rule (4.24) of [3] }

〈∀H0 : H0[[p]]σ ∧ H0 ‖H : (H0 ∪H)[[y]])σ〉

≡ { trading: (4.28) of [3] }

〈∀H0 : H0 ‖H : H0[[p]]σ⇒ (H0 ∪H)[[y]])σ〉

Summing up, we’ve calculated

H[[p−∗ q]]σ def
= (28)

〈∀H0 : H0 ‖H : H0[[p]]σ ⇒ (H ∪H0)[[q]]σ〉

which is, in fact, the standard definition [24] Once the Galois con-
nection is established, a number of properties come for free. First
of all, equation (12) leads to

(x ∗ p)→ y ≡ x→ (p−∗ y) (29)

which, with (25), corresponds to the currying and decurrying rules
in [24]. Moreover, being lower adjoints, both (p∗) or (∗p) are
monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (30)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (31)

Similarly, as upper adjoint, p−∗ is monotonic and distributes over
conjunction,

p−∗ (x1 ∧ x2) ↔ (p−∗ x1) ∧ (p−∗ x2) (32)

Cancellation laws such as

x→ (p−∗ (p ∗ x)) (33)

p ∗ (p−∗ y)→ y (34)

hold. On the other hand, monotonicity of (p∗) and (∗p) entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (35)

which corresponds to the inference rule showing that separating
conjunction is monotone with respect to implication in [24].

The following properties are also direct consequences of ad-
jointness, which, however, are not usually mentioned in the litera-
ture:

emp → p−∗ p (36)

p ∗ x ↔ p ∗ (p−∗ (p ∗ x)) (37)

p−∗ x ↔ p−∗ (p ∗ (p−∗ x)) (38)

This provides evidence of the usefulness of our approach to ’dis-
cover’ new, underlying laws.

Galois connections for confined separating logic. Sim-
ilarly, the three forms of separating conjuntion for confined sep-
aration logic can be shown to take part in their own Galois con-
nections. This is where our calculational techniques pay off. If
we compare (22, 23, 24) to the standard case (21), we realize that
the difference resides in an extra coreflexive (resp. Φ¬., Φ. and
Φ/.) mediating separate union (∗) and the split of relations which
capture the semantics of arguments p and q. This means that our
calculation of the upper adjoint (p−∗) in the standard case can be
re-used by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads imme-
diately to the following upper adjoint for (p¬.):

H[[p−¬. y]]σ
def
= (39)

〈∀H0 : H0 ¬. H : H0[[p]]σ⇒ (H0 ∪H)[[y]]σ〉

Expression p −¬. q asserts that, if the current heap is extended
with a disjoint part in which p holds, and dangling references do
not point into the current one, then q will hold in the whole heap.

Also in a similar way, but now replacing Φ¬. by either Φ/.
or Φ. respectively, we establish /., . as lower adjoints for corre-
sponding forms of implication. Actually one is lead to the follow-
ing definitions of p−/.y and p−.y as the upper adjoints of (p/.)
and (p.), respectively.

H[[p−/. y]]σ
def
= (40)

〈∀H0 : H0 /. H : H0[[p]]σ⇒ (H0 ∪H)[[y]]σ〉

H[[p−. y]]σ
def
= (41)

〈∀H0 : H0 . H : H0[[p]]σ⇒ (H0 ∪H)[[y]]σ〉

When compared with standard separated implication, all of the
above place extra restrictions on the augmented heap, in terms of
how dangling references are handled. Note that all properties de-
rived for (p∗) hold for free for all its confined versions, thanks to
the ’machinery’ of Galois connections.

Intuitionistic p: [[p]] = ⊇ · [[p]]
Strictly-exact p: [[p]] is simple, that is [[p]] · [[p]]

◦ ⊆ id
Domain-exact p: δ ≤ [[p]]

◦

Pure p: [[p]] is a right-condition

Figure 2. Reynolds’ classes re-visited.

5 Modelling and reasoning

The strength of a semantic model is assessed through both its
expressive power and suitability for formal reasoning. This section
illustrates how properties in separation logic, either in the stan-
dard or confined variants, can be formulated and established by
calculating their interpretations in the relational model. It further
illustrates how reasoning is conducted within the model in a cal-
culational way. We just give two examples. (The interested reader
is referred to report [25] for a full account.)

