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Abstract

This paper presents a formalism for defining higher-order systems based on the notion of graph transfor-
mation (by rewriting or interaction). The syntax is inspired by the Combinatory Reduction Systems of
Klop. The rewrite rules can be used to define first-order systems, such as graph or term-graph rewriting
systems, Lafont’s interaction nets, the interaction systems of Asperti and Laneve, the non-deterministic nets
of Alexiev, or a process calculus. They can also be used to specify higher-order systems such as hierarchical
graphs and proof nets of Linear Logic, or to specify the operational semantics of graph-based languages.
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1 Introduction

Rule-based transformations of graphs have been used in many areas of computer

science, including the specification and development of software systems, the defini-

tion of visual languages, the implementation of programming languages (see [5,25]).

The notion of interaction, which can be seen as a particular kind of graph trans-

formation, has been used to model concurrent systems [23], to give a semantics to

(linear) logic proofs [11], as a programming discipline [17], and as an implementation

technique for functional languages [3]. In each case, a syntax and an operational

semantics (a calculus) has been defined, often independently.
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In this paper we present a higher-order language that can serve to specify in-

teraction systems as well as graph and term-graph rewriting systems. The syntax

is inspired by the Combinatory Reduction Systems (CRSs) of Klop [16], and can

be seen as a generalization of the equational notation for term-graph rewriting [2].

We demonstrate its use by giving several examples of application, including the

definition of hierarchical graphs (where it is possible to abstract subgraphs, see [4]

for more details), a first-order interaction language together with its operational

semantics (all in the same language), and the specification of higher-order program

transformations and optimization schemes. The latter will be defined for Lafont’s

interaction nets [17].

¿From a practical point of view, the higher-order syntax can be used as a tool in

the design and implementation of graphical languages: it allows us to express not

only graphical programs but also their operational semantics (including evaluation

strategies and optimization schemes), type systems, and transformations used in

the proof of meta-theoretical properties of programs. An instance of the latter

kind of transformation is the packing operator defined by Lafont [19] to prove the

universality of the interaction combinators (a specific system of interaction nets

in which every interaction net can be encoded). Other packing and unpacking

operations have been described in [9], and they can all be formally defined using

higher-order rules in our system.

Another aspect where the higher-order syntax presents advantages is for struc-

turing and modularizing programs defined by graphs (or nets). Hierarchical defini-

tions are very useful in the framework of graph rewriting [4], and the same techniques

can be exported to interaction nets using the higher-order syntax. In particular,

the operation that combines two interaction nets to produce a new net where one or

more edges have been connected together (the analogous of application in functional

programming) is currently a meta-operation. We show how to internalize it using

the higher-order language, and give examples where this technique is used to write

modular programs. Once we have the ability to model the combination of nets, it

is straightforward to express a notion of higher-order interaction nets, where a net

depends on another net. As with functional programming, this technique can be

used to write recursive nets: nets which depend on themselves.

Related Work. Our syntax is inspired by CRSs, but similar results can be ob-

tained by using other higher-order systems, such as Nipkow’s Higher-order Rewrite

Systems [22], or Khasidashvili’s Expression Reduction Systems [13]. The three for-

malisms are closely related [26]. CRSs have been used in previous work on interac-

tion nets: Laneve [20] defined Interaction Systems as CRSs, and in [7] a translation

function is given from interaction nets to CRSs.

Van Raamsdonk [27] defines a class of higher-order rewrite systems with a gen-

eral notion of substitution and shows the encoding of several languages, including

Interaction Systems and Proof Nets of linear logic. Our goal is more specific: our

higher-order textual notation has been designed to represent graph-based transfor-

mations, and therefore the calculus contains specific graph-oriented features. The

notation used to represent graphs in the calculus is a generalization of the equational
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graph rewriting systems studied by Ariola, Klop and Blom (see for instance [2,15]).

Some of the higher-order features defined in this paper could also be defined in

Generalized Interaction Nets [10], by defining an interaction language where agents

can carry nets. However, the higher-order calculus gives a uniform language to

define higher-order agents and higher-order rewrite rules.

