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Abstract 

In  th is study, the cont inuous product ion with immobi l ized cel ls  of 

beer without a lcohol was invest igated. Apart f rom the evaluat ion of the 

var ious parameters affect ing the qual i ty of the cont inuous product ion of 

a lcohol-free beer,  a detai led study on the hydrodynamics of three-

phase bioreactors was also done. 

One of the major costs associated with cont inuous fermentat ions is 

the carr ier  cost where the yeast is  immobi l ized. Two carr iers that are 

byproducts of the brewing industry and agr iculture (corn cobs and 

spent grains) were considered and appl ied in two dif ferent types of 

b ioreactors:  gas- l i f t  and f ixed-bed, using smal l  and large part ic les,  

respect ively.  

The presence of sol id part ic les in three-phase systems can inf luence 

the course of the fermentat ion, as the hydrodynamics of the system 

may be modif ied. Thus, in th is work the inf luence of spent grains in 

regime transit ion on a bubble column was studied. In the presence of 

spent grains, the l imits where the homogeneous regime prevai ls  are 

smal ler than without sol ids.  The effect is  s imi lar  to l iquids with low 

viscosity.  Dif ferent conf igurat ions of gas-l i f t  b ioreactors were a lso 

evaluated and the conf igurat ion with better g lobal hydrodynamic 

propert ies for the cont inuous fermentat ion of a lcohol-free beer was 

selected. Having th is done, the local  hydrodynamic propert ies of the 

three-phase system were character ized using advanced techniques 

such as opt ical  f ibers,  t radit ional ly  appl ied in two-phase systems. Local 

studies indicated that the hydrodynamic character ist ics are more 

affected by the fermentat ion metabol i tes (e.g.  ethanol )  than the sol ids. 

The gas-l i f t  reactor conf igurat ion was demonstrated to be the one 

that a l lowed for the obtent ion of a better qual i ty beer.  For th is system 

were a lso tested the inf luence of the composit ion of the gas-phase in 

the formation of aroma and f lavour compounds, as wel l  as the inf luence 

of a long-term fermentat ion on the physiology of immobi l ized yeast.  The 

results indicated that the use of n itrogen in the gas phase exhibits an 
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interest ing potent ia l  in terms of mixing and maintenance of anaerobic 

condit ions essent ia l  in a cont inuous fermentat ion. F inal ly  strategies for 

maintain ing and monitor ing the physiology of the immobi l ized yeast 

have been suggested. Among these are the regular addit ion of f resh 

carr ier  (spent grains)  and control  of  the number bud scars result ing 

from the yeast cel l  d iv is ion. 

In the cont inuous product ion of a lcohol-free beer,  several  knowledge 

areas are involved and i ts interact ion is of fundamental  importance. I t  

starts with the select ion of the best carr ier  and yeast stra in.  Then, the 

bioreactor design based on the interact ion between i ts hydrodynamic 

propert ies and the fermentat ion performance. In th is work the complex 

re lat ion between these dif ferent f ie lds a l lowed the acquis it ion of new 

knowledge that wi l l  be useful  in the future. 

 

Keywords: a lcohol-free beer,  cont inuous fermentat ion, b ioreactors,  

hydrodynamics, spent grains, immobi l izat ion. 
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Resumo 

Neste trabalho, fo i  estudada a produção de cerveja sem álcool em 

cont ínuo, ut i l izando leveduras imobi l izadas. O trabalho englobou 

diferentes áreas, como: o estudo da hidrodinâmica de bioreactores 

tr i fás icos, e o estudo de diversos parâmetros que afectam a qual idade 

da fermentação cont ínua de cerveja sem álcool. 

Um dos pr incipais custos associados à fermentação continua é o 

custo dos suportes onde se imobi l izam as leveduras. Assim foram 

estudados dois suportes que são subprodutos da industr ia agr ícola e 

cerveje ira (espigas de mi lho e “spent grains”) .  De acordo com os 

resultados obt idos, os suportes, de diferentes dimensões, foram 

apl icados a dois t ipos de bioreactores -  "gás-l i f t"  (part Ículas menores) 

e le i to f ixo (part ículas maiores).  

A presença de part ículas sól idas em sistemas tr i fás icos pode 

inf luenciar o decurso de uma fermentação. Assim neste trabalho fo i  

estudada a inf luência dos “spent grains” na transição de regime em 

coluna de bolhas. O estudo teve como object ivo s imular uma parte do 

reactor gas-l i f t  ( tubo ascendente) e entender os mecanismos f ís icos 

que ai  ocorrem. Na presença dos “spent grains” os caudais aos quais o 

regime homogéneo prevalece são menores, efe ito s imi lar  a l íquidos 

com baixa v iscosidade. Seguidamente a inf luência dos “spent grains” 

fo i  estudada para diferentes conf igurações de bioreactores gas-l i f t .  No 

f im foi  seleccionada a conf iguração que apresentava propriedades 

hidrodinâmicas globais que melhor se adaptam as caracter íst icas de 

uma fermentação cont inua de cerveja sem álcool.  Feita a selecção do 

bioreactor estudou-se as propr iedades hidrodinâmicas locais do 

s istema tr i fás ico. Para ta l  recorreu-se a técnicas mais ref inadas ( f ibras 

ópt icas),  normalmente ut i l izadas em sistemas bifásicos. Assim foi  

necessár io desenvolver um método para a ut i l ização destas técnicas 

em sistemas tr i fás icos que pode ser também apl icada a s istemas com 

elevada densidade celu lar.  Os estudos locais indicaram que as 

caracter íst icas hidrodinâmicas são mais afectadas pelos subprodutos 

da fermentação do que pelos sól idos.  
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Foram também real izadas exper iências que permit i ram estudar a 

inf luência de diversos parâmetros ( t ipo de bioreactor,  est i rpe de 

levedura, suporte)  na fermentação cont inua. Entre os parâmetros 

estudados o produto f inal  que apresentava melhor qual idade fo i  obt ido 

ut i l izando um bioreactor gás-l i f t  com leveduras imobi l izadas em “spent 

grains”.  Neste s istema foram ainda testados a inf luência do t ipo da 

fase gasosa na formação de compostos do aroma e sabor,  assim como 

a inf luência de uma fermentação cont inua de longa duração na 

f is io logia das leveduras imobi l izadas. Os resultados indicaram que o 

azoto apresenta um potencia l  interessante na manutenção das 

condições de mistura e de anaerobiose essenciais numa fermentação 

cont ínua. F inalmente estratégias para a manutenção e controlo da 

f is io logia das leveduras imobi l izadas foram suger idas. Entre e las 

encontram-se: a adição regular de suporte fresco (“spent grains”)  e o 

controlo das c icatr izes das leveduras resultantes da sua div isão celu lar. 

Na produção cont inua de cerveja sem álcool interagem diversas 

areas do conhecimento. Este estudo in ic ia-se pela seleção do melhor 

suporte e est i rpe de levedura. Poster iormente passa-se ao 

desenvolv imento de um bioreactor que é baseado na interação entre as 

suas propriedades hidrodinâmicas e a qual idade da fermentação. Ao 

longo deste trabalho a complexa re lação entre diferentes áreas do 

conhecimento permit iu a aquis ição de novos conhecimentos que 

poderão ser úte is no futuro. 

 

Palavras-chave: cerveja sem álcool,  fermentação contínua, 

b ioreactores, h idrodinâmica, spent grains, imobi l ização 
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Nomenclature 

Symbol   Description             Unit 

a      Coeff ic ient of Darwinian dr i f t         -  

A      Cross sect ion area           m2  

a       Accelerat ion (vector)           m/s2 

A l b      Lateral  area of reactor bottoms      m2  

A6 0 0     Absorvance at 600 nm         -  

CD     Drag coeff ic ient            -  

ch      Chord length             mm 

C       Phase-distr ibut ion parameter      -  

d 1 2      Distance between two points       mm 

D       Distance/diameter           m 

de q     Equivalent d iameter          m 

D      Axia l  d ispersion coeff ic ient       m2/s 

d      Bubble (equivalent)  d iameter       m 

$PT     Total  Fr ict ion loss           Pa 

$Pf     Fr ict ion loss             Pa 

e      Phase hold-up             -  

Eo      Eotwos number            -  

f       Drag funct ion             -  

g      Accelerat ion due to gravity       m/s2 

G      Turbulent k inet ic energy product ion    J/ (m3s)  

H      Distance/height            m or mm 

H1      Column height (Water Column nr 1)    mm 

H2      Column height (Water Column nr 2)    mm 

hD      Dispersion height           m 

j       Dr i f t  f lux               m3/ (m2  s )  

K      Momentum transfer coeff ic ient      kg/(m3s1)  

Kf      Fr ict ion loss coeff ic ient         -  

k       Turbulent k inet ic energy        m2/s2 

L      Character ist ic length          m 

M      Force one phase is act ing on other phase N/m3 

N      Number of tanks            -  
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Nomenclature 

Symbol   Description             Unit 

OTRT O T A L   Total  Oxygen Transfer Rate       mg/(L.h)  

OTRO S    Supply Oxygen Transfer Rate      mg/(L.h)  

OTRD O    Dissolved Oxygen Transfer Rate     mg/(L.h)  

p      Pressure               Pa 

PL      Pressure dif ference          Pa 

Pe     Peclet number             -  

QG     Gas Flow rate             L/min 

QL      L iquid f low rate            L/h 

Re     Reynolds number           -  

t       T ime                 min or s 

TG      Gas residence t ime  in opt ical  probe    µ s 

TM      Gas mounting t ime in opt ical  probe    µ s 

tm      Mixing t ime              s  

u      Mean bubble r ise speed         m/s 

u0      Terminal  bubble speed         m/s 

U      Superf ic ia l  velocity           m/s 

u       Instantaneous velocity (vector)       m/s 

Ub t      Bubble terminal  velocity         m/s 

V      Volume                L 

Vs l p      Volume of sample            L 

v      L inear velocity            m/s 

v’       Velocity – f luctuat ing part        m/s 

vd r      Dr i f t  velocity             m/s 

V      Interst i t ia l  velocity           m/s 

VR      Reactor working volume         L 

VD      Dead zones volume          L 

XT G V     Values from TGV method        -  

X I N J      Values from new in ject ion method     -   
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Greek symbols 

Symbol   Description            Unit 

% /#      Phase volume fract ion(Hold-up)    -  

&       F lu id density            kg/m3 

'       Sol id load             % (vol . /vol . )  

µ       Molecular dynamic v iscosity      mPa.s 

(       Adimensional t ime          -  

)       Mean residence t ime         min 

(D      Adimensional t ime with dead volumes  -  

)D      Mean residence t ime with dead volumes min 

µ t       Turbulent dynamic v iscosity      Pa .s 

* t        Turbulent k inematic v iscosity     m2/s 

+       Surface tension            N/m 

)       Part ic le re laxat ion t ime        s  

 

Sub/superscript 

DC     Dry Carr ier 
G      Gas-phase 
L      L iquid-phase 
S      Sol id-phase 
H      Pseudohomogeneous-phase 
theo     Theorical  
exp     Exper imental  
c      Cr i t ical  
C      Columns 
bb     Bottom 
r      Riser 
d      Downcomer/Disperse phase 
c       Cont inuous phase 
D      Drag ( force) 
i ,k      Index of a phase 
m      Mixture property 
TD     Turbulent d ispersion ( force) 
B      Bubble 
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Abbreviations 

AFB           A lcohol- f ree beer  

AATases         Acy l t ransferases 

AL            A ldehydes 

AST           Automat ic  stat is t ics too l  

BC           Bubble co lumns 

CFD           Comput ional  f lu id  dynamics 

CCP           Cold contact  process 

Cc           Corncobs 

CSTR          Cont inuous st i r red tank reactor  

dS G           Dry spent  gra ins 

ES           Esters  

FAN           Free amino n i t rogen 

g- l             “gas –  l iqu id”  

g- l-s            “gas –  l iqu id –  so l id”  

HA           H igher  a lcohols  

HoR           Homogeneous reg ime 

HeR           Heterogeneous reg ime 

HSC           H igh speed camera 

iGLR           In terna l- loop gas- l i f t  reactor  

ICT           Immobi l ized ce l l  technology 

ILV           Iso leucine,  leuc ine and va l ine  

iB io            Immobi l ized b iomass (g B i o m a s s /gD r y  C a r r i e r )  

IEC           Ion exchange capaci ty  (meq/g)  

LAB           Low-alcohol  beer  

MIA           Manual  image analys is   

O.D.             Opt ica l  densi ty  

OA           Organic ac ids 

OTR           Oxygen t ransfer  rate  

OP           Opt ica l  probe 

PBR           Packed-bed reactor   

PFR           P lug F low Reactor  

Rpm           Rotat ions per  minute 

SG           Spent  gra ins 

SMM           Synthet ic  minera l  medium 

TGV           Treatment for  gaseous ve loc i ty  

WAI           Water  adsort ion index 

w S G           Wet spent  gra ins 
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I.1 Thesis Motivation 

I.1.1 Alcohol-free beer: definition, history and market 

The excess of a lcohol consumption contr ibuted more than any other 

factor to the occurrence of domestic,  labour and dr iv ing accidents,  

v io lence, abuses, mental  incapacity and even death. Ethanol is  

absorbed by dif fusion and distr ibuted through al l  human body t issues 

by the blood. (Ferre ira and Wil loughby, 2008).  I t  has been also 

mentioned that moderate a lcohol consumption has better long-term 

effects on human health,  even than no consumption (Brányik et a l . ,  

2012; Ferre ira and Wil loughby, 2008).  The main reasons are due to the 

presence of phenol ic compounds (h igh ant ioxidant capacity) ,  essent ia l  

v i tamins and minerals (magnesium) (Bamforth,  2002; Brányik et a l . ,  

2012).  These compounds are a lso present in a lcohol-free beers,  

a l though at a lower quant i ty (Bartolomé et a l . ,  2000),  with the main 

advantage of not having the perverse effects of excessive a lcohol 

consumption (Brányik et a l . ,  2012; Ferre ira and Wil loughby, 2008).   

From a s imple point of  v iew, beer can be classif ied according to i ts 

a lcohol content,  but there is  no consensus on th is.  According to the 

European Union (EU) direct ive 98/33/CEE beer is  a beverage descr ibed 

by the EU code NC 2203 with an a lcohol content super ior to 

0.5% (vol ./vol . )  (CCE, 1992; CE, 2005).  in most of the countr ies,  

general ly  a lcohol-free beer (AFB) or “no alcohol beer” (or 

“dealcohol ized beer”)  contains less than 0.5% (vol ./vol . )  of  a lcohol,  

whi le “ low alcohol” beers (LAB) may contain up to 1.2% (vol ./vol . )  and 

beers contain ing between 1.2% (vol ./vol . )  and 3.0% (vol ./vol . )  are 

considered to be “reduced in a lcohol” (Lewis and Young, 1995).  In 

some countr ies,  due to cultura l  and re l ig ious rules,  AFBs cannot exceed 

0.05% (vol ./vol . )  (Brányik,  et  a l . ,  2012).  The terminology used in th is 

thesis wi l l  be the one used in EU legis lat ion, where an AFB contains 

less than 0.5% (vol ./vol . )  of  ethanol (CCE, 1992).  
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Histor ical ly ,  AFB product ion increased dur ing a per iod (1920-1933) 

between the two World Wars, especia l ly  in the United States due to the 

Nat ional Prohibit ion Act,  a lso cal led: “Dry Law”. This law forbid the 

product ion, importat ion and exportat ion of intoxicant l iquors (beverages 

with more than 0.5% (vol ./vol . )  of  ethanol )  to and from the United 

States of America. For the brewing industry in the United States of 

America, th is law was the dr iv ing force that led to the increase of AFBs 

product ion and the development of new product ion methods. Natural ly ,  

when the Dry Law was abol ished in 1933, AFBs product ion decl ined.  

In the past two decades the highly competit ive markets in brewing 

industry,  a l l ied to the global trend for a health ier l i fe  sty le without 

a lcohol,  restr ict ing dr iv ing and labour laws and re l ig ious issues led to 

the development and increased consumption of AFB (Brányik et a l . ,  

2012; C. MARM, 2011).  The product ion of AFBs is st i l l  a  grain in the 

desert  of  the global beer product ion. Over the last f ive years the 

average sales of AFBs increased by 50% only in Europe. Actual ly  Spain,  

the largest consumer country of low alcohol beverages, sold 9.5% of 

AFBs in 2010 (C. MARM, 2011).  On the other hand in Germany, which 

has the biggest beer market,  the average sales of AFBs are between 

4% and 5% of tota l  beer consumption (Brányik et a l . ,  2012).  This has 

been attr ibuted to EU legis lat ion that restr icts a lcohol consumption in 

many dai ly  act iv i t ies (schools,  working, dr iv ing) or in some countr ies in 

sports events (eg. Stadiums of footbal l ) .   

In 2006 the beer Portuguese market represented 1.5% of the 

Portuguese gross domestic product generat ing over 1.5 thousands of 

mi l l ions Euros (APVC, 2006).  Portuguese beer consumption has been 

decreasing over the last f ive years (Figure I-1 ) .  In average a Portuguese 

inhabitant consumes per year 60.6 L of beer (APVC, 2011).  In the last 

f ive years,  the consumption of AFBs in Portugal fo l lows a trend of 

consumption s imi lar  to regular beers.  AFBs market share is  very low 

and var ies between 2.5% to 3.3% of g lobal Portuguese beer 

consumption. This market share is  s imi lar  to the one found in other EU 
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countr ies,  with the exception of Spain (APVC, 2011; Brányik et a l . ,  

2012; C. MARM, 2011).   

 

Figure I-1 .  Beer  market  in  Portugal  in  the last  F ive Years.  Legend:  ! :  Tota l  

Beer  Consumpt ion;  " :  Regular  Beer  Consumpt ion;  -#$%  A lcohol- f ree Beer  

Consume. (Data f rom http:/ /www.apcv.pt/asp/  in  15 t h  December 2011)  

 

A few years ago there were high expectat ions in the increasing 

market of AFBs, but the sales did not increase as much as in i t ia l ly  

predicted. I t  was expected that the need of a health ier l i festy le and 

restr ict ing c iv i l  laws would dr ive the consumption from regular beer to 

AFB. Although the AFB market share in Portugal has been constant,  the 

decrease on AFB consumption indicates a shif t ing on dr inking habits by 

the Portuguese populat ion. In Figure I-1 i t  is  suggested that the 

consumer of AFB in Portugal has a s imi lar  prof i le  than a consumer of 

regular beer.  Reasons for th is are var iable and include: medical  

indicat ions, obl igat ion due to dr iv ing and operat ing heavy machines, 

even moral  posit ions about a lcohol abuse (www.Ibesa.pt,  access 

20/04/2010).   

In order to contr ibute for a health ier l i festy le in EU countr ies and 

consider ing the competit ive beer market new AFB product ion methods 

that reduce product ion costs and increase AFB qual i ty are worth of 

research and development. 
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I.2 Research Aims 

The main object ive of th is thesis was to develop a lab-scale 

technology for cont inuous AFB product ion that would overcome the 

exist ing methods in terms of volumetr ic product iv i ty and would be 

comparable in terms of product qual i ty.  The part ia l  goals to be 

achieved are:   

$  Select ion of an economical ly  affordable carr ier  mater ia l  for yeast 

cel ls  immobi l izat ion. 

$  Evaluate the importance of reactor type, yeast stra in and carr ier  

type in a cont inuous l imited pr imary fermentat ion of AFBs.  

$  Study the consequences of the immobi l ized biomass ageing on 

product qual i ty and propose a strategy to minimise i ts adverse effects 

$  Study the inf luence of carr ier  propert ies in three-phase system 

(gas-l iquid-sol id)  hydrodynamics and understand how that can inf luence 

bioreactor performance. 

$  Develop, based on global hydrodynamic studies, the bioreactor 

design for the specif ic  requirements of the l imited pr imary fermentat ion 

process with cel l  immobi l ized on a cel lu lose-base carr ier .  

$  Understand the local  hydrodynamics of the designed bioreactor 

induced by the carr ier  part ic les and study the inf luence of the l imited 

fermentat ion in local  hydrodynamics. 
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I.3 Thesis Outline 

This thesis is  subdiv ided in e ight (8)  chapters were the work is  

present and discussed. Each chapter,  with the exception of Chapter I I  

and chapter IX,  is  d iv ided in:  Introduct ion, Mater ia l  and Methods, 

Results and Discussion and Conclusions. In the f i rst  part  of  th is thesis 

is  re lated with carr ier  select ion (Chapter I I I ) ,  the second part  with the 

three-phase bioreactor hydrodynamics (Chapter IV to VI I ) ,  whi le a th ird 

part  (Chapter VI I I )  with cont inuous fermentat ion of AFB. 

In Chapter I I  several  methods of AFB product ion are descr ibed, both 

in batch and cont inuous mode, at laboratory and industr ia l  scale as wel l  

as important information about beer qual i ty and f lavour. 

In Chapter I I I  the select ion between two cel lu lose-based carr iers for 

yeast cel ls  immobi l izat ion is invest igated. In addit ion the methods for 

improving immobi l izat ion are studied. 

In Chapter IV the fundamental  study of spent grains part ic les’  

inf luence in three-phase Bubble Columns (BC) is  reported.  

In Chapter V the global three-phase internal- loop gas-l i f t  reactor 

( iGLR) hydrodynamics are studied and the best reactor conf igurat ion for 

cont inuous AFB is selected.  

In chapter VI  CFD simulat ion for g-l  system in iGLR is performed in 

order to expla in better the phenomena that occurs in th is type of 

reactor.   

In Chapter VI I  the local  three-phase GLR hydrodynamics are studied 

under fermentat ion condit ions and a method for measur ing local  gas 

propert ies in three-phase systems is proposed. 

In Chapter VI I I  the study of d i f ferent systems for cont inuous l imited 

AFB pr imary fermentat ion are descr ibed. Beer qual i ty and f lavour 

compounds formation at d i f ferent condit ions, as wel l  as strategies for 

long-term fermentat ion are proposed. 

In Chapter IX the general  conclusions and suggest ions for future 

work are descr ibed.  
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II.1 Methods to Produce Alcohol-free Beer  

AFB has been industr ia l  produced since the beginning of XX century 

and dif ferent technologies have been developed over the last century,  

part icular ly over the last th ir ty years.  Beer with low alcohol content can 

be produced by: (1 )  using addit ional  techniques to remove the a lcohol;  

(2 )  t radit ional  methods for restr icted ethanol formation; (3 )  cont inuous 

fermentat ion (Brányik et a l . ,  2005; Brányik et a l . ,  2012; Lehnert et  a l . ,  

2009; Lewis and Young, 1995).  

II.1.1 Techniques to remove alcohol from regular beer  

These methods require an investment in addit ional  brewing 

equipment.  The techniques that are being used to remove the a lcohol 

f rom regular beers are e ither thermal-based (vacuum evaporat ion or 

d ist i l lat ion) or membrane-based (d ia lys is;  reverse osmosis)  (Lewis and 

Young, 1995).   

II.1.1.1 Thermal-based process 

Vacuum evaporat ion is typical ly  a three-stage process. In the f i rst  

stage, pre-heated beer (35 ºC) passes under vacuum trough a plate 

evaporator heated at 50 ºC where the beer is  degassed and the volat i le  

compounds are l iberated. The beer steam goes to a vacuum column 

where is  separated in two: AFB and an alcohol-r ich condensate. The 

aroma compounds are recovered from degassed CO2 (by water or AFB) 

and re-added to the previously obtained AFB. The devices used for 

vacuum evaporat ion should be able to remove eff ic ient ly ethanol at  

short  residence t imes. The main vacuum evaporators used are th in f i lm 

evaporators,  which can operate by gravity or using a mechanical  device 

promoting a rotat ional movement.  The main advantage of using vacuum 

evaporat ion methods over atmospheric evaporat ion is the better beer 

taste preservat ion. The thermal process a l low: (1)  to remove completely 

the a lcohol f rom beer (#  0.05% (vol ./vol . ) ) ;  (2 )  the commercia l izat ion of 
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by-products (a lcohol for v inegar product ion);  (3 )  cont inuous and 

automatic operat ion with short  start-up per iods; and (4)  f lexib i l i ty  

(adapted to several  beer composit ions and volumes – from 200 L to 

40 000 L).  However,  the purchase of these systems requires (1)  

s ignif icant investment;  (2 )  h igh running costs (energy consumption);  (3 )  

thermal damage ( loss of volat i les)  of  beer.  Besides these removal steps, 

at the end, the result ing LAB has to be di luted with oxygen-free water 

and carbonated (Brányik et a l . ,  2012; Lewis and Young, 1995).   

II.1.1.2 Membrane processes 

All  the membrane processes have less thermal impact on AFB 

qual i ty.  They can operate automatical ly  and are f lexib le,  but at the 

same t ime they require s ignif icant capita l  and running costs.   

The dr iv ing force in dia lysis is  the concentrat ion gradient between 

beer and dia lysing medium, which normal ly operates in counter-f low. 

Br ief ly ,  beer (1 ºC to 6 ºC) passes trough a dia lyser where smal l  

molecules (as ethanol )  pass trough a select ive membrane into the 

dia lysate.  However,  some aspects must be taken in account as the 

dia lysate pressure to avoid CO2 inf luence. The dia lysate is  then 

dealcohol ized in a vacuum dist i l lat ion column. The process eff ic iency 

depends mainly on the membrane’s composit ion (cel lu lose or synthet ic )  

and arrangement (hol low f ibers) ,  beer f low rate and composit ion of the 

dia lysate.  As the membranes are not ethanol select ive,  other important 

f lavour beer compounds are removed, which can be overcome by the 

introduct ion of these in the dia lysate to reduce the f lavour compounds 

losses.  

In reverse osmosis,  the used membrane is more select ive than the 

one normal ly used in dia lysis.  Reserve osmosis pr inciple takes in 

account that water and ethanol permeate more than other beer 

compounds. Beer passes trough the surface of a membrane at h igh 

pressure (40 bar)  and the most permeable substances cross the 

membrane. This method concentrates beer and the transfer of ethanol 

a lso increases. Then pure or demineral ised water is  added (d iaf i l t rat ion) 
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whi le ethanol st i l l  passes the membrane unt i l  the f inal  ethanol 

concentrat ion is achieved. In reverse osmosis no heat is  appl ied, 

however membrane cost and the high operat ion pressures required are 

main disadvantages. General ly ,  reserve osmosis AFBs have s ignif icant 

losses of volat i le  compounds (70% to 80% of h igher a lcohols,  80% to 

90% of esters)  (Brányik et a l . ,  2012; Lewis and Young, 1995).  The 

major i ty of industr ia l  appl icat ions are thermal/membrane based, 

sometimes even a mix of both, but usual ly  brewing industr ies h ide or 

patent their  process to avoid being used by other companies 

(Bartolomé et a l . ,  2000).  

II.1.2 Traditional methods to restrict ethanol formation  

Tradit ional  methods to restr ict  ethanol formation mainly use smal ler  

brewing operat ions that a l low producing AFB. These operat ions include 

changes in mashing, arrested or l imited fermentat ion and ut i l izat ion of 

specia l  yeast (Brányik et a l . ,  2012; Lewis and Young, 1995). 

