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Abstract

The hazard rate is a statistical indicator commonly used in lifetime analysis. The
Birnbaum-Saunders (BS) model is a life distribution originated from a problem per-
taining to material fatigue that has been applied to diverse fields. The BS model
relates the total time until failure to some type of cumulative damage that is nor-
mally distributed. The generalized BS (GBS) distribution is a class of positively
skewed models with lighter and heavier tails than the BS distribution. Particular
cases of GBS distributions are the BS and BS-Student-¢ (BS-t) models. In this pa-
per, we discuss shape and change point analyses for the hazard rate of the BS-t
distribution. In addition, we evaluate the performance of the maximum likelihood
and moment estimators of this change point using Monte Carlo methods. We also
present an application with a real life data set useful for survival analysis, which
shows the convenience of knowing such instant of change for establishing a reduction
in the dose and, as a consequence, in the cost of the treatment.
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1 Introduction

A useful indicator for lifetime analysis is the hazard or failure rate (FR). The FR
can be increasing (IFR class), decreasing (DFR class) or constant. However, there are
distributions that have a non-monotone FR. In that case, an important value for the
FR is its change point. Within the class of distributions with a non-monotone FR, we
can identify bathtub (BT) or inverse bathtub (IBT) behaviors. Particularly, for the class
of IBT-shaped FRs, the FR can be initially increasing until its change point and then
decreasing to zero or it becomes stabilized at a positive constant (not at zero). For this
reason, for distributional families with a non-monotone FR, its change point and its

limiting behavior are aspects important and useful to study.
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It is well-known that inference upon normality is vulnerable to atypical data. In lifetime
data, in addition to the presence of atypical cases, the distribution of this type of data
is often skewed. For more details about lifetime analysis, the reader can refer to Lawless

(2002), Marshall and Olkin (2007), and Saunders (2007).

The Birnbaum-Saunders (BS) life distribution has recently received a considerable
attention. A comprehensive treatment on this distribution can be found in Birnbaum and
Saunders (1969), Johnson et al. (1995, pp. 651-662) and Athayde et al. (2012). The BS
distribution has been applied in engineering and in several other areas, such as business,
environment, industry, medicine, psychology and toxicology; see Balakrishnan et al. (2007,
2009a), Leiva et al. (2007, 2008b, 2009, 2010a,b, 2011a,b), Cysneiros et al. (2008), Barros
et al. (2008), Guiraud (2009), Bhatti (2010), Kotz et al. (2010), Cordeiro and Lemonte
(2011), Vilca et al. (2010, 2011), Vanegas et al. (2012), Cancho et al. (2012) and Paula
et al. (2012). Studies on the BS FR can be found in Kundu et al. (2008) and Bebbington
et al. (2008). In spite of the interest on the BS distribution, it also presents parameter
estimates that are sensitive to atypical data.

Diaz-Garcia and Leiva (2005) generalized the BS distribution to obtain a major degree
of flexibility essentially in the kurtosis; see also Vilca and Leiva (2006), Sanhueza et al.
(2008), Barros et al. (2009) and Balakrishnan et al. (2009b) for some further discussions
in this direction. The generalized BS (GBS) family has as particular cases the BS-classic
and BS-Student-t distributions. The BS-t distribution can be considered in place of the
BS distribution to produce parameter estimates that are less sensitive to atypical data;
see Leiva et al. (2008a), Barros et al. (2008) and Paula et al. (2012). Once the param-
eters of the BS-t distribution are estimated, we can use the invariance property of the
maximum likelihood (ML) estimators for determining the BS-t FR and its change point.
Alternatively, the moment estimation method can also be used; see Leiva et al. (2008a,b).

The main aims of this work are (i) to present a mathematical study of the shape and
change point of the BS-t FR; (ii) to computationally evaluate the performance of the ML
and moment estimators of this FR using Monte Carlo methods; and (iii) to carry out a
real lifetime data analysis.

The paper proceeds as follows. Section 2 contains a background about BS and BS-t
distributions. Section 3 presents a study of the shape of the BS-t FR following the lines
of the works by Kundu et al. (2008) and Bebbington et al. (2008). Section 4 describes
the numerical part of this work. This part includes a simulation study on the ML and
moment estimates of the change point of the BS-¢ FR and an illustration with real life
data. Finally, some concluding remarks are made in Section 5.

