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ABSTRACT 
 
The changing on speech peaks structure is perhaps the 

most important cause of degradation of speech recognition 
systems under adverse conditions. Another drawback 
concerned to the additive noise effect occurs on the flat 
spectral zones which are usually raised. These combined 
effects on both the peaked and the flat spectral zones can 
be alleviated by trying to restore its original structure, 
which assumes noise knowledge. This paper suggests 
noise estimation in a frame by frame basis by assuming 
the clean database as lightly corrupted. The noise estimate 
is then used to restore both the peaked and the flat spectral 
zones of the speech spectrum.    

This algorithm was implemented over a baseline 
spectral normalisation method. This method was 
developed by taking into consideration that, while the 
speech regions with less energy need more robustness, 
since in these regions the noise is more dominant, the 
“peaked” spectral regions which are the most reliable due 
to the higher speech energy must also be preserved as 
much as possible by the feature extraction process.  

 
 

1. INTRODUCTION 
 
In our last paper [1] we argued that a proper spectral 

normalisation, which concentrates essentially on the 
speech regions of less energy, could improve significantly 
the robustness of speech recognition systems when 
operating under additive noise conditions. From a 
theoretical point of view, the spectral regions with small 
energy would need more noise robustness, given that for 
the same noise level they are more corrupted. The spectral 
regions of small energies usually correspond to unvoiced 
sounds regions, which are spectrally not very well defined. 
Roughly speaking nearly half of the consonants can be 
classified as unvoiced, while the other half and the vowels 
are generally classified as voiced. Generally the 
importance of the vowels in classification and 
representation of written text is very low; however, most 
practical automatic speech recognition systems rely 
heavily on vowel recognition to achieve high 
performance. Consequently, the spectral regions which 

contains higher speech energy seems to be usually more 
important in speech recognition under difficult conditions 
once they are generally less corrupted. On the other hand, 
the spectral regions with small energy are more corrupted, 
thus they need a larger degree of robustness.  

Others authors [2] have also given an increasing 
importance to the spectral regions of small energy of the 
speech signal, although by using alternative approaches. 

The algorithm proposed in [1] does not take into 
consideration the properties of the voiced speech regions, 
which are usually characterised by “peaked” spectral 
zones. These portions of spectrum are flattening, as the 
noise becomes more and more dominant which degrades 
the system performance. 

The algorithm proposed in this paper cope with this 
limitation by restoring partially both the original spectral 
“peaks” and the flat spectral regions where the signal 
power is increased by the wide band noise effect. This 
approach assumes the clean database lightly contaminated 
and the noise power is estimated in a frame-by-frame basis 
by the lowest power of all the sub-bands in each segment. 
The algorithm does not assume noise existence, in the 
sense that the features are extracted exactly in the same 
way in both noisy and noise free conditions. The results 
show a significant improvement in performance when 
compared with the baseline method concerned to the 
situation where the noise is ignored.  

 
2. BASELINE SPECTRAL NORMALISATION 
 
The baseline spectral normalisation defined in [1] is 

motivated by the fact that the additive noise is not a 
narrow band noise, thus its spectrum is reasonably 
dispersed in frequency. Additionally a mechanism 
adequate to dealing with non-stationary additive noise 
situations, which frequently occurs in practical situations, 
is needed. One solution can be trying to extract the 
distribution of the speech energy along the spectrum, 
normalised by the total energy of the speech within the 
segment. Therefore noise variations can be attenuated 
once that which is really measured is the relative and not 
the absolute distribution of the spectral energy of the 
speech signal.  



 
 

 

The baseline normalisation process consists in a 
division of the frequency band in sub-bands given that 
usually a very fine detail in frequency is not required for 
western languages speech recognition applications. The 
method is based on the power spectral density components 
and consists in dividing the speech power inside each sub-
band by the total short-time speech power. The power in 
each sub-band is obtained summing the components of the 
power spectral components inside the sub-band. All the 
sub-bands have the same number of spectral components 
and any spectral component is shared by different sub-
bands, thus avoiding increases of statistical dependence 
between sub-bands (feature components). The background 
noise contributes simultaneously to increase the sub-band 
and total power, which contributes for stabilising the 
feature values. 

To best understand this reasoning, consider Si denoting 
the speech power in sub-band i and S denoting the short 
time speech signal power of the considered segment. 
Similarly, let Ni and N denote the power of the noise in 
sub-band i and the short time noise power, respectively. 
So, the ith component of the observation vector for clean 
and noisy speech are given respectively by 
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Figure 1 shows the clean speech and noisy speech 

spectral power normalisation features for 240 ms of the 
word “zero” where each sub-band has 16 power spectral 
components. The SNR is 0 dB.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
If the noise has white noise characteristics the 

environment will shift the clean speech vector by a noise 
dependent vector Ci(N), which can be calculated by 
subtracting equations (1). 

