
Stability results for impulsive functional differential
equations with infinite delay

Teresa Faria∗, Marta C. Gadotti†, and José J. Oliveira‡
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Abstract

For a family of differential equations with infinitive delay and impulses, we establish
conditions for the existence of global solutions and for the global asymptotic and global
exponential stabilities of an equilibrium point. The results are used to give stability
criteria for a very broad family of impulsive neural network models with both unbounded
distributed delays and bounded time-varying discrete delays. Most of the impulsive
neural network models with delay recently studied are included in the general framework
presented here.
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1 Introduction

In nature, many evolutionary systems go through momentary abrupt changes, due to sud-
den phenomena in the environment. In population dynamics, these short-time phenomena
include weather disasters, earthquakes, harvesting, migration of birds. In many different
fields, like physics, chemical technology, machinery control, biotechnology or operation re-
search, pulse perturbations have been introduced as a tool to control and stabilize solutions
to problems. When considering the entire evolutionary system of such processes, one may
consider that these changes are instantaneous, so that they are introduced as impulses in
the respective models.

As a result of these multiple applications, the theory of impulsive differential equations
has emerged as an important area of investigation [20]. In order to have more realistic
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models, often the past history of the systems should be taken into account – which has led
to the introduction of time-delays in differential equations [14]. In recent years, the stability
of an equilibrium for problems involving differential equations with delay and impulses has
received a great deal of attention. Namely, natural and artificial neural networks have
become an important area of research since the work of Hopfield [18], in view of their
multiple applications in pattern recognition, optimization, signal processing, etc. Since the
synaptic transmission of information among neurons – or their artificial representation – is
not instantaneous, delays have been incorporated in dynamical systems modelling neural
networks, as well as impulses occurring at certain fixed times [10]. More recently, functional
differential equations (FDEs) with impulses and infinite delay have been considered and used
as models for neural netwoks, see [8], [21], [22], [26], [27], [32], and [34]. The stability of
equilibria in neural networks is particularly important, since the stationary states represent
possible optimal solutions of the system in optimization problems, or stored patterns in
associative memories. Establishing the global stability of a unique equilibrium has become
one the major goals when implementing an artificial network.

In this paper, we consider a system of impulsive differential equations with infinite delay
given in abstract form as

ẋi(t) = fi(t, xt), 0 ≤ t 6= tk,

∆(xi(tk)) := xi(t+k )− xi(t−k ) = Iik(xi(t−k )), i = 1, 2, . . . n, k ∈ N.
(1.1)

Here, fi(t, ϕ) are real continuous functions for t ≥ 0 and ϕ : (−∞, 0]→ Rn on some space of
functions to be defined later, Iik : R→ R are continuous, and {tk}k∈N is a sequence in (0,∞)
such that tk ↗ ∞ as k → ∞. For t ≥ 0, we define the history function xt : (−∞, 0] → Rn

by
xt(s) = x(t+ s), s ∈ (−∞, 0].

To give an initial condition for (1.1) at time t = σ is to give the past of the system
for s ≤ σ, i.e., to require that x(σ + s) = ϕ(s) for s ≤ 0, for some prescribed function
ϕ : (−∞, 0]→ Rn. With the above notation, we write

xσ = ϕ. (1.2)

When dealing with continuous FDEs with infinite delay, the choice of an admissible Ba-
nach phase space requires special attention, in order to have well-posedness of the initial
value problem and standard results on existence, uniqueness, continuation of solutions (see
[12], [13], [16]). The situation is far more complicated when impulses are added. For impul-
sive FDEs with bounded and unbounded delay, existence, uniqueness or global continuation
of solutions have been studied by some authors, see e.g. Ballinger and Liu [1, 23], Ouahab
[29, 30] or Ye [34]. Most of the literature often refers to a phase space satisfying a certain ax-
iomatic under which these results are achieved, however without providing either an explicit
phase space, or proofs of the results. In many papers, a phase space is not even mentioned,
much less the problem of such a suitable choice. For this reason, here we spend some time
with a correct formulation of a phase space and the proof of existence results.

After the introduction, the present paper is divided into four sections. Section 2 is a
preliminary section, where some notation and a concrete phase space for (1.1) are introduced.
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Section 3 is dedicated to proving the existence of global solutions to (1.1) in the chosen phase
space. In fact, a slightly more general system will be studied, cf. system (2.1).

The main results on stability, concerning both the global asymptotic and the global
exponential stabilities of a stationary solution for a class of impulsive FDEs with infinite
delay, are presented in Section 4. Note that for the impulsive systems under consideration,
from the results in Section 3 it follows that the solutions will be defined for all t ≥ 0. Most
studies use a type of Lyapunov functional to obtain results on global attractivity. Instead,
here we use the techniques described in the works of Faria and Oliveira in [5],[6], rather than
a Lyapunov functional approach.

We are especially interested in applying these results to neural networks which can be
written in the general form (1.1). In Section 5, we establish criteria for stability for several
impulsive generalized Cohen-Grossberg models. The advantage of our general formulation is
that it applies to a broad family of impulsive FDEs with unbounded delays, which includes
as particular cases most of the models analysed in the recent literature (see e.g. [9], [21],
[22], [33]).

2 Notation and preliminaries

For a compact interval [α, β] of R, let PC([α, β]; Rn) be the space of piecewise continuous
functions from [α, β] to Rn and left continuous on (α, β], PC([α, β]; Rn) = {φ : [α, β]→ Rn| φ
is continuous everywhere except for a finite number of points s ∈ [α, β) for which φ(s−), φ(s+)
exist and φ(s−) = φ(s)}, equipped with the supremum norm ‖φ‖∞ = sups∈[α,β] |φ(s)|, where
|·| is a chosen norm in Rn. Denote by R([α, β]; Rn) the closure of PC([α, β]; Rn) with respect
to the supremum norm in the space of all bounded functions from [α, β] to Rn. The space
R([α, β]; Rn) is the space of normalized (from the left) regulated (or ruled) functions from
[α, β] to Rn, i.e, the space of functions f : [α, β] → Rn with only discontinuities of the first
kind, and left continuous on (α, β]; R([α, β]; Rn) is a Banach space and every function in
R([α, β]; Rn) has at most countably many discontinuities (see e.g. p. 146 of [3] and Chapter
3 of [17]).

Define the space PC = PC((−∞, 0]; Rn) as the space of functions from (−∞, 0] to Rn for
which the restriction to each compact interval [α, β] ⊂ (−∞, 0] is in R([α, β]; Rn). Clearly,
if φ ∈ PC then φ is continuous everywhere except at most for a enumerable number of
points s = sk, and φ(s−k ), φ(s+

k ) exist with φ(sk) = φ(s−k ). Denote by BPC the subspace
of all bounded functions in PC, BPC = BPC((−∞, 0]; Rn) = {φ ∈ PC : φ is bounded on
(−∞, 0]}, with the supremum norm ‖φ‖∞ = sups≤0 |φ(s)|. For β ∈ R, in a similar way we
define the spaces PC((−∞, β]; Rn) and BPC((−∞, β]; Rn).

Fix a function g such that:

(g1) g : (−∞, 0]→ [1,∞) is a non-increasing continuous function and g(0) = 1;

(g2) lim
u→0−

g(s+ u)
g(s)

= 1 uniformly on (−∞, 0];

(g3) g(s)→∞ as s→ −∞.

Note that these conditions are fulfilled for e.g. g(s) = e−αs, where α > 0. We shall consider
the phase space

PCg =
{
φ ∈ PC : sup

s≤0

|φ(s)|
g(s)

<∞
}
,
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with the norm
‖φ‖g = sup

s≤0

|φ(s)|
g(s)

.

It is clear that BPC ⊂ PCg, with ‖φ‖g ≤ ‖φ‖∞ for φ ∈ BPC. If BPC is considered as
a subspace of PCg, we often write BPCg. The spaces (BPC, ‖ · ‖∞) and (PCg, ‖ · ‖g) are
Banach spaces (see Section 3).

Let D ⊂ PCg, f : R × D → Rn, Ik : D → Rn (k ∈ N) be continuous functions, and
(tk)k∈N a given sequence on (0,∞) such that tk ↗∞ as k →∞. Consider impulsive FDEs
in PCg in the general form

ẋ(t) = f(t, xt), t ≥ 0, t 6= tk
∆x(tk) = Ik(xtk), k = 1, 2, . . . ,

(2.1)

where ∆x(tk) = x(t+k ) − x(t−k ). Here, if x : (−∞, a) → Rn (a ∈ R or a = ∞) has at most
countably many jump discontinuities and t ∈ (−∞, a), as usual xt denotes the function
xt : (−∞, 0]→ Rn defined by xt(s) = x(t+ s), s ≤ 0. For the equation with impulses (2.1),
we shall always consider initial conditions in BPC, xσ = φ ∈ BPC. Alternatively, we may
choose BPC as the phase space for (2.1), where now D ⊂ BPC, and f : R×D → Rn, Ik :
D → Rn (k ∈ R) are continuous functions relative to the norm ‖ · ‖∞ in BPC.

Consider (2.1) and BPC as the set of admissible initial conditions.

Definition 2.1. A function x(t) is called a solution of system (2.1) corresponding to (σ, φ)
if there is d > σ such that x : (−∞, d]→ Rn is continuous for t ∈ [σ, d] \ {tk : k ∈ N}, x(t−k )
and x(t+k ) exist with x(tk) = x(t−k ) for tk ∈ [σ, d] (k ∈ N), the derivative of x(t) exists for
t ∈ [σ, d] \ {tk : k ∈ N}, x(t) satisfies system (2.1), and xσ = φ.