2 Preliminary details on BS and BS-¢ distributions

If a random variable (RV) T follows a BS distribution with shape and scale parameters
a > 0 and § > 0, respectively, the notation T' ~ BS(«, ) is used. Here, (3 is also the
median of the distribution. BS and standard normal RVs are related by

JE- ﬁ] ~N@O,1), (1)

such that W = Z% = [T/ + /T — 2]/a* ~ x*(1). The probability density (PDF) and
cumulative distribution (CDF) functions of T" are fr(t) = ¢(A(t;a, 5)) A'(t; o, 5) and

2
T:ﬁ[ﬂ‘er {“QZ}2+11 ~BS(a,f) and Z =3
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Fr(t) = ®(A(t; a, ), for t > 0, respectively, where ®(-) is the N(0, 1) CDF defined as
D(2) = [7 o(t)dt, with ¢(z) = d®(z)/dz = exp(—2%/2)/V2m, for z € R, being the

corresponding standard normal PDF and

.T a, b é{\f 2} and A/ l’ a, b) dA(xab :ﬁ [{"}f}é+{‘g}

The BS distribution possesses the following properties: ¢T' ~ BS(a, ¢ 3), with ¢ > 0, and
1/T ~ BS(a,1/3). The gth and [1 — ¢]th quantiles of T" are, respectively,

9 2
tng[azq—l_\/m and t_, = g{azq—\/m ,0<g<1, (3

where z, is the N(0, 1) gth quantile and t, = F;'(q), with F;'(-) being the inverse CDF
of T.

Similarly, if a RV T follows a BS-t distribution with shape parameters a > 0 and v > 0
(v is also known as degrees of freedom), and scale parameter § > 0, then we use the
notation 7' ~ BS-t(a, B; ). In this case, the RVs T' and Z are related as

ng{ozZ—i-\/a?ZZ—i—erNBS—t(a,ﬁ;y) and Z:i{\/?—\/g ~ t(v)

} @)

so that now W = 72 = [T/ + 3/T — 2]/a* ~ F(1,v). Hence, the PDF and CDF of
T are fT(t) V) = ¢t< (t 75) )A,<t Oé,ﬁ) and FT<t V) - q)t<A(t,O{,ﬁ),V), for ¢ > 07
respectively, where ®;(-; ) is the Student-t CDF defined by

v+1

(;,;I/)], with ¢ (z;v) = dq)td(j” = \;L;Elg) [1—1—%}_7, (5)

Dy(z;v) = % {1 +122in
for z € R and v > 0, with ¢(-;v) denoting the Student-t PDF, I,(a,b) = [y t* 1 —
t]P=1dt/ [y t*71[1 — ¢]>~' dt being the incomplete beta function ratio and A(-;a, 3) given
as in (2). The BS-t distribution has the same properties as the BS distribution, whereas
the ¢th and [1 — ¢|th quantiles of T are as in (3), where now z, is the ¢(v) ¢th quantile.

3 Shape analysis of the BS-t hazard rate

The FR is a useful indicator for diverse practical applications. In addition. the FR allows
us to characterize the behavior of statistical distributions. A misspecification of the FR
could have serious consequences in the estimation procedure; see, e.g., Bhatti (2010). The
FR of a RV T is given by hy(t) = fr(t)/[1 — Fr(t)], for t > 0 and 0 < Fr(t) < 1, where
fr(-) and Fr(-) are the PDF and CDF of T', respectively.

3.1 TTT curve

The FR of a RV T' can be characterized by the scaled total time on test (TTT) function

given by Wr(u) = Hyp*(u)/Hp* (1), for 0 < u < 1, where Hy ' (u) = fOFTl(u)[l — Fr(y)] dy,
with F'(-) being again the inverse CDF of T. Now, Wy(-) can be empirically approxi-
mated allowing to construct the empirical scaled TTT curve by plotting the consecutive
points [k/n, W,(k/n)], where W,,(k/n) = S5 Tiy+n—k] Ty ) Sy Ty, for k =0,

with T(; being the corresponding ith order statlstlc By means of the empirical scaled TTT
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curve, we can detect the type of FR that the lifetime data have and, as a consequence, the
type of distribution that would be suitable to model the data with. We can observe from
Figure 1 different theoretical shapes for the scaled TTT curve; for more details about the
TTT method, see Aarset (1987). Thus, a TTT curve that is concave (or convex) corre-
sponds to the IFR (or DRF) class. A concave (or convex) and then convex (or concave)
shape for the TTT curve corresponds to a IBT (or BT) FR. A TTT plot expressed by a
straight line is an indication that the exponential distribution must be used.

1.0

WT (u)

0.0

Fig. 1. Scaled TTT curves for distributions with the indicated FR shape.