Organization. Section 2 briefly reviews CRSs, graph and term-graph rewriting,

and interaction nets. Section 3 introduces the syntax of our higher-order systems,

and Section 4 shows how to represent graph and term-graph rewriting systems,

interaction nets, interaction systems and non-deterministic nets. In Section 5 we

then go on to define different sets of higher-order rules. Section 6 contains a simple

example of application. We conclude the paper in Section 7.

2 Background

Combinatory Reduction Systems. CRSs [16] combine the usual first-order term

rewriting systems with the presence of bound variables as in the λ-calculus. We

recall the basic definitions.

Metaterms over an alphabet Σ are defined by the grammar:

t ::= x | [x]t | f(t1, . . . , tn) | Zn(t1, . . . , tn)

where x denotes a variable, f ∈ Σ is a function symbol of arity n, Zn is a metavari-

able and the binary operator [·]· denotes abstraction. Terms are metaterms that do

not contain metavariables.

A rewrite rule is a pair l → r of closed metaterms, where l has the form

f(s1, . . . , sn), the metavariables that occur in r occur also in l, and the metavari-

ables Zk
i that occur in l occur only in the form Zk

i (x1, . . . , xk), where x1, . . . , xk are

pairwise distinct variables.

The metavariables in metaterms can be thought of as holes that must be instan-

tiated by terms. In other words, rules act as schemes defining a reduction relation

on terms. Formally, to define the rewrite relation we have to consider a notion of

substitution using substitutes and valuations.

An n-ary substitute is an expression of the form λx1 . . . xn.t, where t is a term

and x1, . . . , xn are different variables (n ≥ 0). It can be applied to an n-tuple

s1, . . . , sn of terms, and the result is the term t where x1, . . . , xn are simultaneously

replaced by s1, . . . , sn. A valuation σ is a map that assigns an n-ary substitute to

each n-ary metavariable. This is extended to a mapping from metaterms to terms:

given a valuation σ and a metaterm t, first we replace all metavariables in t by their

images in σ and then we perform the developments of the β-redexes created by this

replacement. When making a substitution, we must take care of bound variables as

usual.

A rewrite step is defined as follows: if l → r is a rewrite rule, σ a valuation, and

C[ ] the usual notion of a context, then C[lσ] → C[rσ].

Interaction Nets. This is a graphical rewriting framework for programming intro-

duced in [17]. Let Σ be a set of agents, each with a fixed arity which is the number of
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its auxiliary ports, and one principal port (depicted by an arrow) where interaction

can take place.

��
��
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� �· · ·
x1 xn

A net is an undirected graph whose vertices are agents in Σ, and whose edges join

different ports in the same or in different agents. A net may be empty, or consist

just of edges without agents. Ports that are not connected to other ports in the net

are called free, and marked with edges that have a free extreme. The interface of a

net is the (ordered) set of free extremes of edges.

Interaction rules are net rewriting rules where the left-hand side consists of

two agents connected on their principal ports (this is called an active pair, written

α �� β), and the right-hand side is an arbitrary net with the only constraint that

it must have the same interface as the left-hand side. There is at most one rule

for each pair of agents. As an example, in Fig. 1 we show Lafont’s interaction

combinators [19].

An interaction step on a net W replaces an active pair (i.e. the occurrence of a

left-hand side of an interaction rule) by the corresponding right-hand side, plugging
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Fig. 1. Interaction Combinators

Graph and Term-Graph Rewriting. We recall the standard definition of graph-

rewriting using edge-labelled hypergraphs. Let L be a label alphabet where each label

has a fixed arity. A hypergraph H over L consists of a finite set VH of nodes, a finite

set EH of hyperedges, a labelling function labH : EH → L and an attachment func-

tion attH : EH → V ∗
H such that for each hyperedge e, |attH(e)| = arity(labH(e)).

We assume that VH and EH are disjoint. A sequence of nodes, called points, may

be designated as the interface of the hypergraph (where it may be glued with other
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hypergraphs).