II.1.2.1 Change in mashing 

Mashing is one stage of beer wort product ion, where the degradat ion 

of starch to fermentable sugars and soluble dextr ins occurs.  So the 

mashing step has a huge inf luence in the f inal  concentrat ion of sugars 

in the wort,  thus in f inal  beer ethanol content.  I f  changes are operated 

in th is process the fermentable sugar concentrat ion can be altered. The 

changes that can be operated dur ing mashing to reduce wort sugars 

concentrat ion are:  the appl icat ion of h igh temperatures (75 ºC-80 ºC) 

that deact ivates #-amylase; the cold water malt  extract ion (<60 ºC),  

which extract malt  f lavour compounds without increasing wort gravity;  

spent grains re-mashing (extrusion or acid hydrolysis;  and the 

ut i l izat ion of grains def ic ient in #  –amylase (Brányik et a l . ,  2012; Lewis 

and Young, 1995).   
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II.1.2.2 Limited or arrested fermentation 

Modif icat ions in normal pr imary beer fermentat ion to produce AFBs 

are probably the most usual ly  methods appl ied in industry.  These 

alterat ions are made by arrest or l imit  of  the fermentat ion and al low 

brewing industr ies to work with tradit ional  equipment.  The main 

object ive is  to keep a low ethanol content.  Arrested fermentat ion is 

obtained by removing yeast before excessive attenuat ion occurs (rapid 

cool ing or f i l t rat ion),  fo l lowed by maturat ion for 10 days at low 

temperatures (0 ºC to 1 ºC) pr ior to new f i l t rat ion, carbonat ion, 

stabi l izat ion and ster i l izat ion. L imited fermentat ion methods are done 

by creat ing condit ions that l imit  the yeast metabol ism. Among these, 

the cold contact process (CCP),  which is done using a low gravity wort 

fermented at low temperatures (0 ºC to 1 ºC),  has a good potent ia l  and 

high volat i le  compounds are produced. Low aldehyde reduct ion is 

achieved leading to strong inf luence of worty off- f lavours in the 

produced AFB (Perpète and Col l in,  1999a, 1999b).  

When AFBs are produced by these methods, to improve i ts qual i ty 

some operat ions should be taken in account:  (1 )  adding of dark/pale 

caramel malt  (contr ibutes to f inal  f lavour) ;  (2 )  d i lut ion of wort before 

boi l ing (reduces bit terness, increases esters and higher a lcohols) ;  (3 )  

decrease wort pH ( low temperature attenuat ion per se is  not capable to 

do that)  (Narziss et a l . ,  1992).  

II.1.2.3 Special yeasts utilization 

The use of specia l  yeast,  capable of performing a l imited 

fermentat ion consists on using their  low or zero abi l i ty  to produce 

ethanol.  Specia l  yeast can be obtained by the select ion of a proper 

microbia l  stra in as S. lugwigi i  unable to ferment maltose - the main 

wort sugar (Narziss et a l . ,  1992).  Other methods include the 

development of new yeast stra ins by forcing modif icat ion of brewing 

yeast by random mutat ion using ultravio let i r radiat ion (Narvát i l  et  a l . ,  

2001) or by using genet ic engineer ing techniques that intent ional ly  

delete genes from yeast cel ls  (Selecky et a l . ,  2008).  Normal ly the 
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intent ional ly  deleted genes are involved in the synthesis of enzymes 

present in the tr icarboxyl ic acid's (TCA) cycle.  Among these, the usual 

deleted genes are:  CIT1, ACO1, FUM1, MDH1, IDH1 IDH2, KGD1, KGD2, 

and LPD1 (Przybyla-Zawislak et a l . ,  1999; Repetto and Tzagoloff ,  1990; 

Selecky et a l . ,  2008).  The development of new yeast stra ins is  normal ly 

done in haploid/diplo id laboratory stra ins and not in industr ia l  yeast 

stra ins,  which not only are a l loploids as a lso have important industr ia l  

character ist ics ( fermentat ion rate,  f lavour formation, f locculat ion).  The 

ideal yeast stra in is  a hybr id between th is genet ical ly  modif ied stra ins 

and industr ia l  stra ins,  carry ing al l- important character ist ics for 

industr ia l  AFB product ion. In addit ion, the genet ic development and 

appl icat ion of yeast stra ins has legal obstacles and generates concerns 

in the consumers. Nowadays, no brewing industr ies wi l l  take the r isk of 

using genet ical ly  modif ied yeast stra ins to produce an AFB. 

II.1.2.4 Continuous fermentation 

Continuous fermentat ion of beer and AFB has been, s ince the last 

decades, one of the most studied areas in several  brewing research 

groups from dif ferent univers it ies across the globe (Lehnert et  a l . ,  2009; 

Mensour et a l . ,  1997; Perpète and Col l in,  1999a; Selecky et a l . ,  2008; 

Van Iersel  et  a l ,  1995; Virkajarv i ,  2001).  The implementat ion of 

cont inuous methods in brewing industry has been dr iven by the 

potent ia l  economical advantages. Some examples at industr ia l  scale 

are known (see Sect ion I I .2.7) .  However,  unbalanced f lavour issues 

have not yet been tota l ly  overcome, leading to the necessity of further 

invest igat ion for the appl icat ion of cont inuous processes (Brányik,  et  

a l . ,  2008; Mensour et a l . ,  1997; Virkajarv i  and Linko, 1999; Wil laert  and 

Nedovic,  2006).  
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II.2 Continuous Beer Production 

Nowadays in beer industry the tradit ional  batch process of beer 

fermentat ion and maturat ion st i l l  prevai ls  over the cont inuous 

processes. Consider ing that are several  d i f ferent types of beers,  in 

tradit ional  batch systems the pr imary beer fermentat ion takes place for 

5 to 10 days whi le maturat ion takes 1 to 3 weeks (Brányik et a l . ,  2008; 

Mensour et a l . ,  1997).  The most successful  cont inuous fermentat ion 

systems developed are based on immobi l ized cel l  technology ( ICT),  but 

despite i ts  advantages they are st i l l  not being fu l ly  appl ied at industr ia l  

scale (Brányik et a l . ,  2005; Mensouret a l . ,  1997; Pi lk ington et a l . ,  1998). 

The main advantage offered by these systems when compared with 

tradit ional  fermentat ion and maturat ion, is  the potent ia l  t ime savings by 

reducing the product ion t ime, which is ref lected in economical 

advantages. By using cont inuous systems the beer product ion t ime has 

been reduced from a week-base (2 to 4 weeks) to a dai ly-base (2 to 

5 days) (Brányik et a l . ,  2006, 2005; Dömény et a l . ,  1998; Van Iersel  et  

a l . ,  1995; Virkajarv i ,  2001).  Continuous beer product ion gives the 

possibi l i ty  of  not only using short  fermentat ion t imes and reduce 

downtimes ( f i l l ing, c leaning and stand by),  but a lso reduce the 

investment capita l  costs,  operat ion costs and space requirements 

(Brányik et a l . ,  2005; Mensour et a l . ,  1997; Pi lk ington et a l . ,  1998).  The 

investment costs were est imated to vary between 15% and 100% of the 

batch process (Brányik et a l . ,  2005; Mensour et a l . ,  1997; Pajunen et 

a l . ,  1991; Virkajarv i ,  2001) and depend mostly on the carr ier  cost.  

Operat ing cost can be both 70% lower and 80% higher than in batch 

system, depending on the appl ied technology, est imated annual 

product ion and comprehensiveness of the economic study. Moreover,  

the area requirements are expected to be smal ler  than for tradit ional  

technology (Pajunen et a l . ,  1991).  On the other s ide, there are many 

reasons that sentenced cont inuous fermentat ion to fa i lure (Brányik et 

a l . ,  2005; Mensour et a l . ,  1997; Pi lk ington et a l . ,  1998; Wil laert  and 

Nedovic,  2006):  engineer ing problems (operat ion condit ions, process 
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hygiene);  unbalanced f lavour (cel l  physiology, ageing);  contaminat ion; 

tradit ion. 

Nowadays the main object ive in the area of cont inuous beer 

fermentat ion invest igat ion is to reduce s ignif icant ly the product ion 

t imes and, at the same t ime, ensure a uniform high qual i ty beer.  I t  is  

useless for brewing industry to produce beer in cont inuous without the 

same character ist ics of the tradit ional  beer dr inked by the regular 

consumers. Beer making is one of the oldest b iotechnology process 

known by men, and consequently tradit ion aspects have to be taken 

into account (Lewis and Young, 1995).  Tradit ion is  an addit ional  

obstacle to be solved by scient i f ic  community and consists in 

demonstrat ing the advantages of cont inuously beer technology to the 

brewing engineers/masters.  These advantages must be in i t ia l ly  based in 

economic aspect,  but should go beyond. They should a l low the 

product ion of d i f ferent beer types only by changing the wort 

composit ion and operat ion parameters without the necessity of new 

start-up of the bioreactor.  

II.2.1 Continuous beer fermentation using cell immobilization 

systems 

According to Mensour et a l .  (1997),  systems using immobi l ized yeast 

cel ls  for cont inuously beer product ion have been proposed for more 

than 30 years (Mensour et a l . ,  1997).  Narziss and Hel l ich (1971, 1972) 

c i ted by Virkajarv i  and Linko (1999) were pioneers in the use of 

immobi l iz ing yeast for beer fermentat ion. Their  s imple bioreactor 

consists in a packed-bed formed by k ieselguhr and yeast in a 

k ieselguhr f i l ter  through which wort f lows. However the bioreactor’s 

l i fet ime was only 7–10 days before c logging. 

Since then, ICT have been appl ied and successful ly  developed for 

cont inuous beer and AFB product ion. Some of then have been appl ied 

at industr ia l  scale both on maturat ion and pr imary fermentat ion (Brányik 

et a l . ,  2005; Mensour et a l . ,  1997; Pi lk ington et a l . ,  1998).  So i t  is  not 
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surpr is ing that over the last decades, d i f ferent reactors designs, as wel l  

as several  immobi l ized methods, were proposed for cont inuous pr imary 

fermentat ion and maturat ion (or secondary fermentat ion) by several  

scient i f ic  groups and brewing industr ies. 

Table I I-1 .  Examples of  carr ier  types and operat ion systems used for  
cont inuous beer  fermentat ion and/or  maturat ion by immobi l ized brewing yeast   

Carr ier  mater ia l  Reactor type Process References 

Ca-alg inate Packed-bed Maturat ion 
(Dömény et  a l . ,  1998;  

Smogrov icová  and 

Domény,  1999)  

,-carrageenan Packed-bed Maturat ion (Dömény et  a l . ,  1998) ,  

,  -carrageenan Gas- l i f t  
Pr imary 

Fermentat ion 
(Smogrov icová  and 

Domény,  1999)  

Porous g lass (S i ran)  Packed-bed ;  
Pr imary 

Fermentat ion 
(V i rka järv i  and Kronlöf ,  

1998)  

Gluten pel le ts  Gas- l i f t  Maturat ion 
($mogrovi$ová et  a l . ,  

1999)  

Spent  gra ins Gas- l i f t  
Pr imary 

Fermentat ion 
(Brány ik  et  a l . ,  2006)  

Corncobs Packed-bed Maturat ion (Brány ik  et  a l . ,  2006)  

PVA part ic les Gas- l i f t   
Pr imary 

fermentat ion 
(Bezbradica et  a l . ,  

2007)  

Spent  gra ins Gas- l i f t   
Pr imary 

fermentat ion 
(Lehnert  et  a l . ,  2009)  

 

Carr ier  cost is  one of the main investment costs when beer is  

produced in a cont inuous mode. Several  types of carr iers have been 

tested to immobi l ize brewing yeast (Brányik et a l . ,  2005; Pi lk ington et 

a l . ,  1998).  The carr ier  type depends on the process to be appl ied: 

pr imary fermentat ion or maturat ion. Not only di f ferent immobi l izat ion 

methods are impl ied, but a lso dif ferent reactors designs operat ing at 

d i f ferent condit ions (see Table I I-1 ) .  In the last 15 years,  the cel lu lose-

base carr iers have gained importance mainly due to their  good 

immobi l izat ion capacit ies,  h igh avai labi l i ty  and low cost (Brányik et a l . ,  

2001).  More information about th is subject is  avai lable in Chapter I I I .  
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II.2.2 Immobilization and physiological changes on yeast 

Since the ear ly attempts to develop a cont inuous process for beer 

product ion the changes in immobi l ized cel ls  metabol ism have been 

postulated as the main reason for unbalanced f lavour of f inal  beer 

(Brányik et a l . ,  2005; Mensour et a l . ,  1997; Virkajarv i  and Linko, 1999).   

I t  has been reported that immobi l ized cel ls  induce dif ferent 

physiological  responses when compared with free cel l  systems. These 

changes are mainly in metabol ic funct ions (substrate uptake, products 

formation, enzymes expression and/or act iv i ty ) .  Most probably they 

occur due to the dif ferent micro-environmental  condit ions that result  

f rom cel l- immobi l izat ion (Junter et a l . ,  2002; Shen et a l . ,  2003).  

These changes can be due to:  increased levels of DNA, product ion of 

structural  carbohydrates and glycogen (Brányik et a l . ,  2005; Doran and 

Bai ley,  1986),  increase saturat ion of fatty acids content,  modif icat ions 

of gene expression levels,  cel l  wal l  and membrane composit ion (Shen et 

a l . ,  2003; Verbelen et a l . ,  2006).  This last one has important impact on 

several  enzymes, SENSO proteins, transporters and membrane f lu id ity 

that p lay an important ro le on ethanol to lerance (Qun et a l . ,  2002) sugar 

uptake and amino acids metabol ism. I t  is  expected that yeast 

physiological  changes affect f inal  beer f lavour.  However,  i t  is  d i f f icult  to 

descr ibe the direct effects of immobi l izat ion due to the complexity of 

the dif ferent immobi l izat ions systems, which can induce one or more 

change in yeast metabol ism. Nevertheless, several  reasons have been 

proposed for the modif icat ions that occur in yeast cel l  as a 

consequence of immobi l izat ion. The main reasons are (1)  the 

cont inuous mode of reactor operat ion; (2 )  internal  and external  mass 

transfer l imitat ion; (3 )  specif ic  environment;  (4 )  ageing of immobi l ized 

cel ls  (Brányik et a l . ,  2005; Masschele in et a l . ,  1994; Verbelen et a l . ,  

2006).  
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II.2.2.1 Continuous mode of reactor operation 

When the tradit ional  beer fermentat ions are carr ied out in batch 

process, the yeast regulates and adjusts i ts  metabol ism dur ing the 

fermentat ion with respect to the changes in the medium composit ion. 

This does not happen in steady-state immobi l ized cel ls  systems where 

the cel ls  are not exposed to s ignif icant a lterat ions in react ion 

environment (Masschele in et a l . ,  1994).  In a cont inuous process, the 

yeast cel ls  do not make any dist inct ion between lag, exponentia l  and 

stat ionary growth phases, because the medium composit ion is  a lmost 

constant over the t ime. This is  the biggest d i f ference between 

cont inuous and batch processes. In order to minimize i t ,  cont inuous 

beer fermentat ion systems usual ly  consist  in two (or more) 

fermentat ions vessels (combining agitated vessels and plug-f low l ike 

reactors)  to achieve the correct beer balance and f lavour (Bezbradica et 

a l . ,  2007; Brányik et a l . ,  2006; Mensour et a l . ,  1997; Smogrovicová and 

Domény, 1999; Virkajärv i  and Kronlöf,  1999; Yamauchi et  a l . ,  1995). 

II.2.2.2 Internal and external mass transfer limitations 

There are two types of mass transfer mechanisms that can l imit  the 

cont inuous beer fermentat ion where ICT is appl ied: the internal  and 

external  mass transfer.  The external  mass transfer depends largely on 

the appl ied reactor,  i ts  design and regime of operat ion. 

The internal  mass transfer l imitat ions are re lated mainly with mater ia l  

d i f fusion inside the biof i lm and/or inside the carr ier  (e.g.  a lg inate)  

where cel ls  are entrapped. These l imitat ions are,  when compared with 

free-cel ls  systems, the most usual just i f icat ion to the often-observed 

decrease in immobi l ized cel ls  growth rate (Masschele in et a l . ,  1994) or 

the var iat ion in specif ic  compound product iv i t ies (Taipa et a l . ,  1993).  

Moreover these l imitat ions create a specif ic  micro-environment on the 

immobi l ized cel ls .  External  and internal  mass transfer barr iers do not 

have a deep impact in the surface of porous and non-porous carr iers.  I f  

there is  a low biof i lm th ickness, an a lmost direct contact of immobi l ized 

cel ls  with the bulk l iquid occurs and therefore no s ignif icant mass 
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t ransfer l imitat ions occur and consequently there is  not a developement 

of a specif ic  microenvironment.  (Brányik et a l . ,  2005). 

II.2.2.3 Specific environment 

The act iv i ty of the immobi l ized cel ls  around/inside the sol id matr ix is  

inf luenced by the developed microenvironment.  There are numerous 

effects of immobi l izat ion on cel l  physiology reported in l i terature 

(Brányik et a l . ,  2005).  The reported physiological  changes of 

immobi l ized yeast include changed metabol ic funct ions such as 

substrate uptake (Shen et a l . ,  2004),  product formation and altered 

enzyme expression and act iv i ty ( Iersel  et  a l . ,  2000).  Some authors agree 

that the enhanced metabol ic act iv i ty can be attr ibuted also to the 

surface sensing responses in immobi l ized cel ls  but the reasons are not 

yet c lear ly expla ined. Among al l  changes in immobi l ized yeast,  the 

increase of ethanol content (Qun et a l . ,  2002),  modif icat ions at DNA 

(Doran and Bai ley,  1986) level  and changes in cel ls  propert ies are the 

most important.   

II.2.2.4 Ageing 

Ageing is the predetermined transit ion of an indiv idual cel l  f rom the 

youth to old age that f inal ly  culminates in death. The Hayf l ick l imit  is  

the maximum l i fespan potent ia l  of  a cel l  (as Saccharomyces cerevis iae ) .  

Empir ical ly ,  i t  corresponds to the number of d iv is ions which one cel l  is  

capable of (between 10 to 30 div is ions).  Death in yeast cel ls  may occur 

v ia two dif ferent ways: necrosis and senescence (Powel l  et  a l . ,  2000). 

According to Monch et a l .  (1995) c i ted by Powel et a l .  (2000),  

necrosis is  def ined as the accumulat ion of i r reparable damage in 

intracel lu lar  components compromising cel l  integr i ty and leading to 

autolysis.  On the other s ide, senescence is the predetermined cessat ion 

of l i fe  as a result  of  a genet ical ly  control led progression from youth to 

old age (Powel l  et  a l . ,  2000).  The or ig in of necrosis is  d iverse and 

depends on environmental  factors (stress condit ions; delet ion or 

d isrupt ion of genes; accumulat ion of DNA damage) (Maskel l  et l  a l . ,  
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2003),  whi le senescence starts when no more cel l  d iv is ion occurs 

(Powel l  et  a l . ,  2000; Sincla ir  et  a l . ,  1998).  Senescence can be re lated 

with the yeast cel l  cycle/div is ion. The knowledge about yeast cel l  cycle 

is  very important on brewing industry because after the pr imary 

fermentat ion the yeast cel ls  are col lected and re-used. This knowledge 

al lows the opt imizat ion of the number of reusing by predict ing the 

formation of b iomass on the next step.  

Table I I-2 .  Cel lu lar  changes accompanying senescence (adapted f rom Powel l  
e t  a l . ,  2000)  

Character ist ic  Change 

Cel l  s ize  Increase 
Surface wr ink le  Increase 

Bud scar  number Increase 
Cel l  wal l  ch i t in  Increase 

Speci f ic  gene express ion A l tered 
Prote in  synthes is  Decrease 
Generat ion t ime Increase 

 

Dur ing a normal fermentat ion the percentage of o ld cel ls ,  which have 

lower metabol ic act iv i ty,  increases, result ing in i r reversib le 

modif icat ions on cel l  appearance (Barker et Smart,  1996; Maskel l  et  a l . ,  

2003).  These morphological  and physiological  changes can act as 

biomarkers in the determinat ion of cel l  age or for fermentat ion control ,  

especia l ly  in cont inuous fermentat ions with immobi l ized yeast cel ls  

(Barker and Smart,  1996; Maskel l  et  a l . ,  2003). 

There are several  ageing and senescence mechanisms that have been 

proposed, such as (Powel l  et  a l . ,  2000; Sincla ir  et  a l . ,  1998a, 1998b):  

-  the re lat ion between surface- to-volume rat io and the increasing 

numbers of bud scars (reduct ion of the surface area for budding and 

nutr ient exchange),   

-  the gradual loss of te lomeric sequences (responsible for ensur ing 

that a complete repl icat ion occurs) ,   

-  cytoplasm senescent factors (accumulat ion of toxic compunds), 

-  genet ic factors. 
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Among al l  of  these, genet ic control  of  ageing has gained the biggest 

importance over the last ten years (Kennedy et a l . ,  1995; Powel l  et  a l . ,  

2000).  Consequently,  a number of genes that may inf luence longevity in 

yeast have already been ident i f ied and are l isted below (Table I I-3 ) .   

Table I I-3 .  Genes associated with  longevi ty  in  Saccharomyces cerev is iae  
(adapted f rom Powel l ,  2000)  

Gene Function Observat ions 

LAG1 Unknown 
LAG2 Unknown 

Expressed in  young ce l ls  

RAS Nutr i t ional  s tatus Related with  longevi ty  
SIR4 Gene s i lenc ing S i lence AGE stress responsea 
AGE Stress response  

aKenedy et  a l ,  1995 

 

In brewing industry,  the term ageing has been incorrect ly used, 

because yeast age is measured chronological ly  by the number of t imes 

a populat ion is reused in successive fermentat ions. After f in ishing the 

prymary beer fermentat ion the cyl indro-conical  tank is cooled to 

promote sedimentat ion. Cel ls  are deposited in the conical  part  of  the 

tank, the oldest f ract ion being located in the bottom and the youngest 

cel ls  in the top. The f locculat ion potent ia l  of  yeast cel ls  is  regulated by 

cel l  wal l  propert ies that change throughout the cel l  l i fe  span (Powel l  et  

a l . ,  2003).  A rough cel l  surface topography promotes cel l- to-cel l  

adhesion dur ing the onset of f locculat ion. Although sedimentat ion 

capacity is  stra in-specif ic ,  cel l  s ize may tr igger an important ro l l  in  

f locculat ion act ing as a nucleat ion point (Barker and Smart,  1996; 

Powel l  et  a l . ,  2003).  

In theory,  cont inuous fermentat ion processes with immobi l ized yeast 

that has a low Hayf l ick l imit  (maximum number of possible cel l  

d iv is ions) is  not recommended (Brányik et a l . ,  2005).  The main reason is 

that long per iods of cont inuous fermentat ion are desirable from the 

economic point of  v iew and yeast with low Hayf l ick l imit  would not 

support long fermentat ion runs (V irkajärv i  and Kronlöf,  1999; Virkajarv i ,  

2001).  I t  is  known that aged brewing yeast changes their  f locculat ion 

character ist ics (Soares and Mota, 1996) and fermentat ion performance 

(Powel l  et  a l . ,  2003).  In addit ion, mutat ions in brewing yeast leading to 
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a l terat ions at morphological/b iochemical level  dur ing fermentat ion can 

occur.  In a prat ical  point of  v iew i t  would important to know: (1)  the 

inf luence of the dif ferent immobi l izat ion methods on ageing of brewing 

yeast and (2)  the effect of senescence on cel l  v i ta l i ty  and fermentat ion 

performance (Brányik et a l . ,  2005).  

II.2.3 Industrial applications 

Continuous pr imary fermentat ion and maturat ion of beer has been a 

f ie ld of interest for brewing s ince the 1970s. Appl icat ions for 

cont inuous beer pr imary fermentat ion and/or maturat ion have been 

implemented at large scale – Cultor Ltd and Tuchenhagen; Kir in 

Brewery; Meura Delta;  Labatt  Brewing Company (Mensour et a l . ,  1997). 

The Cultor Ltd and Tuchenhagen system process was developed in 

the ear ly 1990’s by a consort ium. They developed two processes: (1 )  

accelerated maturat ion (d iacety l  reduct ion) and (2)  cont inuous AFB. The 

carr ier  used was DEAE-cel lu lose (Spezyme® GDC) in a downflow 

Packed-bed reactor (PBR).  The maturat ion system has been operat ional 

s ince 1992 at industr ia l  scale (1E8 L) in the Sinebrychoff  Brewery in 

Kerava (F in land),  where i t  is  used alongside with tradit ional  maturat ion 

process (GEA Process Engineer ing, 2008; Mensour et a l . ,  1997).  

Nowadays, th is system ( Immocon maturat ion) is  avai lable and sold by 

GEA div ison from Tuchenhagen. 

 The Kir in Brewery Co.,  Ltd (Japan) system was eventual ly  the f i rst  

industr ia l  system involv ing cont inuous pr imary beer fermentat ion and 

maturat ion. I t  is  a mult i-stage system composed by BC reactor and two 

PBR (main fermentat ion) and a th ird PBR (maturat ion).  Overal l ,  the 

cont inuous product ion of beer takes place with in three to f ive days. The 

in i t ia l  20 L system was scaled-up to 500 L and then to 10 000 L. 

However some unexpected drawbacks (h igher capita l  and operat ing 

costs)  condemned to fa i lure the 10 000 L insta l lat ion (Mensour et a l . ,  

1997).   
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Meura Delta has developed a mult i-stage bioreactor system for the 

product ion of a lcohol-free and regular beer.  Yeast cel ls  are immobi l ized 

by adsorpt ion on the internal  surface of the s i l icon carbide rods. Based 

on the success, Meura Delta is  try ing to implement their  design to 

industr ia l  scale.  L i t t le  scale-up problems are expected, because the 

system has a modular design (Mensour et a l . ,  1997; Meura, 2007). 

The Labatt  Breweries (Canada) in associat ion with the Department of 

Chemical and Biochemical Engineer ing at the Univers ity of Western 

Ontar io,  proposed a cont inuous beer fermentat ion system using 

immobi l ized yeast cel ls  in ,-carrageenan. Addit ional ly  they developed a 

cont inuous bead product ion process (Decamps et a l . ,  2004) based on 

stat ic mixers.  A draft  tube gas-l i f t  b ioreactor with a degassing zone was 

appl ied for the pr imary fermentat ion of beer.  Labbat Brewery was the 

f i rst  in using a gas-Lif t  b ioreactor for cont inuous beer production. 

Moreover the exper imental  work a l lows not only research groups to be 

famil iar ised with the ICT but a lso how it  could be appl ied in cont inuous 

beer product ion. Before th is appl icat ion the major problem was re lated 

with the product ion of poor f lavour prof i le  mainly due to low free amino 

nitrogen (FAN) uptake from immobi l ized cel ls .  Labatt  Brewery, with the 

implementat ion of a gas-l i f t  b ioreactor (good mixing prof i les)  with a 

draft  tube and smal l  s ized immobi l isat ion beads (±1 mm in diameter)  

managed to reduce s ignif icant ly mass transfers l imitat ions. 

Consequently the FAN uptake was better and a f inal  product of 

acceptable qual i ty was produced. The valuable exper ience and 

knowledge gained through the prel iminary immobi l ized cel l  work at 

Labatt ,  provided a sol id foundation which is now used to develop th is 

technology into an industr ia l ly  feasible venture (Mensour et a l . ,  1997). 
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II.3 Continuous Alcohol-free Beer Production 

As reported before, AFBs are mainly produced, at industr ia l  scale,  by 

arrested or l imited fermentat ion (as CCP).  Fermenting an AFB is 

technical ly  s imple and resembles secondary fermentat ion. The 

cont inuous product ion of AFB is based on the l imited fermentat ion 

strategy. The proposed AFB cont inuous fermentat ion systems general ly  

consist  of  one-stage bioreactor and are s imi lar  to the previously 

reported cont inuous maturat ion systems ( low temperature,  low wort 

gravity and short contact t ime).  The main a im is to remove the worty 

f lavour without a h igh a lcohol concentrat ion (or only very low amounts 

of a lcohol )  in  the beer (Brányik et a l . ,  2012; Virkajarv i  and Linko, 1999). 