3.2 BS-t hazard rate

The gamma and Weibull distributions belong to both IFR and DFR classes. The log-
normal (LN) distribution has a non-monotone FR, because it is initially increasing until
its change point and then decreasing to zero. For the BS FR, we have: (i) it behaves simi-
larly to the LN FR, but it decreases until it becomes stabilized at a positive constant (not
at zero); see Nelson (1990, p. 70); (ii) its behavior is similar to that of the inverse Gaussian
FR; see Chhikara and Folks (1989, p. 153); and (iii) its average is nearly non-decreasing
(close to the IFRA class); see Birnbaum and Saunders (1969). Fatigue data have usually
a unimodal FR, which also occurs with environmental, financial duration and survival
data; see Kundu et al. (2008), Bhatti (2010) and Vilca et al. (2010);

Let T~ BS(a, 3). Then, hr(t) = ¢(A(t;a, ) A'(t; o, B)/P(—A(t; «, 3)), for t > 0.
It is possible to note that hr(t) is unimodal for any «, being increasing for ¢ < t. and
decreasing for ¢ > t., with ¢, denoting its change point. In addition, hr(t) approaches
1/[2a%p] as t — oo. Moreover, hr(t) tends to be increasing as o — 0; see Chang and
Tang (1993). Thus, it is of interest to know from which value of a the FR of T is nearly
IFR. Although it is not possible to obtain an analytical result to answer it, a numerical
study indicates that the BS distribution is close to the IFR family when o < 0.41 and
0 < t < 80, which implies an IFRA class. Also, Birnbaum and Saunders (1969) showed
by numerical computations that the average FR of T' decreases slowly for t < 1.64.

Let T ~ BS-t(a, B;v). Then, hp(t;v) = ¢(A(t; o, B);v) A'(t; a0, B) /(= A(t; o, B); 1),
for t > 0. Thus, we have: (R1) 121(1) hr(t;v) = %iixéfT(t; v) and equals (i) oo if v = 1,(ii)
o?/[28] if v = 2, and (iii) 0 if v > 2; and (R2) let n(t) = — f-(t)/ fr(t) be Glaser’s function
associated with a PDF fr(-) of a positive RV T such that this PDF does not vanish
anywhere on (0,00). Then, if fr(-) is twice differentiable with corresponding FR hr(-)
and 7(t) is IBT, hr(t;v) has either IBT or DFR shapes; see Glaser (1980). In addition,
if limg o hr(t;v) = 0 and n(t) is IBT, then hp(-) is IBT. Because lim; o hr(t;v) = 0 iff
v > 2, (R2) may be helpful to prove that hp(-;v) is IBT. In the case v = 2, it may be
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useful to prove that hr(+;v) is IBT or decreasing. However, in the case v = 1, as the FR
has two turning points (for some values of ), Glaser’s result is not helpful.

As (0 is a scale parameter, from now on, we take § = 1, without loss of generality. Let
hr(t;v) be the BS-t FR. Then, for v = 1, v = 2 and v > 2, we have: (R3) hr(t;v) is
decreasing or with two turning points, for a > 0.8859, and decreasing for a > 1.5964;
(R4) hp(t;v) is decreasing or IBT for a > 0.4524, and decreasing for a > 1.2649; and
(R5) hr(t; v) has an IBT shape for o? > 1/v.

In order to prove these results, we use Descartes’ rule of signs for a polynomial with
real coefficients and with terms written in descending powers of the variable. The rule
states that the number of positive roots is either equal to the number of variations in sign
in the coefficients, or it is less than this number by an even integer. Next, we study the
cases v =1, v =2, and v > 2.

Case 1: v = 1. From Figure 2 (left), observe that the FR decreases (i.e., it is DFR) from
oo (when t = 0) to zero (when ¢ — oo) or has two turning points, according to the value
of a (big values of « correspond to the DFR case). These turning points are solutions of
t in the equation dhy(t;1)/dt = 0 given by

t—1\ _ =« a\/f[t+1]2
arctan (r\/z) = 3 = 3t3+[a2+3]t2+[3a2—T]t+1" (6)

Taking derivatives in (6) and letting b = a? > 0, we obtain
P(t) = 3t04[6-4+20)t°+[—21+8b+b%]t* +[12—20b+6b7 |t +[1—8b-+3b% 12 +[—2+2b]t+1. (7)

We analyze the coefficients in (7), with b > 0, in Table 1. Then, the signs of the successive
coefficients of this polynomial (from degree 6 to 0, in this order) are given in Table 2.

We conclude that: (i) for a > 0.8859 (b > [5 — /7]/3 = 0.7848), the BS-t FR is
DFR or has two turning points; (i) for o > 1.5964 (b > [5 + 1/7]/3 = 2.5486), the BS-t
FR is DFR. Note however that, if & < 0.8859, there may still exist only two positive
roots. For example, if « = 0.2 < 0.8859, we have only two positive roots, although the
maximum number of positive roots is four (by Descartes’s rule). In fact, the roots are

—3.9851, —0.4536, 0.2247 — 0.38601, 0.2247 + 0.3860¢, 0.7848, 1.1778.