In the following we simply write graph and edge instead of hypergraph and

hyperedge. Due to space limitations, we give an informal definition, taken from [12],

of a simple kind of graph transformation.

A graph transformation rule P → R consists of a pattern P and a replacement

graph R. A transformation step G =⇒ H using the rule P → R is defined as follows:

• Find a subgraph P ′ of G that is a copy of P (i.e., that matches the left-hand side

of the rule);

• Check that every node in P ′ that is linked to an edge outside P ′ corresponds to

a point of P (this is called the no dangling links condition);

• Remove P ′ from G up to its points, to obtain a context graph C,

• Glue a copy R′ of R to C by identifying the points of P ′ with the corresponding

points of R′, obtaining H.

The relation =⇒∗ is the reflexive-transitive closure of =⇒.

A hierarchical graph is a graph where some edges contain hierarchical graphs.

Formally, the class H =
⋃

i≥0 Hi of hierarchical graphs consists of triples H =

(G,F, cts) such that G is a graph, F ⊆ EG is the set of frame edges, and cts : F → H
assigns to each frame f ∈ F its contents cts(f) ∈ H. The sets Hi are defined

inductively as follows: H = (G,F, cts) ∈ H0 if F = ∅, and for i > 0, H ∈ Hi if

cts(f) ∈ Hi−1 for every f ∈ F .

The definition of graph transformation generalizes to hierarchical graphs. We

refer to [12,4] for more details.

Term-graphs are particular graphs which can be seen as trees with shared sub-

trees. In the definition we use the notion of result (see [24]): v0 is the result node

of the edge e in a graph G if attG(e) = v0 . . . vn. Let Σ be a set of function symbols

with fixed arities and X an infinite set of variables (symbols of arity 0). A graph G

over Σ is a term-graph if there is a node rootG from which each node is reachable,

G is acyclic, and each node is the result of a unique edge.

3 A Higher-Order Calculus for Graph Transformations

The syntax of our higher-order systems is inspired by CRSs. We first define an

appropriate language, and then show examples of application.

Terms and Metaterms. Our language will be many-sorted. For each sort we will

have a different set of meta-variables as shown:

• Iterm for terms, with metavariables {T
�A

n | n ≥ 0}

• Eq for equations (pairs of terms), with metavariables {E
�A
n | n ≥ 0}

• TList for lists of terms, with metavariables {I
�A
n | n ≥ 0}

• EqList for lists of equations, with metavariables {Δ
�A
n | n ≥ 0}

• Config for configurations (representing nets or graphs), with metavariables {C
�A
n |
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n ≥ 0}

The set of sorts may contain other (user-defined) sorts. For each metavariable, say

T
�A

n , �A = A1 × . . . ×Ak (with the Ai sorts and k ≥ 0) is its signature, which can be

determined by examining the metaterm where it occurs. Thus, as is usual for CRSs,

we will omit these and furthermore T0, T1, T2, . . . will often be written T, T ′, T ′′, . . .

The alphabet also contains a set F of function symbols including:

• A set Σ of agents with fixed arities. Each agent α with arity n has the signature

Iterm × . . . × Iterm︸ ︷︷ ︸
n

→ Iterm

• · = · with signature Iterm × Iterm → Eq

• 〈· | ·〉 with signature TList × EqList → Config (to represent nets)

• {· | ·} with signature TList ×TList → Config (to represent graphs)

• tl with signature Iterm → TList

• el with signature Eq → EqList

• · � · with signature TList × TList → TList

• · ∗ · with signature EqList × EqList → EqList

• η with signature Config → Config

• comb with signature Config × Config → Config

Finally, our language contains also a set {x, y, z, · · ·} of variables, the abstraction

binary operator [ ] , and the symbols ‘(’, ‘)’, and ‘,’.

Definition 3.1 Metaterms are formed as follows, and then a term is a metaterm

with no occurrences of metavariables.