In order to simplify the notation, in general we shall take f in (2.1) defined in the whole
space (i.e, either D = PCg or D = BPC) and initial conditions will be given at t = 0:

x0 = φ, φ ∈ BPC. (2.2)

For differential equations with impulses and unbounded delay, one should take some
care with the choice of a suitable phase space and set of initial conditions. Even for the
case without impulses, dealing with FDEs with unbounded delay requires a careful abstract
formulation of an admissible phase space. For g satisfying (g1)-(g3), the space UCg defined
by

UCg =
{
ϕ ∈ C((−∞, 0],Rn) : sup

θ≤0

|ϕ(θ)|
g(θ)

<∞, ϕ(θ)
g(θ)

is uniformly continuous on (−∞, 0]
}

with the norm ‖ · ‖g is an admissible phase space in the sense of [13], [16]. This means that
the normed space B = UCg satisfies the axiomatic conditions for an admissible space given
below:

(A) There are a constant J > 0 and functions K,M : [0,∞) → [0,∞), with K continuous
and M locally bounded, such that the following conditions hold:
If x : (−∞, d] → Rn, d > a, is such that xa ∈ B and x|[a,d] ∈ C([a, d]; Rn), then for all
t ∈ [a, d]:
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(i) xt ∈ B;

(ii) |x(t)| ≤ J‖xt‖B;

(iii) ‖xt‖B ≤ K(t− a) sup{|x(s)| : a ≤ s ≤ t}+M(t− a)‖xa‖B;

(iv) for t ∈ [a, d], t 7→ xt ∈ B is a continuous function.

(B) B is complete.

Since (A)-(B) are satisfied, for an abstract FDE in the phase space UCg,

ẋ(t) = f(t, xt), (2.3)

where f : D ⊂ R × UCg → Rn is continuous, the standard existence and uniqueness type
results hold ([13],[16]). Moreover, UCg is a fading memory space, and therefore precompact-
ness results for bounded positive orbits in UCg are valid ([12]). Clearly, results for the local
existence and uniqueness of solution for the initial value problem (2.1)-(2.2) follow from the
corresponding results for DDEs without impulses (2.3).

As regards the existence of global solutions for impulsive FDEs with infinite delay, we
refer the reader to [15], [30], [34], also for further references. Nevertheless, the study of
continuation of solutions for the impulsive system with unbounded delay (2.1) seems not to
have been carried out consistently. Most of the times authors either assume that all solutions
with admissible initial conditions are defined for all t ≥ 0, or introduce axiomatically a
phase space B, which should be complete and a ’fading’ memory space; this means that
B should satisfy axioms (A)(i)-(iii) and (B), with C([a, d]; Rn) replaced by PC([a, d]; Rn)
– note however that hypothesis (A)(iv) fails for FDEs with impulses. Frequently, either
an explicit space is not given, or the above axioms are not verified for a given one. In
many papers, a phase space is not even mentioned. This situation motivates us to establish
sufficient conditions for the existence of global solutions to (2.1) in the concrete phase space
PCg. Spaces PCg will be used throughout Sections 4 and 5, however other concrete suitable
phase spaces will be mentioned in Section 3.

In a framework assuring global continuation of all admissible solutions to (2.1), we will be
concerned with the stability of an equilibrium solution, if it exists. For x∗ = (x∗1, . . . , x

∗
n) ∈

Rn, we also use x∗ to denote the constant function x(t) = x∗ for t on an interval of R. We
say that x∗ is an equilibrium of (2.1) if f(t, x∗) = 0 and Ik(x∗) = 0 for all k ∈ N.

Definition 2.2. Consider the phase space D with norm ‖ · ‖, where either (D, ‖ · ‖) =
(PCg, ‖ · ‖g) for some g satisfying (g1)-(g3), or (D, ‖ · ‖) = (BPC, ‖ · ‖∞), and take BPC
as the set of admissible initial conditions. Suppose that x∗ is an equilibrium of (2.1). The
equilibrium x∗ is said to be: (i) stable if for any σ > 0 and ε > 0 there is δ = δ(σ, ε) > 0
such that ‖xt(σ, φ)−x∗‖ < ε for all φ ∈ BPC, with ‖φ−x∗‖ < δ and t ≥ σ; (ii) uniformly
stable if δ in (i) does not depend on σ; (iii) globally asymptotically stable if x∗ is stable
and globally attractive in Rn, i.e., x(t) → x∗ as t → ∞, for all solutions x(t) with initial
condition in BPC; (iv) globally exponentially stable if there are positive constants ε,
M such that

|x(t, 0, φ)− x∗| ≤Me−εt‖φ− x∗‖∞ for t ≥ 0, φ ∈ BPC.
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3 Existence of solutions

Although we take BPC as the set of admissible initial conditions for an FDE with impulses,
this space is not big enough for the purpose of proving the global attractivity of an equilib-
rium of (2.1). Rather than BPC, we shall work on a space PCg where g satisfies (g1)-(g3).
It is well known that the spaces R([α, β]; Rn) (α, β ∈ R, α < β) equipped with the norm
‖ · ‖∞ are Banach spaces, hence BPC is also a Banach space with ‖ · ‖∞. Now, it is easy to
show that:

Lemma 3.1. PCg with a Banach space with ‖ · ‖g.

Proof. Let (ϕn) be a Cauchy sequence in PCg, and fix any ε > 0. There is n0 ∈ N such that
for all n > n0 and p ∈ N

‖ϕn+p − ϕn‖g = sup
s≤0

1
g(s)
|ϕn+p(s)− ϕn(s)| < ε.

For each s ≤ 0, from the above inequality it follows that the sequence ϕn(s) is a Cauchy
sequence in Rn; moreover, for its limit ϕ(s) := limϕn(s), we get

1
g(s)
|ϕn(s)− ϕ(s)| ≤ ε

for all n > n0. Consequently, sups≤0
1
g(s) |ϕn(s)− ϕ(s)| → 0 as n→∞. On the other hand,

for each compact interval [α, β] ⊂ (−∞, 0], ϕn|[α,β]
→ ϕ|[α,β]

uniformly in [α, β]. Since the
spaces R([α, β]; Rn) equipped with the norm ‖ · ‖∞ are complete, ϕ|[α,β]

∈ R([α, β]; Rn) for
each [α, β] ⊂ (−∞, 0]. Therefore ϕ ∈ PCg and ‖ϕn − ϕ‖g → 0 as n→∞.

We return to the space BPC equipped with either the norm of uniform convergence ‖·‖∞
or the norm ‖ · ‖g where g satisfies (g1)-(g3). The norm in BPC will be denoted simply by
‖ · ‖. For a given x ∈ BPC((−∞, b]; Rn) where b > 0, clearly the function Φ : [0, b]→ BPC,
t 7→ xt =: Φ(t) is not continuous, unless x is itself continuous: in fact, Φ is discontinuous
at any t ∈ [0, b] such that x has a jump discontinuity for some t0 ∈ (−∞, t). In order to
have continuity of the map Φ, one has to consider a suitable norm in BPC, see Lemma 3.2
below. Nevertheless, in general the function t 7→ f(t, xt) is measurable on intervals [0, b],
and therefore summable on [0, b] provided it is dominated by some summable function.

Consider the impulsive FDE in BPC

ẋ(t) = f(t, xt), t ≥ 0, t 6= tk

∆x(tk) = Ik(xtk), k = 1, 2,
(3.1)

where 0 < t1 < t2 < . . . with tk → ∞, and the functions f : [0,∞) × BPC → Rn, Ik :
BPC → Rn are continuous, k ∈ N, subject to bounded initial conditions:

x0 = φ, φ ∈ BPC. (3.2)

Under some conditions, we prove the existence of global solutions for the problem (3.1)-
(3.2), following the approach in [29, 30]. The purpose here is not to give optimal sufficient
conditions for global solutions to exist (cf. Remark 3.1), but simply to provide a sufficiently
general setting which covers the impulsive systems studied in Sections 4 and 5. As usual, a
fixed point argument is used, in this case the Leray-Schauder alternative theorem (see [11],
p. 124):
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Theorem 3.1. Let C be a convex subset of a normed space E, and assume that 0 ∈ C. If
F : C → C is a completely continuous operator, then either the set {x ∈ C : x = λFx for
some λ ∈ (0, 1)} is unbounded or F has a fixed point.

Below, if b =∞, the interval [0, b] means [0,∞).

Theorem 3.2. Consider BPC with the norm ‖ · ‖, where ‖ · ‖ = ‖ · ‖∞ or ‖ · ‖ = ‖ · ‖g. For
b > 0 or b =∞, assume that:

(h1) for all x ∈ BPC((−∞, b]; Rn), the function t 7→ f(t, xt) is measurable on [0, b];

(h2) there are a locally integrable function p : [0, b] → [0,∞) and a continuous non-
decreasing function q : [0,∞) → [0,∞) with q(u) > 0 for u > 0 and such that∫∞ du

q(u) =∞, satisfying

|f(t, ψ)| ≤ p(t)q(‖ψ‖), for t ∈ [0, b], ψ ∈ BPC; (3.3)

(h3) for each k ∈ N, Ik maps bounded sets of BPC into bounded sets of Rn.

Then, for each φ ∈ BPC, the problem (3.1)-(3.2) has a solution x(t) defined on [0, b].

Proof. We suppose that BPC is equipped with the norm of uniform convergence. For
‖ · ‖ = ‖ · ‖g, the proof follows in a similar way. Let φ ∈ BPC be given and fix b̄ > 0 with
b̄ = b if b ∈ R and b̄ <∞ if b =∞. We prove that there exists a solution x(t) of the problem
(3.1)-(3.2) defined for t ≤ b̄. For simplicity, in what follows we write b instead of b̄.