Consider ing that the most successful ly  appl ied systems in industry 

are for maturat ion of beer (see sect ion I I .2.3) ,  the cont inuous 

product ion of AFB has a big potent ia l  appl icat ion due i ts h igh 

product iv i t ies when compared with the exist ing methods. In fact,  the 

st i l l  low number of AFBs consumers and absence of a long tradit ion in 

i ts  product ion/consumption (Branyik et a l . ,  2012) can lead to an easier 

implementat ion of cont inuous AFBs product ion systems at industr ia l  

scale.  In addit ion, some appl icat ions managed a good reduct ion of 

a ldehydes by the bioreactor design only (physical  mechanism).  AFBs 

are known by their  worty off- f lavours and aldehydes have been reported 

as the reason for th is character (Perpète and Col l in,  1999a).   

Many research groups have been developing and opt imiz ing dif ferent 

cont inuous AFBs systems. The main dif ferences are in reactor design, 

immobi l izat ion method and carr ier  used. The main reactors used are 

Packed-bed l ike reactors (Van Iersel  et  a l . ,  1995).  However and 

consider ing the good mixing and aldehyde reduct ion propert ies (by 

str ipping) of  iGLR, th is reactor has a lso gained importance for 

cont inuous AFBs product ion (Lehnert  et  a l . ,  2009). 
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II.3.1 Industrial applications 

Although several  systems have been proposed and implemented over 

the last years for cont inuous AFBs product ion the methods used in 

industry are not known by the major i ty of the scient i f ic  community.  The 

main conclusion to be taken is that the proposed cont inuous 

fermentat ion systems have not yet been successful ly  appl ied in 

industr ia l  cont inuous AFB product ion. The main reasons that are 

pointed are the need of industry to acquire specia l  equipment 

(b ioreactor and addit ional  equipment for running i t  cont inuously)  and to 

apply addit ional  techniques ( immobi l izat ion methods) and mater ia ls 

(carr ier )  not common in brewing industry (Brányik et a l . ,  2012; Mensour 

et a l . ,  1997; Pi lk ington et a l . ,  1998).  Another possible conclusion may 

be re lated with the importance of cont inuous systems using 

immobi l ized cel ls  on cont inuous AFBs product ion that may lead brewing 

companies to h ide their  progress in th is part icular f ie ld.  As referred 

before only one industr ia l  appl icat ion for cont inuous AFBs is known -

the Cultor Ltd and Tuchenhagen system. In fact,  i t  is  not a pure AFB 

but a LAB. Consider ing the s imi lar i t ies between AFB and LAB, some 

detai ls  of th is indutr ia l  appl icat ion wi l l  be descr ibed below. 

The system developed by the Cultor Ltd and Tuchenhagen 

consort ium to produce cont inuously AFB using immobi l ized cel ls  in a 

PBR, when compared to the c lassical  arrested batch fermentat ion, was 

found to produce a better tast ing LAB with an improved product 

consistency. The Bavar ia BV (Nether lands) is  using th is system for the 

cont inuous product ion of 15 000 m3 of LAB per year.  I t  is  a lready one of 

Bavar ia's best sel l ing LAB. A personal communicat ion from Heikki  

Lommi  (business manager of Cultor Technology) c i ted by Mensour et 

a l .  (1997) indicated that other companies (Faxe in Denmark, Ottakr inger 

in Austr ia ) ,  have also purchased th is technology and are present ly 

producing cont inuously AFB. In recent years the GEA group togheter 

with Tuchenhagen developed the Immocon system for cont inuously AFB 

product ion. They cla im that many breweries are using their  method, 
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such as Sinebrychoff  Brewery in Kerava – Fin land (GEA Process 

Engineer ing, 2008; Mensour et a l . ,  1997). 

II.3.2 Future trends and challenges 

Regular AFBs are known by the worty off- f lavour and lack of body. 

Consider ing that even the most common industr ia l  approaches cannot 

solve these issues, and that cont inuous fermentat ions technology 

development has been ra is ing fast th is can be a promising f ie ld of 

study in the future.  Many studies have to be made to achieve not only 

the product ion of a wel l-balanced AFB, but a lso in the scale-up issues 

of the used bioreactors.  Thus, i t  is  important to: 

 -  understand better the physiological  changes of immobi l ized yeast; 

-  control  ageing issues in a long-term fermentat ion; 

-  understand the interact ion between hydrodynamic aspects (kLa;  

mixing prof i les,  channel l ing) and yeast metabol ism for each proposed 

system. 

II.4 Beer Quality and Flavour: Origin and Influence 

The two dist inct aspects to beer qual i ty are the nature or k ind and 

the degree of excel lence. There are many qual i ty parameters in beer – 

f lavour,  colour,  c lar i ty,  degree of degradat ion, presence (or not)  of  

foam, pH and alcohol content are the most important.   

F lavour,  according to the EBC-ASBC def in i t ion, is  the combinat ion of 

o l factory and gustatory attr ibutes perceived dur ing tast ing. I t  includes 

tact i le ,  thermal,  pain and kinesthet ic effects.  The most important 

aspects of f lavour are mouth-feel ,  taste and odor (Br iggs et a l ,  2004).  

Mouth-feel  is  def ined as the tact i le  perception at the l in ing of the 

mouth ( tongue and teeth) and is involved in the perception of 

smoothness, astr ingency (dry ing),  temperature and CO2 sensat ion. 

Taste is  sensed by tongue where four (4)  f lavours (sweet,  salt ,  sour and 

bitter )  are recognized, whi le the aroma is sensed by the olfactory 
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system (Br iggs et a l . ,  2004; Lewis and Young, 1995).  The predominant 

inf luences on beer f lavour are der ived from hop bitterness and aroma, 

malt  components and fermentat ion (Lewis and Young, 1995)  

There are several  compounds that contr ibute to beer f lavour.  Each 

compound has dif ferent thresholds, i .e . ,  perception of a substance that 

is  present in a concentrat ion that can just be ident i f ied. In the next 

table (Table I I-4 )  are summarized the main beer f lavour compounds. 

Table I I-4  compares the values presented in l i terature for regular beers 

and AFBs to cont inuous and batch product ion modes. 

 From Table I I-4 ,  i t  is  possible to observe that cont inuous process 

has s imi lar  values to the tradit ional  batch for h igher a lcohols and 

esters.  The main problem occurs in tota l  VDK’s concentrat ion. VDK’s 

amount for regular beers produced in cont inuous is usual ly  h igher than 

by batch process and than the threshold values (Brányik et a l . ,  2006; 

Pajunen et a l .  (2001) in Wil laert  and Nedovic,  2006).  However th is does 

not occur in cont inuous AFB mainly due to the operat ional parameters 

(8 ºC) that l imit  the fermentat ion and yeast metabol ism. Consequently 

the formation of a l l  main f lavour compounds is lower.  Among them 

VDK’s concentrat ion in cont inuous AFB is s imi lar  to the batch process 

(Lehnert  et  a l . ,  2008).  Some authors (Perpète and Col l in,  1999b) 

considered that,  due to AFB low alcohol content,  their  f lavour 

compounds threshold should be compared with the fa lvour threshold 

compound in water and not in beer as is  normal ly done. Being so, in 

Table I I-4  the threshold in water and beer are displayed for d i f ferent 

f lavour compounds. 
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Table I I-4 .  Beer  major  F lavour compounds in  cont inuous and batch systems for  regular  (A and B)  and AFB (C)   

Continuous system  Batch process  

Class 
Compound / mg/L or 

µg/L* 
A B C  A B C  

Threshold 

in water 

(E) / 

(mg/L) 

Threshold in 

beer (D) / 

(mg/L) 

Flavour in Beer (D) 

Alcohol Ethanol 38500 - 3900  44200 - < 3900  990 14000 Alcohol, strong 

Propanol 16.1 24.9 1.6  17.5 10 2   800 Alcohol 

IsoButanol 8.3 8.4 1.6  12.5 8.2 1.8  0.59 200 Alcohol 

Amyl-Alcohol 

(2-Methyl-butanol) 
55.8 - 8.6  70 - 7.65  1.2 65 

Alcohol, Banana, 

Sweetish, Aromatic 

Isoamyl alcohol 

(3-Methyl-butanol) 
- 47.0 -  - 51 -  0.22 70 

Alcohol, Banana, 

Sweetish, Aromatic 

Higher 

Alcohols 

(HA) 

TOTAL HA 80.2 80.3 11.8  100 69.2 11.45   - - 

Ethyl acetate 11.3 26.4 0.58  17.2 21.5 0.78   33 
Solvent, Fruity, 

Sweetish 

Isoamyl acetate - 1.00 -  - 1.5 -   1.2-1.6 
Banana, Apple, 

Solvent, Estery 

Ethyl Caproate - 0.2 0.01  - 0.4 0.01   0.21-0.23 

Apple, Fruty, 

Sweetish, Aniseed, 

Estery 

Ethyl Caprylate - 0.6 0.22  - 1.4 0.01   0.9 
Apple, Sweetish, 

Fruty 

Amyl Acetates 0.2 - 0.02  1.2 - 0.06   1.2 ** - 

Esters 

(ES) 

Total ES 11.5 28.2 0.83  18.4 24.8 0.86   - - 

Legend:  A –  Brány ik  et  a l .  (2006) :  Spent  Gra ins (Regular  beer ) ;  B –  Pajunen et  a l  (2001)  in  Wi l laert  and Nedovic (2006) :  

Aspen wood chips (average va lues of  Regular  beer ) ;  C –  Lehnert  et  a l  (2008) :  Spent  Gra ins (AFB);  D –  Mei lgaard (1975) ;  E  -  

Czerny et  a l .  (2008) .  

*  –  Va lues in  µg/L **  — Value f rom Lehnert  et  a l  (2008) .  * * *  –  f rom Perpète  and Col l in  (1999b)  
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Table I I-4 .  (cont inuat ion)  

Continuous system  Batch process  

Class 
Compound / (mg/L or 

µg/L*) 
A B C  A B C  

Threshold 

in water (E) 

/ (mg/L) 

Threshold 

in beer (D) 

/ (mg/L) 

Flavour in Beer (D) 

Diacetyl (2,3 - 

Butanedione) 
- 0.25 - 

 
- - -   0.15 Diacetyl, butter scotch 

2,3-Pentanedione - 0.15 -  - - -   0.9 Diacetyl, Fruity 

Vicinal 

Diketones 

(VDK’s) 
Total VDK’s 0.29 0.4 0.06  0.03 - 0.05   - - 

Acetaldehyde 13.1 - 8.5 
 

8 - 6.9  0.025 10 
Green leaves, Fruty, 

Worty 

Hexanal* - - 0.2 
 

- - 0.2  2.4 0.35 
Bitter, Vinous, 

aldehyde 

2-Methyl propanal* - - 1.7  - - 0.3  0.49 1*** - 

3-Methyl butanal * - - 8.7 
 

- - 1.6  0.5 0.6*** 
Malty, Chocolate, 

Almond*** 

Methional - - - - - - - - - - - 

Aldehydes 

Furfural* - - 1.5  - - 2.7  8000 150 Paper, husk 

Legend:  A –  Brány ik  et  a l .  (2006) :  Spent  Gra ins (Regular  beer ) ;  B –  Pajunen et  a l  (2001)  in  Wi l laert  and Nedovic (2006) :  

Aspen wood chips (average va lues of  Regular  beer ) ;  C –  Lehnert  et  a l  (2008) :  Spent  Gra ins (AFB);  D –  Mei lgaard (1975) ;  E  -  

Czerny et  a l .  (2008) .  

*  –  Va lues in  µg/L **  — Value f rom Lehnert  et  a l  (2008) .  * * *  –  f rom Perpète  and Col l in  (1999b)  
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II.4.1 Higher alcohols  

Higher a lcohols (HA) are a lcohols that have more carbon atoms than 

ethanol (Lewis and Young, 1995) and contr ibute to beer f lavour due to 

their  a lcohol ic or solvent- l ike aroma causing a warm mouth-feel .  They 

are formed dur ing main fermentat ion and can be div ided in a l iphat ic 

and aromatic.  The main a l iphat ic HA are: n-propanol,  isobutanol 

(2 methylpropanol) ,  amyl and isoamyl a lcohols,  whi le the main aromatic 

HA are: 2-phenylethanol,  tyrosol and tryptophol,  being the latter 

undesirable (Brányik et a l . ,  2008; Wil laert  and Nedovic,  2006; 

Mei lgaard, 1975).  

The HA are formed from the !-keto-acids pool.  These acids are 

decarboxylated to a ldehydes and further reduced (by a lcohol 

dehydrogenase) to HA. The !-keto-acids are synthesized trough two 

pathways: the anabol ic and catabol ic routes. In the anabol ic route, the 

!-keto-acids formation ar ises in the amino acid synthesis from 

carbohydrate metabol ism. In he catabol ic route, !-keto-acids are 

synthesized by the uptake of wort amino acids from yeast cel ls  (Brányik 

et a l . ,  2008; Wil laert  and Nedovic,  2006).  The f inal  concentrat ion of HA 

is determined by the uptake of the corresponding amino acid and 

carbohydrate ut i l izat ion rate and i ts formation is re lated with FAN 

uptake (Brányik et a l . ,  2008; Masschele in et a l . ,  1994; Wil laert  and 

Nedovic,  2006).  The contr ibut ion of anabol ic or catabol ic pathway is 

unclear and var ies for each alcohol.  I t  is  reported that th is contr ibut ion 

is inf luenced by wort amino acid composit ion, fermentat ion stage and 

yeast stra in.  Moreover,  HA can also be or ig inated from the reduct ion of 

ketones and aldehydes present in wort.  (Brányik et a l . ,  2002).   

Regarding Table I I-4  and having in mind the high taste threshold of 

these compounds, the gap between HA formation dur ing cont inuous 

and tradit ional  beer fermentat ions does not represent the most ser ious 

f lavour problem (Brányik et a l . ,  2008; Smogrovicová and Domény, 

1999).  Yet,  an increased propanol y ie ld fo l lowed by decreased i-butanol 
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and isoamyl a lcohol formation was not iceable in some of the cont inuous 

systems (Brányik et a l . ,  2008; Wil laert  and Nedovic,  2006). 

General ly ,  immobi l ized cel ls  systems by entrapment are re lated with 

low HA formation, mainly due to mass transfer l imitat ions that leads to 

poor immobi l ized cel l  growth and low FAN uptake by the immobi l ized 

cel ls .  On the other hand, cont inuous fermentat ion using immobi l ized 

cel ls  systems by adsorpt ion (spent grains, wood chips) have high FAN 

uptake, as wel l  as good immobi l ized cel l  growth, which, natural ly ,  leads 

to good formation of HA (Brányik et a l . ,  2008; Masschele in et a l . ,  1994; 

Smogrovicová and Domény, 1999; Wil laert  and Nedovic,  2006). 

In cont inuous systems, i t  is  possible to control  the formation of HA 

by choosing an appropriate yeast stra in,  wort composit ion, 

fermentat ion condit ions (CO2, Temperature,  wort velocity ) ,  

immobi l izat ion method (adsorpt ion or entrapment)  and reactor design 

(Yamauchi et  a l . ,  1995).  HA formation is re lated with yeast growth 

intensity.  Therefore solut ions to increase their  formation are mainly 

solut ions that increase yeast cel ls  growth, such as: the increase fo 

aerat ion and temperature and the reduce of d issolved CO2. The HA 

product ions is extremely important as they are re lated with the 

product ion of esters (Brányik et a l . ,  2008; Smogrovicová and Domény, 

1999; Wil laert  and Nedovic,  2006).  

II.4.1.1 Higher alcohols production in continuous AFBs 

I t  has been reported that in AFBs due to l imited fermentat ion or 

a lcohol removal techniques the concentrat ion of HA is low (Branyik et 

a l . ,  2012).  Moreover,  the concentrat ion of undesirable HA such as 

tyrosol and tryptophol is  a lso low (Bartolomé et a l . ,  2000).  As to ld 

before (sect ion I I .1 ) ,  cont inuous AFB product ion is normal ly obtained by 

l imit ing yeast growth intensity.  Consequently,  the concentrat ion of HA 

is normal ly very low compared with cont inuous regular beers product ion 

(see Table I I-4 ) .  However,  when compared with commercia l  AFBs the 

values are s imi lar .  Lehnert  et  a l  (2008) proved that the increasing of 

d issolved oxygen in the reactor increases the HA product ion. I t  was 
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sustained that increasing dissolved oxygen, i t  increases carbohydrate 

and amino acid metabol ism and consequently the !-keto-acids and HA 

product ion. Only at h igh oxygen transfer rates (!10 mg/L/h) the amount 

of HA was higher than in the commercia l  AFBs (Lehnert et  a l . ,  2008).  

II.4.2 Esters 

Esters (ES) represent the largest group of f lavour act ive compounds 

in beers.  Their  great importance in f lavour is  attr ibuted to i ts low 

threshold that confers a fru ity aroma in beers.   Esters are synthesized 

by the react ion between an alcohol and an acyl-CoA molecule,  which is 

catalyzed by a lcohol acyltransferases (AATases).  Several  other 

esterases have been reported. Although ester formation in yeast has 

been very studied over the past years (Verstrepen et a l . ,  2003),  the 

knowledge about the physiological  ro le of these compounds is rather 

unclear (Brányik et a l . ,  2008; Wil laert  and Nedovic,  2006).  The ES can 

be div ided into two main groups: (1)  acetate esters such as ethyl  

acetate (most common because is der ived from ethanol) ,  isoamyl 

acetate and phenylethyl  acetate;  and (2)  the so-cal led ethyl  or medium 

chain fatty acid esters e.g.  ethyl  caproate and ethyl  caprylate (Brányik 

et a l . ,  2008; Wil laert  and Nedovic,  2006).  ES product ion in batch 

systems occurs dur ing yeast growth (60%) and stat ionary phase (40%) 

(Wi l laert  and Nedovic,  2006).  Two factors are important on the rate of 

ester formation: the avai labi l i ty  of the two substrates (acety l/acyl-CoA 

and alcohols) ,  and the act iv i ty of enzymes (AATases).  Ester formation is 

h ighly dependent on the yeast stra in used and on certa in fermentat ion 

parameters such as temperature,  p itching rate,  top pressure and 

aerat ion (Calderbank and Hammond, 1994; Van Iersel  et  a l . ,  1999; 

Verstrepen and Kl is ,  2006; Wil laert  and Nedovic,  2006).  Higher wort 

aerat ion affects esters synthesis,  because fatty acids from wort reduce 

the avai labi l i ty  of acyl-CoA (used for yeast growth and membrane l ip id 

synthesis)  (Brányik et a l . ,  2008; Lehnert et  a l . ,  2008; Lewis and Young, 

1995).  Some studies reported that the main factor control l ing ester 

b iosynthesis is  the expression level  of  the ATF1 gene, which codes for 
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AATase. The expression of ATF1 gene is repressed both by oxygen and 

unsaturated fatty acids (Van Iersel  et  a l . ,  1999; Verstrepen et a l . ,  2003; 

Wil laert  and Nedovic,  2006).  

When studing the ES product ion in cont inuous and tradit ional  

system, the overal l  tendency indicates reduced ester formation in 

cont inuous systems (Brányik et a l . ,  2008).  The lack of ES in cont inuous 

systems is bel ieved to happen due to the low cel lu lar  metabol ic 

act iv i t ies in these systems (Wil laert  and Nedovic,  2006).  This tendency 

might be due to incorrect aerat ion ( lack of knowledge of kLa) ,  yeast 

stra in and cel l  physiology, process design (e.g.  type of immobi l izat ion) 

(Brányik et a l . ,  2008),  ageing and/or genet ic dr i f t  (especia l ly  in 

immobi l ized systems) (Sato et a l . ,  2001),  wort composit ion (specif ic  

gravity,  l ip id and FAN content)  and process condit ions ( temperature,  

pH, agitat ion) (Dufour et a l . ,  2003).  However,  some reports showed 

higher ES product ion in cont inuous immobi l ized cel ls  systems (Van 

Iersel  et  a l . ,  1999; Wil laert  and Nedovic,  2006).  The theoret ical  

explanat ion re lates the ES increase with the low mass transfer and 

dissolved oxygen. This decrease reduces the immobi l ized yeast cel ls  

growth intensity and an increase in the avai labi l i ty  of acyl-CoA for ES 

synthesis instead of fatty-acids formation occurs (Wi l laert  and Nedovic,  

2006).  Shen et a l ,  (2003) found a s ignif icant reduct ion (35%) of the 

amount of tota l  fatty acids in immobi l ized yeast cel ls ,  which al lowed the 

acyl-CoAs to be channel led for esters product ion (Shen et a l . ,  2003).  

Moreover low fatty acids wi l l  have a less repressive effect on ATF1 

gene considered one of main genes in coding ES formation (Shen et a l . ,  

2003).  

II.4.2.1 Esters production in continuous AFBs 

By analysing the commercia l  beers present in Table I I-4 ,  i t  is  

possible to observe that ES product ion in AFBs can be up to 30 t imes 

less than in regular beers.  Moreover,  to produce continuously AFBs low 

temperatures are normal ly appl ied (0 ºC to 12 ºC),  which l imit  yeast 

growth, and also ES product ion. Van Iersel  and his col laborators (1999) 
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observed better ES product ion at h igh temperatures (12 ºC) and low 

oxygen content.  They also observed that the increase in ES content 

was re lated with a decreased of fatty acid content associated with an 

increase of enzyme act iv i ty (Van Iersel  et  a l . ,  1999).  Lehnert  et  a l  (2008) 

reported a dual effect f rom oxygen in ES product ion. They showed that 

increase in oxygen concentrat ion leads to increase of HA content in 

AFBs, which is a substrate on ES product ion. However,  per se, th is 

increase on substrate concentrat ion was not enough and was counter-

balanced by low enzyme act iv i ty due to oxygen concentrat ion, overal l  

leading to no ES increase (Lehnert  et  a l . ,  2008).  Increasing oxygen 

transfer rate,  the yeast cel l  uses dif ferent metabol ic pathways that are 

re lated with cel l  d iv is ion and not with ES product ion. Esters synthesis 

is  a complex process involv ing many factors and is d i f f icult  to control .  

In order to solve th is problem, mutants and genet ical ly  modif ied yeast 

might be a promising instrument to control  f lavour issues in cont inuous 

process (Verstrepen et a l . ,  2001, 2003).  

Reactor design may inf luence ES concentrat ion in the f inal  product,  

mainly in GLR where str ipping of ES by the gas-phase may occur and 

lead to low ES concentrat ion. Exper iments proved that the physical  

removal of  ES by str ipping is reduced (below 30%) at d i lut ion rates up 

to 0.3 h- 1 .  The exception was the ethyl  caprylate ( losses between 30% 

and 80%) (Macie ira,  2008).  

II.4.3 Organic acids 

Organic acids (OA) in beer are der ived from wort and yeast 

metabol ism. The short carbon skeleton organic acids secreted by 

yeasts are der ived from: (1)  the incomplete turnover of TCA cycle and 

(2)  the amino acids catabol ism. OA reduce the pH dur ing fermentat ion 

conferr ing a “sour” taste.  In addit ion they provide an increase of 

microbia l  stabi l i ty  on the f inal  product (Brányik et a l . ,  2008; Selecky et 

a l . ,  2008).  I t  can be stated that the OA concentrat ion in cont inuously 

systems should be such that does not inf luence beer f lavour but keeps 
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a good microbia l  protect ion. There are few studies about OA formation 

dur ing cont inuous beer product ion. The ones avai lable report l i t t le  

d i f ference in the tota l  organic acid concentrat ion. The control  on OA 

concentrat ion in cont inuous beer fermentat ion is s imi lar  to HA and is 

based on the regulat ion of cel l  growth and subtrate consumption rate.  

(Brányik et a l . ,  2008, Smogrovicová and Domény, 1999; Yamauchi et  

a l . ,  1995.)   

II.4.3.1 Organic acids production in continuous AFBs 

Working with TCA gene def ic ient yeast stra ins,  Selecky et a l .  (2008) 

were able to produce AFBs with h igh sacchar ide concentrat ion with low 

nitrogen ut i l izat ion. But the low ethanol was compensated by a h igh OA 

formation mainly succinate,  fumarate,  lact ic and malate.  The observed 

high levels of lact ic acid (144 mg/L to 495 mg/L) were considered 

important because i t  confers good protect ion against contaminat ion 

and masks unacceptable worty off- f lavours typical  f rom AFBs (Selecky 

et a l ,  2008).  

II.4.4 Aldehydes 

Beer a ldehydes ar ise mainly dur ing wort product ion (mashing, 

boi l ing) and part ia l ly  are formed dur ing fermentat ion by yeast(Bartolomé 

et a l . ,  2000).  Aldehydes are very important due to their  low threshold, 

which is hundred t imes less than the other compounds (see Table I I-4 ) .  

They contr ibute largely to the worty off- f lavour detected part icular ly in 

low-alcohol beer produced by l imited fermentat ion (Perpéte and Col l in,  

1999a, 1999b).  Several  a ldehydes present in wort have been ident i f ied 

as responsible for worty off  f lavour in beers (3 methyl  butanal,  2-

methyl  butanal,  hexanal,  heptanal ) .   

Beers made by cont inuous fermentat ion show a s l ight ly increased 

acetaldehyde content when comparing to convent ional beers (Brányik et 

a l . ,  2004; Mensour et a l . ,  1997).  Usual ly  th is is  due to the fact that the 

major i ty of cont inuous systems show excess cel l  growth and/or over-
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aerat ion. Acetaldehyde content has to be control led e ither by proper 

oxygen supply (Brányik et a l . ,  2006) or by prolonged maturat ion 

(Kronlöf and Linko, 1992).  Higher rates of a ldehyde reduct ion were 

observed at h igher temperatures, but residence t ime appeared to be a 

major factor in determining residual a ldehyde levels (Debourg et a l . ,  

1994; Van Iersel  et  a l . ,  1995).  I t  is  a lso reported that the enzymatic 

mechanisms involved in a ldehyde reduct ion capacity were not 

negat ively affected (Debourg et a l . ,  1995) or improved (Van Iersel  et  a l . ,  

2000) by inf luence of the immobi l izat ion method. Immobi l ized cel ls ,  due 

to h igher g lucose f lux showed both higher a ldehydes reduct ion and 

higher act iv i ty of a lcohol dehydrogenase, comparing to free cel l  

systems (Van Iersel  et  a l . ,  2000).  

II.4.4.1 Aldehydes production in continuous AFBs 

As indicated before, in AFBs the presence of a ldehydes is crucia l  for 

a balanced f inal  beer f lavour.  In AFBs the f lavour thresholds are 

bel ieved to be more near water thresholds than in beer,  mainly due to 

their  low alcohol content (Perpète and Col l in,  1999b).  Wort a ldehydes 

dur ing batch fermentat ions are reduced re lat ively swift ly ,  but as 

cont inuous AFBs are normal ly l imited fermentat ions some concerns 

ar ise.  Among these, 2- and 3-methylbutanal,  hydroxymethylfurfura l  

(Bartolomé and al . ,  2000) and methional (Perpète and Col l in,  1999) ar ise 

mainly from wort preparat ion (mashing).  

Perpète and Col l in (1999b) studied the a ldehyde reduct ion in CCP 

using a PBR. After 8 h they found that a ldehyde reduct ion is a lmost 

complete and i t  is  inf luenced by temperature (85% at 28 ºC and 60% at 

0 ºC),  p itching rate and wort composit ion (b inding effect of proteins) .  In 

a later art ic le,  the same authors found that methional (3-

methylth iopropionaldehyde) was the key compound responsible for the 

worty,  unpleasant,  f lavour of AFBs (Perpète and Col l in,  1999b).  This 

a ldehyde der ives from the react ion between methionine with glucose or 

maltose and has a h igh boi l ing point.  So th is compound has low losses 

dur ing brewing process. Moreover,  i t  is  very hard to detect and has a 
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very low threshold: 1.7 ppb in water (Perpète and Col l in,  1999b) and 

250 ppb in beer (Mei lgaard, 1975). 

Acetaldehyde is a lso one of the important a ldehydes found in beers 

because i t  is  a precursor of many other compounds (HA, ethanol etc).  