• a variable is a metaterm of sort Iterm

• if t is a metaterm of sort s and x is a variable, then [x]t is a metaterm of sort s

• if t1, . . . , tn are metaterms of sorts A1, . . . , An respectively, and F is a function

symbol with signature A1 × . . . × An → B, then F (t1, . . . , tn) is a metaterm of

sort B.

• if t1, . . . , tk are metaterms of sorts A1, . . . , Ak respectively, and M
�A

n is a meta-

variable of sort B, with �A = A1 × . . . × Ak (and k ≥ 0), then M
�A

n (t1, . . . , tk) is a

metaterm of sort B.

A list of interaction terms is of the form (. . . (tl(t1) � tl(t2)) � . . . � tl(tn)) but we

will simply write it as t1, t2, . . . , tn. A list with a single term tl(t) will be written as

t. The same conventions apply to lists of equations, formed with the · ∗ · operator.

We remark that reduction will be defined modulo associativity and commuta-

tivity of · � · and · ∗ ·, and also modulo commutativity of · = ·. This justifies the

previous notational conventions, and will give us the desired meaning for multisets

of terms (used in the interface of configurations) and for multisets of equations.

Notation 3.2 [x1][x2] . . . [xn]C will be written as [x1, x2, . . . , xn]C, and we write a
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term like η[x1, x2, . . . , xn]C simply as ηx1 . . . xn.C. We will also use the notation �x

for a list of variables x1, x2, . . . , xn; �x�y denotes concatenation of lists �x and �y. We

will in particular abstract variables in configurations, to represent internal links.

Rewrite Rules. Metaterms are used as the left- and right-hand side of rewrite rules.

The metavariables contained in them indicate places where terms can be substituted,

as in CRSs.

Definition 3.3 A rewrite rule is a pair l → r of closed metaterms such that the

metavariables in r occur also in l.

Note that left-hand sides of rules may contain patterns of the form Z(t) where

Z is a meta-variable and t a term. This will allow us to write contextual rules (such

as the optimization rules in Section 5). The Context-sensitive Reduction Systems

defined in [14] allow this use of metavariables.

The definition of rewrite step given for CRSs still applies in this generalized set-

ting, but since we have some associative and commutative symbols in the alphabet

we need to use pattern-matching modulo. More precisely: if l → r is a rewrite rule,

σ a valuation, C[ ] a context, and t = lσ modulo associativity and commutativity

of · � · and · ∗ ·, and modulo commutativity of · = ·, then C[t] → C[rσ].

4 Representing First-Order Systems

Here we show that graph and term-graph rewriting systems, interaction nets and

other first-order systems of interaction can be represented in our language.

Graph Rewriting. A hypergraph H = (VH , EH , labH , attH) will be represented by

a term of the form η�x.{s | t} of sort Config (a configuration for short), where s

represents the points (interface) of the graph, and t is a list containing a term

α(x1, . . . , xn) for each hyperedge e ∈ EH such that labH(e) = α, and attH(e) =

x1, . . . , xn. In other words, nodes are represented by variables and edges by agents

(named as the label). The purpose of the binder η at the head of the configuration

is to hide all the nodes xi that are not in the interface.

The representation of graph transformation rules is straightforward: Let P → R

be a rule, where the pattern graph P is represented by the configuration η�x.{�y | l}
and the replacement graph R is represented by the configuration η�x.{�y′ | r}. We

assume that �y, �y′ are lists of variables, defining a mapping between the points of

P and R; the mapping is not necessarily injective since some points of P might be

identified in R. Then in the calculus we write a rule:

η�z�x.{I(�Y ) | l∗, Z(�Y , �z)} → η�z′.{I( �Y ′) | r∗, Z( �Y ′, �z′)}

where the metavariables in �Y ′ occur in �Y , l∗ and r∗ are obtained from l and r by

replacing each free variable y by a metavariable Y (this is necessary because rules

are pairs of closed metaterms), �x contains the internal nodes of the pattern l, �z

contains the internal nodes of the rest of the graph, and �z′ contains the internal

nodes of r and of the rest of the graph. Note that the condition no dangling links

can be easily checked: �x must be different from �z.
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Term-Graph Rewriting. Since term-graphs are particular cases of graphs, we could

use the previous representation. But we could also give a more direct encod-

ing, inspired by the equational encoding of term-graphs (see for instance [15]):

A term-graph G = (VG, EG, labG, attG) with root rootG will be represented by

a configuration of the form η�x.〈rootG | t〉 of sort Config where t contains an

equation x = f(x1, . . . , xn) for each edge e ∈ EG such that labG(e) = f and

attG(e) = x, x1, . . . , xn, and �x contains all the variables that occur twice in t (i.e.

the internal nodes).