Set t0 = 0, and write b ∈ (tn−1, tn] for some n ∈ N. We have
( ∫ t

0 f(s, xs) ds
)′ = f(t, xt)

on [0, b] for x ∈ BPC((−∞, b]; Rn), and consequently x(t) is a solution of (3.1)-(3.2) on
[0, b] if and only if x(t) = (Nx)(t) for t ≤ b, where N : X → X is the operator defined on
X := {x : (−∞, b]→ Rn| x0 = φ, x(0+) = φ(0) and x|[0,b] ∈ PC([0, b]; Rn)} by

(Nx)(t) =

{
φ(t), t ≤ 0.
φ(0) +

∫ t
0 f(s, xs) ds+

∑
k:0<tk<t

Ik(xtk), 0 ≤ t ≤ b, x ∈ X.
(3.4)

For s ≤ b, write xs = φ̃s + x̄s, where φ̃(s) = φ(s) for s ≤ 0 and φ̃(s) = φ(0) for 0 ≤ s ≤ b.
Then, Nx = x if and only if N0x̄ = x̄, where, after dropping the bars for simplicity,
N0 : X0 → X0 is the operator given by

(N0x)(t) = 0 for t ≤ 0 , (N0x)(t) =
∫ t

0
f(s, φ̃s + xs) ds+

∑
k:0<tk<t

Ik(φ̃tk + xtk) for 0 ≤ t ≤ b,

and X0 is the space X0 := {x ∈ BPC((−∞, b]; Rn) : x0 = 0, x(0+) = 0}, which can be
identified with the subspace of the functions x(t) in PC([0, b]; Rn) with x(0+) = 0.

Step 1. N0 is completely continuous.
Let {xm} ⊂ X0 and xm → x uniformly on [0, b]. Then,

‖N0xm−N0x‖∞ ≤
∫ b

0
|f(s, φ̃s+(xm)s)−f(s, φ̃s+xs)| ds+

∑
1≤k≤n

|Ik(φ̃tk+(xm)tk)−Ik(φ̃tk+xtk)|.

From the continuity of the functions f and Ik, (h2) and Lebesgue’s dominated convergence
theorem, we get ‖N0xm −N0x‖∞ → 0.
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Since ‖N0x‖∞ ≤
∫ b

0 p(s)q(‖φ̃s+xs‖∞) ds+
∑

1≤k≤n |Ik(φ̃s+xtk)|, then N0 maps bounded
sets of X0 into bounded sets of X0.

Next, write N0 = N1+N2, where N1, N2 : X0 → X0 are the operators given by (Nix)(t) =
0 for t ≤ 0 and

(N1x)(t) =
∫ t

0
f(s, φ̃s + xs) ds, (N2x)(t) =

∑
k:0<tk<t

Ik(φ̃s + xtk) for 0 ≤ t ≤ b.

Fix M > 0. For any τ0, τ ∈ [0, b], and x ∈ X0 such that ‖x‖∞ ≤ M , we have
|(N1x)(τ) − (N1x)(τ0)| ≤ q(‖φ‖∞ + M)

∫ τ
τ0
p(s) ds, which converges uniformly to zero as

τ → τ0, independently of x. This means that N1 maps a ball BM (0) of X0 into an equicon-
tinuous set of the space {x : (−∞, b]→ Rn : x is continuous and x0 = 0}, which can be iden-
tified with the subspace of the functions in C([0, b]; Rn) with x(0) = 0. From Ascoli-Arzelà
theorem, we conclude that N1 is completely continuous. On the other hand, hypothesis (h3)
means that Ik are completely continuous, and therefore the same happens to the operator
N2.

Step 2. The set E = {x ∈ X0 : x = λN0x for some λ ∈ (0, 1)} is bounded.
Let λ ∈ (0, 1) and x = λN0x. For t ∈ [0, t̄1] where t̄1 = min{t1, b}, we have

‖xt‖∞ ≤ λ
∫ t

0
p(s)q(‖φ̃s + xs‖∞) ds ≤

∫ t

0
p(s)q(‖φ̃s + xs‖∞) ds =: β(t).

The function β(t) is non-decreasing and β(0) = 0; since q is non-decreasing, it also satisfies
the differential inequality β′(t) ≤ p(t)q(‖φ‖∞ + β(t)). We now use the well-known Osgood’s
test argument: if the solution u(t) of the initial value problem u(0) = 0, u′(t) = p(t)q(‖φ‖∞+
u(t)) is not bounded on [0, τ) with τ ≤ t̄1, then u(t)→∞ as t→ τ− and∫ τ

0
p(t) dt =

∫ τ

0

u′(t)
q(‖φ‖∞ + u(t))

dt =
∫ ∞
‖φ‖∞

du

q(u)
=∞,

a contradiction. This implies that there is C1 > 0 such that β(t) ≤ C1 on [0, t̄1], where C1

may dependent on φ but not on x. Hence, ‖xt‖∞ ≤ C1 for all t ∈ [0, t̄1].
Now, suppose that b > t1. From (h3), consider c1 > 0 such that |I1(y)| ≤ c1 for all

y ∈ BCP with ‖y‖∞ ≤ C1 + ‖φ‖∞. For t ∈ (t1, t̄2] where t̄2 = min{b, t2}, we obtain

‖xt‖∞ ≤
∫ t

0
p(s)q(‖φ̃s + xs‖∞) ds+ c1.

Proceeding as above, where now β(t) = c1+
∫ t

0 p(s)q(‖φ̃s+xs‖∞) ds for t ∈ [0, t̄2], in a similar
way we deduce that there is a constant C2 such that ‖xt‖∞ ≤ β(t) ≤ C2 for all t ∈ [0, t̄2].
By induction, we conclude that there is C > 0 such that ‖xt‖∞ ≤ C for all t ∈ [0, b], hence
the set E is bounded.

Thus, from Theorem 3.1 there is a fixed point of N , and the proof is complete.

Clearly (3.3) holds if |f(t, ψ)| has a sublinear-type growth as described in the following
criterion:

8



Corollary 3.1. Let BPC be equipped with either the norm ‖ · ‖ = ‖ · ‖∞ or ‖ · ‖ = ‖ · ‖g.
Assume (h1), (h3), and that for each b > 0 there are integrable functions p, q : [0, b],→ [0,∞)
such that

|f(t, ψ)| ≤ p(t) + q(t)‖ψ‖, for all t ∈ [0, b], ψ ∈ BPC.

Then, for each φ ∈ BPC, the problem (3.1)-(3.2) has a solution x(t) defined for t ≥ 0.

Remark 3.1. As for FDEs without impulses, in Theorem 3.2 it is actually sufficient to
require that f(t, ψ) satisfies the Carathéodory conditions, instead of the continuity of the
function f(t, ψ) on both variables (see e.g. [14] p. 58, and [29, 30]). On the other hand, if
the impulse functions Ik are uniformly bounded by constants ck > 0, for each given initial
condition φ ∈ BCP we may replace condition

∫∞ du
q(u) =∞ in (h2) by

∫ tn+1

0
p(s) ds <

∫ ∞
Mn+‖φ‖∞

du

q(u)
for all n ∈ N, where Mn =

n∑
k=1

ck,

and deduce the existence of a global solution of (3.1)-(3.2). This is proven by applying in Step
2 of the above proof the argument used for the Osgood’s test in each interval [0, t1], [t1, t2],
etc. However, the setting in Theorem 3.2 is general enough for our purposes, since the aim
is to study impulsive neural network in the form (4.1).

As mentioned previously, the impulsive nature of system (3.1) brings difficulties when
working with delayed differential equations, even for the case of finite discrete delays, due to
the fact that the map t 7→ xt is not continuous if x has at least a simple jump discontinuity.
Together with the subtle problem of working with infinite delay, this makes the choice of a
suitable phase space, for which the standard results on existence, uniqueness, continuation
of solutions should be valid, a difficult task. As we shall see in Sections 4 and 5, in terms of
applications it is very useful to use the norm ‖ · ‖g (or ‖ · ‖∞) in BPC, but in fact a more
efficient norm is defined below.

For g satisfying (g1)-(g3), define the space L1
g = L1

g((−∞, 0]; Rn) as

L1
g = {ϕ : (−∞, 0]→ Rn | ϕ(s)

g(s)
∈ L1((−∞, 0]; Rn)}

with the norm

‖ϕ‖L1
g

=
∫ 0

−∞

|ϕ(s)|
g(s)

ds.

The space L1
g((−∞, b]; Rn) is defined in a similar way. We further assume

(g4) g−1 ∈ L1((−∞, 0]; R), where g−1(s) = 1/g(s).

Clearly, if ϕ ∈ BPC then ϕ ∈ L1
g, with ‖ϕ‖L1

g
≤ ‖g−1‖L1‖ϕ‖∞; and L1

g ∩ PC ⊂ PCg,
however this latter inclusion is not continuous for L1

g ∩ PC endowed with ‖ · ‖L1
g
.

Lemma 3.2. Let g satisfy (g1)-(g4). For a given x ∈ BPC((−∞, b]; Rn) where b > 0, the
function Φ : [0, b]→ L1

g, t 7→ xt, is continuous.

Proof. Let {sk} be the set of discontinuity points for x. For tn, t0 ∈ [0, b] with tn → t0,
‖xtn − xt0‖L1

g
=
∫ 0
−∞ hn(s) ds, where hn(s) := |x(tn + s)− x(t0 + s)|/g(s)→ 0 as n→∞ for

every s ∈ (−∞, 0], s 6= sk−t0, and |hn(s)| ≤ 2‖x‖∞/g(s) ∈ L1. Hence ‖xtn−xt0‖L1
g
→ 0.
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If f : [0,∞) × (BPC, ‖ · ‖L1
g
) → Rn is continuous, then the map from [0, b] to Rn, t 7→

f(t, xt), is continuous. An existence result similar to Theorem 3.2 is valid for the norm
‖ · ‖L1

g
, as follows:

Theorem 3.3. Consider BPC with a norm ‖ · ‖L1
g
, where g satisfies (g1)-(g4). For b > 0

or b =∞, assume that:

(i) there are a locally integrable function p : [0, b] → [0,∞) and a continuous non-
decreasing function q : [0,∞) → [0,∞) with q(u) > 0 for u > 0 and such that∫∞ du

q(u) =∞, satisfying

|f(t, ψ)| ≤ p(t)q(‖ψ‖L1
g
), for all t ∈ [0, b], ψ ∈ BPC;

(ii) for each k ∈ N, Ik maps bounded sets of BPC into bounded sets of Rn.

Then, for each φ ∈ BPC, the problem (3.1)-(3.2) has a solution x(t) defined on [0, b].