Table 1
Analysis of coefficients of the polynomial in (7).

Degree Coefficient Positive roots Negative sign for Positive sign for
6 3 - - allb >0
5 6+ 2b - - all b >0
4 —21+8b+b> b= —4++/37=20827 b < 2.0827 b > 2.0827
3 12 — 20b + 6b? b= %[5 + /7] 0.7848 < b < 2.5486 b ¢]0.7848,2.5486]
2 1 — 8b+ 3b? b= 3[4+ V13 0.1315 < b < 2.5352 b ¢]0.1315,2.5352]
1 —242b b=1 b<1 b>1
0 1 - - all b >0

Case 2: v = 2. From Figure 2 (center), we can graphically check DFR or IBT shapes
(smaller values of « correspond to the IBT case). First, we prove that the BS-t FR is
DFR if a? > 8/5. (Note that this condition is also equivalent to a decreasing FR in a
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Table 2
Signs of successive coefficients of the polynomial in (7).

Values for b Signs of coefficients Number of changes
b > 2.5486 +++++++ 0
2.5352 < b < 2.5486 +++—+++ 2
2.0827 < b < 2.5352 +++—-——++ 2
1 <b<2.0827 ++-———++ 2
0.7848 < b < 1 ++—-————+ 2
0.1315 < b < 0.7848 ++—-—+—-——+ 4
b < 0.1315 ++—-—++-+ 4
neighborhood of zero.) In this case
ho(t;2) = allaal .
r(t:2) 20264+ {t—1}2]3 —[t—1][2a2t+{t—1}2]
Now, letting y = 20t + [t — 1], we have dhp(t;2)/dt = 0 iff
i 2 _ 3 2,2 2 2
yrly — 3{t + 1}{a" +t — 1}] = —[2t° + 2a°t* + 4a’t — 6t — 2a° + 4]. (8)

Taking squares on both sides of (8) (note that additional solutions may then be intro-
duced) and rearranging, we get (letting once again b = a?)

P(t) = 4>+ [5b+8]t* 4 [20> +20b— 16]t> + [12b* — 2b— 16]t> 4 [18b* — 44b+ 28]t +5b—8. (9)

Thus, the turning points of the BS-t FR are the positive roots of the polynomial in (9)
(not necessarily all). We can then easily prove that if b > 8/5, there are no positive roots
while if b < 8/5, there can exist one or three roots. (Note that b = 8/5 corresponds
to @ = /1.6 = 1.265.) The coefficients of the polynomial in (9) (which are quadratic
functions in b, for b > 0), its roots and its respective signs are given in Table 3. Again,
following Descartes’ rule, signs of the coefficients of this polynomial are given in Table 4.

Table 3
Analysis of coefficients of the polynomial in (9).

Degree Coefficient Positive roots for Negative sign for Positive sign for
5 4 - - allb >0
4 50+ 8 - - allb >0
3 2[b% + 10b — 8] b= —5++/33 =0.7446 0<b<0.745 b > 0.745
2 2066 + —b—8] b=[1++193]/12=1.241 0<b< 1.241 b>1.241
1 2[9b? — 22b + 14] no real roots - allb >0
0 5b—8 b=2 b<? b> %

If b > 1.6, there are no positive roots (DFR case); if 1.24 < b < 1.6, there is exactly one
positive root (IBT case); and, if b < 1.24, there are one or three positive roots. We can
see numerically that if b < 0.05, there are indeed three positive roots (but the FR is IBT)
while if b > 0.06, there is only one positive root. However, in the case of three roots, two
of them may not be solutions to the first problem. For example, if « = +/0.05, we have
three positive roots, say 0.5230, 0.6908 and 1.1198, but only the latter one is a solution
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Table 4
Signs of successive coefficients of the polynomial in (9).

Values for b Signs of coefficients Number of changes
0<b<0.745 ++-—+- 3
0.745 < b < 1.241 +++—+- 3
1.241 <b< 1.6 +++++- 1
b>1.6 + 4+ 4+ ++ 0

to the problem. Now, using Glaser’s function, we have n(t) = [3{t* — 1}]/[2t{2a°t + (t —
1)2}] + [t + 3]/[2t{t + 1}] and thus 7/(¢) = 0 iff ¢ is a (positive) root of the polynomial

P(t) = 415 4 [4b + 8]t° + [4b? + 16b — 24]t* + [24b% — 44b + 8]t + [12b% — 24b + 4]12, (10)

where again b = o?. Analyzing the coefficients of the polynomial in (10), with b > 0, in a
similar way as before, we conclude that the coefficients of this polynomial have only one
variation in sign for 0.2047 = 11/12 — /73/12 < b < 1 ++/6/3 = 1.8165.