The first example checks the semantics of confinement against
what happens to standard property

emp ∗ p ↔ p ↔ p ∗ emp (42)

In the confined variants semantic rules entail

H[[p]]S ∧ Φα(H,⊥) ≡ H[[p]]S

or

H[[p]]S ∧ Φα(⊥, H) ≡ H[[p]]S

where α ranges over the three given variants. Checking Φα(⊥, H)
and Φα(H,⊥) for α := . leads to:

emp . p ↔ p

and

p . emp ↔ p ⇐ p→ emp

as the reader can easily verify. Furthermore, it is immediate to
conclude that the two other variants trivially preserve the standard
rule.

As exemplified above, confined variants of separating conjunc-
tion behave in particular ways even wrt some standard properties.
In [25] we prove, for example, that . is only semi-associative, ie.,

(p1 . p2) . p3 → p1 . (p2 . p3) (43)

For further illustrating the potential of the relational model to
express and reasoning in separation logic, our second example
re-visits J. Reynolds characterization of classes of assertions in
[24]. An alternative, but equivalent, characterization is introduced
in Figure 2, where ≤ denotes the injectivity preorder on relations
[12]. Notice that a relation R is a right-condition iff it can be ex-
pressed as R = > · Φ for some coreflexive Φ.

Finally, as a calculational example, we prove the following the-
orem which involves confined In conjunction and a side condition
on the assertions involved:

(p ∧ q) . r ↔ p ∧ (q . r) when p is pure (44)

The proof reads

[[p ∧ (q ∗ r)]]

= { p := > · Φ since p is pure }

> · Φ ∩ (∗) · Φ. · 〈[[q]], [[r]]〉

= { right-conditions: Φ ·R = R ∩ Φ ·> [3] }

(∗) · Φ. · 〈[[q]], [[r]]〉 · Φ

= { splits: 〈R,S〉 · Φ = 〈R,S · Φ〉 ≡ Φ coreflexive [12] }

(∗) · Φ. · 〈[[q]] · Φ, [[r]]〉

= { right-conditions: Φ ·R = R ∩ Φ ·> [3] }

(∗) · Φ. · 〈> · Φ ∩ [[q]], [[r]]〉

= { > · Φ := p ; definitions }

[[(p ∧ q) ∗ r]]

This is an example of a result which extends from standard sepa-
rating conjunction to all confined variants.

6 Conclusions

This paper’s contribution is twofold. On the one hand it pro-
vides a semantic characterisation of a new extension to separation
logic designed to reason about confinement of references in pro-
gramming models. On-going work includes the encoding of an
object-oriented programming language in the semantic model pro-
posed here. Preliminary research (in [26] and [25]) suggests the
potential of confined separation logic to express and reason about
confinement problems in object-oriented programs. We believe
this may be an interesting alternative or complement to the range
of syntactic mechanisms recently proposed to achieve confinement
resorting to, eg., static annotations or extended type systems.

On the other hand, the paper illustrates how the calculus of
binary relations can be regarded as a handy alternative for car-
rying out calculational proofs which are succint and easy to fol-
low, nicely complemented by the Eindhoven quantifier calculus in
mapping relational expressions to logics back and forth. The ’dis-
covery’ of new operators by calculation along Galois connections
— namely the notIn and inBoth implications — is particularly in-
structive. Moreover, since heaps and stores are modeled also as
binary relations, we take double advantage of the PF-transform
which, as in [18], works smoothly across logic and data seman-
tics.

7 Related and Future Work

Confined separation logic belongs to a family of recent exten-
sions to standard separation logic already cited in the introduction.

Reference [29], and before that [5], focus on obtaining a good
language for specifying how two pointer programs are related, and
effective rules for proving such specifications. Actually, the start-
ing point of [29] is the observation that specifications in main-
stream separation logic, given by a Hoare triple, are appropriate
for specifying the input and output relation of a single command,

but not for the equivalence between two programs. Contrary to
what may be suggested by the title of [29], our use of relational
methods has a completely different aim: to provide an alternative
to the usual set-theoretic semantics for (variants of) classical sep-
aration logic in terms of binary relationships between heaps and
stores as semantic domains for predicates.

Both the logic and the relational approach to its seman-
tics discussed here are relevant to other application domains.
One of them is concerned with data representation. In par-
ticular, our current research targets a theory of refinement of
polynomial data structures into heap-based implementations [18].

Acknowledgements. We thank Qiu Zongyan for fruitful dis-
cussions on confined separation logic, and comments about a draft
version of this paper.

References

[1] C. Aarts, R. C. Backhouse, P. Hoogendijk, E. Voermans, and
J. van der Woude. A relational theory of datatypes. 1992.

[2] R. Backhouse and D. Michaelis. Exercises in quantifier ma-
nipulation. In T. Uustalu, editor, MPC’06, pages 70–81.
Springer Lect. Notes Comp. Sci. (4014), 2006.