Proof. The aim is to use Theorem 3.1, to guarantee the existence of a fixed point to the
operator N : X → X given by (3.4), where now X := {x : (−∞, b] → Rn| x0 = φ, x(0+) =
φ(0) and x|[0,b] ∈ L1([0, b]; Rn)} is considered as a subset of L1

g((−∞, b]; Rn). The proof
follows along the lines of the proof of Theorem 3.2, with the necessary adaptations for ‖ ·‖L1

g

(instead of ‖ · ‖∞), and where instead of the Ascoli-Arzelà theorem we use the following
characterization of compactness in L1[0, b] (cf. [4]): a set K ⊂ L1[0, b] is relatively compact
if and only if

∫ b
0 |y(t+ u)− y(t)| dt→ 0 uniformly for y ∈ K. Details are omitted.

Remark 3.2. Due to the continuity of the map t 7→ xt ∈ L1
g, in fact other nice properties

can be derived in the phase space L1
g, such as pre-compactness of bounded positive orbits,

however such study is behond the purposes of the present paper.

4 Main Results on Stability

In this section, sufficient conditions for the existence, global asymptotic stability and global
exponential stability of an equilibrium point for (1.1) (???ou será (4.1)??) will be established.

We start with an auxiliary lemma.

Lemma 4.1. Suppose that Rn is equipped with the maximum norm, and assume the following
hypotheses:

(H1) for all t ≥ 0 and ϕ ∈ PCg such that 1
g(θ) |ϕ(θ)| < |ϕ(0)|, for all θ < 0, then

fi(t, ϕ)ϕi(0) < 0 for some i ∈ {1, ..., n} such that |ϕ(0)| = |ϕi(0)|;

(H2) for each function Îk(u) := Ik(u) + u (u ∈ Rn), there is ξk > 0 such that |Îk(u)| ≤ ξk|u|
and

∏∞
k=1 max{1, ξk} <∞.

If x(t, 0, ϕ) is a solution of (1.1)-(1.2) defined on R, then x(t, 0, ϕ) is bounded and

|x(t, 0, ϕ)| ≤ ‖ϕ‖g
∞∏
k=1

max{1, ξk}.
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Proof. If x(t, 0, ϕ) is the solution of (1.1)-(1.2), then x(t, 0, ϕ) is a continuous function for
t ∈ (0, t1). From Lemma 2.1 in [6], we obtain

|x(t, 0, ϕ)| ≤ ‖ϕ‖g, ∀t ∈ (0, t1].

By using (H2), for t = t1

|x(t+1 )| = |Î1(x(t1))| ≤ ξ1|x(t1)| ≤ ξ1‖ϕ‖g,

and we get
|x(t+, 0, ϕ)| ≤ ‖ϕ‖g max{1, ξ1}, t ∈ (0, t1].

For t ∈ (t1, t2] and using the same arguments, we have

|x(t, 0, ϕ)| ≤ ‖ϕ‖g max{1, ξ1}, t ∈ (t1, t2].

Again by using (H2), for t = t2 we obtain

|x(t+2 )| = |Î2(x(t2))| ≤ ξ2|x(t2)| ≤ ξ2‖ϕ‖g max{1, ξ1}.

Therefore,
|x(t+, 0, ϕ)| ≤ ‖ϕ‖g max{1, ξ1}max{1, ξ2}, t ∈ (0, t2].

Repeating the above procedure, for t ∈ (0, tl], l ∈ N, we conclude that

|x(t+, 0, ϕ)| ≤ ‖ϕ‖g max{1, ξ1} . . .max{1, ξl}, t ∈ (0, tl].

Consequently,

|x(t, 0, ϕ)| ≤ ‖ϕ‖g
∞∏
k=1

max{1, ξk}, t ≥ 0.

Remark 4.1. A similar estimate is obtained using the norm ‖ · ‖∞ in BPC (cf. Lemma
2.2 in [6]). In fact, if (H1) is replaced by

(H1’) for all t ≥ 0 and ϕ ∈ BPC such that |ϕ(θ)| < |ϕ(0)|, for all θ < 0, then fi(t, ϕ)ϕi(0) < 0
for some i ∈ {1, ..., n} such that |ϕ(0)| = |ϕi(0)|,

then in the above lemma we obtain the estimate |x(t, 0, ϕ)| ≤ ‖ϕ‖∞
∏∞
k=1 max{1, ξk}.

We now consider the following non-autonomous impulsive system:

ẋi(t) = −ai(xi(t))[bi(xi(t)) + fi(t, xt)], 0 ≤ t 6= tk, i = 1, 2, . . . n,
∆(xi(tk)) = Iik(xi(t−k )),

(4.1)

where ∆(xi(tk)) = xi(t+k ) − xi(t−k ), ai : R → (0,∞), bi : R → R, fi : R × D → R and
Iik : R → R are continuous functions for all k ∈ N, 1 ≤ i ≤ n, and either D = PCg or
D = BPC. We shall also consider the non-impulsive version of (4.1),

ẋi(t) = −ai(xi(t))[bi(xi(t)) + fi(t, xt)], t ≥ 0, i = 1, 2, . . . n. (4.2)

For i = 1, . . . , n and k = 1, 2, . . . , we designate

Îik(u) := Iik(u) + u, u ∈ R. (4.3)

In the sequel, we fix the maximum norm in Rn, |x| = max1≤i≤n |xi| for x = (x1, . . . , xn) ∈
Rn, and the following hypotheses will be referred to:
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(A1) there exist constants βi > 0 such that
bi(u)− bi(v)

u− v
≥ βi > 0, for all u, v ∈ R, u 6= v,

i = 1, 2, . . . , n;

(A2) fi : R × PCg → R are uniformly Lipschitz continuous with respect to ϕ ∈ PCg, with
|fi(t, ϕ)− fi(t, ψ)| ≤ li‖ϕ− ψ‖g, for t ∈ R and ϕ, ψ ∈ PCg, i = 1, 2, . . . , n;

(A3) βi > li, i = 1, 2, . . . , n;

(A4) Îik are Lipschitz continuous, with |Îik(u) − Îik(v)| ≤ γ̂ik|u − v| for u, v ∈ R, i =
1, ..., n, k ∈ N, where Îik(u) = u+ Iik(u), u ∈ R;

(A5) for γ̂k := max1≤i≤n γ̂ik,
∏∞
k=1 max{1, γ̂k} <∞.

For the impulsive system (4.1), the application of Theorem 3.2 yields the following exis-
tence result:

Proposition 4.1. Assume (A1)–(A4). Then the initial value problem (4.1)-(2.2) has a
solution x(t) defined on [0,∞).

Proof. Let φ ∈ BPC be given. For each b > 0 fixed, if there is a solution x(t) of (4.1)-(2.2)
defined on [0, b], then it follows from the proof of Lemma 4.1 that it must be uniformly
bounded by a constant M = M(b, φ). The functions ai(u), bi(u) are bounded for u ∈
[−M,M ], 1 ≤ i ≤ n, and fi(t, φ) are Lipschitz continuous with respect to φ, hence (3.3) is
satisfied on [0, b]. Thus, (4.1)-(2.2) has a solution defined on [0, b], for all b > 0.

Lemma 4.2. Assume (A1), (A2) and (A3), and that for each x ∈ Rn the functions t 7→
fi(t, x) are constant on R, 1 ≤ i ≤ n. Then there exists a unique equilibrium point x∗ =
(x∗1, . . . , x

∗
n) of (4.2)

Proof. The result is an immediate consequence of Lemma 3.1 in [6].

Lemma 4.3. Suppose that conditions (A1)–(A5) are satisfied. Assume also that there
exists a unique equilibrium point x∗ = (x∗1, . . . , x

∗
n) of (4.2), with Îik(x∗i ) = x∗i for all

i = 1, . . . , n, k ≥ 1. Then, any solution x(t) = x(t, 0, φ) of (4.1) with initial condition
φ ∈ BPC satisfies

|x(t)− x∗| ≤ ‖φ− x∗‖g
∞∏
k=1

max{1, γ̂k}, t ≥ 0. (4.4)

Proof. Let x∗ = (x∗1, ..., x
∗
n) be the equilibrium of the continuous FDE (4.2). Clearly x∗ is

also an equilibrium of the impulsive system (4.1) if Îik(x∗) = x∗ for all k ≥ 1 and i = 1, . . . , n.
Translating x∗ to the origin by the change x̃(t) = x(t)− x∗, system (4.1) becomes

˙̃xi(t) = −ãi(x̃i(t))[b̃i(x̃i(t))− f̃i(t, x̃t)], 0 ≤ t 6= tk, i = 1, 2, . . . n

∆(x̃i(tk)) = Ĩik(x̃i(t−k )),
(4.5)

where ãi(u) = ai(u+ x∗i ), b̃i(u) = bi(u+ x∗i ), f̃i(t, ϕ) = fi(t, ϕ+ x∗) and Ĩik(u) = Iik(u+ x∗i )
with zero as the unique equilibrium, i.e., b̃i(0) + f̃i(t, 0) = 0 for i = 1, ...n, t ∈ R. Clearly bi,
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fi and Iik satisfy (A1)-(A5) if only if b̃i, f̃i and Ĩik satisfy (A1)-(A5). For simplicity, instead
of (4.5) we consider (4.1) subject to the conditions bi(0) + fi(t, 0) = 0 and Îik(0) = 0 for all
t ∈ R, i = 1, . . . , n, and k ∈ N.

Define Îk(u) = (Î1k(u1), . . . , Înk(un)) for u = (u1, . . . , un) ∈ Rn, where as before Îik(x) =
Iik(x) + x, x ∈ R. We prove that hypotheses (H1) and (H2) in Lemma 4.1 are satisfied.

Consider ψ ∈ PCg with 1
g(θ) |ψ(θ)| < |ψ(0)| for all θ < 0, and let |ψ(0)| = ψi(0) > 0

(analogous if ψi(0) < 0). From (A1)-(A3), we derive

[bi(ψi(0)) + fi(t, ψ)] = [bi(ψi(0))− bi(0)] + [fi(t, ψ)− fi(t, 0)]
≥ βiψi(0)− li‖ψ‖g = (βi − li)‖ψ‖g > 0.