According to Glaser’s result, it follows that the BS-¢t FR with v = 2 is DFR or IBT
if 0.2047 < b < 1.8165 (0.4524 < v < 1.3485). Combining the results obtained so far, we
can finally state that the BS-t FR is DFR if b > 1.6, and it is DFR or IBT if b > 0.2047.

Case 3: v > 2. From Figure 2 (right), we suspect graphically that the BS-¢ FR is IBT
for all @ > 0 and v > 2, and, as « increases and v is fixed, its change point approaches
zero. In this case, we have lim; .o hp(t;v) = 0, and Glaser’s theorem applies, meaning
that, if n(t) = —f(t)/fr(t) is IBT, the BS-t FR is IBT too. Now, we have n(t) =
[v+1][t2 = 1]/[2{va?t+ (t —1)?}t] + [t + 3] /[2{t + 1}t] and then 7/(t) = 0 iff ¢ is a (positive)
root of the polynomial (letting again b = a?)

P(t)=[v+ 21° + [2vb + 2v + 4]t° + [v*b” + 8bv — 3v — 18| ¢*
+ [~18vb — 20 + 61" — v + 16] #* (11)
+ [—4vb — 4% + 30707 + 3v — 2] 2 + [4vb — 2%b + 20 — 4|t + 2 — v,

Note that the polynomial in (11) (with b > 0 and v > 2) may have three positive roots.
For example, for b = 0.01 and v = 3, the roots are 0.2841, 0.8096 and 1.1591. In such a
case, Glaser’s result is not useful (of course, the FR may still be IBT). However, we can
prove that if b > 1/v, then there is only one positive root and thus the BS-t FR is IBT.
For v > 2 and b > 0, we analyze the coefficients of the polynomial in (11) in Table 5.

Table 5
Analysis of coefficients of the polynomial in (11).

Degree Coefficient Positive roots for Positive sign for
6 v+ 2 - all b >0
5 2vb+2v + 4 - allb >0
4 2b% 4+ 8y — 3v — 18 b:—%—kimzm b>ry
3 —18wb— 2+ 607 — A+ 16 b=+ V=15 + 420+ 12 b>r3orb<r}
2 —Avb — 4+ 3 +3v -2 b=HE L+ LVI0-v+42 b>ryorb<r}
1 dvb — 20°b+ 20 — 4 b:%or v=2 b<%:7°1
0 2—v all b >0 -




Let 1 = 1/v, ry = —4/v+ /34 4+ 3v/v and, for i = 2,3, let r; denote the positive root
of the coefficient of ith degree with a plus sign in its formula, and r} the positive root
with a minus sign. We then have, for v > 3, 1} < rj < ry <ry < rs < ry (the proof is
straightforward but tedious). Then, we conclude there is only one change of sign in the
four situations (signs for the coefficients of degrees 6, 5, ..., 1, in this same order) shown
in Table 6, corresponding to the region b > r; = 1/v, and this completes the proof.

bl — a=025 i — a=025 bl

h()

0.0 0.5 1.0 15 2.0 0.0 05 10 15 20 0.0 0.5 1.0 15 20

Fig. 2. BS-t FR plots with v =1 (left), v = 2 (center) and v = 3 (right).
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Fig. 3. Shapes of the BS-t FR.

Table 6
Signs of the coefficients of the polynomial in (11).
Values for b Signs of coefficients Region
r<b<ry ++-—— between r1 and 74
rg <b<rs ++4+—-— between r4 and r3
r3 < b<r9 ++++— between rg and ro
b>ro +++++- above o

Letting v — oo, then in Case 3, we get o > 0. This is in agreement with the result for
the BS distribution (see Kundu et al., 2008; Bebbington et al., 2008), which states that
this distribution is IBT for all o > 0.

4 Numerical application

In this section, we carry out a numerical evaluation of the ML and moment estimates of
the change point of the BS-¢ FR. In addition, we analyze a real lifetime data set, estimate
the change point and suggest the use of this indicator for survival analysis. Computational
codes used for carrying out the simulation study and the practical application are available
from the authors upon request.