 If the noise is stationary then its short time power 
equals its long time power. Note that this is not true for the 
speech due to its non-stationary property, but as an 
approximation we will consider that the short time speech 
signal power equals the long time speech signal power. 
Under this constraint, S and N can be related by the signal 
to noise ratio (SNR). Therefore the next expression holds 
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Let l, the number of components in each sub-band and L 

the FFT length. Then N and Ni, considering flat noise 
spectrum, are related by the quotient l/L. Using these 
considerations, the calculation of the shift vector imposed 
by the environment is accomplished by subtracting 
equations (1) and becomes [1] 

 

k
k

L
l

S
S

NC i
i

−






 −=

1)( ,    
1010

11 SNRk +=      (3) 

 
Equation (3) shows that if the speech has a flat power 

spectrum density, the means of Ci(N) become null as Si/S 
equals l/L. Thus, this normalisation process becomes 
optimal in the sense that the environment does not affect 
the means of the speech features. This means that this 
normalisation procedure provides some noise robustness 
to unvoiced speech segments, where neither the speech 
nor the noise are spectrally well defined. More details can 
be found in [1] 

 
3. ADDITIVE WHITE NOISE EFFECT IN THE 

POWER SPECTRAL NORMALISATION DOMAIN 
 
Figure 1 shows that the noise effect, in the proposed 

power spectral baseline normalisation domain, is raising 
the “flat” spectral zones while the “peaked” spectral ones 
are “flatten”. In fact equation (1) in noisy conditions 
(equation shown on the right) shows that, for sub-bands 
with high speech power, as the amount of noise in the sub-
band is much smaller than the total amount of noise, the 
speech features in that regions are decreased 
proportionally to the amount of contaminating noise. For 
sub-bands with small speech power the opposite happens, 
given that the sum of all the coefficients extracted in each 
segment is unitary. As the spectral flattening is 
proportional to the amount of contaminating noise, for low 
signal to noise ratios the “peaked” spectral regions almost 
disappear, which is the main origin of degradation in 
performance under noisy conditions.  

The main goal of a robust features extraction method is 
providing robustness against noise or other sources of 
variability by ignoring its presence. Although the noise 
can be compensated, the effectiveness of this approach 
becomes very dependent on the accuracy of the noise 
estimate, which is a very hard task in practical situations. 
Hence our main goal was searching for a compensation 
process independent of the noise level or characteristics, 
although the proposed baseline normalisation assumes a 
wide band additive noise for maximal performance. More 
details can be found in [1]. 

In this context we propose the following two steps 
approach: 
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Figure 1. White noise effect in the power 
spectrum density normalization domain in the 
beginning of digit “zero”. Dashed line 
represents noisy speech features. 
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For task uniformity in clean and in noisy conditions the 
clean database must be considered lightly contaminated. 
Trying to clean completely the database, which can be 
viewed as another kind of normalisation, represents a 
procedure compatible with the noise compensation 
paradigm, however if the procedure is not particularised 
for any kind of noise, it can be used without concerning to 
the noise existence. Hence, under noisy conditions the 
features extraction method can compensate for the noise 
existence taking into account the noise level, which can be 
estimated in a frame-by-frame basis, becoming the 
procedure compatible with real time applications. We 
propose estimating the noise power in each segment, 
which can be viewed as a second normalisation factor (the 
first normalisation factor is behind the normalisation 
procedure in the baseline system [1]) by taking the value 
of the lowest component of the power spectrum density in 
each speech frame.  

 We propose alleviating the noise effect by using the 
estimated noise level in 1) and taking into consideration 
the kind of distortion caused by the noise in the spectral 
normalisation of the baseline system, that is taking into 
account that the “peaked” spectral regions are “flattened” 
and the “flat” spectral regions are “raised” by the noise 
effect. This type of procedure presumes an efficient peak 
detector. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
An efficient peak detector must be able to distinguish 

peaks of voiced nature (pitch) from weak peaks occurring 
in the speech regions of low energy, where the baseline 
system is efficient concerned to the attenuation of the 
additive noise effect. The upper part of figure 2 shows 
strong peaks due to the pitch, which can be classified as 
peaks by the peak detector, given that they occur in voiced 
regions just the regions “forgotten” by the baseline 
system, while the lower part of the figure shows weak 
peaks (right side of the figure) proceeding from unvoiced 

regions that must be ignored. This peak classification 
suggests the use of thresholds, where the key question is 
how to calculate the threshold level? 

Based only in practical considerations especially in the 
inspection of the selected peaks we concluded that roughly 
speaking a peak which energy is above at least three times 
the mean of the rest of components in the frame must be 
classified as a true peak. Otherwise the selected peak must 
be ignored in order to preserve the benefits of the baseline 
normalisation on low energy segments. 

 
4. PROPOSED NOISE COMPENSATION 

 
To cope simultaneously with the noise effect on the 

“peaked” and on the “flat” spectral regions we have to 
consider two types of compensation procedures, once that 
the distortions caused by the noise are of different nature 
for the two types of considered regions. 