Therefore, Fi(t, ψ) := −ai(ψi(0))[bi(ψi(0)) + fi(t, ψ)] < 0, and (H1) holds. Since

|Îk(u)| = |Îk(u)− Îk(0)| ≤ γ̂k|u|,

for u ∈ Rn and γ̂k = max1≤i≤n γ̂ik, from (A5) we conclude that (H2) holds. From Lemma
4.1, each solution x(t) = x(t, 0, φ) with φ ∈ PCg is bounded on R and satisfies (4.4).

Remark 4.2. Instead of (A2), suppose that the following condition is satisfied:

(A2’) fi : R×BPC → R are uniformly Lipschitz continuous with respect to ϕ ∈ BPC, with
|fi(t, ϕ)− fi(t, ψ)| ≤ li‖ϕ− ψ‖∞, for t ∈ R and ϕ, ψ ∈ BPC, i = 1, 2, . . . , n.

Then, one can verify that (4.5) satisfies (H1’) instead of (H1), and from Remark 4.1 we
conclude that the estimate (4.4) is replaced by |x(t)−x∗| ≤ ‖φ−x∗‖∞

∏∞
k=1 max{1, γ̂k}, t ≥ 0.

Theorem 4.1. Assume that conditions (A1)–(A6) are satisfied, where

(A6) infk≥1(tk+1 − tk) > 0.

Suppose also that

Iik(x∗i ) = 0, i = 1, . . . , n, k = 1, 2, . . . , (4.6)

where x∗ is the unique equilibrium of the continuous system (4.2). Then x∗ is the unique
equilibrium of the impulsive system (4.1), and is globally asymptotically stable.

Proof. From the lemma above, all solutions are bounded on R and the equilibrium x∗ is
uniformly stable. After translating x∗ to the origin by the change x̃(t) = x(t)− x∗, (4.1) is
transformed into (4.5), where for simplicity we drop the tildes and consider (4.1) subject to
the conditions bi(0) + fi(t, 0) = 0 and Îik(0) = 0 for all t ∈ R, i = 1, . . . , n, and k ∈ N.

It remains to prove that x = 0 is globally attractive. Let x(t) = x(t, 0, ϕ) be the solution
of (4.1) with an initial condition x0 = ϕ ∈ BPC, x(t) = (x1(t), ..., xn(t)) for t ∈ R.

Define −vi = lim inft→∞ xi(t) and ui = lim supt→∞ xi(t) for i = 1, ..., n, and v =
maxi{vi} and u = maxi{ui}. Note that −∞ < −v ≤ u < ∞. Suppose that |v| ≤ u,
then max(u, v) = u (the case |u| ≤ v is analogous). It is sufficient to prove that u = 0, which
is done in several steps.

Claim 1. For each ε > 0, there exists T > 0 such that ‖xt‖g ≤ u+ ε for all t ≥ T .

Since x(t) is uniformly bounded, take M > 0 such that |x(t)| ≤M for all t ∈ R. Now, fix
any ε > 0. There is T0 > 0 such that |x(t)| ≤ u+ ε for all t ≥ T0. Let T1 > T0 be sufficiently
large so that M/g(−T1) < u+ ε, and take T = 2T1.
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Consider t ≥ T . If s ≤ −T1, then

|x(t+ s)|
g(s)

≤ M

g(−T1)
< u+ ε; (4.7)

if −T1 ≤ s ≤ 0 , then t+ s ≥ T1 and therefore

|x(t+ s)|
g(s)

≤ |x(t+ s)| ≤ u+ ε. (4.8)

From (4.7) and (4.8), we obtain ‖xt‖g ≤ u+ ε for t ≥ T . This proves Claim 1.

Next, since ai(x) > 0 for all x ∈ R and xi(t) is bounded, we observe that there is m > 0
such that ai(xi(t)) ≥ m for t ≥ 0 and i = 1, . . . , n. If u > 0, then η > 0, where

η := m(βi − li)u/2.

Claim 2. If u > 0 and sj → ∞, xi(sj) → u (respectively xi(sj) → −u) as j → ∞ for
some i = 1, . . . , n, with sj 6= tk for all j, k ∈ N, then there exists j1 ∈ N such that ẋi(sj) ≤ −η
(respectively ẋi(sj) ≥ η) for all j ≥ j1.

Suppose that u > 0 and that xi(sj) → u for some sequence (sj) with sj → ∞. Using

(A1), (A2) and (A3) and for ε ∈
(

0, (βi−li)u
2(βi+li)

)
, from Claim 1 we have

bi(xi(sj)) + fi(sj , xsj ) = (bi(xi(sj))− bi(0)) + (fi(sj , xsj )− fi(sj , 0))
≥ βixi(sj)− li‖xsj‖g ≥ βi(u− ε)− li(u+ ε)
= (βi − li)u− (βi + li)ε ≥ (βi − li)u/2 > 0

for j sufficiently large. Thus,

ẋi(sj) ≤ −ai(xi(sj))(βi − li)u/2 ≤ −m(βi − li)u/2 = −η (4.9)

for j sufficiently large. If x(sj) → −u, in a similar way we conclude that ẋi(sj) ≥ η, and
claim 2 is proven.

Now fix i ∈ {1, ..., n} such that ui = u. Then, there is a sequence (sj)j such that sj ↗∞
and

max{xi(sj), xi(s+
j )} → u as j →∞.

Since xi(t) is continuous on each interval (tk−1, tk], we may assume that xi(sj)→ u as j →∞
with

sj ∈ (tk(j)−1, tk(j)). (4.10)

for some subsequence (tk(j))j of (tk)k.

Claim 3. If u > 0, then lim supj→∞max{xi(tk(j)), |xi(tk(j)−1|)} = u.

We first prove that lim supj→∞max{xi(tk(j)), xi(t
+
k(j)−1)} = u. Otherwise, consider

a subsequence of sj , still denoted by sj , such that max
(
{xi(t) : t ∈ (tk(j)−1, tk(j)]} ∪

{x(t+k(j)−1)}
)

= xi(s̄j), for some s̄j ∈ (tk(j)−1, tk(j)). So we have xi(s̄j) ≥ xi(sj) → u as
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j → ∞ and ẋi(s̄j) = 0. Clearly, we can replace sj with s̄j in (4.9), which leads to a
contradiction.

Thus lim supj→∞max{xi(tk(j)), xi(t
+
k(j)−1)} = u. On the other hand, from (A5) it is

known that log(max{1, γ̂k}) → 0 as k → ∞, hence lim sup γ̂k ≤ 1. For any ε > 0 small, we
get

|xi(t+k(j)−1)| ≤ γ̂k(j)−1|xi(tk(j)−1)| ≤ u+ ε

for j large, we conclude that lim supj→∞max{xi(tk(j)), |xi(tk(j)−1|)} = u.

We finally prove:
Claim 4. u = 0.
By way of contradiction, suppose again that u > 0.
Claim 2 and the above arguments also show that, if a subsequence xi(tk(j)) of xi(tk)

converges to u (respectively −u), then, for j large, there are no local maximum (respectively
minimum) points of xi(t) in the intervals

(
tk(j)−1, tk(j)

)
.

For some subsequence of tk(j), still designated by tk(j), from Claim 3, we obtain one of
the following cases: (i) xi(tk(j)) → u; (ii) xi(tk(j)−1) → u; or (iii) xi(tk(j)−1) → −u. We
consider separately these three situations.

In Case (i), xi(t) is strictly decreasing on (tk(j)−1, tk(j)]. Now, define the functions

ϕj : [0, σ]→ R, ϕj(s) = xi(tk(j) − σ + s),

where by (A6) we choose σ such that 0 < σ < infk≥1(tk+1 − tk). Thus, ϕj ∈ C1([0, σ],R),
ϕj(σ)→ u, and ϕj(s) decreasing in [0, σ], for each j. Thus ϕj(s)→ u for each s ∈ [0, σ]. As
in the proof of Claim 2, for j sufficiently large and t ∈ (tk(j)−1, tk(j)) we get

bi(xi(t)) + fi(t, xt) ≥ βixi(t)− li‖xt‖g ≥ βixi(tk(j))− li‖xt‖g ≥ (βi − li)u/2,

hence ϕ̇j(s) ≤ −η < 0 for all s ∈ [0, σ). Clearly, this is not possible, since it leads to
ϕj(0) ≥ ϕj(σ) + ησ → u+ ησ > u, a contradiction.

Case (ii) is treated as Case (i), by replacing the intervals (tk(j)−1, tk(j)] with (tk(j)−2, tk(j)−1].
In Case (iii), we derive that xi(t) is strictly increasing on (tk(j)−2, tk(j)−1]. We proceed

as in Case (i), with (tk(j)−2, tk(j)−1] instead of (tk(j)−1, tk(j)], and where now we obtain
ϕj(s)→ −u, ϕ̇j(s) ≥ η > 0 for all s ∈ [0, σ), yielding a contradiction in a similar way.

Remark 4.3. In Claim 2, in fact one can consider sj = tk for some k, j ∈ N, in which case
ẋi(sj) means the left derivative of xi(t) at t = tk. For f regular enough, note that a solution
x(t) of (4.1) necessarily has left and right derivatives at the points t = tk, since the function
y(t) with components yi(t) = xi(t) −

∑
k:0<tk<t

Iik(xi(tk)) is absolutely continuous on each
interval [tk−1, tk].

Remark 4.4. If the functions Iik : R→ R are Lispchitz continuous,

(A4’) |Iik(u)− Iik(v)| ≤ γik|u− v| for u, v ∈ R, i = 1, ..., n, k ∈ N,

then (A4) holds with γ̂ik ≤ (1 + γik). If in addition

(A5’)
∑

k γk <∞ for γk := max1≤i≤n γik,

then the series
∑

k log(1 + γk) is also convergent, and consequently (A5) is satisfied. There-
fore, Theorem 4.1 is still valid if we replace assumptions (A4), (A5) by (A4’), (A5’).
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We shall now study the global exponential stability of an equilibrium point of the impul-
sive system (4.1). For this purpose, in the remaining part of this section we shall consider
the phase space PCg, with

g(s) = e−αs, s ∈ (−∞, 0], (4.11)

for some α > 0, and denote PCg by PCα and ‖ · ‖g by ‖ · ‖α

Lemma 4.4. Assume (A1), (A2), (A3), and

(A7) ai(u) ≥ ai > 0, for all u ∈ R, i = 1, 2, . . . , n.