4.1 Simulation study

Table 7 displays the ML and moment estimates of the change point (¢.) of the BS-
t FR. These values were obtained by using Monte Carlo simulations for the choices of
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n = 10,15,25,50 and 3 = 1. For every fixed n and for each v (v = 4,8, 15, 20), values of «
were estimated based on 1000 replications of n pseudo-random numbers generated from
the BS-t distribution. For each of these 1000 estimated values of «, the change point was
calculated, by using a Newton-type method. For these lists of change points, the means
and variances were calculated. By using the referred methods, t. point for each triplet
of n, a and v is presented. Table 7 shows that, when n increases, the bias significantly
decreases (in absolute value) for both estimation methods, as expected. The same occurs
with the variance. It is also of interest to point out that when n is small (n = 10, 15), the
greater variability corresponds to o = 1, although it fades out as v increases. Also, when
n is moderate (n = 25,50), a greater variability is observed for the data with a = 0.75.
Both of the estimation methods provide similar results.

4.2 Real life example

Here, we present an illustration with a data set analyzed earlier by Kundu et al. (2008)
in the same context of the present article, but for the BS FR. The data represent the
survival times of guinea pigs injected with different doses of tubercle bacilli. It is known
that guinea pigs have high susceptibility to human tuberculosis. Here, we are primarily
concerned with the animals in the same cage that were under the same regimen. The
regimen number is the common logarithm of the number of bacillary units in 0.5ml of
challenge solution; i.e., regimen 6.6 corresponds to 4.0 x 106 bacillary units per 0.5 ml
(log(4.0 x 106) = 6.6). For this regimen, 72 observations related to survival times (in
days) are as follows: 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56,
57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85,
87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258,
263, 297, 341, 341, 376. In the sequel, these data are called survpigé6.

4.2.1 FEzxploratory data analysis

Table 8 provides a descriptive summary of survpig66. Figure 8 presents (left) frequency
plot by kernel estimation, (center) usual boxplot and adjusted boxplot for asymmetric data
and (right) TTT plot from the survival pig data. We first conduct an exploratory data
analysis (EDA) considering the following aspects. Firstly, from the results presented in
Table 8 and Figure 8 (left), a positively skewed distribution —coefficient of skewness (CS)
= 1.76— with non-negative support for survpig66 seems to be appropriate. However, a
high level of kurtosis —coefficient of kurtosis (CK) = 5.46— could be an indication of a
positively skewed distribution with heavy-tails. Secondly, from Figure 8 (center), appar-
ently, some atypical data are detected by the boxplot (constructed for symmetric data).
However, the adjusted boxplot (constructed for asymmetric data) shown in Figure 8 (cen-
ter) does not detect atypical data on the right tail. The function adjbox of an R package
(www.R-project.org) called robustbase allows us to obtain the adjusted boxplot. Thus,
the atypical data that we detect for survpigé6 should not have a great influence on the
ML estimates, which is analyzed in Subsection 4.2.2. Thirdly, from Figure 8 (right), we
observe the empirical scaled TTT plot of survpig66 data. This figure indicates that a
distribution with IBT-shaped FR seems to be appropriate for describing the data; see
theoretical T'TT plot in Figure 1. Therefore, based on the mentioned three points of the
EDA, we realize a BS-t distribution could be a good candidate for modeling survpig66,
because it takes into account the degrees of skewness, kurtosis and variability —by the
coefficient of variation (CV)— and of the FR shape of these data.
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Table 7
Mean and variance of the moment and ML estimates of ¢. for the indicated values.

n v o te Moment estimates ML estimates
Mean Variance Mean Variance

10 4 075 1.000001 1.070684  0.052519  0.983860  0.075444
1.00 0.577352 0.833709 0.115734  0.694121  0.120117
1.50 0.134313 0.420894 0.113441 0.310461  0.089017
2.00 0.059098 0.213450 0.055438 0.130884  0.025554

8 0.75 1.047131 1.138466 0.071230 1.059310 0.098241
1.00 0.544877 0.789312 0.133016  0.705576  0.130031
1.50 0.163766  0.344039  0.085710  0.297796  0.065949
2.00 0.079641 0.174405 0.032410 0.144315 0.020587

15 0.75 1.091676  1.267144 0.040012  1.073827  0.097906
1.00 0.530447 0.723677  0.133682  0.682571  0.141926
1.50  0.174472  0.330320 0.073934  0.290969  0.050356
2.00 0.087987 0.160457  0.024863  0.153687  0.025857

20 0.75 1.110845 1.144006 0.067805 1.301051 0.010154
1.00 0.525460 0.670731 0.071870 0.664431  0.098723
1.50 0.177267 0.332596  0.078415 0.315835 0.060781
2.00 0.090252 0.158402 0.019418 0.157837  0.027402

15 4 0.75 1.000001  1.051977  0.056050  0.990238  0.053522
1.00 0.577352 0.781092 0.107528  0.655091  0.099230
1.50 0.134313  0.354774 0.081898  0.275114  0.052570
2.00  0.059098  0.148404 0.025815 0.100890  0.012913