Interaction Nets. An interaction net will be represented by a term η�x.〈s | t〉 of sort

Config (a configuration for short). To obtain the configuration representing a given

net, we proceed as in [8]: A term α(t1, . . . , tn) of sort Iterm built out of agents in

Σ and variables represents a tree, with the free principal port of α at the root and

all the principal ports of the agents in t1, . . . , tn facing in the same direction. To

represent active pairs (a connection between two principal ports) we use equations.

Therefore, any interaction net can be represented by a list t of equations (a term

of sort EqList) and a list s of free variables (the interface of the net). All the other

variables, representing internal edges, are bound by η. A configuration η�x.〈s | t〉
must satisfy three constraints: every variable occurs twice in 〈s | t〉; each variable

occurs at most once in the interface; and all the variables that do not occur in the

interface are explicitly bound by η.

Note that α-conversion applies to variables bound in configurations, both for nets

and graphs. In nets these typically correspond to edges, whereas in hypergraphs

they correspond to nodes. Free variables occurring in the interface can be used for

structuring programs, as will be shown in Section 5.

Interaction Systems. Laneve [20] defines Interaction Systems as a subclass of CRSs

representing intuitionistic interaction nets. The syntax defined above allows us to

write the rules of an interaction system directly as rewrite rules.

Non-deterministic Interaction Nets and Process Calculi. Alexiev [1] defined a gen-

eralization of Lafont’s nets in which agents can have multiple principal ports. A

textual calculus for these nets was defined in [6], in which an agent α of arity n with

m principal ports is represented by a term of the form (l1, . . . , lm)α(t1, . . . , tn). This

can be transformed into a term in our system, for instance by defining a function

symbol of arity n + m associated to α. The (finitary) π-calculus can be encoded in

Alexiev’s system (using agents with multiple principal ports to simulate the non-

deterministic communication between processes [1]) therefore we can give a system

of rules defining the interaction and communication between concurrent processes.

5 Higher-Order Rewriting: Applications

Operational Semantics of Interaction Nets. The operational semantics of a pro-

gram in an interaction net system (Σ,R) is given by a set of computation rules

on configurations in [8]. The computation rules can be specified in our calculus as

higher-order rules:
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Interaction: For each interaction rule in R, we will have a rewrite rule in our system.

The interaction rule for the agents α and β of arities n and m respectively will be

written:

η�x.〈I | α(T1(�x), . . . , Tn(�x)) = β(T ′
1(�x), . . . , T ′

m(�x)),Δ(�x)〉 −→

η�x�x′.〈I | T1(�x) = t1, . . . , Tn(�x) = tn, T ′
1(�x) = s1, . . . , T

′
m(�x) = sm,Δ(�x)〉

where t1, . . . , tn, s1, . . . , sm encode the right-hand side of the graphical interaction

rule for α and β and the bound variables in the vector �x′ represent edges in the

right-hand side of the (graphical) interaction rule.

Indirection: η�xz.〈I | z = T (�x),Δ(�x, z)〉 −→ η�x.〈I | Δ(�x, T (�x))〉

The Indirection rule is a “bureaucratic rule” in the sense that it does not corre-

spond to any modification of the underlying (graphical) net.