Suppose also that x∗ is the unique equilibrium point of (4.2). Consider a solution x :
(−∞, b]→ Rn of the non-impulsive system (4.2) on [a, b] with xa ∈ PCα (−∞ < a < b ≤ ∞).
If there exist constants q > 0 and ε ∈ (0, α] with ε < mini{ai(βi − li)}, such that

|x(t)− x∗| ≤ qe−ε(t−a) for t ∈ (−∞, a]

then

|x(t)− x∗| ≤ qe−ε(t−a) for t ∈ (−∞, b]. (4.12)

Proof. After the change y(t) = x(t)− x∗, we may assume that the equilibrium point is zero,
i.e., we consider (4.2) subject to the constraints bi(0) + fi(t, 0) = 0, t ∈ R, 1 ≤ i ≤ n.

By contradiction, suppose that (4.12) does not hold. Consequently there are δ > 0,
m ∈ {1, . . . , n}, and t∗ ∈ (a, b] such that

|ym(t∗)| = (q + δ)e−ε(t
∗−a) and |yi(t)| < (q + δ)e−ε(t−a), t < t∗, i = 1, . . . , n.

Assume that ym(t∗) > 0 (the situation ym(t∗) < 0 is analogous). Denoting z(t) := (q +
δ)e−ε(t−a), t ∈ [a, b], we have

y′m(t∗) ≥ z′(t∗).
On the other hand, using the hypotheses (A1)–(A3) and (A7), we have

y′m(t∗) = −am(ym(t∗))[bm(ym(t∗)) + fm(t∗, yt∗)]
= −am(ym(t∗))[bm(ym(t∗))− bm(0) + fm(t∗, yt∗)− fm(t∗, 0)]
≤ −am[βmym(t∗)− lm‖yt∗‖α]

≤ −am[βmz(t∗)− lm sup
s≤0

(q + δ)e−ε(t
∗+s−a)

e−αs
]

≤ −am
[
βmz(t∗)− lm(q + δ)e−ε(t

∗−a)
]

= −am(βm − lm)z(t∗) < −εz(t∗) = z′(t∗),

which is a contradiction.

Theorem 4.2. Assume that there is an equilibrium x∗ of (4.1). Assume also (A1)–(A4),
(A7) and

(A8) for γ̂k := max1≤i≤n γ̂ik and γ̂ik as in (A4) and some k0 ∈ N,

η := sup
k≥k0

(
log(max{1, γ̂k})

tk − tk−1

)
< min

i
{ai(βi − li)}, (4.13)

where the space PCg in (A2) is PCg = PCε for some ε > η. Then the equilibrium x∗ of
(4.1) is globally exponentially stable.
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Proof. For η as in (4.13), choose α ∈ (0, ε] such that

η < α < min
i

{
ai(βi − li)

}
. (4.14)

Clearly, (A2) still holds with PCε replaced by PCα, with the same Lipschitz constants li.
Write ηk = max{1, γ̂k}, k = 1, 2, . . . . As above, we may assume that x∗ = 0 is the unique
equilibrium point of (4.1). Let y(t) be a solution of (4.1) defined on R, with y0 ∈ PCα.
Then,

|y(t)|∞ ≤ ‖y0‖α e−αt, for t ∈ (−∞, 0].

From Lemma 4.4, we conclude that

|y(t)|∞ ≤ ‖y0‖α e−αt for t ∈ (−∞, t1].

Next, we observe that |y(t+1 )|∞ = |yi(t+1 )|, for some i = 1, . . . , n, and

|y(t+1 )|∞ = |yi(t+1 )| = |Ii1(yi(t1)) + yi(t1)| = |Îi1(yi(t1))|
≤ γ̂i1|yi(t1)| ≤ γ̂i1‖y0‖α e−αt1 ≤ η1‖y0‖α e−αt1 .

Consequently,
|y(t)|∞ ≤ η1‖y0‖α e−αt1e−α(t−t1), t ∈ (−∞, t+1 ]

and, again from Lemma 4.4, we conclude that

|y(t)|∞ ≤ η1‖y0‖α e−αt for t ∈ (−∞, t2].

Noting that |y(t+2 )|∞ = |yi(t+2 )|, for some i = 1, . . . , n, then

|y(t+2 )|∞ = |Îi2(yi(t2))| ≤ γ̂i2|yi(t2)| ≤ η2η1‖y0‖α e−αt2 .
Iterating the above procedure, we obtain

|y(t)|∞ ≤ η1η2 · · · ηk−1‖y0‖α e−αt, t ∈ (tk−1, tk], k = 1, 2, . . . ,

where t0 = 0 and η0 = 1. The definition of η in (4.13) yields log ηk ≤ η(tk − tk−1), hence

ηk ≤ eη(tk−tk−1), k ≥ k0.

Thus, for t ∈ (tk−1, tk] and k > k0,

|y(t)|∞ ≤ η1 · · · ηk0−1‖y0‖α eηtk−1e−αt ≤ η1 · · · ηk0−1‖y0‖α e−(α−η)t,

and, consequently
|y(t)|∞ ≤ η1 · · · ηk0−1‖y0‖α e−(α−η)t, t ≥ 0.

Corollary 4.1. In the space PCε for some ε > 0, assume that there is an equilibrium point
x∗ of (4.1) and that (A1)–(A7) hold. Then x∗ is globally exponentially stable.

Proof. Observe that (A5) and (A6) imply (A8).

Remark 4.5. Consider system (4.1) in some space PCε with ε > 0, and suppose that
the functions ai(x) are bounded from below by some positive constant (i.e., (A7) holds).
Then, the above corollary shows that the sufficient conditions in Theorem 4.1 for the global
asymptotic stability of an equlibrium x∗ are stronger then the requirements in Theorem 4.2
for its global exponential stability, which seems to indicate that Theorem 4.1 does not provide
a good criterion. However, in the applications given in the next section it will be apparent
that it is much more restrictive to set (4.1) in the framework of a space PCε = PCg with
g(s) = e−εs (ε > 0), then in a generic space PCg with g satisfying (g1)-(g3).
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5 Applications

Here, we apply the previous results to the following impulsive generalized Cohen-Grossberg
neural network model with both time-varing delays and distributed delays:

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) +

n∑
j=1

P∑
p=1

(
h

(p)
ij (xj(t− τ (p)

ij (t)))+

+f (p)
ij

( ∫ 0

−∞
g

(p)
ij (xj(t+ s)) dη(p)

ij (s)
))]

, 0 ≤ t 6= tk, (5.1)

∆(xi(tk)) = Iik(xi(t−k )), i = 1, . . . n, k ∈ N, (5.2)

where tk ↗ ∞ as k → ∞, ai : R → (0,∞), bi, h
(p)
ij , f

(p)
ij , g

(p)
ij , Iik : R → R, τ (p)

ij : [0,∞) →
[0,∞) are continuous functions with τ (p)

ij (t) ≤ τ (p)
ij ≤ τ for some τ > 0, and η(p)

ij : (−∞, 0]→
R are non-decreasing bounded functions, normalized so that η(p)

ij (0)− η(p)
ij (−∞) = 1, for all

i, j ∈ {1, . . . , n}, p ∈ {1, . . . , P}. For (5.1), in the sequel we further assume that the func-
tions bi satisfy (A1), Iik satisfy (A4), and that h(p)

ij , f
(p)
ij , g

(p)
ij are Lipschitzian with Lipschitz

constants ζ(p)
ij , µ

(p)
ij , σ

(p)
ij , respectively.

Model (5.1) was introduced in [28] and is particulary relevant in terms of applications,
since it includes different types of neural network models as subclasses, as we shall illustrate
with several examples.

We define the square real matrices,

B = diag(β1, . . . , βn), L = [lij ] and N = B − L, (5.3)

where β1, . . . , βn are as in (A1) and lij =
∑P

p=1 ζ
(p)
ij + µ

(p)
ij σ

(p)
ij .

Proposition 5.1. Consider (5.1) under the hypotheses assumed above. If N is a non-
singular M-matrix, then the model (5.1) has a unique equilibrium point x∗ = (x∗1, . . . , x

∗
n).

Proof. See [28].

In addition, in what follows we always assume that if x∗ is an equilibrium point of (5.1),
then it satisfies

Iik(x∗i ) = 0, i = 1, . . . , n, k ∈ N. (5.4)

This means that x∗ is also an equilibrium point of the impulsive model (5.1)-(5.2).

Theorem 5.1. Consider (5.1)-(5.2) under the hypotheses assumed above. In addition, as-
sume the hypotheses (A5), (A6), and that the matrix N , defined in (5.3), is a non-singular
M-matrix.

Then there is a unique equilibrium point x∗ ∈ Rn of (5.1)-(5.2) which is globally asymp-
totically stable.

Proof. The existence and uniqueness of the equilibrium point of (5.1)-(5.2) comes from
Proposition 5.1 and (5.4).
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As N is a non-singular M-matrix, then (see [7]) there is d = (d1, . . . , dn) > 0 such that
Nd > 0, i.e.,

βidi >

n∑
j=1

lijdj , i = 1, . . . , n,

hence there is δ > 0 such that

βidi >
n∑
j=1

dj

P∑
p=1

ζ
(p)
ij + µ

(p)
ij σ

(p)
ij (1 + δ), i = 1, . . . , n. (5.5)

Since
∫ 0
−∞ dη

(p)
ij (s) < 1 + δ for i, j = 1, . . . , n, p = 1, . . . , P , from Lemma 4.1 in [6] we

conclude that there is g : (−∞, 0]→ [1,∞) satisfying (g1)-(g3) such that∫ 0

−∞
g(s) dη(p)

ij (s) < 1 + δ and g(−τ) = 1.