[3] R.C. Backhouse. Mathematics of Program Construction.
Univ. of Nottingham, 2004.

[4] A. Banerjee and D. A. Naumann. Representation indepen-
dence, confinement and access control[extended abstract]. In
Proceedings of POPL’02, pages 166–177. ACM Press, New
York, NY, 2002.

[5] N. Benton. Simple relational correctness proofs for static
analyses and program transformations. In Proc. of 31th ACM
Symposium on Principles of Programming Languages, pages
14–25, Venice, 2004.

[6] R. Bird and O. Moor. The Algebra of Programming. Series
in Computer Science. Prentice-Hall International, 1997.

[7] B. Bokowski and J. Vitek. Confined types. In Proceedings
of OOPSLA’99, pages 82–96. ACM Press, New York, NY,
USA, 1999.

[8] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond
reachability: Shape abstraction in the presence of pointer
arithmetic. In Proceedings of 13th SAS, pages 386–400.
Springer Lect. Notes in Comp. Sci. (4134), 2006.

[9] D. Clarke, J. Potter, and J. Noble. Ownership types for flex-
ible alias protection. In Proceedings of OOPSLA’98, pages
48–64. ACM Press, New York, NY, 1998.

[10] P.J. Freyd and A. Ščedrov. Categories, Allegories, volume 39
of Mathematical Library. North-Holland, 1990.

[11] P. F. Hoogendijk. A generic theory of datatypes. PhD thesis,
Department of Computing Science, Eindhoven University of
Technology, 1996.

[12] J.N.Oliveira. Pointfree foundations for lossless decomposi-
tion. Draft of paper in preparation, 2007.

[13] Quan Long, Qiu Zongyan, and Wang Shuling. A weak-
est precondition semantics for OO languages: An OO-
Separation Logic approach. Technical report, School of
Math., Peking University, 2006.

[14] R. Middelkoop, K. Huizing, and R. Kuiper. A separation
logic proof system for a class-based language. In Proceed-
ings of LRPP, 2004.

[15] P. Müller. Modular specification and verification of object-
oriented programs. PhD thesis, FernUniversit at Hagen,
2002.

[16] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
Proceedings of ECOOP’98, volume 1445, 1998.

[17] P. O’Hearn. Resources, concurrency and local reasoning.
Theor. Comp. Sci., 375(1-3):271–307, 2007.

[18] J.N. Oliveira. Data transformation by calculation, June 2007.
Tutorial notes for GTTSE’07 (to appear in Springer LNCS).

[19] J.N. Oliveira and C.J. Rodrigues. Transposing relations:
from maybe functions to hash tables. In Proc. of MPC’04,
pages 334–356. Springer Lect. Notes Comp. Sci. (3125),
2004.

[20] J.N. Oliveira and C.J. Rodrigues. Pointfree factorization of
operation refinement. In Proc. FM’2006, pages 236–251.
Springer Lect. Notes Comp. Sci. (4085), 2006.

[21] M. Parkinson and G. Bierman. Separation logic and abstrac-
tion. In Proceedings of POPL’05, pages 247–258. ACM
Press, New York, NY, 2005.

[22] V. Pratt. Origins of the calculus of binary relations. In Proc.
of the 7th Annual IEEE Symp. on Logic in Computer Science,
pages 248–254, Santa Cruz, CA, 1992. IEEE Comp. Soc.

[23] U. Reddy and H. Yang. Correctness of data representations
involving heap data structures. Science of Computer Pro-
gramming, 50(1):129–160, 2004.

[24] J.C. Reynolds. Separation logic: A logic for shared mutable
data structures. In Proceedings of LICS’02, pages 55–74, Los
Alamitos, California, 2002. Springer-Verlag. Invited paper.

[25] Wang Shuling, L. S. Barbosa, J. N. Oliveira, and Qiu
Zongyan. Confined separation logic applied to object con-
finement (relationally!). Technical report, (in preparation),
2008.

[26] Wang Shuling and Qiu Zongyan. Towards a semantic model
of confinement with confined separation logic. Technical
report, TR 2007-045, School of Math., Peking University,
2007.

[27] Alfred Tarski and Steven Givant. A Formalization of Set
Theory without Variables. American Mathematical Society,
1987. AMS Colloquium Publications, volume 41.

[28] J. Vitek and B. Bokowski. Confined types in Java. Software:
Practice and Experience, 31(6):507–532, 2001.

[29] H. Yang. Relational separation logic. Theor. Comp. Sci.,
375(2):308–334, 2007.