I ts  formation is re lated with fermentat ion intensity.  Therefore the 

acetaldehyde concentrat ion increases with the increase of the oxygen 

transfer rate.  As i ts formation is essent ia l ,  acetaldehyde reduct ion is 

lower,  however i ts  reduct ion is general ly  h igher than 85% and the f inal  

concentrat ion is s imi lar  to the threshold in regular beers (10 mg/L, see 

Table I I-4 )  (Lehnert  et  a l . ,  2008).  Nevertheless, i f  the f inal  acetaldehyde 

concentrat ions obtained in cont inuous AFBs are compared with the 

threshold in water (0.025 mg/L) as suggested by some authors,  and 

then i ts f lavour inf luence can be re levant.  Some studies have been 

made to measure the loss of a ldehydes by str ipping (physical  

mechanism))  in an iGLR and i t  was found that in th is type of reactors,  at  

lower di lut ion rates (below 0.2 h- 1 ) ,  the a ldehyde removal (by str ipping) 

was good and higher than 65% (Macie ira,  2008).  Dur ing several  

cont inuously AFB fermentat ions using spent grains as carr ier  and 

dif ferent stra ins,  i t  was always obtained an aldehyde reduct ion above 

the batch process (85% vs 65%) and no inf luence on the gas-phase 

(pure CO2 vs Air/CO2 mixture)  was noted (Macie ira,  2008). 

II.4.5 Vicinal diketones  

Among the ketones present in beer,  the two vic inal  d iketones 

(VDK’s) :  d iacety l  (2,3-butanedione) and 2,3-pentanedione are those that 

are of extreme importance on beer off- f lavour.  Diacety l  is  the most 

f lavour-act ive,  because i t  has a very low taste threshold of 

approximately 0.15 mg/L (Mei lgaard, 1975).  They are responsible for an 

unclean, sweetish taste in beer,  which turns into a buttery off- f lavour i f  

in  h igher concentrat ion (Wi l laert  and Nedovic,  2006). 

VDK’s are produced dur ing main fermentat ion from yeast metabol i tes 

(!-acetolactate and !-ketobutyrate)  that are secreted into the green-
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beer.  These are produced as intermediates in the biosynthesis of the 

amino acids ( isoleucine, leucine and val ine – ILV pathway) (Lewis and 

Young, 1995; Wil laert  and Nedovic,  2006).  Dur ing maturat ion phase, 

d iacety l  is  re-assimi lated and reduced by yeast to acetoin and 2,3-

butanediol ,  compounds with re lat ively h igh f lavour thresholds 

(Mei lgaard, 1975).  The amount of d iacety l  formed is re lated with the 

intercel lu lar  val ine’s concentrat ion, but at h igh concentrat ions of val ine 

there is  an inhibitory effect on the enzyme responsible for !-

acetolactate product ion (Petersen et a l ,  2004).  General ly  fermentat ion 

condit ions that promote yeast growth are re lated with h igh product ion 

of !-acetolactate,  thus high diacety l  concentrat ions (Wi l laert  and 

Nedovic,  2006).  

In most cont inuous beer fermentat ion produced using ICT, the 

amount of tota l  d iacety l  tends to be higher when comparing with 

tradit ional  systems (Brányik et a l ,  2005; Wil laert  and Nedovic,  2006).  

Several  explanat ions for th is trend are:  (1 )  change of cel l  physiology 

induced by the immobi l izat ion ( increasing the expression of 

acetohydroxy acid synthetase gene);  (2 )  a l terat ion of amino acid ( ILV 

pathway changes) metabol ism in immobi l ized cel ls ;  (3 )  enhanced 

anabol ic formation of amino acid precursors due to rapid yeast growth 

(Brányik et a l ,  2005).  

In order to control  and/or avoid the excessive VDK’s formation dur ing 

immobi l ized cont inuous fermentat ion, the control  strategies include: (1)  

addit ion of !-acetolactate decarboxylase; (2 )  using of genet ical ly  

modif ied brewer’s yeast (encoding !-acetolactate decarboxylase);  (3 )  

control  of  operat ion condit ions (Brányik et a l ,  2006; Godtfredsen et a l ,  

1984; Kronlof and Linko, 1992; Yamauchi et  a l . ,  1995).  Consider ing 

enzyme costs and the usual re luctance of consumers to the use of 

genet ical ly  modif ied organisms in food industry,  other opt ions should 

be used. These consist  mainly in l imit ing the growth of immobi l ized 

yeast,  process changes, and select ion of an appropriate yeast stra in.  

However control  through growth regulat ion is d i f f icult  and was found to 

be ineffect ive (Brányik et a l ,  2006; Yamauchi et  a l . ,  1995).  The main 
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reason because high diacety l  amounts are found in cont inuous 

maturated beer is  due to the short  t imes normal ly used in cont inuous 

maturat ion. Yamauchi et  a l  (1995) suggested a strategy to reduce 

diacety l  effect ively.  This was obtained by apply ing an intermediate heat 

treatment between the pr imary and secondary fermentat ion 

(maturat ion).  The heat ing was made under anaerobic condit ions at 

90 ºC for 10 min pr ior to maturat ion. The main drawback was the 

necessity of implementing an adit ional  centr i fugat ion step ( to remove 

biomass) before heat ing treatment (Yamauchi et  a l . ,  1995).  

II.4.5.1 Vicinal diketones production in continuous AFBs 

As the temperatures used in cont inuous AFB product ion are normal ly 

low and the VDK’s concentrat ion depends on the yeast growth intensity 

normal ly the values of VDK’s are below threshold for regular beers 

(Table I I-4 ) .  At low temperatures the !-acetolactate product ion is lower 

and most of i t  is  balanced to ILV pathway. Working at low temperature 

and low dissolved oxygen concentrat ions wi l l  decrease the VDK’s 

product ion (Van Iersel ,  1999).  
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III.1  Objectives 

When implementing a cont inuous fermentat ion system using ICT i t  is  

necessary to consider some aspects such as: carr ier  propert ies,  

immobi l izat ion mechanism and the reactor conf igurat ion. One of the 

main problems when cont inuous pr imary beer fermentat ions are 

performed is the t ime that takes for b ioreactor start-up (7 to 15 days) 

i .e . ,  the t ime that is  necessary for the bioreactor to have enough 

immobi l ized biomass ( iBio)  that a l lows working at h igh di lut ion rates 

(Brányik et a l . ,  2001).  I f  the in i t ia l  amount of cel ls  adsorbed to the 

carr ier  is  increased, the start-up t ime wi l l  be reduced. Adsorpt ion 

depends on many factors and occurs natural ly  in yeast cel ls  and is 

more than a s imple and physical  mechanism. I t  is  a dynamic process 

unt i l  the equi l ibr ium between cel l-carr ier  attachment and detachment 

processes is reached. 

In th is chapter the main object ive was to study the inf luence of 

carr ier  type (spent grains and corncobs) and of their  degree of 

der ivat izat ion on the in i t ia l  adsorpt ion of yeast cel ls .  In addit ion, for 

corncobs i t  was studied the inf luence of their  s ize,  as wel l  as the 

inf luence of d i f ferent pre-treatment methods and the degree of 

der ivat izat ion on: (1 )  ion exchange and (2)  corncobs adsorpt ion 

capacity.   

III.2 Introduction 

III.2.1 Immobilization of biocatalysts: history and application 

Bioprocesses using immobi l ized biocatalysts (enzymes/cel ls )  have 

been receiv ing increasing worldwide attent ion because of their  benef i ts 

of low environmental  pol lut ion and economical ut i l izat ion of natural  

resources and energy (Sato and Tosa, 1999).  The pioneer work of 

Nelson and Gri f f in (1916) in the ear ly XX century was the f i rst  

demonstrat ion of immobi l ized biocatalysts (Nelson and Gri f f in,  1916).  At 

the present,  immobi l ized biocatalysts have contr ibuted to a wide var iety 
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of  f ie lds in industry l ike the product ion of energy by biological  process 

or product ion of useful  compounds (Sato and Tosa, 1999).  Over the last 

forty years,  many biotechnology processes based in immobi l ized cel ls  

systems have been studied. Part icular ly an increase in the development 

of immobi l ized cel ls  systems occurred s ince the ear ly 1980s (Junter and 

Jouenne, 2004).  These systems can occur natural ly  by spontaneous 

adsorpt ion or art i f ic ia l ly  by entrapment and attachment techniques.  

Cel l  immobi l izat ion can be def ined as the physical  conf inement of a 

microorganism in a certa in def ined region of space with retent ion of i ts  

catalyt ic act iv i t ies,  which can be used in repet i t ive or cont inuous 

processes (Junter and  Jouenne, 2004).  Cel l  immobi l izat ion methods 

were or ig inal ly  adapted from those ear l ier  appl ied into enzyme 

immobi l izat ion. The main advantage from using cel ls  instead of 

enzymes is to avoid the extract ion/pur i f icat ion steps. These steps 

reduce enzyme act iv i ty,  stabi l i ty  and cost.  Actual ly  immobi l ized cel ls  

systems are appl ied in many dif ferent f ie lds, such as the biosynthesis 

and bioconversions of several  products (enzymes, ant ib iot ics,  amino 

acids, OA, a lcohols and polysacchar ides);  environmental  processes 

(b iofert i l izat ion, b ioremediat ion);  food processing (beer,  wine, lactose 

hydrolysis) ;  b iosensors (amino acids cholesterol ,  toxic ity tests,  metals)  

(Junter and Jouenne, 2004).  

III.2.2 Continuous high cell density systems 

The major advantage of using immobi l ized cel ls  systems over 

convent ional (suspended cel ls )  cultures is  that i t  a l lows working with 

h igh cel l  density systems and turns easy the appl icat ion of cont inuous 

processes. The main advantages and disadvantages of cont inuous 

processes using ICT over suspended cel ls  cultures are summarized in 

Table I I I-1  (Gama et a l . ,  2003; Kourkoutas et a l . ,  2004; Sato and Tosa, 

1999; Verbelen et a l . ,  2006; Virkajarv i  and Linko, 1999).   

The most important advantage indicated in Table I I I-1  is  the high 

react ions rates obtained (due to h igh di lut ion rates used) in cont inuous 
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processes using ICT. The economic benef i ts are the dr iv ing force for 

the recent increase of cont inuous biotechnology processes. Although 

some disadvantages can be observed, immobi l ized cel ls  systems are a 

key technology used to perform eff ic ient cont inuous bioprocesses 

(Gama et a l . ,  2003; Sato and Tosa, 1999; Verbelen et a l . ,  2006).  

Table I I I -1 .  Cont inuous b iotechnology processes us ing ICT:  main 
character is t ics  

Advantages Disadvantages 

High cell concentration in bioreactor By-products formation 

Higher reaction rates Low permeation to substrates 

Biocatalytic regeneragion activity  Higher nutrients and energy requirement 

Utilization of high dilution rates without washout 
Risk of product contamination by cells 

leaked from carriers 

Improve product consistency 
Low production due to mass transfer 

limitation 

Increased cell activity during storage 
Ageing of cells in a long-term 

fermentation (months) 

Reusability of the biocatalyst Hygienization and contamination 

Higher specific product yields  

Controlled microenvironment  

Maintaining of catalytic activity  

Easier downstream processing  

III.2.3 Immobilization methods 

The select ion of the appropriate immobi l izat ion method is necessary 

and has a crucia l  ro le in the f inal  performance of the immobi l ized cel ls  

system. Therefore i t  is  very important to know the dif ferent 

immobi l izat ion methods. They can be div ided into f ive categories:  

carr ier  – binding (eg. Cel ls  attached to a surface);  cross – binding (eg.:  

agents that induce cel l  f locculat ion);  entrapment (eg.:  Cel ls  inside a 

porous matr ix ) ;  mechanical  containment behind a barr ier  (eg.:  

microencapsulat ion) and combined methods. Each method has i ts 

merits and faults.  This is  why the choice of an appropriate method is so 

important and should take into account the purpose of immobi l izat ion, 
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cel ls  character ist ics,  type of react ion and reactor design (Brányik et a l . ,  

2004; Sato and Tosa, 1999; Verbelen et a l . ,  2006; Kobayashi et  a l . ,  

1998) 

The carr ier-binding method is based on the attachment of 

b iocatalysts to water- insoluble carr ier  surface through a covalent/ ionic 

bond, physical  adsorpt ion and biospecif ic  b inding. The covalent-

binding method is usual ly  appl ied to immobi l ized enzymes, due to the 

toxic ity of the agents needed for formation of covalent bonds, and the 

dif f iculty in f inding the ideal  condit ions for cel l  immobi l izat ion. The cel l  

surface has some react ive components (proteins, sacchar ides),  which 

can be used for covalent bonding between cel ls  and a modif ied or 

act ivated carr ier .  Physical  adsorpt ion is usual ly  preferred in ICT for the 

product ion of a lcohol beverages over the use of inducers that may 

interfere with the process. The adsorpt ion occurs natural ly  by the 

attachement of cel ls  to carr iers and i t  is  sensit ive to environmental  

factors such as: pH, ionic strength, concentrat ion of reactants and 

temperature.  The phenomena involved are pr imari ly  based on Van der 

Waals forces, ionic and hydrogen bonds, hydrophobic interact ions 

between cel l  surface and the carr ier  (Brányik et a l . ,  2004; Sato and 

Tosa, 1999; Verbelen et a l . ,  2006; Kobayashi et  a l . ,  1998).  

The cross- l inked method uses bi-  or mult i funct ional reagents but not 

carr iers as the previous method. Reagents are used to l ink cel ls  with 

each other and cel l  pel lets are formed. Among these reagents,  

g lutaraldehyde, to luene di isocyanate and hexamethylene di isocyanate 

are commonly used. A part icular ly case of cross- l inked may occurs in 

yeast cel ls :  f locculat ion. Yeast f locculat ion is character ized by cel l-cel l  

aggregat ion. I t  is  a reversib le and calc ium dependent process in which 

cel ls  adhere to form f locs/pel lets.  I t  involves proteins that select ively 

bind mannose residues present on the cel l  wal ls  of yeast cel ls  (Brányik 

et a l . ,  2005; Kobayashi et  a l . ,  1998; Kourkoutas et a l . ,  2004; Verbelen 

et a l . ,  2006).   

In the entrapment method, the cel ls  are placed with in a conf ined 

matr ix.  The entrapment of cel ls  can be done by natural  d i f fusion of cel ls  
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into a porous matr ix or the porous matr ix is  synthesized around cel ls  

(Ca-alginate,  agar etc) .  This is  a very popular method for cel l  

immobi l izat ion but has some disadvantages: (1 )  low mass transfer rates 

and (2)  low renewable capacity of carr ier  (Gama et a l . ,  2003; Sato and 

Tosa, 1999; Verbelen et a l . ,  2006).   

Mechanical  containment of cel ls  behind a barr ier  is  achieved by 

using microporous membrane f i l ters,  cel l  entrapment in microcapsule,  

or by cel l  immobi l izat ion in the interact ion surface of two immiscible 

l iquids. Containment of cel ls  using microporous membrane might be 

used in cont inuous processes, but membrane-clogging issues can 

ar ise.   

Sometimes dif ferent mechanisms of cel l  immobi l izat ion inside a 

reactor may occur.  For instance, yeast cel ls  immobi l izat ion can occur 

by natural  adhesion inside carr ier  cavit ies and at same t ime yeast 

f locculat ion/sedimentat ion of cel ls  can be also present (Brányik et a l . ,  

2004; Verbelen et a l . ,  2006).  Therefore,  i t  is  very important not only to 

select but a lso to understand al l  immobi l izat ion mechanisms involved in 

the studied system. Thus, to perform a cont inuous fermentat ion where 

high cel l  density system is present a l l  these concerns about cel l  

immobi l izat ion type, techniques and methods should be considered. 

III.2.4 Carrier properties and specific characteristics 

When immobi l ized cel ls  systems are appl ied is very important to 

choose the correct carr ier/surface where cel ls  can be immobi l ized. The 

carr ier  should be: cheap; inert ,  i .e . ,  should not have any inf luence on 

the process; regenerable i .e. ,  able to be used several  t imes; appl icable 

at large scale;  stable (mechanical ,  thermal,  chemical and biological ) ;  

and food grade (on food industry appl icat ions).  In addit ion, the carr ier  

should have a big surface area, with funct ional groups al lowing high 

cel ls  loads without affect ing cel l  act iv i ty and with minimal mass transfer 

l imitat ions (Brányik et a l . ,  2005; Kobayashi et  a l . ,  1998; Kourkoutas et 

a l . ,  2004; Verbelen et a l . ,  2006).  
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 There are dif ferent carr iers that can be used for immobi l izat ion of 

cel ls  such as: porous glass (V irkajarv i  et  Pohja la,  2000);  Ca-alginate 

(Dömény et a l . ,  1998);  PVA part ic les (Bezbradica et a l . ,  2007);  spent 

grains (Brányik et a l . ,  2001);  and wood chips (V irkajarv i  et  L inko, 1999).  

Recent ly cel lu lose-based carr iers have been used for cel l  

immobi l izat ion thanks to their  advantageous propert ies as: h igh cel l  

loading, h igh avai labi l i ty  and thermal stabi l i ty  (Fuj i i  et  a l . ,  1999).  In the 

case of spent grains, the immobi l izat ion mechanism consists of 

mechanical  retent ion in pores and cavit ies,  hydrophobic forces that 

lead to a stable cel l-carr ier  adhesion, and f locculat ion-l ike cel l-cel l  

interact ions (Brányik et a l . ,  2005) are involved as wel l .   

III.2.5 Spent grains and corncobs: cellulose-based carriers 

In  th is thesis only two carr iers were used: spent grains (SG) and 

corncobs (Cc).  In th is part icular ly chapter we evaluate the capacity of 

Cc and SG as a carr ier  for yeast cel l  immobi l izat ion.  

III.2.5.1 Corncobs 

Corncobs are cel lu lose-based mater ia l  that makes them a suitable 

mater ia l  for immobi l izat ion. I t  is  cheap and avai lable in a large amount.  

According to the Food and Agriculture Organizat ion of the United 

Nations (FAO, 2008),  the annual product ion of corn cobs worldwide is 

about 695x109 kg, meaning that for every 100 kg of corn grain 

approximately 18 kg of corn cobs are produced (Torre et a l . ,  2008).  

III.2.5.2 Spent grains 

Spent grains are the most produced brewing by-product and 

represents about 85% (wt./wt. )  of  tota l  by-products generated by 

brewing industry.  On average SG represents 31% (wt./wt. )  of  the 

or ig inal  malt  weight,  and are produce approximately 20 kg per 100 L of 

beer.  SG are avai lable at low or no cost throughout the year,  because 

beer is  not a seasonal product l ike wine. So SG are produced 
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cont inuously in large quant i t ies.  SG consist of  the husk–pericarp–seed 

coat layers that cover the or ig inal  bar ley grain,  being r ich in cel lu lose 

and non-cel lu losic polysacchar ides, l ignin,  some proteins and l ip ids. 

The chemical composit ion of SG var ies according to:  bar ley var iety,  

harvest,  malt ing and mashing condit ions, region, qual i ty and type of 

adjuncts added. In general ,  SG are considered as a l ignocel lu lose 

mater ia l  r ich in protein and f ibre.  (Mussatto et a l . ,  2006) 

When SG are discarded from brewing industry (a lso cal led bar ley 

spent grains)  they have an 80% (wt./wt. )  content in water.  As a result  i t  

has a low biological  stabi l i ty  (!  30 days storage).  Among the several  

processes to increase the shelf- l i fe  of SG, dry ing is the most 

succeeded one. Drying not only increases SG shelf- l i fe ,  but a lso 

reduces their  weight and consequently transportat ions costs (Mussatto 

et a l . ,  2006).  Due to SG propert ies (protein and f iber content) ,  i t  can be 

used for several  appl icat ions such as food ingredient for human (h igh 

protein f lour) ;  animal nutr i t ion (catt le feed);  energy product ion (b iogas);  

charcoal product ion; br ick component;  paper manufacture; adsorbent 

(volat i le  organic compounds, cadmium, lead, chromium).  SG have also 

appl icat ions in biotechnology processes as: substrate for cult ivat ion of 

microorganisms and enzyme product ion; carr ier  in brewing (pre-

treated);  source of added-value products. 

Table I I I -2 .  Chemical  composit ion of  SG. ( f rom Mussatto et  a l . ,  2006)  

Component  % (dry weight) 

Cellulose 16.8 – 25.4 

Arabinoxylan 21.8 – 28.4 

Lignin 11.9 – 27.8 

Protein 15.2 – 24.0 

Lipid 0.0 – 10.6 

Ash 2.4 – 4.6 

 

Among al l  descr ibed appl icat ions, SG can be used as carr ier  in 

cont inuous brewing pr imary fermentat ion (Brányik,  et  a l . ,  2001; Brányik 

et a l . ,  2002).  SG obtained by Brányik et a l  (2001) after pre-treated with 

HCl and NaOH (acid/base treatment)  are considered to have ideal 
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condit ions for yeast cel ls  immobi l izat ion. The advantages of SG as 

carr ier  are:  h igh yeast loading capacity without requir ing chemical 

modif icat ion, regenerable (using NaOH solut ion),  inert  under 

fermentat ion condit ions, h ighly avai lable,  cheap (not requir ing 

s ignif icant treatments)  (Brányik et a l . ,  2001).  The process is very 

labor ious and has a low yie ld (10% from raw dry SG),  which is 

considered a main disadvantage of pre-treated SG (Brányik et a l . ,  

2001).  Consider ing raw SG water content and acid/base method yie ld,  

for each 100 kg of raw SG leaving brewing industry only 2 kg of treated 

SG can be obtained. However i t  is  suggested that for industr ia l  

appl icat ions only NaOH treatment (base treatment)  can be appl ied to 

c lean the raw SG (Brányik et a l . ,  2001).   

Brányik et a l .  (2004) performed an extensive study of SG 

physicochemical propert ies.  I t  showed that SG are wettable,  

hydrophobic part ic les,  with surface negat ive charged. The same 

authors found that base-treated SG were less wettable and then more 

hydrophobic than acid/based-treated SG (Brányik et a l . ,  2004).  

III.2.6 Chemical modification of carriers 

The chemical modif icat ion of the carr ier  surface can increase cel l  

immobi l izat ion, through intensif icat ion of the binding between cel l  

surface and carr ier  (Brányik et a l . ,  2001; Fuj i i  et  a l . ,  1999).  Several  

products can be used to increased cel l  immobi l izat ion in surfaces, as:  

d iethylaminoethyl  (DEAE) (A l-adhami et a l ,  2002; Brányik et a l . ,  2001; 

Fuj i i  et  a l . ,  1999),  2-diethylamino-ethylchlor ide hydrochlor ide (DEC) 

(Antr im and Harr is,  1991),  polyethylenimine (D’Souza and Melo, 2001; 

D’Souza et a l ,  1986; Melo et D’Souza, 1999),  poly(styrene-ran-sulfonic 

acid) (Fuj i i  et  a l . ,  1999),  polystyrene f ibers (Yoshioka et Shimamutra,  

1986) and polyethyleneimine cel lu lose (PEIC) (Fuj i i  et  a l . ,  1999).  SG and 

Cc are cel lu lose-based mater ia ls that can be der ivat ized in order to 

increase their  ion exchange capacity ( IEC),  i .e . ,  to increase the 

attract iveness of i ts  surface for cel l  adhesion.  
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DEC solut ion has been successful ly  tested by Antr im and Harr is for 

der ivat izat ion of cel lu lose (1991).  The der ivat izat ion method used has 

been or ig inal ly  proposed in the f ie ld of enzyme immobi l izat ion. I t  is  a 

process for increasing adsorpt ion capacity of granular cel lu losic ion 

exchange composites in order to improve the product concentrat ion 

(Antr im and Harr is,  1991).  Consider ing that the outer membrane of 

yeast cel ls  is  fu l l  of  proteins, i t  is  bel ieved that th is method can be 

appl ied for cel l  immobi l izat ion, as other methods for enzyme 

immobi l izat ion were before (Junter and Jouenne, 2004).  
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III.3 Material and Methods 

III.3.1 Determination of corncobs chemical composition 

After being dr ied at 40 ºC in an oven for 12 h, the Cc were cut into 

smal l  p ieces (1-3 cm in length),  mi l led in a knives’ mi l l  to pass through 

a 0.4 mm screen for the determinat ion of their  chemical composit ion. 

Two grams of mi l led Cc were treated with 10 mL of 72% (vol ./vol . )  

H2SO4 under st i r r ing at 45 °C for 7 min. The mixture was autoclaved for 

30 min at 1.05 bar for the complete hydrolysis of o l igomers. After 

f i l t rat ion through a Sep-Pak C18 cartr idge (aromatic compounds 

removal ) ,  the hydrolysate was analyzed in a MetaCarb 67H column at 

45 °C using a Shimadzu chromatograph with refract ive- index detector.  

The mobi le phase was 0.005 mol/L H2SO4 at 0.6 mL/min f low rate.  

Sugar concentrat ions, reported as glucan and xylan, were determined 

from cal ibrat ion curves obtained with pure compounds. L ignin was 

determined by gravimetr ic analysis (Rocha, 2000). 

III.3.2 Carrier particles for immobilization 

For immobi l izat ion exper iments the Cc were cut into three dif ferent 

s izes: (1 )  cyl inders (± 0.6 cm high),  (2 )  the same cyl inders were cut into 

!  of  cyl inders and (3)  mi l led mater ia l  (d < 0.05 cm).  The main 

character ist ics of the part ic les are depicted in the Table I I I-3 .  

Table I I I -3 .  Main s ize character is t ics  of  the corn cob and SG part ic les used 
for  immobi l izat ion exper iments  

Carr ier  Part ic le Diameter /  cm Height /  cm Volume /  cm 3 

Cyl inders (Cc1)  2 .22 ± 1.8 0.60 ± 0.02 2.34 ± 0.4 

1/4 Cyl inder  (Cc2)  1 .13 ± 0.1 0.60 ± 0.02 0.60 ± 0.1 

Mi l led (Cc3)  0 .1  and 0.05 ---  5 .24x10- 4  and 6.54x10- 5  

SG 0.3 and 0.1 ---  ---  
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III.3.3 Derivatization method 

Ten grams of carr ier  (Cc or SG) were placed into an Er lenmeyer f lask 

with 285 mL of deionized water.  The suspension was st i r red and heated 

at 40 ºC and then 86 g of Na2SO4 and 12 g of NaOH were added. 

Subsequently 20 g of DEC solut ion (25, 50, and 75% (wt./vol . ) )  were 

added at 40 ºC dur ing two hours (2 h)  per iod. The mixture was then 

st i r red for 30 min at 40 ºC. I t  was fo l lowed by new addit ion of 10 g of 

NaOH and 20 g of DEC solut ion (25, 50, and 75% (wt./vol . ) )  at  40 ºC for 

a two hours (2 h)  per iod. The f inal  mixture was st i r red for 30 min at 

60 ºC. The mixture was cooled and the pH adjusted to 6.5 using 

30% (vol ./vol . )  H2SO4 solut ion. The der ivat ized carr ier  was washed with 

dist i l led water and dr ied at 60 ºC. 

III.3.4 Pre-treatment of carriers 

III.3.4.1 SG preparation 

The hydrolysis of residual starchy endosperm and embryo of the 

bar ley kernel  present in the raw SG was done according to the method 

proposed by Brányik et a l  (2001).  Raw SG (100 g) were mixed in 

1500 mL of 0.35 M (3% (vol ./vol . ) )  HCl solut ion for 2.5 h at 60 ºC. The 

mixture was cooled and washed with water.  The remaining sol ids 

(mainly the husks of the bar ley grain) ,  were part ia l ly  del ignified by 

shaking (120 rpm) in 500 mL of 0.5 M NaOH at 30 ºC for 24 h. After 

being washed several  t imes with water unt i l  neutra l  pH and dr ied, the 

carr ier  (± 10 gD R Y  B A S E)  was ready to be used. The preparat ion procedure 

gives 10% (wt./wt. )  y ie ld from dry SG. The dry ing steps appl ied in the 

preparat ion procedure were necessary only in order to quant i fy the 

y ie lds (Brányik et a l . ,  2001).   