The change yi(t) = d−1
i xi(t) transforms (5.1)-(5.2) into the system

ẏi(t) = −ai(diyi(t))d−1
i

[
bi(diyi(t)) +

n∑
j=1

P∑
p=1

(
h

(p)
ij (djyj(t− τ (p)

ij (t)))+

+f (p)
ij

( ∫ 0

−∞
g

(p)
ij (djyj(t+ s)) dη(p)

ij (s)
))]

, 0 ≤ t 6= tk, (5.6)

∆(yi(tk)) = d−1
i Iik(diyi(t−k )), i = 1, . . . n, k ∈ N, (5.7)

for which we consider PCg as the phase space. For each i ∈ {1, . . . , n}, define

f̄i(t, φ) = d−1
i

n∑
j=1

P∑
p=1

(
h

(p)
ij

(
djφj(−τ (p)

ij (t))
)

+ f
(p)
ij

(∫ 0

−∞
g

(p)
ij (djφj(s)) dη

(p)
ij (s)

))
,

āi(u) = ai(diu), b̄i(u) = d−1
i bi(diu), Īik(u) = d−1

i Iik(diu),

for φ ∈ PCg, t ≥ 0, and u ∈ R. System (5.6)-(5.7) is written as

ẏi(t) = −āi(yi(t))[b̄i(yi(t)) + f̄i(t, yt)], 0 ≤ t 6= tk,

∆(yi(tk)) = Īik(yi(t−k )), i = 1, . . . n, k ∈ N,
(5.8)

which has the form (4.1). Clearly bi and Iik satisfy (A1), (A4), and (A5) if and only if b̄i
and Īik satisfy (A1), (A4), and (A5) with the same constants βi and γ̂ik.

For ϕ, φ ∈ PCg and t ≥ 0, since h
(p)
ij , f (p)

ij , g(p)
ij are Lipschitz functions and η

(p)
ij are
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non-decreasing, we have

|f̄i(t, φ)− f̄i(t, ϕ)| ≤ d−1
i

n∑
j=1

P∑
p=1

(
ζ

(p)
ij dj

∣∣∣φj(−τ (p)
ij (t))− ϕj(−τ (p)

ij (t))
∣∣∣

+µ
(p)
ij

∫ 0

−∞

∣∣∣g(p)
ij (djφj(s))− g(p)

ij (djϕj(s))
∣∣∣ dη(p)

ij (s)
)

≤ d−1
i

n∑
j=1

P∑
p=1

(
ζ

(p)
ij dj

|(φj − ϕj)(−τ (p)
ij (t))|

g
(
−τ (p)

ij (t)
) g(−τ)

+djµ
(p)
ij σ

(p)
ij

∫ 0

−∞
g(s)
|(φj − ϕj)(s)|

g(s)
dη

(p)
ij (s)

)

≤
[
d−1
i

n∑
j=1

dj

P∑
p=1

(
ζ

(p)
ij + µ

(p)
ij σ

(p)
ij

∫ 0

−∞
g(s) dη(p)

ij (s)
)]
‖φ− ϕ‖g.

This means that
|f̄i(t, φ)− f̄i(t, ϕ)| ≤ li‖φ− ϕ‖g, i = 1, . . . , n,

with li := d−1
i

n∑
j=1

dj

P∑
p=1

(
ζ

(p)
ij + µ

(p)
ij σ

(p)
ij (1 + δ)

)
, then each f̄i satisfies (A2). On the other

hand, (5.5) implies that (A3) holds. The conclusion follows now from Theorem 4.1.

Theorem 5.2. Consider (5.1)-(5.2) under the hypotheses above. In addition, suppose that:
(i) the functions ai satisfy (A7);
(ii) there is k∗ ∈ N such that the conditions∫ 0

−∞
e−γs dη

(p)
ij (s) <∞, i, j = 1, . . . , n, p = 1, . . . , P,

hold for some γ > η := sup
k≥k∗

(
log (max{1, γ̂k})

tk − tk−1

)
, where γ̂k := max1≤i≤n γ̂ik;

(iii) the matrix

M = diag

(
β1 −

η

a1
, . . . , βn −

η

an

)
− [nij ],

where nij =
P∑
p=1

(
ζ

(p)
ij e

ητ
(p)
ij + µ

(p)
ij σ

(p)
ij

∫ 0

−∞
e−ηs dη

(p)
ij (s)

)
, is a non-singular M-matrix.

Then, there is a unique equilibrium point x∗ of (5.1)-(5.2) which is globally exponentially
stable.

Proof. Let N be defined as in (5.3). As N ≥ M and M is a non-singular M-matrix, then
N is also a non-singular M-matrix. From Proposition 5.1 and assuming (5.4), we conclude
that the impulsive system (5.1)-(5.2) has a unique equilibrium point x∗ ∈ Rn.
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Since M is a non-singular M-matrix, there is d = (d1, . . . , dn) > 0 such that (see [7])(
βi −

η

ai

)
di −

n∑
j=1

dj

P∑
p=1

(
ζ

(p)
ij e

ητ
(p)
ij + µ

(p)
ij σ

(p)
ij

∫ 0

−∞
e−ηs dη

(p)
ij (s)

)
> 0,

for all i = 1, . . . , n, which is equivalent to

Ci(η) := η − ai

βi − d−1
i

n∑
j=1

dj

P∑
p=1

(
ζ

(p)
ij e

ητ
(p)
ij + µ

(p)
ij σ

(p)
ij

∫ 0

−∞
e−ηs dη

(p)
ij (s)

) < 0.

As the function F (p)
ij (t) :=

∫ 0
−∞ e

−ts dη
(p)
ij (s) is continuous (see [6], proof of Theorem 4.3) and

non-decreasing on [η, γ], we conclude that each Ci is also continuous and non-decreasing on
[η, γ] and therefore there is ε > η such that

Ci(ε) < 0, i = 1, . . . , n. (5.9)

As in the proof above, the change yi(t) = d−1
i xi(t) transforms (5.1)-(5.2) into the system

(5.6)-(5.7), now considering PCε as the phase space, which has the form of (5.8) with the
same functions āi, β̄i, f̄i, and Īik. Similar computations lead to

|f̄i(t, φ)− f̄i(t, ϕ)| ≤ li‖φ− ϕ‖ε, i = 1, . . . , n,

for all φ, ϕ ∈ PCε and t ≥ 0, with li := d−1
i

n∑
j=1

dj

P∑
p=1

(
ζ

(p)
ij e

ετ
(p)
ij +µ(p)

ij σ
(p)
ij

∫ 0

−∞
e−εsdη

(p)
ij (s)

)
.

This means that (A2) holds and from (5.9) the hypothesis (A8) also holds. Now the conclu-
sion follows from Theorem 4.2.

Remark 5.1. In the previous two theorems, it is specially relevant the situation where
γ̂k > 1 for large k (that is, in Theorem 5.2 the constant η is strictly positive), since this allows
the solution to be further away from the equilibrium point after the impulsive moments, than
before their occurence. Although this situation happens quite often in the real world, it does
not fit into the setting of most of the literature. In fact, in many papers [2] ,[19], [24], [25],
[31], [33], the impulsive operators Iik are defined as

Iik(u) = −αik(u− x∗i ), u ∈ R, with 0 < αik < 2, (5.10)

where x∗ = (x∗1, . . . , x
∗
n) ∈ Rn is the equilibrium point of the neural network model. From

(5.10), we conclude that

|xi(t+k )− x∗i | = |1− αik| |xi(tk)− x∗i | < |xi(tk)− x∗i |,

for each k ∈ N and i = 1, . . . , n, which imposes what seems to be (in spite of its applications
to some control problems) a very severe and unrealistic constraint: the solutions of the
impulsive model must be nearer of the equilibrium point than the solutions of the model
without impulses.

On the other hand, this gives rise to an interesting question. First, we note that, in
the absence of impulses, the criteria for stability provided by Theorems 4.1 and 4.2 coincide
with the ones established in [5], [6], [28]. In many real world situation, one however expects
that impulses satisfying (5.10) are introduced to control the behaviour of solutions and force

21



them to converge to the equilibrium. This suggests that, if the conditions (5.10) are satisfied,
maybe a criterion for the attractivity of the equilibrium point will be achieved under weaker
conditions on f than the ones above.

Example 5.1. Consider the following Cohen-Grossberg neural networks model with im-
pulses:

ẋi(t) = −ai(xi(t))
[
bi(xi(t))−

n∑
j=1

aijfj(xj(t))−
n∑
j=1

bijgj(xj(t− τij(t)))

−
n∑
j=1

cij hj

(∫ 0

−∞
Kij(−s)xj(t+ s) ds

)
+ Ji

]
, 0 ≤ t 6= tk, (5.11)

∆(xi(tk)) = Iik(xi(t−k )), i = 1, . . . n, k ∈ N, (5.12)

where aij , bij , cij ∈ R, ai : R→ (0,∞), bi : R→ R, and τij : [0,∞)→ [0,∞) are continuous
functions, with τij(t) ≤ τij ≤ τ , fj , gj , and hj are Lipschitz functions with Lipschiz constants
Fj , Gj , and Hj respectively, and Kij are nonnegative continuous functions such that∫ ∞

0
Kij(t) dt = 1, i, j = 1, . . . , n.

Since the system (5.11)-(5.12) is a particular case of (5.1)-(5.2), Theorem 5.1 applied to
(5.11)-(5.12) gives the following result:

Corollary 5.1. Consider (5.11)-(5.12) under the hypotheses considered above, and, for
i, j = 1, . . . , n, assume that:

(i) bi satisfy (A1);
(ii) Iik satisfy (A4) and (A5);
(iii) (A6) holds;
(iv) the matrix N = B − [lij ], where B = diag(β1, . . . , βn) for βi as in (A1) and lij =

|aij |Fj + |bij |Gj + |cij |Hj, is a non-singular M-matrix.
Then there is a unique equilibrium point x∗ of (5.11)-(5.12), which is globally asymptot-

ically stable.