8 0.75 1.047131 1.088476 0.071416 1.053931  0.072337
1.00 0.544877 0.735248 0.105791  0.693440  0.104247
1.50 0.163766  0.274509  0.035714  0.244721  0.031524
2.00 0.079641  0.132827 0.009716  0.115400 0.006828

15 0.75 1.091676 1.070956  0.092663 1.046344 0.106608
1.00 0.530447 0.700284  0.096647  0.724091  0.122453
1.50 0.174472  0.258811 0.029136  0.250958  0.026027
2.00 0.087987  0.127404  0.007021  0.118265  0.005095

20 0.75 1.110845  1.145593  0.005903  1.304901  0.024281
1.00 0.525460 0.483217 0.035508 0.610947  0.087167
1.50 0.177267 0.269074 0.029891  0.255344  0.028864
2.00 0.090252 0.131807 0.006936  0.124859  0.007232

25 4 075 1.000001 1.042142 0.039759 0.990975 0.035333
1.00 0.577352 0.719395 0.086673  0.634000  0.072789
1.50 0.134313 0.264931 0.038043  0.200814  0.021566
2.00 0.059098 0.107761  0.006961  0.080733  0.003557

8 0.75 1.047131 1.081743  0.050367  1.051924  0.045558
1.00 0.544877 0.681024 0.072243  0.637277  0.071069
1.50 0.163766  0.229372  0.017052  0.204343  0.011292
2.00 0.079641  0.102987  0.002740 0.094846  0.002186

15 0.75 1.091676 1.064344 0.065308 1.136193  0.063419
1.00 0.530447 0.630924 0.062990 0.636263  0.072953
1.50 0.174472  0.224319 0.011978  0.215515  0.009401
2.00 0.087987  0.111575 0.002354 0.107263  0.002371

20  0.75 1.110845 1.102231 0.097013 1.119361 0.073856
1.00 0.525460 0.648222  0.078091  0.644591  0.068886
1.50 0.177267  0.219861  0.010427  0.218629  0.010107
2.00 0.090252  0.110894  0.002060 0.108134  0.001884

50 4 075 1.000001 1.012182 0.035125 0.992639  0.018991
1.00 0.577352 0.683192 0.056699  0.607537  0.041313
1.50 0.134313 0.202366  0.014469  0.162919  0.006412
2.00 0.059098 0.081926  0.001835 0.066743  0.000656

8 0.75 1.047131 1.056333 0.030301  1.045248 0.026564
1.00 0.544877 0.619101 0.039423  0.588857  0.037852
1.50 0.163766  0.195520 0.005237  0.186012  0.004367
2.00 0.079641 0.092538 0.000842  0.088941  0.008000

15 0.75 1.091676  1.043809 0.042943 1.153798  0.020143
1.00 0.530447  0.594042 0.035015 0.573149  0.032401
1.50 0.174472  0.195229 0.003716  0.195528  0.003568
2.00 0.087987 0.098666  0.000753  0.095285  0.000670

20  0.75 1.110845 1.162758  0.029497 1.172745 0.035136
1.00 0.525460 0.554244 0.012140 0.595501  0.034005
1.50 0.177267  0.197159  0.003449  0.195264  0.002980
2.00  0.090252 0.098389  0.000632  0.098278  0.000647
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Table 8
Descriptive statistics for survpigé6 data.

Median Mean St. Dev. (A CS CK Range Min. Max. n

70.00  99.82 81.12  81.27% 1.76 546 364 12 376 72
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Fig. 4. (Left) PDF plot by using kernel estimation, (center) boxplot and adjusted boxplot and
(right) TTT plot for survpigé6 data.

4.2.2  Estimation and checking model

Based on survpig66, we obtain the ML estimates of @ and (8 and the optimal value
of v for the BS-t distribution, which are presented in Table 9. Figure 5 displays values of
the BS-t log-likelihood function against values of the parameter v in the indicated range
based on the analyzed survival pig data. This curve shows that the log-likelihood function
is maximized at v = 5 for survpig66.