III.3.4.2 Cc pre-treatment A 

Dry Cc (20 g) were added to 300 mL of 1% (v/v)  of  HCl for 1 h at 

60 ºC. Then the Cc were washed with dist i l led water and was added 
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1% (w/v)  of  NaOH. The mixture was st i r red for 5 h at 120 rpm. The 

carr ier  was then cleaned again with dist i l led water unt i l  neutra l  pH and 

dr ied at 40 ºC. This pre-treatment was performed to three Cc 

conformations (see Table I I I-3 ) .  This method provides a y ie ld of 80%, 

50% and 20% of Cc1, Cc2, and Cc3 part ic les respect ively. 

III.3.4.3 Cc pre-treatment B 

Dry Cc (20 g) were added to 2000 mL of d ist i l led water and autoclave 

for 15 min at 121 ºC (1.05 bar) .  After cool ing the carr ier  was washed 

with dist i l led water and added to 300 mL of 1% (wt./vol . )  of  NaOH 

(0.25 M) for 1 h at 120 rpm. Then Cc were c leaned with dist i l led water 

unt i l  neutra l  pH. This pre-treatment was performed to three Cc 

conformations (see Table I I I-3 ) .  This method provides a y ie ld of 80%, 

50% and 20% of Cc1, Cc2, and Cc3 part ic les respect ively. 

III.3.5 Conditions tested  

Table I I I-4  presents a l l  the dif ferent condit ions made to select the 

best carr ier  for yeast cel ls  immobi l izat ion. 

Table I I I -4 .  A l l  condit ions (Der ivat izat ions/Pretreatments )  used for  adhesion 
tests   

Method/Carr ier  Cc1 Cc2 Cc3 SG* 

0% (wt. /vo l . )  DEC !  !  !  !!  

25% (wt. /vo l . )  DEC !  !  !  !  

50% (wt. /vo l . )  DEC !  !  !  !!  

75% (wt. /vo l . )  DEC !  !  !  !  

Cc Pre-Treatment:  A !!  !!  !!  -  

Cc Pre-Treatment:  B !!  !!  !!  -  

Cc Method:  A + 50% (wt. /vo l . )  DEC !!  !!  !!  -  

Cc Method:  B + 50% (wt. /vo l . )  DEC !!  !!  !!  -  

!  -  Adhesion test  on ly .  
!!  -  Adhesion test  and Immobi l izat ion test  wi th  yeast  growth.  
*  A l l  SG used were pre-t reated accord ingly  Brány ik  et  a l .  (2001) .   
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III.3.6 Medium and microorganisms 

Yeast cel ls  used in th is chapter were Saccharomyces cerevis iae 

CCMI 890 (Culture col lect ion of industr ia l  microorganism of INETI,  

L isbon, Portugal ) .  The medium composit ion used throughout th is 

chapter is  presented in Table I I I-5 .  

Table I I I -5 .  Medium Composit ion   

Component Concentration / (g/L) 

Glucose 20 

Yeast Extract 1 

MgSO4.7H2O; 5 0.4 

KH2PO4 5 

NH4SO4 2 

III.3.7 Adsorption tests 

Growth medium was inoculated and incubated for 12 h at 30 ºC and 

150 rpm. The medium was then centr i fuged and the supernatant was 

discarded. The pel let  was re-suspended in 200 mL of d ist i l led water 

and the opt ical  density (O.D.)  was measured at 600 nm (O.D.0)  using a 

Tecan Sunrise 96 wel l  Microplate Reader (Tecan Group Ltd.,  

Männedorf ,  Switzer land).  The cel lu lar  suspension was added to 3 g of 

carr ier  and samples of cel l  suspension were taken every 5 min (O.D. i )  

unt i l  O.D. stabi l izat ion – Method A (Figure I I I-1 ) .  After O.D. stabi l izat ion 

the carr ier  was gent ly separated from solut ion, washed and the amount 

of attached biomass was determined by dry weight method proposed by 

Brányik et a l  (2002b) – Method B. The amount of immobi l ized biomass 

( iBio in mgB I O/gD C)  by method A was determined from Eq. I I I-1 :  

 

iBio =
WFree Bio ( i) !WFree Bio (0)

WCarrier (Dry Base )

           Eq. I I I-1  

Where WF r e e  B i o  ( i )  is  the weight of f ree biomass at t ime=0,. . , I  

determined from O.D. vs CB i o m a s s  (g/L)  cal ibrat ion curve. 
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Figure I I I-1 .  Evolut ion of  opt ica l  densi ty  of  f ree ce l ls  dur ing immobi l izat ion 
t ime,  obta ined for  Cc2 part ic les der ivat ized with  50% (w/w) DEC solut ion.  

III.3.8 Immobilization with yeast growth test 

An Er lenmeyer f lask contain ing 180 mL medium and 1.5 g of carr ier  

was inoculated with 20 mL of previously prepared yeast cel ls  

suspension. After 12 h of inoculat ion t ime, O.D. at 600 nm was 

determined. The medium was removed by f i l t rat ion (Whatman nr 1,  

Maidstone, UK) and the biocatalyst (carr ier  + immobi l ized cel ls )  was 

col lected. The biocatalyst was then washed with 400 mL of water and 

f i l tered. After f i l t rat ion the biocatalyst was palced in an Er lenmeyer 

f lask with 100 mL of medium and st i r red strongly (600 rpm).  Samples of 

O.D. are taken unt i l  stabi l izat ion – Method C. After stabi l izat ion, the 

l iquid was removed and the carr ier  washed. F inal ly ,  the carr ier  was 

dr ied (40 ºC) and weighted to calculate carr ier  losses. 
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III.4  Results and Discussion 

III.4.1 General considerations 

In  th is sect ion the results from the performed tests (Table I I I-4 )  are 

presented and discussed. In order to achieve the main a im of carr ier  

select ion some considerat ions were taken into account and are the 

base of future discussion. These considerat ions include the main 

character ist ics that a carr ier  part ic le should have to be successful ly  

appl ied in a cont inuous pr imary fermentat ion of AFB. Both SG and Cc 

are cel lu lose-based, cheap, and avai lable in large scale.  The need to 

pre-treated SG part ic les is  considered to be a drawback inherent to th is 

carr ier .   

Chemical modif icat ion of cel lu lose-based f ibres has been developed 

to increase in i t ia l  yeast cel ls  adhesion to the carr iers.  In our work we 

used the method proposed by Antr im and Harr is (1991) .  In i t ia l ly  the 

minimum concentrat ion of DEC solut ion that increases cel l  

immobi l izat ion was determined (Table I I I-4 )  in  non-treated Cc carr ier  

part ic les. 

After th is,  Cc pre-treatments were performed (see sect ions 0 and 

I I I .4.5) .  The main object ive of using these two pre-treatments was to 

increase both the cel lu lose content and porosity (cavit ies)  to achieve a 

more eff ic ient in i t ia l  yeast cel ls  adsorpt ion. The pre-treatment A is a 

modif icat ion of SG’s pre-treatment.  In i t ia l ly  the hemicel lu lose and 

startch attached to Cc part ic les was removed with HCl fo l lowed by a 

del ignif icat ion with NaOH. The condit ions appl ied to SG could not be 

used in Cc because they were too aggressive and destroyed al l  Cc 

part ic les.  On the other hand, the pre-treatment B is based in auto-

hydrolysis and del ignif icat ion (NaOH) methods to hydrolyzed 

hemicel lu loses (Ruiz et a l . ,  2011).  Usual ly  the condit ions used in auto-

hydrolysis and del ignif icat ion methods are more aggressive (h igher 

temperatures) than the condit ions used in th is work. The auto-
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hydrolysis main a im is to produce a substrate to be used in both 

sacchar i f icat ion processes and cel lu lase product ion (Ruiz et a l . ,  2011).  

In our case, we wanted only to use i t  for yeast cel ls  immobi l izat ion so 

the object ive was to do a less extensive and less cost ly pre-treatment 

to increase the immobi l izat ion capacity without reducing s ignif icant ly 

the shape and mechanical  resistance of Cc part ic les.  Therefore less 

aggressive condit ions than those normal ly appl ied in auto-hydrolysis 

methods were chosen. 

F inal ly ,  in the adhesion tests,  the method used to measure cel l  

adhesion was the reduct ion of O.D. (at  600 nm) of f ree cel ls  in d ist i l led 

water dur ing t ime – Method A (Figure I I I-1  and Eq. I I I-1 ) .  This method 

is based on the assumption that a l l  cel ls  that are not free are adsorbed 

on the carr ier .  This is  supported by the short  t ime of th is k ind of tests 

(maximum of 30 min),  which avoids the inf luences of cel lu lar  growth 

and death rates. The method proposed by Brányik et a l  (2004) – Method 

B – was not used in th is case because the error present in Cc and SG 

part ic les due to carr ier  losses (around 10%) was too big consider ing 

the low amount of yeast cel ls  that are in i t ia l ly  attached (Brányik et a l . ,  

2004).  For the same reason, when immobi l izat ion tests with yeast cel ls  

growing were made the method used was a mechanical  method in i t ia l ly  

proposed by Brányik et a l  (2001) – Method C.  

III.4.2 Corncob composition 

Before immobi l izat ion tests,  Cc chemical character izat ion was 

performed. The composit ion of Cc part ic les is  g iven in Table I I I-5 .   

The results are given as the content of g lucan (corresponding to 

cel lu lose),  xy lan and acetyl  groups (both corresponding to 

hemicel lu loses),  and soluble l ignin and Klason l ignin (corresponding to 

tota l  l ignin) .  These data is  in good agreement with other results 

reported ear l ier  (Garrote et a l . ,  2002).  
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Table I I I -5 .  Chemical  composit ion of  the Cc part ic les  

Compounds  Corn Cobs (  % )  

Cel lu lose 31.8 ±  0 .8  
Glucan  31.8 ±  0 .8  

Hemicel lu loses  33.6 ±  1 .1  

Xylan  29.4 ±  0 .2  

Acety l  Group  3.1 ±  0 .4  

Tota l  L ign in  27.9 ±  0 .4  

Soluble L ign in  11.3 ±  0 .2  

Klason L ign in  16.6 ±  0 .4  

Tota l  weight  92.2 ±  0 .9  

III.4.3 Selection of best DEC concentration 

The der ivat izat ion method proposed by Antr im and Harr is (1999) was 

used in order to increase the Cc and SG adsorpt ion capacit ies by 

increasing their  ion exchange capacity ( IEC).  In Figure I I I-2A  the values 

of IEC obtained for the three dif ferent shapes of Cc and SG at d i f ferent 

concentrat ions of the der ivat izat ion agent (DEC) are shown.  

Figure I I I-2A  shows that,  general ly ,  the der ivat izat ion increased 

sl ight ly the IEC of Cc part ic les.  I t  a lso shows that there is  a s ize effect 

of the Cc part ic les on IEC, being th is effect h igher for smal ler  part ic les 

(Cc3 and SG).  This result  was expected in these part ic les due to their  

h igher superf ic ia l  area. The highest IEC was obtained for SG part ic les.  

To obtain a more effect ive der ivat izat ion, i .e . ,  to achieve a good IEC by 

der ivat izat ion of cel lu lose-based carr iers,  the cel lu lose must be 

avai lable.  In the case of Cc, cel lu lose represents ca 30% of i ts  

composit ion (Table I I I-5 )  whi le in pre-treated SG it  represents 

90% (wt./wt. )  (Brányik et a l . ,  2004).  Being so, is  not strange that for SG 

the increase of IEC was more effect ive than for Cc. For concentrat ions 

above 50% of DEC solut ions, the IEC in Cc did not increase as much as 

expected. This might be due to the cel lu lose amount in Cc, which is 

l imited. So the higher DEC concentrat ion has no effect on the degree of 

der ivat izat ion of Cc part ic les. 
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Figure I I I-2 .  A :  Ion exchange capaci t ies ( IEC)  of  d i f ferent  carr ier  part ic les at  
d i f ferent  concentrat ions of  DEC solut ion.  B:  In f luence of  der ivat izat ion on the 
immobi l ized b iomass ( iB io )  for  d i f ferent  carr iers .  Legend:  !  -  Cc1;  !  -  Cc2;  

!  -  Cc3;  !  -  SG.  

 

Brányik et a l .  (2001) used SG as immobi l izat ion carr ier  for 

fermentat ion in bubble columns and obtained values of IEC between 

0.45 and 0.8 meq/gD C.  Cc1 and Cc2 part ic les showed lower IEC when 

compared with SG, which is an indicat ion that these part ic les have 

lower adsorpt ion capacity than SG and Cc3. Up to 50% (wt./vol . )  of  

DEC solut ion the values of IEC for Cc3 ( IEC: 50% DEC=0.73 meq/gD C)  

and SG ( IEC: 50% DEC=0.79 meq/gD C)  are s imi lar  to those reported in 

l i terature.  For SG the maximum IEC (1.8 meq/gD C)  was obtained when 

75% (wt./vol . )  were used. In order to analyze cel lu lose-based carr iers 

with s imi lar  IEC and sizes, and based in the results presented in Figure 

I I I-2A ,  the concentrat ion of 50% (wt./vol . )  of  DEC solut ion was selected 

as the best compromise. 

In Figure I I I-2B  i t  is  possible to ver i fy that for Cc2, Cc3 and SG the 

der ivat izat ion increased the carr iers’  load capacity for concentrat ion of 

DEC solut ions above 50% (wt./vol . ) .  On the other hand for Cc1 part ic les 

0.0!

0.5!

1.0!

1.5!

2.0!

0! 25! 50! 75!

IEC / 
(meq/
gDC)!

% DEC solution (wt./vol.)!

A!

0!

10!

20!

30!

40!

50!

0! 25! 50! 75!

iBio. / 
(mgBIO/

gDC)!

% DEC solution (wt./vol.)!

B!



Universidade do Minho  Chapter III 

 

62 

there was no real  di f ference of immobi l izat ion for the non–derivat ized 

and der ivat ized carr ier .  The low values of yeast cel ls  adhesion 

( iBioM A X=20 mgB I O/gD C)  in these part ic les can be also expla ined by their  

s ize.  They are bigger and the area in contact with the cel l  suspension is 

lower thefore less immobi l izat ion is expected to occur. 

 The values of immobi l izat ion, taking in account the technique used 

in th is work, are considered good. I t  must be pointed out that th is 

method is used only for adsorpt ion of yeast cel ls  and does not a l low 

the complete formation of yeast b iof i lm due to the absence of cel l  

growth. 

The results obtained when the adsorpt ion t ime is evaluated also help 

sustain ing th is statement.  The adsorpt ion t ime is the t ime that is  

needed to achieve the equi l ibr ium between cel ls  adsorpt ion/desorpt ion 

in each assay. The t ime of adsorpt ion is determined when the results of 

O.D. are stabi l ized, i .e . ,  when the values of O.D. of f ree cel ls  are less 

than 10% of the O.D. f inal  value (see Figure I I I-1 ) .  The adsorpt ion t ime 

is a qual i tat ive data, which can be used to evaluate the t ime of 

adsorpt ion in a real  fermentat ion. Table I I I-6  presents the adsorpt ion 

t imes for each assay. 

In general ,  the adsort ion t ime increases with the increased 

concentrat ion of DEC solut ion due to h igh load capacity of der ivat ized 

part ic les,  which need more t ime to achieve the equi l ibr ium between 

adsorpt ion and desorpt ion.  

Table I I I -6 .  Immobi l izat ion t ime (min)  for  d i f ferent  types of  carr ier .  

Immobil izat ion t ime (min)  % (wt./vol . )  

DEC solut ion  
SG Cc1  Cc2  Cc3  

0  10 15  15  15  

25  20 20  20  15  

50  25 30  10  20  

75  25 20  15  25  

 

From al l  these results (Figure I I I-2  and Table I I I-6 )  i t  is  possible to 

determine that 50% (wt./vol . )  of  DEC solut ion is the best concentrat ion 

to perform Cc and SG der ivat izat ion according to the proposed method. 



Universidade do Minho  Chapter III 

 

63 

This concentrat ion is selected because we can achieve good IEC and 

biomass adsorpt ion load without increasing too much the adsorpt ion 

t ime. 

III.4.4 The effect of Cc pre-treatment in carrier adsortion capacity 

Having in mind that better results were obtained with SG in the 

previous sect ion, and consider ing that der ivat izat ion had more effect on 

th is carr ier  due to the higher cel lu lose concentrat ion, two dif ferent pre-

treatments were tested on Cc part ic les (with and without der ivat izat ion 

using a DEC solut ion of 50% (wt./vol . ) ) .  The results of IEC and 

adsorbed biomass are presented in Figure I I I-3  and Figure I I I-4 ,  

respect ively.  

 

Figure I I I-3 .  Ion Exchange Capaci ty  for :  A –  Cc pre-t reatment A;  B –  Cc pre-
t reatment B.  Legend:  !  -  Cc1;  !  -  Cc2;  !  -  Cc3;  !  -  SG.  

 

Figure I I I-3  indicates that IEC increased only for the pre-treatment B 

in Cc3 part ic les.  This suggests that the pre-treatment did not increase 
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s ignif icant ly the cel lu lose rat io in Cc part ic les,  as expected. 

Consequently the value of IEC did not increase. 

Figure I I I-4  c lear ly shows that the cel l  adsorpt ion was higher for Cc 

pre-treated with HCl and NaOH. Nevertheless the results were s imi lar  to 

the ones obtained for Cc part ic les without any pre-treatment (Figure 

I I I-2 ) .  Pre-treatment of carr ier  part ic les at industr ia l  scale is  only 

just i f ied i f  the impact on adsorpt ion (and consequently on 

immobi l izat ion) is  h igh. The results suggested that a pre-treatment in 

Cc part ic les is  not just i f ied, because no real  improvement of the 

adsorpt ion propert ies of the carr ier  was observed. 

 

 

Figure I I I-4 .Yeas ce l ls  adsorpt ion for :  A –  Cc pre-t reatment A;  B –  Cc pre-
t reatment B.  Legend:  !  -  Cc1;  !  -  Cc2;  !  -  Cc3;  !  -  SG. 

III.4.5 Effect of yeast cell growth on Cc immobilization capacity 

The previous tests indicate that DEC solut ion can play an important 

ro le on adsorpt ion capacity of cel lu lose-based carr iers.  However i t  

does not provide futher information on how it  can real ly  increase 
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immobi l izat ion. Cel l  immobi l izat ion involves in i t ia l  adsorpt ion and 

biof i lm formation in the carr ier .  I t  is  known that yeast cel ls ,  when 

immobi l ized, suffer changes in physiology and their  growth rate can be 

affected when compared with free cel ls ’  growth (Junter et a l ,  2002).  In 

order to conf irm this,  immobi l izat ion tests dur ing yeast cel ls  growth 

were performed. In Figure I I I-5  the results of yeast immobi l izat ion 

dur ing yeast growth are presented for the s ituat ions indicated in Table 

I I I-4 .  As expla ined before, the method used in th is s i tuat ion was a bit  

d i f ferent due to the s ignif icant part ic les’  degradat ion caused by NaOH – 

Method C. 

In Figure I I I-5  the results suggest that no immobi l izat ion occurs in 

carr ier  part ic les SG and Cc3. For other Cc part ic les there are cel ls  

attached, and yeast cel l  immobi l izat ion onto SG is descr ibed either in 

bubble columns or a ir- l i f t  reactors (Brányik et a l . ,  2001; Brányik et a l . ,  

2002b).  The explanat ion for low immobi l izat ion re l ies on the method 

used. In terms of s ize,  Cc3 and SG are s imi lar .  So i t  is  expected they 

have s imi lar  behaviour under s imi lar  immobi l izat ion condit ions. The lack 

of immobi l ized cel ls  is  due to the tension forces present dur ing yeast 

cel ls  growth. The high l iquid velocity and turbulence increases shear 

forces in the l iquid-phase and th is inf luences biof i lm formation. Thus 

the immobi l izat ion is reduced and simi lar  adsorpt ion results are 

obtained. Several  works re lat ing these two factors have been reported 

and the re lat ion between high shear stress forces and biof i lm formation 

indicates the adverse effect of shear on immobi l ized biomass (van 

Loosdrecht et a l . ,  2002).  As part ic les Cc1 and Cc2 are bigger,  i t  is   

possibly that they have a h igher number of b igger cavit ies for cel ls  to 

colonize and in these regions the shear stress effect is  reduced. Thus 

the yeast b iof i lm has better condit ions to growth and form a biof i lm. 

Analysing only these two last Cc part ic les (Cc1 and Cc2),  f rom 

Figure I I I-5 .  i t  can be concluded that pre-treatment A showed to be 

s l ight ly better for yeast immobi l izat ion and biof i lm formation. I t  has 

been descr ibed that acid/base pre-treatments are quite effect ive in 

reducing the hemicel lu lose and l ignin from l ignocel lu losic compounds. 
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This wi l l  a l low more cel lu lose to be present e ither for enzymatic 

degradat ion of cel lu lose (Zhang and Lynd, 2004) or cel l  immobi l izat ion. 

The pre-treatment A is based on typical ly  acid/base pre-treatments.  

Consider ing that in pre-treatment B the condit ions used are less 

aggressive than usual (Ruiz et a l . ,  2011),  i t  is  expected that after 

apply ing the pre-treatment A to Cc, more cel lu lose is avai lable.  

Therefore a h igher immobi l izat ion is expected for th is pre-treatemnt,  

which is conf irmed by the results in Figure I I I-5 .  In both pre-treatments 

the immobi l izat ion results in der ivat ized part ic les (Cc1 and Cc2) were 

higher.  However from Figure I I I-5  only for Cc1 the der ivat izat ion was 

shown to have an inf luence on yeast immobi l izat ion being more than the 

double for both pre-treatments (A and B).  

 

Figure I I I-5 .  Immobi l ized b iomass ( iB io )  expressed in  amount of  b iomass per  
gram of  dry  Carr ier  (mg B I O/gD C)  versus DEC solut ion concentrat ion for :  A –  Cc 

pre-t reatment A;  B –  Cc pre-t reatment B.  Legend:  !  -  Cc1;  !  -  Cc2;  !  -  
Cc3;  !  -  SG. 

 

The der ivat izat ion process is labor ious and cost ly i f  appl ied at 

industr ia l  scale.  These results indicate that der ivat ized Cc part ic les did 

not increase s ignif icant ly b iof i lm growth, as expected. Simi lar  results 
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were obtained by Brányik et a l  (2001) using DEAE modif ied SG in 

bubble columns. The results suggest that the in i t ia l  adhesion 

improvement obtained previously in the der ivat ized carr iers,  has no real  

impact on biof i lm formation. 

The results obtained for Cc and SG part ic les der ivat ized with DEC 

solut ion as wel l  as the results obtained by Brányik and co-workers 

(2001),  indicate that der ivat izat ion of cel lu lose-based carr iers with 

these compounds (DEAE and DEC) does not have a posit ive impact in 

yeast cel ls  immobi l izat ion.  

 

III.5 Conclusions 

In  th is chapter the capacity of two cel lu lose-based carr iers (Cc 

and SG) for cel l  immobi l izat ion was evaluated and the inf luence of 

several  factors was studied.  

I t  was concluded that non pre-treated Cc part ic les and SG 

der ivat ized by the proposed method have better adsorpt ion propert ies;  

the concentrat ion of 50% (wt./vol . )  in  DEC was the best compromise 

between IEC, adsorption t ime and cel l  adsorpt ion. Among al l  tested 

part ic les the smal ler  (SG and Cc3) were considered to be the best.  The 

pre-treatment methods used in Cc part ic les did not increase the 

adsorpt ion propert ies of Cc. 

I t  was proved that s ize effect could play a key role in 

immobi l izat ion where bigger Cc part ic les showed better results for 

immobi l izat ion. However the part ic le s ize should depend on reactor 

type and conf igurat ion. I t  is  suggested that b igger Cc part ic les can be 

used in packed bed-l ike reactors,  whi le Cc3 and SG part ic les can be 

used in gas l i f t- l ike reactors,  mainly due to minimum f lu id izat ion of gas 

necessary to obtain a homogeneous sol id f low inside th is reactor. 

The main conclusion is that the der ivat ized carr iers showed 

better adsorpt ion propert ies,  but that d id not mean better f inal  cel l  

immobi l izat ion (b iof i lm formation) propert ies.  Being so, Cc part ic les and 
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SG should be appl ied in cont inuous fermentat ion without any addit ional  

t reatment,  as they a lready have a good cel l  immobi l izat ion capacity. 
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IV.1 Objectives 

The aim of th is work is to contr ibute to the study of the effect of SG 

on the f low regime transit ion in a bubble column. SG are sol ids with 

unique character ist ics -f lat ,  cel lu lose-based, completely wettable,  low 

size and low-density part ic les (Brányik et a l . ,  2001) and there is  an 

absence of studies on the inf luence of th is type of part ic les in three-

phase bubble columns. This was the dr iv ing force to perform this work. 

Consider ing the previous importance of SG for cont inuous AFB 

product ion in an iGLR the study of the inf luence of the sol ids-phase in 

bubble columns regime f low transit ion wi l l  a l low: (1)  mimic the r iser 

condit ions; (2 )  understand the physical  mechanism by which SG may, or 

may not inf luence the iGLR hydrodynamics. 

Other object ives ar ise as the determinat ion of specif ic  SG propert ies 

and the development of a cal ibrat ion method to determine gas hold-up 

in three-phase iGLR. 

 

IV.2 Introduction 

Over the last decades hydrodynamics of gas-l iquid-sol id (g-l-s )  

systems has been intensively study due to their  appl icat ions in several  

industr ia l  f ie lds such as petrochemical,  chemical,  b iochemical and 

biotechnology processes. The study of the hydrodynamics on three-

phase systems presents a chal lenge to several  research communit ies,  

which are deal ing with bubble columns, a ir l i f t  reactors,  f lotat ion 

columns, bubbly f low and f lu id ized beds. Most of the recent work 

deal ing with bubble columns (BC) is  focused on the stabi l i ty  of i ts  f low 

regime (Mena et a l . ,  2005a; Ruzicka, et a l . ,2001a, 2003; Zahradnik et 

a l . ,  1997) 
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IV.2.1 Bubble columns: flow regime transition 

In  BC two main f low regimes occur:  the homogeneous regime and the 

heterogeneous regime, that may be ident i f ied by vary ing gas input 

(Ruzicka et a l . ,  2001a; Zahradnik et a l . ,  1997).  The homogeneous 

regime (HoR) is  character ized by a uniform bubble r ise through the 

column. Bubbles usual ly  have s imi lar  s ize,  are spher ical ,  smal l  and r ise 

a lmost vert ical .  There is  any large-scale l iquid c irculat ion and other 

phenomena as coalescence and break-up are negl ig ib le (Ruzicka, et a l . ,  

2001a).  In contrast,  the heterogeneous regime (HeR) is  character ized by 

a large bubble s ize distr ibut ion. Macro-scale l iquid c irculat ion, 

coalescence and a parabol ic/non-uniform radia l  prof i le  of hold-up with 

a maximum at centre are typical  on th is regime (Mena et a l . ,  2005a).  

The transit ion starts when the HoR loses i ts stabi l i ty  and gradual 

process occurs where there are an increasing number of coherent 

structures (c irculat ions) with increasing s ize and intensity (Mena et a l . ,  

2005a; Ruzicka et a l . ,  2001a; Zahradnik et a l . ,  1997).  

Due to their  character ist ics,  HoR and HeR have a dif ferent 

hydrodynamic behaviour.  This results in d i f ferent mass, heat,  and 

momentum transfer propert ies.  Consequently,  i t  is  important to c lar i fy  

how operat ing parameters ( reactor geometry,  gas and l iquid f low rates, 

propert ies of the contact ing phases) act on f low regime propert ies and 

transit ion (Zahradnik et a l . ,  1997).   