As a consequence of Theorem 5.2, we have the following result:

Corollary 5.2. Consider (5.11)-(5.12) under the hypotheses considered above, and, for
i, j = 1, . . . , n, assume that:

(i) bi satisfy (A1);
(ii) Iik satisfy (A4);
(iii) ai satisfy (A7);
(iv) there is k∗ ∈ N such that the conditions∫ ∞

0
Kij(t)eγt dt <∞, i, j = 1, . . . , n,

hold for some γ > η := sup
k≥k∗

(
log (max{1, γ̂k})

tk − tk−1

)
, where γ̂k := max1≤i≤n γ̂ik.

If the matrix
M = D − [nij ] ,
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where D = diag
(
β1 − η

a1
, . . . , βn − η

an

)
and nij = |aij |Fj+|bij |eητijGj+|cij |Hj

∫ 0

−∞
Kij(−s)e−ηsds,

is a non-singular M-matrix, then there is a unique equilibrium point x∗ of (5.11)-(5.12),
which is globally exponentially stable.

Remark 5.2. System (5.11)-(5.12) was studied in [21]. We note that this system is only a
particular case of (5.1)-(5.2), hence our Theorem 5.2 is more general than the main result
in [21].

Example 5.2. The following impulsive Cohen-Grossberg-type BAM neural network model
is also a particular case of the impulsive model (5.1)-(5.2):

ẋi(t) = −ai(xi(t))
[
bi(xi(t)) +

m∑
j=1

(
cijgj(yj(t)))+

+ dij

∫ 0

−∞
Kij(−s)gj(yj(t+ s)) ds

)
+ Ji

]
, 0 ≤ t 6= tk,

∆(xi(tk)) = Iik(xi(t−k )), i = 1, . . . n, k ∈ N;

ẏj(t) = −āj(yj(t))
[
b̄j(yj(t)) +

n∑
i=1

(
c̄jifi(xi(t)))+

+ d̄ji

∫ 0

−∞
K̄ji(−s)fi(xi(t+ s)) ds

)
+ J̄j

]
, 0 ≤ t 6= tk,

∆(yj(tk)) = Ījk(yj(t−k )), j = 1, . . .m, k ∈ N

(5.13)

where tk ↗∞ as k →∞, cij , c̄ji, dij , d̄ji ∈ R, ai, āj : R→ (0,∞), bi, b̄j , Iik, Ījk : R→ R, are
continuous functions, gj , fi : R→ R are Lipschitz functions with Lipschiz constants Gj , Fi,
respectively, and Kij , K̄ji : [0,∞)→ [0,∞) are nonnegative continuous functions such that∫ ∞

0
Kij(t)dt =

∫ ∞
0

K̄ji(t)dt = 1.

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

Corollary 5.3. For the above system (5.13), for i = 1, . . . , n, j = 1, . . . ,m assume that:
(i) bi, b̄j satisfy (A1) with constants βi, β̄j, respectively;
(ii) Iik, Ījk satisfy (A4) with constants γ̂ik, ̂̄γjk, respectively;
(iii) for γ̂k := max

1≤i≤n,1≤j≤m
{γ̂ik, ̂̄γjk}, ∏∞k=1 max{1, γ̂k} <∞;

(iv) (A6) holds;
(v) the matrix

N =
(
B 0
0 B̄

)
(n+m)×(n+m)

−
(

0 (|C|+ |D|)G
(|C̄|+ |D̄|)F 0

)
(n+m)×(n+m)

where B = diag(β1, . . . , βn), B̄ = diag(β̄1, . . . , β̄m) for βi, β̄j as in (A1) and |C| = [|cij |]n×m,
|C̄| = [|c̄ji|]m×n, |D| = [|dij |]n×m, |D̄| =

[
|d̄ji|

]
m×n, F = diag(F1, . . . , Fn), and G =

diag(G1, . . . , Gm), is a non-singular M-matrix.
Then there is a unique equilibrium point (x∗1, . . . , x

∗
n, y
∗
1, . . . , y

∗
m) ∈ Rn+m of (5.13), which

is globally asymptotically stable.
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The exponential stability of the equilibrium point of (5.13) was recently studied in [22],
with the p-norm in Rn, p ≥ 1. (The case p =∞ was not treated in [22]). As a consequence of
Theorem 5.2, we have the following stability criterion with the∞-norm, which complements
the result in [22].

Corollary 5.4. For the above system (5.13), for i = 1, . . . , n, j = 1, . . . ,m assume that:
(i) bi, b̄j satisfy (A1) with constants βi, β̄j, respectively;
(ii) Iik, Ījk satisfy (A4) with constants γ̂ik, ̂̄γjk, respectively;
(iii) ai, āj satisfy (A7) with constants ai, āj, respectively;
(iv) there is k∗ ∈ N such that∫ ∞

0
Kij(t)eγt dt <∞,

∫ ∞
0

K̄ji(t)eγt dt <∞

hold for some γ > η := sup
k≥k∗

 log
(

max
i,j
{1, γ̂ik, ̂̄γjk})

tk − tk−1

.

If the matrix

M =
(
B − E 0

0 B̄ − Ē

)
(n+m)×(n+m)

−
(

0 (|C|+ |DK |)G
(|C̄|+ |D̄K |)F 0

)
(n+m)×(n+m)

with B, B̄, |C|, F , G defined as in the above corollary, E = diag
(
η
a1
, . . . , ηan

)
, Ē =

diag
(
η
ā1
, . . . , η

ām

)
, |DK | =

[
|dij |

∫ 0
−∞Kij(−s)e−ηs ds

]
n×m

, |D̄K | =
[
|d̄ji|

∫ 0
−∞ K̄ji(−s)e−ηs ds

]
m×n

,

is a non-singular M-matrix, then there is a unique equilibrium point (x∗1, . . . , x
∗
n, y
∗
1, . . . , y

∗
m) ∈

Rn+m of (5.13), which is globally exponentially stable.

Example 5.3. In [33], the following BAM neural network model with impulses was consid-
ered:

ẋi(t) = −bixi(t) +
m∑
j=1

(
cijgj(yj(t)) + dijgj(yj(t− τij))

)
+ Ji, 0 ≤ t 6= tk,

∆(xi(tk)) = Iik(xi(t−k )), i = 1, . . . n, k ∈ N;

ẏj(t) = −b̄jyj(t) +
n∑
i=1

(
c̄jifi(xi(t)) + d̄jifi(xi(t− σji))

)
+ J̄j , 0 ≤ t 6= tk,

∆(yj(tk)) = Ījk(yj(t−k )), j = 1, . . .m, k ∈ N

, (5.14)

where bi, b̄j ∈ (0,∞), cij , c̄ji, dij , d̄ji, Ji, J̄j ∈ R, τij , σji ∈ [0,∞), Iik, Ījk : R → R are
continuous functions and fi, gj : R → R are Lipschitz functions with Lipschitz constants
Fi, Gj , respectively, i = 1, . . . , n, j = 1, . . . ,m.

Clearly, system (5.14) is still a particular case of (5.1)-(5.2), and from Theorems 5.1 and
5.2 we obtain the next two results.

Corollary 5.5. Consider (5.14) under the hypotheses above, and, for i = 1, . . . , n, j =
1, . . . ,m, and k ∈ N assume that:

(i) Iik, Ījk satisfy (A4) with constants γ̂ik, ̂̄γjk, respectively;
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(ii) for γ̂k := max
1≤i≤n,1≤j≤m

{γ̂ik, ̂̄γjk}, ∏∞k=1 max{1, γ̂k} <∞;

(iii) (A6) holds;
(iv) the matrix

N =
(
B 0
0 B̄

)
(n+m)×(n+m)

−
(

0 (|C|+ |D|)G
(|C̄|+ |D̄|)F 0

)
(n+m)×(n+m)

where B = diag(b1, . . . , bn), B̄ = diag(b̄1, . . . , b̄m), |C| = [|cij |]n×m, |C̄| = [|c̄ji|]m×n, |D| =
[|dij |]n×m, |D̄| =

[
|d̄ji|

]
m×n, F = diag(F1, . . . , Fn), and G = diag(G1, . . . , Gm), is a non-

singular M-matrix.
Then there is a unique equilibrium point (x∗1, . . . , x

∗
n, y
∗
1, . . . , y

∗
m) ∈ Rn+m of (5.14), which

is globally asymptotically stable.

Corollary 5.6. Consider (5.14) under the hypotheses above, and, for i = 1, . . . , n, j =
1, . . . ,m, and k ∈ N assume that:

(i) Iik, Ījk satisfy (A4) with constants γ̂ik, ̂̄γjk, respectively.

(ii) For η = supk≥k∗

 log
(

max
i,j
{1, γik, γ̄jk}

)
tk−tk−1

, the matrix

M =
(
B 0
0 B̄

)
−
(

E (|C|+ |Dη|)G
(|C̄|+ |D̄η|)F Ē

)
where B, B̄, |C|, F , G are as in the above result, and E = diag (η, . . . , η)n×n, Ē =
diag (η, . . . , η)m×m, |Dη| = [|dij |eητij ]n×m,|D̄η| =

[
|d̄ji|eησji

]
m×n, is a non-singular M-

matrix.
Then there is a unique equilibrium point (x∗1, . . . , x

∗
n, y
∗
1, . . . , y

∗
m) ∈ Rn+m of (5.14), which

is globally exponentially stable.

Remark 5.3. In [33], the impulsive operators Iik, Ījk are defined as

Iik(u) = −αik(u− x∗i ), with 0 < αik < 2,
Ījk(u) = −ᾱjk(u− y∗j ), with 0 < ᾱjk < 2, (5.15)

where (x∗1, . . . , x
∗
n, y
∗
1, . . . , y

∗
m) ∈ Rn+m is the equilibrium point of (5.14). Consequently,

Îik(u) = (1− αik)u− αikx∗i and ̂̄Ijk(u) = (1− ᾱjk)u− ᾱjky∗j and therefore (A4) holds with
γik = |1− αik| < 1 and γ̄jk = |1− ᾱjk| < 1 and η = 0. Then we conclude that Corollary 5.6
strongly improves the main result in [33].
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