As an example, we give the Interaction rewrite rule δ �� ε in Fig. 1:

η�x.〈I | δ(T (�x), T ′(�x)) = ε,Δ(�x)〉 −→ η�x.〈I | T (�x) = ε, T ′(�x) = ε,Δ(�x)〉

Specifying Strategies. Most functional language evaluators stop at weak head nor-

mal form. The corresponding notion for interaction nets is called interface normal

form [8]. The idea is to reduce the net until all the free ports are either principal

ports, or will never become principal ports. We can specify a lazy reduction strat-

egy that computes interface normal forms by modifying the computation rules, so

that equations are reduced only if their reduction can affect the terms associated to

interface variables. For instance, Interaction will only be applied to active pairs that

are directly connected to the interface of the net. This can be easily expressed by

rewriting equations that contain a variable occurring in the interface of the config-

uration. An interaction is then specified in two steps: the first selects the equation

and the second one performs the actual interaction.

η�x.〈Z, I | E(Z, �x),Δ(�x)〉 −→ inter([�x](E(Z, �x), 〈Z, I | Δ(�x)〉))

inter([�x](α(T1(�x), . . . , Tn(�x)) = β(T ′
1(�x), . . . , T ′

m(�x)), 〈Z, I | Δ(�x)〉)) −→

η�x�x′.〈Z, I | T1(�x) = t1, . . . , Tn(�x) = tn, T ′
1(�x) = s1, . . . , T

′
m(�x) = sm,Δ(�x)〉

where Z is a metavariable of sort Iterm to be instantiated by a variable (in the

interface of a configuration) in a rewrite step, and the terms t1, . . . , tn, s1, . . . , sm

represent the right hand side of the rule for α �� β as before.

Indirection is only performed when the equations involved contain variables oc-

curring in the interface. Again this condition can be expressed directly in the

higher-order syntax:

η�xz.〈Y, I | E(z, �x, Y ), z = T (�x),Δ(�x)〉 −→ η�x.〈Y, I | E(T (�x), �x, Y ),Δ(�x)〉

η�xz.〈Y, I | E(z, �x), z = T (Y, �x),Δ(�x)〉 −→ η�x.〈Y, I | E(T (Y, �x), �x),Δ(�x)〉

Property 5.1 The interaction net configurations that are irreducible in this system

are interface normal forms.

It is therefore easy for language-designers and compiler-writers to define and

compare different strategies of evaluation using the calculus. In the case of interac-

tion nets all that needs to be done is to change two rewrite rules.
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Modularity and Dependence: Combining Nets. The comb function is used for build-

ing configurations modularly by composing two smaller configurations.

comb(η�x.〈Z1, . . . , Zn, I | Δ(Z1, . . . , Zn, �x)〉, η �x′.〈Z1, . . . , Zn, I′ | Δ′(Z1, . . . , Zn, �x′)〉)

−→ η�x�x′z1 . . . zn.〈I, I′ | Δ(z1 . . . zn, �x), Δ′(z1 . . . zn, �x′)〉

All the free variables of the same name occurring in the interface of both ar-

guments of comb are pairwise connected together. Since these variables disappear

from the interface, they must necessarily be bound in the resulting configuration

(variables z1, . . . , zn). Note that in this rule the variable convention is used to avoid

name clashes: if the same variable is bound in both arguments of comb, α-conversion

is used to change that variable in one of the terms before the rule is applied.

One of the main uses of combine that we foresee is as a programming tool for

an interaction net programming language. We give an example of this in Section 6,

where we show how we can write names for nets, and combine them together to

build larger programs. This very same feature also allows us to express a notion

of higher-order nets: nets depending on nets. Additional features, such as rule

templates, can be seen as specific instances of this idea. For example the rules for

γ �� ε and δ �� ε shown in Fig. 1 are the same modulo the names of the agents. We

can write them in a compact way:

ε = X(T1, T2) −→ ε = T1, ε = T2

Net Transformation: Optimization Rules. In certain contexts (such as Asperti’s

safe operators for the optimal reduction of λ-terms [3], or that of garbage-collection

of non-terminating or deadlocked nets) interaction net reduction can be greatly

improved by admitting rules which fall outside the strict scope of interaction. For

example, the following rules involve only two agents and the interface is preserved.