Parameters such as superf ic ia l  gas velocity,  column diameter,  l iquid 

and gas phase propert ies and distr ibutor geometry act s imultaneously 

on regime transit ion (Shaikh and Al-Dahhan, 2007).  The select ion of the 

correct d istr ibutor is  required to study regime transit ion, being 

perforated or porous plates the most commonly appl ied at laboratory 

and industr ia l  scale (Zahradnik et a l . ,  1997).  Zahradnik et a l .  (1997) 

demonstrated that perforated plates with holes infer ior to 1 mm and 

porous plates are adequate to character ize regime transit ion. V i jayan et 

a l  (2007) studied the inf luence of sparger geometry in the regime 

transit ion, evaluat ing the inf luence of the rat io between area of sparger 
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and area of column cross sect ion. They found that i f  th is rat io is  

increased the cr i t ical  and global values of gas hold-up also increase 

(V i jayan et a l . ,  2007).   

General ly ,  regime evolut ion is observed by the increasing of gas f low 

rate input and by determined the correspondent gas hold-up. There are 

several  techniques to determine local  or g lobal gas hold-up such as: 

bed expansion (Mena et a l . ,  2005a; Ruzicka et a l . ,  2001a, 2003; 

Zahradnik et a l . ,  1997),  pressure drop, dynamic gas disengagement 

(Schumpe and Grund, 1986; Yang et a l . ,  2010),  conduct iv i ty (Warsito et 

a l . ,  1997) and opt ical  f ibers (Carte l l ier ,  1990).  The analysis of the gas 

hold-up versus superf ic ia l  gas velocity (Figure IV-1 )  shows that HoR 

appears as a convex l ine whi le HeR fol lows a rat ional funct ion (concave 

l ine) .  These l ines are connected by a transit ion zone for intermediate 

gas velocity values (Ruzicka et a l . ,  2001a).   

 

Figure IV-1 .  Def in i t ion of  f low reg ime t rans i t ion in  BC and ident i f icat ion of  
f low reg imes and cr i t ica l  va lues.  Legend:  Ho – Homogeneous reg ime;  Tr  –  

Trans i t ion reg ime;  He – Heterogeneous reg ime;  q S –  Beginn ing of  Ho reg ime;  
qC –  Cr i t ica l  po int  (End of  Ho reg ime) ;  q H e  –  End of  Trans i t ion reg ime.  Adapted 

f rom Ruzická et  a l .  (2003) .  

IV.2.1.1 Identification of the flow regime transition 

Regime transit ion ident i f icat ion is possible by apply ing the dr i f t- f lux 

concept in i t ia l ly  proposed by Wal l is  (1969).  In th is method, the dr i f t  

f lux,  jG L ( the volumetr ic f lux of e i ther phase re lat ive to a surface moving 

at the volumetr ic average velocity )  is  p lotted against the gas hold-up. 

The change in the s lope of the curve represents the transit ion from 

16 M.C. Ruzicka et al. / Chemical Engineering Journal 96 (2003) 15–22

Nomenclature

a bubble drift coefficient (–)

c parameter of Eq. (8) (–)

d bubble diameter (m)

D column diameter (m)

e gas holdup (porosity, voidage, volumetric

bubble concentration) (–)

g gravity (m/s2)

H column height (clear liquid height,

unaerated liquid level) (m)

j drift-flux (m/s)

k1, k2 parameters of Eq. (8) (–)

q gas flow rate (linear gas velocity, specific

gas flow, superficial gas velocity) (m/s)

R correlation coefficient (–)

t bubble retention time (s)

u mean gas phase rise velocity (bubble swarm

velocity, bubble slip velocity) (m/s)

u0 terminal bubble velocity (single bubble

velocity, isolated bubble velocity) (m/s)

v gas velocity inside orifice (m/s)

We orifice Weber number (–)

Greek letters

γ liquid kinematic viscosity (m2/s)

κ hydrodynamic bubble diffusivity (m2/s)

µ liquid dynamic viscosity (mPa s)

ρ density (kg/m3)

σ interfacial surface tension

(≈liquid surface tension) (N/m)
ϕ relative free plate area (–)

Subscripts

c critical value (end of homogeneous regime,

beginning of regime transition)

g gas

l liquid

s stable plate operation regime (beginning of

homogeneous regime)

the circulations progressively enhance the bubble velocity

(e.g. u = u0 + const. × q), namely in the central core of the

column where most of the gas passes through, which results

in a progressive decrease of the holdup with the gas flow, a

concave graph e(q), see Fig. 1. Note that the mean bubble

velocity u relates to the bubble retention time t by u = H/t,

where H is the column height, giving a linear relation e ∼ t.

The regime transition has been studied and several models

suggested, e.g. [5] and references therein. Despite these ef-

forts, many basic questions about the effect of important op-

erational parameters and the system properties on the transi-

tion remain unanswered. These gaps in our knowledge limit

our ability to design and control gas–liquid contacting and

reacting systems.

gas holdup e [-] 

c 

   0 qs qc  qhe 
    gas flow rate q  [m/s] 

Tr HeHo 

Fig. 1. Definition sketch of flow regimes in bubble column. Full line:

Ho—homogeneous regime; Tr—transition regime; He—heterogeneous

regime; qs—stable plate operation regime, beginning of homogeneous

regime; qc—critical point, end of homogeneous regime, beginning of

regime transition; qhe—end of regime transition, beginning of hetero-

geneous regime; ec—critical voidage. Broken line: pure heterogeneous

regime.

There are numerous results scattered in literature about

the effect of the liquid viscosity on the gas holdup in the het-

erogeneous regime. Generally, it is reported that the holdup

decreases with increasing viscosity. This is attributed to the

presence of large population of big and fast bubbles with

short retention time in the bed [1,2,4,6,7]. Not only the vis-

cous media are favourable for formation of big bubbles di-

rectly at the gas distributor [1,2,8], but also they promote

bubble coalescence [2,4,8–10] and suppress bubble breakup

in the bed [9,11]. The decrease of holdup is reflected by

various correlations containing the viscosity effect. They

are usually of the form e ∼ µn with different values of n:

−0.053 and −0.16 [2], −0.05 [1], −0.22 and others [12].
On the other hand, there are studies reporting controver-

sial effects of the viscosity [1,2,11,13]. Indeed, both increase

and decrease of the heterogeneous gas holdup have been ob-

served [8,12,14–17]. An increase was found at low viscosity

µ < 3, a decrease at moderate viscosity µ = 3–11, and a

roughly constant holdup at higher viscosity µ > 11 [14]. To

reconcile this ambiguity, the viscosity was supposed to play

a dual role [14]. At a low viscosity, the larger drag forces

reduce the bubble rise velocity and thus cause an increase

in holdup. At the same time, these forces are not strong

enough to promote the coalescence. At a higher viscosity,

the tendency to coalescence and polydispersity prevails over

the drag reduction and the uniformity is broken by big bub-

bles. This explanation was supported also by other authors

[8,11,13,15,16].

In highly viscous batches, the bubble polydispersity turns

into a virtual bidispersity. Here, the bubble population dy-

namics becomes important. Roughly bimodal population

was observed of small (less than 1mm) and large (above
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homogeneous to heterogeneous f low. This concept has been used and 

modif ied by several  authors for determining regime transit ion (Kr ishna, 

et a l . ,  1999; Mena et a l . ,  2005a; Ruzicka, et a l . ,  2001a, 2001b; Via l  et  

a l . ,  2000) Several  models for regime transit ion have been proposed 

based on: (1)  bubble drag force, (2 )  gas phase s l ip velocity,  (3 )  energy 

balance of the two f low, (4)  bubble s ize,  (5 )  coupl ing between phases 

(Gharat et Joshi,  1992; Hyndman et a l . ,  1997; Joshi et  Lal i ,  1984; 

Kr ishna, 1991; Riquarts,  1979; Ruzicka et a l . ,  2001a).  The model 

proposed by Ruzicka et a l .  (2001a) based on the concept of the 

Darwinian dr i f t  of  bubbles was able to descr ibe with good accuracy the 

transit ion between HoR and HeR in a two-phase system. However some 

factors that affect regime stabi l i ty  as column dimensions, l iquid phase 

propert ies and sol ids presence are not expl ic i t ly  involved in the 

proposed model and exper iments have been done over the last years to 

val idate part icular aspects of the stabi l i ty  cr i ter ia (Mena et a l . ,  2005a; 

Ruzicka et a l . ,  2001a, 2008).  

IV.2.2 Solids effect on three-phase bubble column 

In  three-phase BC reactor,  the effect of sol ids on gas hold-up has 

been the focus of several  studies (Banis i  et  a l . ,  1995; Gandhi et a l . ,  

1999; Mena et a l . ,  2005a, 2055b, 2008).  These systems can be 

classif ied as l iquid-gas f low with the presence of sol ids or as l iquid–

sol id f lu id ized beds with the presence of gas bubbles. However 

comparison between the dif ferent studies is  d i f f icult  and results are 

often contradictory,  due to dif ferences in column design, operat ing 

parameters (mainly l iquid throughput)  and sol ids propert ies.  Propert ies 

of the sol id part ic les can be quite di f ferent depending on the size,  

shape, density,  wettabi l i ty ,  hydrophobic and surface propert ies.  Having 

th is in mind, their  effect in gas hold-up and f low regime transit ion is  far  

f rom being tota l ly  expla ined despite several  attempts. Banis i  et  a l .  

(1995) reported that the presence of sol ids decreased gas hold-up 

whi le a dual effect was observed by other authors (Mena, et a l . ,  2005a; 

Xie et a l . ,  2003).  The presence of sol ids on bubble columns affects the 
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gas- l iquid mixture in several  ways: bubble formation (Yoo et a l . ,  1997),  

bubble r ise,  axia l  and radia l  prof i les (Gandhi et a l . ,  1999; Warsito et a l . ,  

1997),  mixing and dispersion, mass transfer (Mena et a l . ,  2005b),  gas 

hold-up and f low regimes (Mena et a l . ,  2005a).  

General ly  gas hold-up decreases with sol ids concentrat ion. There are 

several  possible explanat ions for th is k ind of effect such as increased 

coalescence (Gandhi et a l . ,  1999; Lu et a l . ,  1995) and reduct ion of 

bubble breakup (Gandhi et a l . ,  1999),  increased apparent v iscosity,  

ster ic effect.   

In what concerns the effect of apparent v iscosity,  some authors 

consider the sol id and l iquid phase as a “pseudo-homogeneous” phase, 

th is requir ing the need to def ine an apparent v iscosity due to sol id 

presence in l iquid (Fre itas et a l . ,  1999; Lu et a l . ,  1995).  In a s imi lar  way 

to what has been reported for two-phase f lows where a h igher v iscosity 

decreases gas hold-up, whi le at low viscosit ies the opposite occurs 

(E issa and Schugerl ,  1975; Ruzicka et a l . ,  2003),  an ident ical  behaviour 

might be expected for the effect of sol ids concentrat ion on gas-hold-

up. Nevertheless, recent studies in regime transit ion studying the effect 

of l iquid v iscosity reported that even at low viscosity values the global 

hold-up decreases (Yang et a l . ,  2010).  In general ,  an increase of 

v iscosity is  re lated with a decrease on gas hold-up. When sol ids are 

present,  some authors consider the sol id and l iquid phase as a 

“pseudo-homogeneous” phase. This leads to the need of def in ing an 

apparent v iscosity due to the sol id presence in the l iquid that would 

affect l iquid phase propert ies as density and v iscosity (Fre itas et a l . ,  

1999; Lu et a l . ,  1995).  As far as we are aware some re lat ions to 

determined v iscosity are reported in l i terature being the most common 

the ones by Ol iver et a l .  (1961) (c i ted by Lu et a l .  (1995)) ;  Thomas 

(1965) (c i ted by Yoo et a l .  1997);  Barnea and Mizrahi  (1973) (c i ted by 

Gandhi et a l . ,  (1999))  and Metzner (1985) (c i ted by Yoo et a l . ,  (1997)).   

The change in v iscosity promoted by sol ids in the l iquid-phase 

reveals that possible re lat ions/ interact ions between sol ids and v iscosity 

are l ike ly to occur on their  effect on f low regime destabi l izat ion of g-l-s  
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systems. Mena et a l .  (2005a) not iced that only for a h igh sol id content 

the v iscosity had an important contr ibut ion for th is;  however,  th is 

cannot be general ized as the sol id effect on the apparent v iscosity of 

the mixture depends on the propert ies of the sol ids appl ied. I t  seems 

that the BC design and s ize a lso play an important ro le when al l  these 

aspects are considered (Ruzicka, et a l . ,  2001b,;  Ruzicka et a l . ,  2003; 

Yang et a l . ,  2010).   

IV.2.2.1 Solids dual effect on regime transition 

The dual effect that has been reported in the recent years lead to a 

discussion of what is  the real  effect of sol ids in BC. I t  seems that s ize,  

concentrat ion and wettabi l i ty  p lay an important ro le on th is effect.  

Accordingly to Banis i  et  a l .  (1995) f ine part ic les in smal l  amount 

(suppressing coalescence) and large part ic les in h igh amount 

(promoting breakup) tend to increase hold-up, whi le moderate 

concentrat ions and s izes seem to decrease gas hold-up. Concerning 

the inf luence of the wetabi l i ty ,  i ts  real  effect on gas hold-up remains 

unclear.  Jamialahmadi and Mul ler-Steinhagen (1991) report that 

wettable part ic les increased hold-up whi le non-wettable part ic les have 

the opposite effect.  However,  Mena et a l .  (2005a),  worked with a lg inate 

beads ( low density and completely wettable sol ids)  and found that a 

dual effect is  present -  for low sol id content (< 3.0 %) sol ids enhanced 

the HoR regime stabi l izat ion and global hold-up increased whi le for 

h igher sol ids content (> 3.0 %) the opposite effect was observed 

(Banis i  et  a l . ,  1995; Jamialahmadi and Mul ler-Steinhagen, 1991; Mena, 

et a l . ,  2005a).  

From a cr i t ical  point of  v iew the actual  knowledge of the f low regime 

transit ion in three-phase system remains scarce. The main reason is 

re lated not only with the correct data interpretat ion in terms of physical  

mechanism but a lso with the dif f iculty of re lat ing a l l  results reported in 

l i terature 
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IV.3 Material and Methods 

IV.3.1 Apparatus and measurements 

Measurements were performed in a cyl indr ical  Plexig las bubble 

column with internal  d iameter of 0.142 m. The distr ibutor was a ceramic 

porous plate with 0.09 m of d iameter and an approximate porosity of 

38% (vol . ) .  I t  ensures the three regimes: homogeneous, transit ion and 

heterogeneous. Compressed f i l tered air  was the gas-phase (T=25 ºC, 

P=1.01 bar)  and water the l iquid-phase (T=20 ºC).  The clear l iquid 

height was HL 0=1.09 m for a l l  exper iments (no l iquid throughput) .  The 

dependence of the gas hold-up (! )  on the gas f low rate (QG)  was 

measured three t imes and then averaged. The gas superf ic ia l  velocity 

var ied in the range UG=0 m/s (0 dm3/s)  to UG=0.027 m/s (0.43 dm3/s) ,  

cover ing the homogeneous and part  of  the transit ion regime. The gas 

f low was measured with a Mass Flow Control ler  (A l icat Scient i f ic ,  Inc.,  

Tucson – AZ, USA) and var iat ions in gas superf ic ia l  velocity c lose to the 

transit ion point were with in 2 mm/s (0.033 dm3/s) .  

IV.3.2 Solid-phase characterization: spent grains 

SG, a lmost f lat  part ic les,  with equivalent d iameter dE Q<2.1 mm were 

the sol id phase. The s ize distr ibut ion of the part ic les was determined 

by s ieving into fract ions using a portable s ieve shaker (Model 

Analysette,  Fr i tsch, Germany).  

IV.3.2.1 Preparation of spent grains 

Spent Grains were prepared accordingly sect ion I I I .3.4.1 without the 

acid hydrolysis step (Brányik et a l . ,  2004).  
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IV.3.2.2 Water absorption index (WAI) determination 

WAI was determined accordingly Mussato et a l  (2009).  Mainly a 

sample of 2.5 g of spent grains (dry base) was suspended in 30 mL of 

d ist i l led water in a 50 mL centr i fuged tube. The s lurry was st i r red for 

one minute at room temperature and then centr i fuge at 3000 g  and 

25 ºC for 10 min. The supernatant was discarded and WAI was 

calculated from weight remaining gel  and express as gW E T  S G/gD R Y  S G.   

IV.3.2.3 Specific weight of wet spent grains (wSG) 

SG are a cel lu lose-base mater ia l  an consequently  is  able to absorb 

water.  Thus specif ic  weight determinat ion became dif f icult .  Being so 

wSG specif ic  weight was determined by volume increased method. A 

large amount of dry SG (dS G)  – 15 g – was suspended in 30 mL of 

d ist i l led water and centr i fuged (3000 g  and 25 ºC for 10 min).  The 

supernatant was discarded and the remaining wS G were added to 

500 mL of d ist i l led water.  Volume of wS G was determined by water 

volume increase and specif ic  weight (Vw S G/Ww S G)  determined. The 

results were performed in tr ip l icate. 

IV.3.3 Gas hold-up 

Gas hold-up was measured using two techniques descr ibed below. 

IV.3.3.1 Bed expansion 

In  each exper imental  run, the gas f low was set,  the bed height was 

recorded after the t ime required to reach a steady value was achieved 

(never less than f ive minutes).  Each of the e ight runs was repeated 

three t imes and the voidage values were averaged. Gas hold-up was 

determined according to (Deckwer,  1992; Mena et a l . ,  2005a; Ruzicka 

et a l . ,200a, 2003, 2008; Yang et a l . ,  2010):  
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IV.3.3.2 Water columns differential pressure 

The gas hold-up was determined by measur ing stat ic pressure 

dif ference between two heights in the BC. Our interest in using th is 

technique is re lated with future tests to be performed in a iGLR. 

Moreover,  i t  is  reported that pressure dif ference per se is  not enough 

when three phase systems are appl ied (Boyer et a l . ,  2002) and an 

addit ional  technique should be appl ied to determine sol ids hold-up. 

Dif ferent ia l  pressure was measured by the dif ference in water columns. 

For each set of exper iments,  pressure dif ferences (H1-H2)  were 

measured at least three t imes dur ing 5 min (gassing t ime bigger than 

5 min).  The mean value was then used to determine gas hold-up by the 

fo l lowing equat ion (Fre itas and Teixeira,  1998a, 1998b):  
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      Eq. IV-2  

IV.3.4 Solids hold-up 

Sol ids hold-up and distr ibut ion were determined by using the method 

developed by Freitas et a l .  (1997).  Br ief ly ,  a sampler adapted to reta in 

spent grains with 60 mL of volume is used for col lect ing sol ids.  The 

sol ids sample is  col lected between the two points where the !G  is  

measured. The sol ids were f i l t rated and dr ied at 105 ºC for 12 h. The 

sol ids volume was determined (consider ing their  WAI and specif ic  

weigth)  and sol ids hold-up (!S )  calculated accordingly (Fre itas et a l . ,  

1997):  

 

!S =
VS

Vspl        Eq. IV-3 
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IV.3.5 Measurements errors 

The re lat ive error for bed expansion method is considered to be less 

than 5%. On the homogeneous and in the beginning of transit ion regime 

the layer is  uniform and the interface is easy to locate with a 1 mm 

precis ion (precis ion of scale – mi l l imetre paper) .  This resolut ion was 

considered adequate due to the height of the column used (1090 mm). 

However,  when transit ion starts to occur and waves appear the 

determinat ion of the height of the BC is d i f f icult  (HG + L) .  To minimize th is 

effect,  the obtained value corresponds to the mean of the values 

measured dur ing several  osci l lat ions. At the end of transit ion and in the 

beginning of heterogeneous regime osci l lat ions were at maximum 

30 mm around the mean value. Having in mind the increase in height 

column for these superf ic ia l  gas velocit ies,  i t  was possible to have an 

exper imental  error not exceeding 5%.  

The resolut ion obtained on the water column method was the same 

as for bed expansion, for the highest f low rates. However,  for the low 

gas f low rates, the error is  larger (up to 10%), consider ing the 

measured dif ferences of the height in water columns (10 to 120 mm). 

The measurement error associated with sol ids hold-up determinat ion is 

considered to be no more than 10 % (Freitas and Teixeira,  1998).  

Overal l ,  the combined error for the determinat ion of gas hold-up using 

is at i ts  maximum 15%. 

IV.3.6 Evaluation of critical gas hold-up and critical gas velocity 

Consider ing the pr imary data obtained (!  vs UG ) ,  the cr i t ical  point 

could be determined as the inf lexion point of  the data graph. However,  

i ts  d irect determinat ion in the graph is d i f f icult  and inaccurate.  

Consequently,  the data were re-plotted according to the dr i f t- f lux 

model and the inf lexion point determined from the deviat ion of the data 

from the theoret ical  l ine of the uniform regime. This is  a standard 

procedure.  
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The theoret ical  l ine j= j (!G )  is  def ined as:  

 

jtheo = !G " 1# !G( ) " u       Eq. IV-4  

Where u  is  the mean sl ip speed in case of no l iquid f lux through the 

column. The concept of Darwinian dr i f t  was used to determine the 

bubble mean sl ip speed (Ruzicka et a l . ,  2001a).  Thus: 
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Where u0  –  is  the bubble terminal  speed, and a  –  the bubble dr i f t  

coeff ic ient.  For each data l ine !Gexp (QEXP ) ,  they are obtained by 

l inear izat ion of Eq. V-5, using the basic re lat ion: 

 

!
G exp =

Qexp

Uexp

      Eq. IV-6  

The exper imental  dr i f t- f lux is  obtained from Eq. IV-4  together with 

Eq. IV-6 :  

 

jexp = 1! "G( ) #Qexp       Eq. IV-7 

The transit ion begins where Eq. IV-7  separates from Eq. IV-4  :  i t  is  

the cr i t ical  point [UC,!C ] ,  the instabi l i ty  threshold. The values of UC  and 

!C  are the quant i tat ive measures of the homogeneous regime stabi l i ty .  

The evaluat ion procedure is  an i terat ive process. The homogeneous 

data range is in i t ia l ly  assessed, then is used for the l inear izat ion, t i l l  

the corre lat ion coeff ic ient of the l inear izat ion is suff ic ient ly c lose to 

unity.  

The regime transit ion was also found using the s l ip-speed concept,  

where, at  the cr i t ical  point,  the s l ip speed data uexp ,  departs from the 

utheo  obtained from the model l ine. 

The f i rst  cr i ter ia of the dr i f t  f lux model is  based on the coupl ing of 

phases, i  e . ,  on the mass conservat ion of the phases. The s l ip speed 

concept is  based on the fact that,  in HoR, the bubble speed decreases 

with the increase of h indrance caused by the increase of bubble 

concentrat ion. 
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The obtained results are the average of these two methods. Since 

these two methods are equivalent,  only di f ferent co-ordinates are used, 

the results should be s imi lar .  This was the test of correctness (Mena et 

a l . ,  2005a; Ruzicka et a l . ,  2008).  

In the l i terature,  the stabi l i ty  cr i ter ia normal ly used on g-l-s  systems 

are scarce and several  pr inciples have been appl ied. In i t ia l ly ,  they have 

been based on corre lat ions obtained from experimental  data but they 

lack in terms of universal  appl icat ion due to their  specif ic i ty (Kr ishna, 

1991; Rei l ly  et  a l . ,  1994; Wilk inson et a l . ,  1992).  Theoret ical  cr i ter ia 

based on theoret ical  concepts are more accurate and may be appl ied a 

pr ior i  (  Ruzicka and Thomas, 2003; Shnip et a l . ,  1992) or a poster ior as 

the s l ip speed concept and the dr i f t- f lux model (used in th is work).  
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IV.4 Results and Discussion 

In  th is chapter i t  was evaluated the inf luence of sol ids in BC regime 

f low transit ion. The sol ids used were SG and possible physical  

mechanisms that inf luence the regime f low transit ion in BC is d iscussed 

bel low. 

IV.4.1 Spent grains characterization 

The sol id part ic les (SG) used in th is chapter are a l i t t le  d i f ferent f rom 

the ones used in the previous chapters ( I I I  and VI I I ) .  The main reason is 

the lack of the acid pre-treatment step ( I I I .3.4.1) .  Consider ing the need 

of h igh amount of SG (about 5 kg of dS G)  to work in the BC descr ibed, 

the low yie ld (2 kgd S G/100kgB G S) ,  the reagent and energy costs,  and the 

t ime necessary to obtain such amount i t  was decided to remove the 

acid step from the SG preparat ion. Moreover dur ing the SG 

character izat ion no re levant di f ferences were found both in WAI and 

density between base-treated and acid/base-treated SG. 

SG after pre-treatment are mainly cel lu lose (Brányik et a l . ,  2001).  

They are completely wettable part ic les and increase s ize when in 

contact with water.  In order to determine their  density is  important to 

dist inguish between density of dS G and wS G.  In i t ia l ly  i t  was tr ied to 

determine the density of dS G.  However e ither using the proposed 

method (sect ion IV.3.2.3)  or other methods proposed in l i terature 

(p icnometer method) i t  was impossible to determined with accuracy the 

dSG density.  This was mainly due to their  unique character ist ics of 

wettabi l i ty  and s ize change. Having th is in mind i t  was only determined 

the specif ic  density of wSG part ic les.  This was important not only 

because density of part ic les is  crucia l  when hydrodynamic studies are 

performed but a lso because the real  effect on reactor hydrodynamic wi l l  

be due to the “wet” part ic les in aqueous solut ions. In order to 

determine the density of wS G part ic les i t  is  a lso necessary to determine 

the WAI.  On Table IV-1  the values of wS G propert ies (density and WAI)  

determined are present.   
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Table IV-1 .  Spent  gra ins propert ies in  wet  bas is  at  T=25 ºC and P=1 atm 

Property Average Stdev Qv 

WAI /  (gW E T/gD R Y)  8.121 0.112 1.37% 

!W E T  S G /  (g/mL)  1.037 0.010 0.97% 

!W A T E R /  (g/mL)  0.998 0.000 0:02% 

 

Mussato et a l .  (2009b) obtain a WAI for SG of 9.03 being the 

dif ference expla ined either by the dif ferent pre-treatment used (base-

treat only)  or by dif ferent bar ley var iety used in this work. The high WAI 

is  a measure of the abi l i ty  to adsorb water,  which is very important 

aspect for immobi l izat ion of microorganisms. This abi l i ty  a l low that 

water is  a lways present for cel ls  to growth and developed (Mussatto et 

a l . ,  2009b).  Besides th is h igh water adsorpt ion, which proves their  

wettabi l i ty  capacity,  SG have hydrophobic character (Brányik et a l . ,  

2004) and high cr i t ical  humidity point,  which indicates that normal ly low 

amounts of water are bounded to the part ic les (Mussatto et a l . ,  2009b).  

This ambiguous capacity of SG are ideal  for microorganisms growth and 

immobi l izat ion because manage to keep high water content and at the 

same t ime create a hydrophobic environmental  that decreases the 

abi l i ty  of immobi l ized yeast (more hydrophobic)  to be re lease in the 

bulk (Brányik et a l . ,  2004).  

IV.4.2 Bed expansion versus water columns differential pressure 

for gas hold-up determination 

For the system considered, the determinat ion of gas hold-up using 

both techniques showed simi lar  results.  The measur ing of gas hold-up 

by water columns combined with the modif ied method for sol id hold-up 

determinat ion used by Freitas et.  a l  (1997) appears to be a suitable 

method to determined gas hold-up in three-phase systems where SG 

are present.  In fact and consider ing the sol id distr ibut ion in the ent ire 

BC the dif ference between the exper imental  and theoret ical  values of 

sol id load determined by th is technique was 2.97%; 3.32%; 3.98% and 

6.94% for 4%; 8%; 12%; 20% (wt.W E T  B A S I S  /vol . )  respect ively.  The 
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obtained errors are in the same range of the ones obtained by other 

authors (Fre itas and Teixeira,  1998a, 1998b; Freitas et a l . ,  1997).  