The “flat” spectral regions are raised by the noise effect, 
so we suggest subtracting to each component of the 
observed vector the lowest component, according to the 
second normalisation procedure. Of course we are 
implicitly considering wide band noise and the procedure 
must be improved in the future to account for narrow band 
noise. To account for the second type of normalisation 
maintaining however compatibility between the two types 
of normalisation equation (1) must be changed so that 
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or in noisy situations  
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For wide band noise distortion, Ni is approximately 

constant and the mean of the clean speech coefficient 
equals the mean of the noisy speech coefficient. As in [1] 
this means that a white noise process does not deteriorates 
in terms of means another white noise process, which 
means good behaviour of the normalisation process in 
speech regions characterised by low energy level. It is 
important to note that some compensation algorithms 
assume that the compensation of the means has a better 
contribution to the recognition performance than the 
compensation of the variances. In the context of the 
baseline normalisation we have automatic compensation 
of the means. 

The noise compensation in the “peaked” spectral 
regions is made by increasing the speech coefficient that 
was decreased (flattened) by the noise effect. Assuming 

Figure 2. White noise effect in the power 
spectrum density normalization domain in a 
voiced segment (upper part) and in an 
unvoiced segment (last 2/3 of the lower part of 
the figure. Dashed line represents noisy speech 
features. 
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clean speech (not lightly contaminated speech) equation 
(1) holds and the speech features are related by 
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where B is the number of sub-bands. For a speech frame 

where n peaks are detected, these peaks have to be 
increased by a noise dependent factor so that 
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where each cj was previously decreased as shown by 

equation (5). Assuming that each spectral sub-band was 
decreased proportionally to its value, which seems to be 
true by analysing figures 1, 3 and 4 the noise 
compensation can be made by computing cj as follows 

 

( ) { }

NS

NS
S

nBNS
c

ii
n

jj

j +









+

−
++

=
min)(1

(8) 

 
where Sn is given by 
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Therefore, the energy subtracted in the “flat” spectral 

regions is restored in the “peaked” zone in order to invert 
the additive noise effect whereas the sum of all the speech 
features for each frame is maintained unitary as supposed 
by the baseline spectral normalisation. 

 
5. EXPERIMENTAL RESULTS 

 
The proposed algorithm was tested in an Isolated Word 

Recognition system using Continuous Density Hidden 
Markov models. The database of isolated words used for 
training and testing is from AT&T Bell. The used speech 
was acquired under controlled environmental conditions 
band-pass filtered from 100 to 3200 Hz, sampled at a 6.67 
kHz and analysed in segments of 45 ms duration at a 
frame rate of 66.67 windows/sec. Only the decimal digits 
were used. The noise has white noise characteristics, is 
speech independent and computationally generated at 
various SNR as shown in table 1. The goal is to compare 
the performance of the proposed and contemporary speech 
robust features. Some of these robust features are the 
OSALPC (One-Sided Autocorrelation Linear Predictive 
Coding), the conventional cepstrum with liftering (CEPS 
+ liftering) and the well known MFCC (Mel-Frequency 
Cepstral Coefficients). In table 1, MMC stands for 
conventional Markov model composition in the power 
spectrum density domain, Norm. stands for the baseline 
normalisation procedure, N. + MMC stands for Markov 

model composition in the baseline power normalisation 
domain [1] and PR stands for the pitch restoration 
procedure proposed in this paper. Table 1 shows that the 
suggested spectral multi-normalisation features are more 
effective against additive white noise than the baseline 
normalisation, which is more effective than some robust 
features used nowadays.  For SNR greater than or equal to 
5 dB the baseline spectral normalisation outperforms the 
conventional Markov model composition (MMC) when 
the noise parameters are learned from the periodogram 
method in a data segment of 100ms without speech. As in 
the Parallel Model Combination, the distortion can be 
integrated (compensated) in the composite model 
increasing thus the recogniser performance [1]. On the 
first six entries of the table 1, all the features are 8 static, 
energy and dynamic features excepting * (12 static + 
energy + dynamics) and ** (13 static + energy + 
dynamics). 

 

Table 1 – Performance of the spectral normalisation 
SNR (dB) 15 10 5 0 -5 
LP 56.5 39.5 30 16.25  
OSALPC 98.25 92 65.75 32.25  
CEPS * 97.5 95 72 34.5  
+liftering 98.25 95 75.25 39  
MFCC ** 97.75 94.75 72.25 37.5  
OSALPC* 98.5 96.25 74.25 32.5  
MMC 98 96.75 92.5 91 78.5 
Norm. 98.5 97.75 93.75 88 42.5 
PR 99.25 98.25 95 89.75 61.5 
N.+ MMC 99.5 98.75 97.25 92.25 84.75 
 

6. DISCUSSION 
 
The main advantage of this multi-normalisation process 

is the recognition performance obtained when no 
knowledge of the noise statistics exists. As a robust 
extraction features, the suggested method seems to be 
superior to the most used nowadays. Additionally, for 
white noise and at SNR greater than or equal to 5 dB it 
presents better performance than a standard noise 
compensation technique. In fact for high Signal to Noise 
Ratios the spectral normalisation where the distortion is 
ignored outperforms the Markov model composition 
where the distortion is learned from a small amount of 
isolated noise samples and incorporated into the system. If 
isolated noise samples exist, the noise can be estimated 
and this knowledge can be incorporated into the system, 
and consequently increasing the recogniser performance.  
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