The difference with respect to interaction rules is that in a redex an auxiliary port

of an agent is connected to the principal port of the other.

Eqδε: δ(ε, T ) −→ T and δ(T, ε) −→ T

Eqγε: Δ(γ(ε, T )) −→ Δ(ε), T = ε

The first is an optimization rule: when an erasing agent is connected to an auxiliary

port of a duplicator we can replace both agents by an edge. The second rule allows

to garbage-collect non-terminating nets. Note that since Δ is a metavariable (we

need to modify the context where γ(ε, t) occurs) this rule is not allowed in CRSs,

but it could be replaced by a set of CRS’s rules.

Other Meta-operations: Packing Nets. In different contexts it has been necessary

to define global operations on nets. One typical problem is that of copying a net by

using a duplicator agent δ. Since active pairs cannot be copied and the δ agent does

not duplicate itself (see Fig. 1), some transformation is required to produce a packed

net which can be copied (we refer the reader to [19,9] for details). These packing

operations can be formally defined using rules in our system. As an example we

show the δ-extraction operation used to prove the universality of the interaction

combinators in [19]. It removes all occurrences of the δ agent, collects together
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in three sequences their n principal ports and their left and right auxiliary ports,

and uses three multiplexing nets of arity n to bundle these sequences into three

edges, which are added to the interface of the packed net. Unpacking proceeds

by connecting a δ agent to these three ports. We define extractδ and extrδ with

signature Config → Config :

δ-Extraction1 (y is a fresh variable)

extractδ(η�x.〈I | Δ(δ(T ′(�x), T ′′(�x)), �x)〉) −→

extrδ(η�xy.〈pp(y), a(T ′(�x)), b(T ′′(�x)), I | Δ(y, �x)〉)

δ-Extraction2 (y is a fresh variable)

extrδ(η�x.〈pp(Tδ(�x)), a(T ′

δ
(�x)), b(T ′′

δ
(�x)), I | Δ(δ(T ′(�x), T ′′(�x)), �x)〉) −→

extrδ(η�xy.〈pp(γ(Tδ(�x), y)), a(γ(T ′(�x), T ′

δ
(�x))), b(γ(T ′′(�x), T ′′

δ
(�x))), I | Δ(y, �x)〉)

δ-Extraction3

extrδ(η�x.〈pp(Tδ(�x)), a(T ′
δ(�x)), b(T ′′

δ (�x)), I | Δ(�x)〉) −→

η�x.〈xδ , x
′
δ, x

′′
δ , I | Δ(�x), xδ = Tδ(�x), x′

δ = T ′
δ(�x), x′′

δ = T ′′
δ (�x)〉

Rules δ-Extraction1 and δ-Extraction2 extract (step-by-step) occurrences of

the δ agent from the list of equations Δ. The first rule builds multiplexing nets of

arity one (edges), and the second rule uses γ agents to build bigger multiplexers.

The rule δ-Extraction3 is only used when δ-Extraction2 no longer applies (a

strategy would force this). Its role is to remove the extrδ operator and to introduce

(free) names in the interface for the multiplexing nets. It is easy to see that the

unpacking net consists of a single δ agent:

Property 5.2 Let Nuδ be η〈xδ , x
′
δ, x

′′
δ | xδ = δ(x′

δ , x
′′
δ )〉. For every interaction net

configuration c, comb(Nuδ, extractδ(c)) −→
∗ c.

Proof Nets of Linear Logic. The encodings of proof nets in interaction nets that can

be found in the literature are of two kinds: either boxes (which are nets containing

nets) are defined by agents which contain a proof net as label, therefore we need an

infinite set of agents in the system (see for instance [18]), or a first-order encoding

of binders is used to model the box and its contents, and this can be done with a

finite number of agents (see for instance [21]). In the first case, the Dereliction Cut

Elimination step is performed in one rewrite step, using an infinite rewrite system,

whereas in the second case it is performed in several steps using a finite system.