-392

BS-t log-likelihood
-396

-400
1

Fig. 5. Log-likelihood function of the BS-¢ distribution against v for survpig66 data.
Next, we carry out a brief diagnostic study based on a plot of the Mahalanobis distance
(MD), which is obtained from expressions in (1) and (4) for the BS and BS-¢ distributions,
respectively. Figure 6 displays the MD for survpig66. From this figure, we identify five
cases as potentially influential by using the BS distribution, which correspond to the cases
#1, #2, #70, #71 #72, and just three cases by using the BS-¢ distribution, which are

#1, #2 and #72.
The potential influence detected by the MD is analyzed by the relative change (RC)

of each parameter estimate, which is computed by dropping the influential cases and
reestimating the distribution parameters by means of the expression

(51*(91(1')

RC(él)(i) = x 100, 0y =«a,forv, i=1,...,n,

where él(i) denotes the ML estimate of 8, after the ith observation is removed. We conduct
a RC study for survpig66 and the obtained results are given in Table 9. Based on the
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Fig. 6. MD plot based on the BS (left) and BS-¢ (right) models for survpig66.

RCs in this table, we do not detect a very pronounced influence of these observations on
the ML estimates of a and 3. A deeper influence study should be carried out, but we do
not focus our attention on such an issue since it is beyond the scope of this work.

Table 9
ML estimates and RC (in %) for the indicated parameter, dropped case (DC) and distribution
using survpig66 data.

BS BS-¢
DC & RC 3 RC &  RC ¢ RC v RC
- 0760 - 77535 - 0609 - 75588 - 5 -
1 0721 519 80.410 3.71  0.631 3.76 78.076 3.29 8 60.00
2 0.733 354 79.755 2.86  0.589 3.15 76.695 1.46 5 00.00

70 0.740 2.60 75.735 2.32 - - - -
71 0.740 2.60 75.735 2.32 - - - -
72 0.736 3.16 75.518 2.60 0.560 7.99 73.748 2.43 4 20.00

Figure 7(left) provides a probability plot with simulated envelope (bands) for the BS-
t distribution using the survpig66 data. In this figure, we also display the estimated
BS-t(5) PDF (center) and the empirical CDF with estimated BS-t(5) CDF (right). In
these last two plots, we use the invariance property of the ML estimators for obtaining
the estimated BS-#(5) PDF and CDF. All of these graphical plots confirm the very good
agreement between the BS-£(5) model and survpig66 data.
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Fig. 7. Probability plot with envelope based on the BS-t distribution for survpig66 data.

4.2.3  FEstimation of the BS-t FR and of its change point

Once we find a suitable model to describe survpig66 data and estimated the model
parameters, we again use the invariance property of the ML estimators for determining
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the BS-t FR and its change point. Let T' ~ BS-t(a, B;v = 5). Then, the FR of T' is

slegin (5482 [} A ) 7]

15
V457r0‘5l1+1 2452 251 (2’2)1

t2+p2-281+5a231

, >0, (12)

where I,(-,-) is as given in (5). As mentioned earlier, the change point (¢.) of this FR
is an important value in lifetime analyses when the underlying distribution does not
belong to a family with monotone FR (IFR and DFR classes), like in the case of BS
distributions. Thus, when ¢. is known, we can obtain the inflection point of the FR. For
T ~ BS-t(a, B;v = 5), the change point is computed by using the ML estimates of & and 3
as t. = 90.1533 days. This value is shown in Figure 8, where the BS-t FR has been plotted
using the mentioned invariance property. The value of the change point of the FR can
be a useful value for practitioners. Specifically, for the problem under consideration, the
value £, = 90.1533 indicates that guinea pigs conducted by regimen 6.6 have an increasing
estimated hazard, reaching its maximum at 90.1533 days, at which moment the hazard
begins to decrease to zero, according to result (R1). To know this instant of the survival
time can be useful for establishing a reduction in the dose of the medicine and, as a
consequence, in the cost of the treatment.

0.015
1

0.010
1
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0.005
1

0.000
1

T T T T T
0 500 1000 1500 2000

Survival time

Fig. 8. Estimated curve of the BS-t FR with v =5

5 Concluding remarks and future work

In this paper, we have carried out a shape analysis of the hazard rate of the Birnbaum-
Saunders-Student-t distribution. Because this rate is non-monotone, its change point is
a useful value for determining where the hazard begins to decrease. Such a change point
can be obtained as a solution of a non-linear equation. We have provided an approxi-
mation to this change point and also shown that such an approximation works very well
whenever the shape parameter is not too small. In addition, we have evaluated the per-
formance of the maximum likelihood and moment estimates of this change point through
Monte Carlo methods. We have analyzed survival times of guinea pigs and shown that the
Birnbaum-Saunders-Student-t distribution is quite suitable for modeling these data and
the mentioned change point, allowing to illustrate some elements of the present study.
To estimate this change point in terms of the survival time can be useful for establish-
ing a reduction in the dose and, consequently, to have a smaller cost of the treatment.
The authors are considering to carry out studies in this same line for cases of generalized
Birnbaum-Saunders distributions with lighter tails than the classic Birnbaum-Saunders
distribution.
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