Having in mind that these values have been calculated with the 

exper imental  values for gas hold-up, i t  is  c lear that the appl ied 

technique may be appl ied with a good accuracy.  

Moreover,  the results presented in Figure IV-2  that show the 

exper imental  errors for the two techniques conf irm this conclusion. In 

Figure IV-2A ,  the deviat ions for a l l  range of sol ids loads used are 

shown whi le in Figure IV-2B  only the f i rst  three sol ids loads are 

considered (4% 8% and 12% (wt.W E T  B A S I S  /vol . ) ) .  

 

Figure IV-2 .  Compar ison between gas hold-up obta ined by Water  Columns 
(Gas hold-upW C)  and Bed expansion (Gas hold-upB E) :  A –  Sol ids load up to 

20% (wt.W E T  B A S I S /vo l . ) ;  B –  Sol ids load up to 20%  (wt .W E T  B A S I S /vo l . ) .  Legend:  
!  –  water ;  ! -  4% (wt.W E T  B A S I S /vo l . ) ;  !  -  8% (wt.W E T  B A S I S /vo l . ) ;                        

+  -  12% (wt.W E T  B A S I S /vo l . ) ;  !  -  20% (wt.W E T  B A S I S /vo l . ) .  

 

The maximum and mean deviat ions between the results obtained with 

the two dif ferent techniques are,  respect ively,  26% and 7%, with most 

of the measured values with errors in the range ±8% an acceptable 

result  having in mind the appl ied techniques. Nevertheless the highest 

errors occur at the lowest gas f low rates and high sol ids content.  In 

fact,  for the maximum sol ids content and due to the non-homogeneity 

of sol ids in the column, especia l ly  at  low gas f lows, the combined 

method for sol ids and gas hold-up determinat ion is not suitable.  I t  
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seems that,  for these type of sol ids,  only sol ids load values below 

12% (wt.W E T  B A S I S/vol . )  are accurate enough to perform a correct 

evaluat ion of the data in terms of regime transit ion. Thus, for 

20% (wt.W E T  B A S I S/vol . )  sol ids load the results were not used for the 

determinat ion of regime transit ion. Anyway no regime transit ion was 

observed at th is sol ids load. For h igher gas f low rates the agreement 

between the data was always below 4%. Therefore both techniques 

were considered for the determinat ion of cr i t ical  values (!C and UC)  for 

regime transit ion. 

IV.4.3 Gas-hold up vs gas-flow: solids influence 

In  the graph of the Figure IV-3  are plotted the curve ! (q )  obtained for 

each concentrat ion of sol ids (0 – 20% (wt.W E T  B A S I S  /vol . ) ) .   

 

Figure IV-3.Pr imary data obta ined f rom di f ferent  gas hold-up methods:  A –  
Bed Expansion;  B –  water  Columns.  Legend:  !  –  water ;                                

! -  4% (wt.W E T  B A S I S /vo l . ) ;  !  -  8%  (wt .W E T  B A S I S /vo l . ) ;  +  -  12% (wt.W E T  B A S I S /vo l . ) ;  
!  -  20% (wt.W E T  B A S I S /vo l . ) .  

 

Figure IV-3  shows that,  in th is column, regime transit ion occurs at 

lower gas f lows than the ones obtained by other authors in BC (Mena et 

a l . ,  2005a; Ruzicka et a l . ,  2001a, 2001b).  However the values of gas 

hold-up are in the same range. There are two possible explanat ions for 

th is:  bubble column size and the effect of the distr ibutor.   
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I t  is  reported that column size (d iameter and height)  inf luences the 

global hold-up. Also, sparger inf luence over the column axis can go up 

to four t imes the column diameter (Gandhi et a l . ,  1999; Lu et a l . ,  1995).  

For the same gas f low, Ruzická et a l .  (2001b) observed that gas hold-up 

values are usual ly  lower when BC diameter increases and/or column 

height increases. Thus the cr i t ical  values (!C vs.  UC)  for regime 

transit ion a lso diminish (Ruzicka et a l . ,  2001b).  General ly ,  gas spargers 

in BC have a diameter that occupies a l l  cross-sect ion of the BC. As in 

our case the sparger corresponds to 2/3 of the bubble diameter,  th is 

character ist ic is  responsible for a h igher height unt i l  gas f low stabi l izes 

and for local  l iquid c irculat ion near the sparger.  This means that the 

height of the column necessary for the gas to achieve a f lat  prof i le  is  

h igher as there is  a region at the bottom of the column where l iquid 

c irculat ion occurs ( less v is ib le at low f lows),  which dif f icult  a rapid 

stabi l izat ion of the gas prof i les as typical ly  occurs in HoR. The l iquid 

c irculat ion is a consequence of the higher amount of bubbles in the 

center of the column immediately above the distr ibutor,  result ing in 

“ local” lower hold-up values. The inf luence of sparger geometry on gas 

hold-up values has a lso been studied by Vi jayan et a l .  (2007).  As the 

gas hold-up values obtained in th is work are in the same range values 

as those reported by these authors when s imi lar  H/D and As p a r g e r /AC 

rat ios are considered, our exper imental  values may be considered to be 

with in the expected range (Vi jayan et a l . ,  2007).  

The select ion of th is d istr ibutor is  re lated with our interest on the 

study of the three-phase hydrodynamics in an internal  a ir l i f t  reactor,  as 

in these systems the distr ibutor cross sect ion is of the same order of 

magnitude of the a ir l i f t  r iser cross sect ion and always smal ler  than the 

tota l  column cross sect ion. The appl ied distr ibutor a l lowed to reach the 

object ive of sol ids f lu id izat ion at low gas f low rates (except for the 

maximum sol ids concentrat ion).  

Even i f  th is system would behave dif ferent ly f rom those reported in 

l i terature,  which is not the case, i t  would st i l l  possible to conclude on 

the effect of the sol id phase on f low regime transit ion, as exper iences 
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were done for a l l  cases in the same BC. In addit ion, the presence of 

both regime f low (HoR and HeR) in a ir-water systems was clear ly 

ident i f ied. 

From Figure IV-3 ,  i t  is  a lso possible to observe, at  low gas f lows, 

that the presence of the sol id phase causes an increase in gas hold-up. 

This may be attr ibuted to a stabi l izat ion effect of the bubbles at low 

gas f lows, being the opposite effect observed as gas f low is increased. 

This “stabi l izat ion” effect causes an increase in gas residence t ime and 

consequently hold-up is h igher.  This is  a lso re lated with a decrease of 

the height that the gas needs to achieve the f lat  prof i le ,  typical  for HoR.  

The effects associated with the use of a sparger not occupying the 

ent ire cross sect ion of the column may also contr ibute to the observed 

increase in gas hold-up. As due to their  sedimentat ion propert ies an 

increase in sol ids concentrat ion near the distr ibutor occurs (specia l ly  at  

low gas f low and high sol ids load),  a h igher interact ion between 

bubbles and part ic les occurs.  There is  a lso the ster ic effect (presence 

of sol ids)  of  spent grains as wel l  as i ts surface propert ies that can have 

an important effect on the interact ions between sol ids and bubbles. 

This effect reduces bubble r ise velocity leading to a s l ight increase on 

hold-up (Lu et a l . ,  1995; Mena et a l . ,  2005a).  In fact,  when sol ids were 

present,  a larger amount of smal ler  bubbles near the wal l  was observed 

in comparison with a ir-water systems as observed in next f igure. 

 

Figure IV-4 .  Exemple of  smal l  bubbles near  the BC wal l .  
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Spent grains wettabi l i ty  is  another factor that may contr ibute to the 

obtained results.  Also, i t  has been reported that the inf luence of the 

physical  propert ies of sol ids is  h igher when sol ids have a smal l  s ize 

compared with bubble s ize,  as is  the case of SG (Mena et a l . ,  2005a).  A 

higher drag force on the bubble surface (gas- l iquid interface) is  created 

by the presence of smal l  s ize sol ids with a consequent reduct ion on 

bubble r ise velocity and gas hold-up increase (Mena et a l . ,  2005a).  The 

combinat ion of the above-mentioned effects contr ibutes for the 

observed increase in gas hold-up at lower gas f lows when sol ids are 

present.  This is  in agreement with Jamialahmadi and Mul ler-Steinhagen 

(1991) that concluded that wettable part ic les increased hold-up by 

suppressing coalescence whi le non-wettable part ic les had the opposite 

effect.  I t  may also be noted that the resistance promoted by sol ids 

sedimentat ion character ist ics was evident when maximum sol id 

concentrat ion was tested (20% (wt.W E T  B A S I S/vol . ) ) ,  as no f lu id izat ion of 

sol id part ic les was observed at the lowest gas f low rates. 

 

Figure IV-5.  A  -  Sol ids in f luence at  low gas f low rates in  gas hold-up (Bed 
Expansion) .  Legend:  !  –  q = 0,2 cm/s;  "  -  0 ,4  cm/s;  B –  Sol ids in f luence at  

h igh gas f low rates in  gas hold-up (Bed Expansion) .  Legend:  !  –  q = 2,5 
cm/s;  "  -  2 ,7  cm/s 

 

On Figure IV-5A ,  i t  is  possible to ver i fy that when sol ids are present,  

at  low gas f lows, g lobal gas hold-up tends to increase with a maximum 
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around 8% (vol ./vol . )  of  sol ids.  In HoR, th is result  is  a consequence of 

part ic le-bubble interact ions that result  in bubble break-up and 

dispersion, reduced bubble r ise velocity and consequent increase in 

hold-up.  

On the other hand, Figure IV-5B  shows that in HeR at h igh f lows the 

opposite effect is  present reveal ing a dual effect of the part ic les.  At 

these values of gas f low (HeR) l iquid c irculat ion is h igher and more 

pronounced, the effect of part ic le-bubble interact ion being lower.  

Bubble-bubble interact ions increased and coalescence occurred. At 

th is stage, coalescence does not seem to be s ignif icant ly affected by 

the presence of the sol id phase. However,  with the obtained data, i t  is  

impossible to ident i fy/evaluate the importance of the physical  

mechanisms re lated with sol id propert ies (wettabi l i ty ,  s ize,  density ) .   At 

h igh gas f lows, larger bubbles were v isual ly  observed reveal ing 

coalescence phenomena at these stages. The absence of 

20% (wt.W E T  B A S I S/vol . )  sol ids data is  re lated with the fact that HoR was 

not achieved under th is sol ids load condit ion (see Figure IV-6 ) .  

IV.4.4 Gas-hold up vs gas-flow: drift-flux 

In  Figure IV-6  are plotted the Dri f t- f lux results for the data obtained 

by the Bed Expansion method. This method al lows for an accurate 

determinat ion of the cr i t ical  point (point at  which HoR stabi l i ty  

d isappears) .  The cr i t ical  point,  which corresponds to the inf lexion 

points on Figure IV-3 ,  is  now clear ly ident i f ied on Figure IV-6  (open 

symbols)  for the dif ferent exper imental  condit ions. As previously said,  

th is point corresponds to the beginning of separat ion of the plots of the 

exper imental  and calculated data. 
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Figure IV-6.  Dr i f t - f lux p lot :  Dr i f t - f lux –   j  (m/s )  vs.  Gas hold-up (vo l . /vo l . ) .  
Legend:  !  (smooth l ine ) :  j t  by Eq. IV-4 ;  !  (Data points ) :  j E X P  by Eq. IV-7 ;  "  
(B lank Data) :  Cr i t ica l  po int .  A,  B,  C,  D,  E:  D i f ferent  so l id  loads (0 ,  4 ,  8 ,12 % 

(wt.W E T  B A S I S  /vo l . ) )  
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From the results p lotted in Figure IV-6 ,  a  decrease of cr i t ical  gas 

hold-up and cr i t ical  gas f low with sol ids load is c lear ly observed. 

Cr i t ical  gas hold-up decrease presents a l inear behaviour,  whi le cr i t ical  

gas f low has an exponentia l  t rend. This suggests that above 

12% (wt.W E T  B A S I S/vol . )  of  SG loading the cr i t ical  gas f low is s imi lar  to the 

minimum gas f lu id izat ion f low for th is system. In fact,  as said before, 

when the highest sol ids load was appl ied, the value for minimum 

f lu id izat ion gas velocity was only 20% infer ior to the cr i t ical  gas f low 

for 12% (wt.W E T  B A S I S/vol . )  loading. This indicates that,  under the tested 

sol ids load, 12% (wt.W E T  B A S I S/vol . )  sol ids load was the minimum 

concentrat ion where HoR could be establ ished and only for a smal l  

range of gas velocit ies (0.2 cm/s < UG  < 0.5 cm/s).  Concerning the 

cr i t ical  gas hold-up, the fo l lowing corre lat ion can be found to descr ibe 

i ts dependence on sol ids load (Eq.IV-8 ) :   

 

!C= 0.10 " 0.56 # $S R
2

= 0.94;Rxy = 0.97       Eq. IV-8  

This equat ion indicates the way spent grains inf luence regime 

transit ion on the studied bubble column. Eq.IV-8  intercepts y-axis at a 

value lower than the ones found in the l i terature (Mena et a l . ,  2005a),  

th is being re lated with the above addressed specif ic  issues of th is BC. 

When comparing the s lope of Eq. IV-8  with the one reported by Mena et 

a l .  (2005a) for a lg inate beads as the sol id phase, the obtained value 

with SG is two t imes larger.  This a l lows concluding that SG have a more 

pronounced effect on regime transit ion than alg inate beads. This is  not 

unexpected as the propert ies of both sol ids are dif ferent,  mainly s ize,  

shape and wettabi l i ty .  

Presented results indicate that a reduct ion in HoR regime stabi l i ty  is  

observed when sol ids are present (Figure IV-6  and Figure IV-7 ) .  I t  was 

v isual ly  ver i f ied that when gas f low was increased big bubbles start  to 

appear,  especia l ly  in the column centre,  due to coalescence. In fact,  at  

maximum sol ids load where no HoR was establ ished, bubble 

coalescence was observed even at the lowest f lows. At the highest 

f low, s lug regime was present,  a typical  s i tuat ion for BCs with 

diameters infer ior to 20 cm (Deckwer,  1992).  This result  contradicts the 
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one obtained by Jamialahmadi and Mul ler-Steinhagen (1991) that 

observed that wettable part ic les increase gas hold-up by suppressing 

coalescence. In fact th is occurs at low gas f lows (Figure IV-5A ) ,  but 

not at h igher ones (Figure IV-5B ) .  As above said, th is dual effect of SG 

is attr ibuted to the BC design. The increase in gas hold-up by the 

act ion of SG means that more bubbles are present and interact ions 

between bubbles are h igher.  This increased rate of col l is ions promotes 

coalescence. With the gas hold-up increase in the HoR by the presence 

of the sol id phase, non-uniformit ies are formed in the gas phase and 

the stabi l i ty  of HoR is reduced. Thus the HeR is achieved ear l ier  and 

the cr i t ical  values (!C vs.  UC)  are lower when sol ids are present.   

 

Figure IV-7 .  Eva luat ion of  cr i t ica l  gas hold-up and cr i t ica l  gas f low with  so l id  
load.  Legend:  !  -  Bed Expansion;  "  -  Water  Columns 

 

I t  is  a lso possible to observe that e i ther bed expansion and water 

columns techniques show simi lar  results (Figure IV-7 ) .  This indicates or 

conf irms that,  for sol ids loads infer ior to 12% (wt.W E T  B A S I S  /vol . ) ,  the 

combinat ion of sol id hold-up method and water columns appear to be a 

suitable technique to evaluate gas hold-up in di f ferent reactors 

conf igurat ions. 
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case, cr i t ical  values (!C vs.  UC )  decrease with sol ids load, which is in 

agreement with publ ished results on v iscosity effect on f low regime 

transit ion (Yang et a l . ,  2010).  Ruzická et a l . ,  (2003) reported a dual 

effect of l iquid v iscosity when low viscosity (< 2,1 mPa.s)  and high 

v iscosity l iquids are present.  Meanwhi le,  recent studies publ ished by 

Yang et a l .  (2010) ident i f ied that at low viscosity l iquids there is  a fast 

decrease of cr i t ical  values (gas hold-up and gas f low) fo l lowed by a 

smal l  decrease. The cr i t ical  v iscosity where th is change occurs was 

around 3 mPa.s.  The behaviour of cr i t ical  gas f low vs. v iscosity was 

(Yang et a l . ,  2010):  

 

qC1 = !0.019ln(µL ) + 0.025;qC 2 = !0.018ln(µL ) + 0.056 for µL < 2.8 mPa " s  Eq. IV-9  

These authors considered that the f i rst  value for the cr i t ical  gas f low 

- qC 1 – corresponds to the end of the homogeneous regime when the 

f i rst  b ig bubbles are formed and the second one -  qC 2 – is  obtained 

when fu l l  heterogeneous regime is establ ished (Yang et a l . ,  2010).  

Accordingly,  they suggest that the values obtained for cr i t ical  values of 

transit ion correspond to the value when homogeneous regimes loses 

stabi l i ty  (qC 1) .   

Ol iver et a l .  (1961) c i ted by Lu et a l .  (1995) suggested the 

determinat ion of a pseudo-homogeneous v iscosity for a sol id- l iquid 

mixture according to the fo l lowing equat ion: 

 

µS!L = µL f "S( )[ ]
!1

      Eq. IV-10  

Where, 

 

f !S( ) =
1" 0.75 # !S

1/ 3( ) 1" 2.15 # !S( )

1" !S( )
2

      Eq. IV-11 

The appl icat ion of th is equat ion to our exper imental  data was based 

on the fact that the sol id phase used – a lg inate beads - by Lu et a l .  

(1995) had s imi lar  propert ies – density and s ize -  to the sol ids used in 

th is work. In our case, the fo l lowing empir ical  curve re lat ing cr i t ical  gas 

f low with the pseudo-homogeneous v iscosity (1 mPa.s<µS - L<1.7 mPa.s)  

was obtained: 
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qC1 = !0.032ln µL( ) + 0.02 R
2 = 0.98( )       Eq. IV-12 

This re lat ion was obtained for sol ids load 0%, 4%, 8% and 

12% (wt.W E T  B A S I S  /vol . )  as only in these s ituat ions transit ion regime was 

observed. The obtained values are in the same range as those of 

Eq. IV-9  (Yang et a l . ,  2010).  

These results demonstrate that the inf luence of SG load in the cr i t ical  

value corresponding to the end of HoR (qC)  fo l lows the same pattern of 

low viscosity l iquids. I t  seems that,  depending on the column size 

(d iameter and height) ,  type of d istr ibutor and type of sol ids,  the dual 

effect of sol ids and v iscosity suggested by some authors (Mena et a l . ,  

2005a; Ruzicka, et a l . ,  2001) may or may not occur (Yang et a l . ,  2010) 

as in th is case. I t  is  important to not ice that Eq. IV-12  is  l imited to th is 

part icular system (a ir-water-SG),  being s imi lar  evaluat ions possible and 

desirable for other gas-l iquid-sol id systems in order to have a better 

understanding of i ts  hydrodynamics  

Although the presented information a ims at contr ibut ing to the effect 

of a sol id phase on the hydrodynamics of g-l-s  systems, further work is  

required to c lar i fy  how sol ids inf luence regime transit ion and the 

magnitude of th is inf luence. Obtained results a l lowed to conf irm that 

that sol id inf luence is re lated with the low viscosity of the “pseudo-

homogeneous” l iquid phase formed and that other parameters such as 

ster ic effect,  wettabi l i ty ,  BC design and distr ibutor geometry play a lso 

an important ro le in f low regime transit ion.  
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IV.5 Conclusions 

The effect of SG part ic les on homogeneous regime stabi l i ty  and 

regime transit ion in a three-phase BC was invest igated exper imental ly .  

The stabi l i ty  was expressed by the cr i t ical  values of gas holdup and gas 

f low rate.  The exper iments showed that the sol ids promoted 

stabi l izat ion on HoR for low gas f low rate.  Moreover,  i t  was 

demonstrated that spent grains decrease the cr i t ical  values where the 

HoR prevai ls .  This inf luence was demonstrated to have s imi lar  effect to 

the one found for low viscosity l iquids on regime transit ion. In addit ion, 

i t  was possible to conclude on the importance of the ster ic effect of 

sol ids as wel l  as their  specif ic  propert ies (wettabi l i ty )  on regime 

transit ion. 

Despite th is,  the mechanisms by which sol ids affect the regime 

transit ion is  far  f rom being understood. Furthermore the inf luence of 

column size and type of sol ids makes dif f icult  a real  assessment when 

al l  results avai lable in l i terature are compared 
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V.1 Objectives 

The main object ive of th is chapter was to determine the inf luence of 

SG loading on hydrodynamic parameters (sol ids and gas hold-ups, 

l iquid velocity,  c irculat ion/mixing t imes) for three dif ferent 

conf igurat ions of an iGLR with enlarged top degassing zone. The main 

goal was to determine the best iGLR design that confers suitable 

hydrodynamic condit ions for a fermentat ion of AFB in cont inuous mode. 

V.2 Introduction  

Gas-l i f t  reactor hydrodynamics have been studied over the past years 

due to their  abi l i ty  to be used in several  chemical and biotechnology 

processes. The importance of studying the gas-l i f t  reactor 

hydrodynamics on biotechnology processes has been already referred 

especia l ly  in fermentat ion processes, where sol id phase with s imi lar  

density to fermentat ion broths is  present (Fre itas and Teixeira,  1998; 

Kle in et a l . ,  2003).   

In th is thesis (Chapter I I I  and VI I I )  two sol ids have been studied for 

cont inuous AFB product ion in an iGLR. The results presented in 

Chapter VI I I  (sect ion VI I I .3.1)  indicate that bottom-fermenting stra ins 

using SG as carr ier  are suitable for the cont inuous product ion of AFB in 

an iGLR. In Chapter IV the inf luence of SG as sol id-phase on the regime 

f low transit ion in BC, as wel l  as the possible involved physical  

mechanisms are studied. The previous results (Chapter IV)  showed that 

the propert ies of SG are very important,  because they reduce the t ime 

where the HoR is present. 

The behaviour of SG in the iGLR hydrodynamics is st i l l  unknown. 

Moreover,  i t  is  a lso important to wel l  def ine some aspects of the iGLR 

r iser conf igurat ion: a crucia l  design parameter for th is type of reactors 

(Kle in et a l . ,  2003).  In order to establ ish the l imits where the 

biotechnology processes for AFB using SG in an iGLR can operate,  i t  is  

important to understand how these cel lu lose-based part ic les can affect 

three-phase iGLR hydrodynamics.  
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V.2.1 Gas-lift reactor design and configurations 

The gas-l i f t  reactor is  a modif ied bubble column and three general  

conf igurat ions are considered: internal ,  spl i t  or external  (Figure V-1 ) .  

 

Figure V-1 .  D i f ferent  conf igurat ions used in  GLR. Legend:  a )  In terna l- loop 
GLR ( iGLR);  b )  Spl i t  GLR; c )  Externa l- loop GLR. 

 

Among the GLR types, d i f ferent specif ic  conf igurat ions are present:  

(1 )  the posit ion of the gas distr ibutor;  (2 )  presence or absence of an 

enlarged top sect ion. These specif icat ions depend mainly on their  f inal  

appl icat ion (Fre itas and Teixeira,  1998; Van Benthum et a l . ,  2000).  

The g-l  separat ion in an iGLR takes place at the top part  of  the 

reactor.  In terms of iGLR terminology, the presence of a separator is  

considered when: DS E P>DC (Chist i ,  1989; Kle in et a l . ,  2003).  The 

presence of an enlarged top sect ion is usual ly  appl ied to easier the gas 

re lease. In addit ion i t  a l lows the sedimentat ion of part ic les that may be 

present in the l iquid medium that are expected to be kept indef in i te ly 

inside the iGLR (for example when cont inuous mode of operat ion is 

appl ied).  This is  achieved because the cross-sect ional area increase 

reduces the downwards l iquid (and sol ids)  velocity into the downcomer 

and thus a better gas disengagement and sol ids sedimentat ion occurrs 

(Dolgos et a l . ,  2001).  Due to these reasons, the iGLR used in previous 

exper iments was equipped with a degassing sect ion in the top part  

(Figure V-3 ) .  In Figure V-3  i t  is  possible to observe the presence of a 
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double-barr ier  in the reactor out let .  This double-barr ier  helps in the 

reduct ion of the biocatalyst losses when we are operat ing the iGLR at 

cont inuous mode. The outer barr ier  is  opened at bottom and top and 

the inner barr ier  is  opened only at the top. Thus, i t  is  the inner barr ier  

that def ines the reactor contents level.  This arrangement obl iges l iquid 

phase to a specif ic  movement:  in i t ia l ly  the l iquid phase goes down to 

pass the f i rst  barr ier  and then upwards to leave the reactor.  The f i rst  

barr ier  avoids not only the presence of gas-phase dur ing the l iquid-

sol id separat ion but a lso reduces the l iquid f luctuat ions near the inner 

barr ier .  When the l iquid is  going upwards in the space between the two 

barr iers,  i t  is  then easier to complete the separat ion of b igger part ic les 

(carr ier ,  yeast f locs, etc) ,  which the operator wants to maintain inside 

the reactor.  In our case, we want to keep the biocatalyst (SG + yeast 

cel ls )  ins ide the iGLR dur ing a long-term fermentat ion and th is 

conf igurat ion with the enlarged top sect ion plus the double-barr ier  in 

out let ,  p lays an important ro le to avoid big losses of b iocatalyst.  

The major i ty of publ ished papers about the inf luence of reactor 

conf igurat ion on i ts hydrodynamics studies the effect of:  rat io between 

downcomer and r iser areas (Ad/Ar ) ,  r iser length (Hr ) ,  gas sparger design 

and locat ion, l iquid height and the presence/absence of an enlarge top 

degassing sect ion (Kle in et a l . ,  2003; Lu et a l . ,  1995; Ol iv ier i  et  a l . ,  

2007).  Kle in et a l .  (2003) indicated that using the same enlarged top 

degassing zone, s imply by changing the r iser length dif ferent iGLR 

conf igurat ions can be achieved. I t  is  suggested that i f  the r iser top end 

matches the opening of top sect ion, i t  is  only considered one 

separator.  The separat ion of gas and sol id phases from the l iquid then 

takes place only in the enlarged top degassing sect ion. On the other 

hand, i f  the r iser top end is below the top sect ion opening then i t  is  

cal led a dual separator (Table V-1  and Figure V-3 ) .  This dual separator 

consists of two parts:  the lower part  act ing as a bubble separator and a 

top part  (enlarged zone) act ing as a part ic le separator (Kle in,  et  a l . ,  

2003).  
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The types of spargers commonly used in biotechnology processes 

are the perforated plate and in a lesser degree the porous plates. 

Dif ferent spargers or ig inate dif ferent bubbles s izes, which can have a 

s ignif icant effect on reactor hydrodynamics. General ly  s intered plates 

with porosity “1” and perforated plates with 0.5 mm or i f ices and 0.2% 

of free plate area rat io are ideal  to obtain both f low regimes (HoR and 

HeR) (Zahradnik et a l . ,  1997).  In an iGLR it  is  bel ieved that sparger 

locat ion has a h igher effect on bubbles distr ibut ion and on the reactor's 

hydrodynamics (Chist i ,  1989) than i ts type (porous or perforated plate) .  

For s intered plates with porosity “1” and perforated plates with 0.5 mm 

or i f ices and 0.2% this is  val id s ince the bubbles formed are s imi lar  in 

s ize and shape. 

The three-phase iGLR hydrodynamic behaviour involves the study of 

several  parameters as: gas and sol id hold-up, mixing t ime, c irculat ion 

t ime and l iquid velocity in r iser and downcomer (Fre itas and Teixeira,  

1998a; Kle in et a l . ,  2003; Korpi jarv i  et  a l . ,  1999; Lu et a l . ,  1995; 

Merchuk et a l . ,  1998; Ol iv ier i  et  a l . ,  2007).   