Using a higher-order syntax we can model this Cut Elimination step with a

single rule and a finite number of agents. We would write this as:

d(Y ) = box(η�x.〈Z, I | Δ(�x)〉, I) −→ η�x.〈Y, I | Δ(�x), Y = Z〉

where d, box ∈ Σ and d : Iterm → Iterm, box : Config × TList → Iterm.

Hierarchical Graph Rewriting Systems. We show the representation of a hierarchical

graph H = (G,F, cts) in the higher-order system. For this, it is sufficient to add to

the alphabet a function symbol f : Config×Iterm×. . .×Iterm → Iterm to represent

frames in F . More precisely, frames are represented by terms that have an argument

of type Config carrying a graph. We write configurations as in the case of standard
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graphs: each standard edge is represented as shown in Section 4 and each frame f

such that cts(f) = H ′ is represented by a term f(η�x.{�y | T (�x)}, z1, . . . , zn) where

η�x.{�y | T (�x)} is the configuration associated to H ′. For some applications, we

may require that the interface of the configuration H ′ coincide with z1, . . . , zn (the

attachment nodes of the frame).

As an example, we give the specification of the flattening operation that trans-

forms a hierarchical graph H into a standard graph flat(H), by gluing ctsH(f) to

attH(f) for each frame in H (recursively). To simplify the definition we assume

that attH(f) coincides with the interface of ctsH(f).

flat(η�x.{I | f(η�z.{�x | T (�x, �z)}, �x),Δ(�x)}) −→ flat(η�x�z.{I | T (�x, �z),Δ(�x)})

The rule eliminates one frame at the time, replacing it by its contents, until no more

frames remain.

6 An Example

We show a simple system of interaction, and use the modularity features of the

higher-order calculus to simplify the writing of nets. We can encode integers (not

uniquely though) by a pair of natural numbers z = (p, q) which we interpret as the

difference p− q. This is encoded into interaction nets as shown in Fig. 2 (left). The
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��
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� �
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...p
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q

��
��

I

�

��
��
I∗ ��

��
I∗

� �

N1 N2

Fig. 2. Encoding integers (left) and addition (right)

agent S (of arity 1) is interpreted as successor. The representation of an integer

simply takes two chains of length p and q, and connects them together as shown,

using the agent I (of arity 2). Although this representation is not unique, we can talk

about canonical forms when p = 0 or q = 0. If N1 and N2 are the net representations

of z1 = (p1 − q1) and z2 = (p2 − q2) respectively, then we can use the configuration

to encode addition shown in Fig. 2 (right). The following are the only rules of this
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system, where the agent I∗ is used to implement addition in constant time:

��
��

I

��
��
I∗
�
�

�

�

�

�

=⇒

��
��
S

��
��
S

�
� =⇒

In our calculus, we can write this system in the following way:

I(T1, T2) = I∗(T3, T4) −→ T1 = T4, T2 = T3

S(T1) = S(T2) −→ T1 = T2

Add(X,Y,Z) −→ ηabc.〈X,Y,Z | X = I(a, b), Y = I∗(b, c), Z = I∗(c, a)〉

We can then define numbers as follows:

Two(X) −→ ηa.〈X | X = I(S(S(a)), a)〉

and use them to build a program in a modular way:

comb(comb(Add(a, b, c),Two(b)),Two(c))

where a represents the result of the addition.

7 Conclusions

We have shown a higher-order rewrite framework which can express several systems

of graph reduction. The power of the framework can be seen for the particular case

of interaction nets, where we can write a program together with its evaluator, all

in the same language. We see two main uses of this framework. First, as a tool for

the design and implementation of graphical languages: the language, its semantics

and metaoperators, can all be defined using the same language. Second, as a tool

for adding structure to graphical programs: the higher-order features can be used

to write hierarchical systems, and to name and reuse different components of the

program.

Some further work that we foresee includes the development of a programming

environment for interaction nets. Since interaction nets are also used as an im-

plementation language for functional languages, this will allow for fast prototyping

of functional compilers, facilitating the definition and comparison of strategies of

evaluation and optimization techniques.
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