The interact ion between al l  these parameters with the operat ion 

parameters (gas f low, sol id content,  l iquid and sol ids propert ies)  wi l l  

determine the best iGLR conf igurat ion to be used on each process. A 

compromise between reactor conf igurat ion, operat ion parameters and 

hydrodynamic propert ies is  essent ia l  to establ ish the best condit ions to 

achieve better fermentat ion performances. 

V.2.2 Gas-phase global properties and methods 

In  iGLR the gas-phase is in jected in the r iser (draft  tube) promoting 

the mixing and l iquid c irculat ion inside the reactor (Figure V-1 .a ) .  I t  is  

known that sol ids inf luence the behaviour of gas- l iquid (g-l )  mixture.  

This inf luence can be either in gas-phase and/or in l iquid-phase. In 

order to understand the real  sol id inf luence, i t  is  important to 

understand and character ize l iquid and gas phases either in the g-l  and 

in gas-l iquid-sol id (g-l-s )  systems.  
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The inf luence of sol ids in the gas-phase is character ized by: (1 )  

changing bubbles propert ies such as: shape, r ise and formation velocity 

(Fan et a l . ,  1999; Yang et a l . ,  2007; Yoo et a l . ,  1997);  (2 )  a l tered radia l  

and axia l  gas-phase (hold-up) prof i les (Gandhi et a l . ,  1999; Warsito et 

a l . ,  1997);  (3 )  inf luence mixing and dispersion (Matsumoto et a l . ,  1989);  

(4 )  modif ied gas hold-up (Banis i  et  a l . ,  1995a, 1995b; Gandhi et a l . ,  

1999; Jamialahmadi et Mul ler-Steinhagen, 1991) and f low regimes 

prof i le  (Mena et a l . ,  2005; Warsito et a l . ,  1997; Xie et a l . ,  2003).   

General ly ,  in iGLR the presence of sol ids decreases the gas hold-up 

in the r iser.  This decrease is b igger at gas superf ic ia l  velocit ies h igher 

than 0.2 m/s. Depending on the iGLR conf igurat ion the gas-phase may 

or not be present in the downcomer. General ly  bubbles enter in the 

downcomer when gas superf ic ia l  velocit ies are between 0.1 m/s and 

0.3 m/s (Fre itas et a l . ,  1998a; Kle in et a l .  2003a).  At these condit ions, 

l iquid velocity in downcomer is  such that i t  drags bubbles to th is part  

of  the reactor.  The sol ids a lso inf luence the presence of gas-phase in 

the downcomer of iGLR, especia l ly  when in the presence of a dual 

separator.  Fre itas et a l  (1998a) and Kle in et a l  (2003a) results indicated 

that the presence of sol ids (up to 20% (vol ./vol . ) )  on the same iGLR 

conf igurat ion (Ad/Ar=3.67; dual separator top section) increases the 

downcomer gas hold-up at lower gas superf ic ia l  velocit ies (0.1 m/s to 

0.2 m/s).  There is  a dual effect of sol ids in dowcomer’s gas hold-up: at 

low gas superf ic ia l  velocit ies (up to 0.3 m/s) sol ids increase gas hold-

up in downcomer, at  h igher velocit ies (>0.4 m/s) sol ids presence 

decreases the downcomer gas hold-up (Freitas and Teixeira,  1998a; 

Kle in et a l . ,  2003a).  A possible explanat ion for th is dual effect l ies in 

the combined effect of coalescence and the bubble s l ip velocity.  In 

downcomer, bubble s l ip velocity has a direct inf luence on gas hold-up. 

I f  bubbles s l ip velocity is  smal ler  than the downcomer’s l iquid l inear 

velocity,  bubbles are entra ined by the l iquid. The space occupied by 

the sol ids reduces the space for bubbles to f low and the hindrance 

cause by i t  decreases their  s l ip velocity.  Moreover at low gas 

superf ic ia l  velocit ies,  the coalescence phenomena is reduced, thus 

bubbles are smal l  and with low sl ip velocity.  Bubbles with these 
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character ist ics are easi ly  arrested to downcomer increasing the gas 

hold-up in th is sect ion. On the other hand, at h igh gas superf ic ia l  

velocit ies the interact ions between bubbles increase due to their  

amount and less space avai lable (occupied by sol ids) ,  which promotes 

coalescence. At th is point the coalescence impact is  h igher than the 

hindrance caused by sol ids presence. Consequently the bubbles are 

bigger with h igh s l ip velocity and then fewer bubbles are entra ined to 

the downcomer reducing the gas hold-up in th is part  of  the iGLR. I t  is  

important to refer that th is is  used to explain the downcomer’s gas 

hold-up dif ference between the g-l-s  and g-l  systems. Moreover,  th is 

may not be as s imple as i t  seems, because in GLRs there are a lot  of  

d i f ferent mechanisms that may inf luence gas hold-up in downcomer and 

the impact of each one of them is not yet c lear (Chist i ,  1998).  

The mechanism by which sol ids inf luence the global gas hold-up has 

been studied and some attempts have been made to expla in i t  (Banis i  

et  a l ,  1995a, 1995b; Mena et a l . ,  2005).  The sol ids inf luence has been 

ident i f ied mainly for BC. The sol id physical  mechanism inf luence in GLR 

should be ident ical  to BC, especia l ly  in r iser where three-phases are 

a lways present.  Theoret ical ly  and due to the dif ferences between these 

reactors ( l iquid f low, design, mixing prof i le ) ,  the intensity of each 

mechanism might be dif ferent.  

To determine global gas hold-up in the r iser and downcomer 

general ly  non-invasive techniques are used. In iGLR design the 

pressure drop between two points in the r iser/downcomer, and the 

Dynamic Gas Disengagement techniques are commonly appl ied (Boyer 

et a l . ,  2002; Deckwer,  1992).   Pressure drop between two points a l lows 

to measure the l iquid or gas hold-up and can be obtained by dif ferent ia l  

pressure sensors (Boyer et a l . ,  2002; Freitas et a l . ,  2000; Kle in,  et  a l . ,  

2003) or by a inverted manometer tube (Chist i ,  1989; Merchuk et a l . ,  

1998) used in th is work Figure V-2 .   
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Figure V-2 .  Inverted tube manometer  arrangement.  (Adapted f rom Chist i ,  
1989)  

In two phase-f low, the gas hold-up is determined according to:   
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      Eq. V-1  

Where d h  is  the distance between l iquid columns (Figure V-2 )  and d 1 2  

is  the distance between the measur ing points (1 and 2 in Figure V-2 ) .  

Is  important to note that in g-l-s  systems the pressure drop per se is  

not enough to measure a l l  phases hold-up and an addit ional  technique 

must be used. General ly ,  i t  is  preferred to use a dif ferent technique to 

measure the sol id-phase hold-up (Boyer et a l . ,  2002; Freitas and 

Teixeira,  1998a, 1998b; Kle in,  et  a l . ,  2003).  

V.2.3 Solid-phase global properties and methods 

In  iGLR not only sol id inf luence on gas hold-up is important,  but a lso 

sol id distr ibut ion throughout the reactor.  Fre itas and Texeira (1998b) 

found that for low-density part ic les (a lg inate beds) in an iGLR there is  

an axia l  and radia l  sol ids distr ibut ion at low gas f lows (Freitas and 

Teixeira,  1998b).  Using the same sol ids,  Kle in et a l  (2003a, 2003b) 
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found that sol id distr ibut ion are a lso affected by r iser conf igurat ion 

where uniform sol id distr ibut ion is achieved at lower rat io between 

downcomer and r iser (Kle in et a l . ,  2003a).  The work of Kle in et a l .  

(2003a) showed that for a smal l  sol id load gas velocity does not have a 

big inf luence on sol id distr ibut ion and these are mainly located in the 

bottom part  of  both r iser and downcomer for d i f ferent internal  draft  

conf igurat ions (Kle in et a l . ,  2003a).  Therefore,  i t  is  expected to have 

s imi lar  sol ids distr ibut ion for our reactor conf igurat ion, due to s imi lar  

propert ies between SG and alg inate beds. Moreover,  in a fermentat ion 

using SG as carr ier  for b iomass immobi l izat ion the sol id concentrat ions 

used are normal ly up to 12% (wt.W E T  B A S I S/vol . )  (K le in et a l . ,  2003a; 

Brányik et a l . ,  2002).  From Klein et a l .  (2003) work i t  is  not c lear i f  r iser 

length has any inf luence on sol ids distr ibut ion for h igher rat ios between 

r iser and downcomer cross-sect ion (Ad/Ar=3.67),  normal ly found in iGLR 

for cont inuous AFB pr imary fermentat ion (Lehnert et  a l .  2008, 2009) and 

the same used in Chapter VI I I .  

Several  methods can be used to measure sol ids hold-up and 

distr ibut ion. These methods can be either (1)  non-invasive using a 

tracer (Boyer et a l . ,  2002) or pressure drop (Kle in et a l . ,  2003a; 

Rodríguez et a l . ,  1999);  and/or (2)  invasive using samplers (Fre itas and 

al . ,  1999).  Tracer methods are normal ly appl ied in f lu id izat ion columns. 

The sol id tracer is  a part ic le that should have the same shape s ize and 

density of study part ic les.  There are dif ferent k inds of tracers:  

coloured, magnetic and f luorescent (Boyer et a l . ,  2002).  Wenge at a l  

(1999) c i ted by Kle in et a l  (2003a) in i t ia l ly  proposed the pressure drop 

method. This method starts by the measurement of hydrostat ic pressure 

in the g-l-s  d ispersion fo l lowed by interrupt ion of gas f low (complete 

gas disengagement) .  Then a second measurement in the result ing two-

phase (sol id–l iquid)  d ispersion is performed. The measurement per iod 

has to be short  enough to avoid s ignif icant sedimentat ion of the sol id 

part ic les.  Kle in et a l .  (2003a) used th is method for a lg inate beads and 

the measur ing t ime was around 250 s (Kle in et a l . ,  2003a, 2003b).  

However the SG’s sedimentat ion is very fast and formed a compact 

layer in less than a minute, which is very hard to remove without 
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physical  interference. Moreover,  th is method lacks information about 

sol ids distr ibut ion, which is a lso a very important parameter in iGLR. 

Sampler devices as the developed by Freitas et a l .  (1997) can be very 

useful  for sol ids hold-up determinat ion and al low also to study the 

sol ids distr ibut ion in the iGLR with re lat ive errors less than 10% 

(Freitas and Teixeira,  1997, 1998b).  

V.2.4 Liquid-phase global properties and methods 

I t  is  a lso important to take into account the l iquid-phase propert ies 

in three-phase systems, mainly the changes that occur in th is phase. 

These may or may not be caused by the presence of sol ids.  Usual ly ,  

c irculat ion and mixing t imes are important parameters to study the 

mixing and dispersion of the iGLR. Associated to th is,  l iquid velocit ies 

in downcomer and r iser are normal ly determined. L iquid velocity is  a 

crucia l  parameter that is  appl ied in several  models for descr ib ing the 

iGLR hydrodynamics (Chist i ,  1989; Freitas et a l . ,  1999; Garcia-Calvo et 

a l . ,  1999; Lu et a l . ,  1995) and also used when scale-up is performed 

(Chist i ,  1989; Freitas et a l . ,  1999; Lu et a l . ,  1995; Rodríguez et a l . ,  

1999).  

To measure the parameters l isted above, tracer techniques are 

appl ied. Dif ferent k inds of tracers can be used: thermal (Garcia-Calvo 

et a l . ,  1999),  acid (Fre itas and Teixeira,  1998a; Lu et a l . ,  1995; Merchuk 

et a l . ,  1998; Chist i ,  1989) and magnetic (Bla et a l . ,  2004; Kle in et a l . ,  

2004; Van Benthum et a l . ,  2000) tracers.  Acid tracers are used mainly 

to determine the downcomer l iquid l inear velocity.  In summary, two pH 

electrodes (same response t ime) are placed in downcomer and a pulse 

of sulphur ic acid (4 M to 8 M) is  in jected at the top of the downcomer. 

The l iquid l inear velocity is  then calculated from the equat ion: 

 

vLr =
delectrodes

!t probes
     Eq. V-2  

Then by a mass balance (Eq. V-3 ) ,  i t  is  possible to determine the 

downcomer l iquid l inear velocity and also the r iser and downcomer 
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l iquid superf ic ia l  velocit ies – Eq. V-4  (Chist i ,  1989; Freitas and Teixeira,  

1998a):  

      Eq. V-3  

      Eq. V-4  

Knowing the length of r iser and downcomer, i t  is  then possible to 

determine the c irculat ion t ime by (Chist i ,  1989):  

      Eq. V-5  

Circulat ion t ime is a lso re lated with mixing t ime, which is def ined as 

the t ime ( tM) necessary to obtain a required degree of mixing (!M):  

      Eq. V-6 

Several  methods are used to measure the mixing t ime. These are 

s imi lar  to the methods used to measure l iquid l inear velocity:  (1 )  

conduct imetr ic;  (2 )  thermal;  (3 )  acid;  (4 )  radioact ive; and (5)  

color imetr ic.  Mixing t ime indicates the mixing qual i ty of the reactor and 

depends on iGLR conf igurat ion and design (Fonseca and Teixeira,  

2007).  General ly ,  in iGLR, mixing t ime decreases rapidly at lower gas 

f lows (0.01 m/s to 0.3 m/s),  after that there is  a stabi l izat ion and only a 

big increase of gas f low can reduce s ignif icant ly the mixing t ime 

(Freitas and Teixeira,  1998a; Kle in et a l . ,  2003; Merchuk et a l . ,  1998).  

Simi lar  behaviour can be found in c irculat ion t ime (tC) .  Consider ing that 

c irculat ion and mixing t imes are very important parameters on the 

character izat ion of the mixing performance of a iGLR, the methods used 

should have enough t ime resolut ion to capture the l iquid f luctuat ions 

between the two points where the measurement takes place. 
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V.3 Material and Methods 

V.3.1 Gas-lift reactor: dimensions and characteristics 

The exper iments were done in a Perspex® iGLR with a top enlarged 

degassing zone (Figure V-3 ) .  The iGLR has tota l  volume of 60 L and the 

re levant dimensions are indicated. Measurements were done for three 

dif ferent r iser tubes descr ibed in Table V-1 .  The r isers were located 2.3 

cm above the distr ibutor.  

Table V-1 .  R iser  conf igurat ions used in  th is  work.  

Riser Label Dr i  /  cm Hr /  cm Dc i  /  cm Ar i/Ad 

Riser A 6.2 120 14.2 3.97 
Riser B 6.2 140 14.2 3.97 
Riser C 8.7 120 14.2 1.79 

Legend:  D r i  –  R iser  in terna l  d iameter ;  H r  –  he ight  of  r iser ;  D c i  –  Column 
interna l  d iameter ;  A r i /A d –  Rat io  between interna l  r iser  area and downcomer 
area.  
 

The gas entered the a ir l i f t  through the 10 cm diameter porous plate 

sparger.  The diameter of the ‘ ‘act ive’ ’  zone of the sparger,  through 

which the gas f low was passing, was around 8 cm. Air  (20 º  – 25 ºC) 

and tap water (18 ºC – 22 ºC) were used as the gas and l iquid phase. 

The net water f low through the a ir l i f t  was zero. 

Table V-2 .  Resume of  a l l  condit ions used in  th is  work 

UA I R/ 

(cm/s) 

QG ( A / B )  /  

(L/min) 

QG ( C )  /  

(L/min) 

% Solids 

(wt.W E T  B A S I S/Vol. )  

1 1.9 3.6 0;  4;  8;  12; 20 
2.5 4.5 8.9 0;  4;  8;  12; 20 
5 9.1 17.8 0;  4;  8;  12; 20 

7.5 13.6 26.8 0;  4;  8;  12; 20 

 

Four gas superf ic ia l  velocit ies in the r iser ranging from 1 to 7.5 cm/s 

were studied and f ive sol id loads were tested (Table V-2 ) .  The air  f low 

was control led by a 100 SLPM mass f low control ler  (A l icat Scient i f ics,  

Tucson, USA).  
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Figure V-3 .  In terna l  Gas- l i f t  reactor  des ign used in  th is  chapter .  Legend:  A -  
R iser  Hold-up measur ing points ;  B -  Downcomer Hold-up measur ing points ;  C 

-  R iser  pH probes;  D -  Downcomer pH probes;  E -  Conduct iv i ty  probe point  

V.3.2 Solids distribution and hold-up 

The same sol ids used in previous chapter (sect ion IV.3.2.1)  were 

used in the present chapter.  Sol ids hold-up and distr ibut ion were 

determined by using the method developed by Freitas et a l  (1997) as 

descr ibed in sect ion IV.3.4.  The sampler was introduced into the 

reactor in several  points:  A,B,C,D,E (Figure V-4 ) .  Then sol ids volume 

was determined and sol ids hold-up calculated accordingly Eq. IV-3 :  
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Figure V-4 .  Sol ids sampl ing locat ions for  so l id  d ist r ibut ion determinat ion.  

V.3.3 Gas hold-up 

Gas hold-up was determined using Freitas and Teixeira (1998a) 

procedure by measur ing pressure dif ference between Top and Bottom 

of both r iser and downcomer (d=1.09 m).  Dif ferent ia l  pressure was 

measured by water columns weight d i f ference. For each set of 

exper iments,  pressure dif ferences (d h i )  in  r iser and downcomer were 

measured at least three t imes dur ing no less than 5 minutes. The mean 

value was then used to determined gas hold-up (r iser/dowcomer) using 

the Eq. IV-2 .  Each measurement was done in tr ip l icate (Chist i ,  1989; 

Freitas and Teixeira,  1998a) 

V.3.4 Mixing time determination 

Mixing t ime was determined as the t ime for var iat ion of NaCl 

concentrat ion (50 mL of 300 g/L NaCl solut ion were in jected at bottom 

of reactor (E point in Figure V-3 ) ) ,  to be with in 5% of f inal  value 

(Fre itas and Teixeira,  1998a).  Each exper iment was repeated three 

t imes. 
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V.3.5 Circulation time determination 

Circulat ion t ime was determined by in ject ing 10 mL of H2SO4 solut ion 

(4.5 M).  The pH evaluat ion in r iser and downcomer was recorded by 4 

pH meters:  two Methrom model 620 probes in the r iser and two model 

691 probes in the downcomer (Methrom,Herisau! ,Switzer land) 

connected to a PC with a NI data acquis it ion board (Nat ional 

Instruments, Aust in,  Texas, USA) and recorded to f i les using Labview 

(Nat ional Instruments, Aust in,  Texas, USA).  By averaging consecut ive 

peaks in each pH response curve, c irculat ion t ime was determined 

according to Eq. V-5  (Chist i ,  1989; Freitas and Teixeira,  1998a).  

V.3.6 Liquid velocity determination 

The l iquid velocity in r iser and downcomer was determined from the 

curves obtained on two pH meters (d 1 2=1.09 m) located in 

r iser/downcomer. By knowing the t ime the tracer takes to travel  f rom 

one electrode to the other,  the l iquid velocity was determined using the 

Eq. V-2 .  In order to avoid measur ing errors due to acid dissociat ion 

only the in i t ia l  peaks in pH response curves were used. Each 

exper imental  assay was repeated in tr ip l icate (Chist i ,  1989; Freitas and 

Teixeira,  1998a).  
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V.4 Results and Discussion 

In  th is chapter the main hydrodynamic parameters for three dif ferent 

r isers conf igurat ion in an iGLR with an enlarged top sect ion were 

studied. The main object ive was to choose one of these conf igurat ions 

for cont inuous pr imary AFB fermentat ion. Kle in et a l  (2003b) determined 

that for g-l  and g-l-s  systems the main hydrodynamic parameters (gas 

hold-up, l iquid velocity,  sol ids hold-up and circulat ion t ime) do not 

suffer re levant changes when the reactor is  operat ing in batch or in 

cont inuous mode (Kle in et a l . ,  2003b).  The main reason was the 

maximum di lut ion rate used in biotechnology processes. Normal ly i t  is  

bel low 0.6 h- 1  ( in  AFB product ion bel low 0.4 h- 1 ) ,  so the l iquid f low rate 

that passes throughout the GLR bioreactor is  less than 1% of the l iquid 

f low rate inside the iGLR. Therefore the tests were made using the 

same sol ids as in previous chapter and in batch system. Tap water 

instead of synthet ic mineral  medium (SMM) or real  wort was used in the 

hydrodynamic studies. The main work was to determine the best reactor 

conf igurat ion for complete mixing and distr ibut ion of SG in the iGLR. 

The use of SMM or real  wort would increase the r isk of contaminat ion 

between the dif ferent exper iments,  which would undoubtedly a lter the 

l iquid medium composit ion and inf luence the f inal  results.  Fresh tap 

water f rom municipal  water company was used. Every two/three days, 

before test ing new condit ions the exper iments in g-l  systems were 

repeated in order to control  i f  some re levant changes in water ( l iquid-

phase) could be found, however no re levant var iat ions were detected.  

V.4.1 Solid particles distribution 

As referred the sol ids distr ibut ion a long the iGLR is real ly  important,  

especia l ly  when fermentat ion processes are involved, because i t  wi l l  

reduce the probabi l i ty  of having dead zones in the iGLR, which may 

lead to inappropriate fermentat ion performances. On the f igures below 

(Figure V-5 ,  Figure V-6 ,  and Figure V-7 )  the values of sol id hold-up for 

a l l  conf igurat ions at d i f ferent gas f low and sol ids load are displayed.  
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The average sol id loads obtained among the f ive sect ions used are 

presented in Table V-3 .  The error between the measured values and the 

expected values is on average 7% with a maximum and minimum error 

of 14% and 0% respect ively.  The values are in agreement with Freitas 

and Teixeira (1998b) who used the same method and obtained around 

10% error between exper imental  and expected value of sol id load 

(Freitas and Teixeira,  1998b).  Table V-3  a lso indicates the var iat ion 

coeff ic ient,  which may be used as an indicator of sol ids distr ibut ion 

inside the iGLR. Stat ist ical ly  the var iat ion coeff ic ient (VC) indicates the 

reproducibi l i ty  of  the exper imental  points.  This coeff ic ient was obtained 

from the sol ids hold-up measurements in the dif ferent iGLR areas 

(A,B,C,D,E in  Figure V-4 ) .  In our case i t  can be used to obtain a 

qual i tat ive evaluat ion of SG’s part ic les distr ibut ion inside the iGLR. In 

terms of value i f  VC is near 100%, i t  means that the sol ids hold-up in 

di f ferent reactor posit ions are s imilar ,  thus a good sol ids distr ibut ion is 

obtained. The main drawback of using th is cr i ter ion for evaluat ion of 

sol ids distr ibut ion is that at lower sol id loads the method suffers the 

maximum var iat ions, thus the VC cr i ter ia can only be used to compare 

the same sol id load condit ions. 

V.4.1.1 Riser A 

Results obtained for Riser A presented in Figure V-5  and Table V-3  

indicated, as referred in the l i terature,  that for th is conf igurat ion there 

is  an axia l  and radia l  d istr ibut ion of sol ids,  which is more pronounced 

at the two lower gas superf ic ia l  velocit ies (1 cm/s and 2.5 cm/s) (Fre itas 

and Teixeira,  1998b; Kle in et a l . ,  2003a, 2033b).  More sol id part ic les 

are present in the bottom part  of  the reactor (sect ions B, C and D in 

Figure V-4 ) ,  whi le i t  is  the opposite in the top part  (sect ions A and E in 

Figure V-4 ) .  Dolgos et a l  (2001) def ine three main regimes that may 

occur in th is ( r iser A in a working volume of 50 L)  iGLR conf igurat ion: 

(A)  l iquid f lows direct ly to the downcomer (part ic le residence t ime from 

5 s to 10 s) ;  (B) l iquid prevai ls  in the eddies between the top of the r iser 

and the beginning of the enlarged top sect ion (residence t ime 10 s to 
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20  s )  and (C) the l iquid that f lows to the top enlarged sect ion 

(residence t ime above 30 s) .  

 

Figure V-5 .  Sol ids hold-up at  d i f ferent  GLR posi t ions (A,B,C,D,E)  for  r iser  A 
conf igurat ion at  d i f ferent  gas superf ic ia l  ve loc i ty  (1  cm/s;  2 .5  cm/s;  5  cm/s 

and 7.5 cm/s)  in  r iser .  

 

They found that the f low pattern A and B occurs more often than the 

f low pattern C at UG r=4.6 cm/s. Therefore at low gas f low rates the 

l iquid f lows mainly in the r iser and the downcomer, which may expla in 

the sol ids distr ibut ion obtained for the lower gas f low rates. The sol ids 

distr ibut ion in our case is inf luenced not only by the l iquid exchange 

between the bottom and the top part  of  the reactor,  but a lso by the 

sett l ing propert ies of the part ic les used. These two phenomena are 

opposite.  The l iquid exchange acts to equal ize the sol id part ic le 
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concentrat ions, whi le the sett l ing part ic les act to increase the part ic le 

concentrat ion in the bottom part  of  the iGLR. When a low r iser length is  

set ( r iser A) there is  a dual separator,  which has an effect on the 

reactor f low f ie ld of the top part .  At low gas superf ic ia l  velocit ies the 

l iquid exchange is weaker and regime A and B are favoured (Dolgos et 

a l . ,  2001),  which together with the part ic les sett l ing tendency leads to a 

poorer sol ids distr ibut ion in our iGLR. As the r iser tube is shorter,  the 

entrance in the top enlarged zone is further away and intermediated by 

a turbulent region (under the top of the r iser tube).  L iquid c irculat ion 

eddies are presented in th is region, which accordingly to Dolgos et a l  

(2001) induces a typical  l iquid behaviour:  most of the l iquid that reach 

th is region is entra ined in the eddies and after a short  c irculat ion in th is 

zone goes back to the downcomer, without reaching the top enlarged 

sect ion. Therefore at lower gas superf ic ia l  velocit ies the l iquid 

c irculat ion fo l lows the patterns A and B, consider ing that SG part ic les 

moved in the same way as the l iquid f lows and their  sett l ing propert ies 

make more l ike ly the existence of axia l  and radia l  sol ids distr ibut ion. 

Moreover,  the axia l  sol id distr ibut ion results are in accordance with the 

obtained by Kle in et a l  (2003a) that used alg inate beads and s imi lar  

reactor design (except sparger conf igurat ion). 

V.4.1.2 Riser B 

In  Figure V-6  i t  is  indicated that no axia l  and radia l  d istr ibut ions are 

present,  with the exception of lowest gas f low and high sol id loads 

where a lower sol id content in the conical  part  (sect ion E) may be 

detected. In addit ion, the results presented in Table V-3  for  th is r iser 

indicate that the maximum var iat ion coeff ic ient (15%) is obtained at 

minimum gas superf ic ia l  velocity (1 cm/s) and minimum sol id load 

(4% (wt.W E T  B A S I S/vol . ) ) .  Comparing between r iser B and A i t  seems that 

increasing r iser length has a s ignif icant effect on improving sol id 

distr ibut ion inside the rector.  Riser B was able to increase the sol ids 

homogeneity even at low gas f low rates.  
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Table V-3 .  Average of  the exper imenta l  va lues of  so l ids hold-up and error*  in  
iGLR sect ions.   

% SolidsEXP (vol./vol.) 
Riser % SolidsTEO (vol./vol.) 

UG / 

(cm/s) AVG STDEV VC 
Error* 

1 4% 0.017 38.80% 7% 
2.5 4% 0.012 27.69% 4% 
5 4% 0.006 14.41% 8% 

4 % 

7.5 4% 0.008 18.91% 4% 

1 9% 0.032 36.84% 8% 
2.5 9% 0.018 21.19% 8% 
5 9% 0.014 16.47% 9% 

8 % 

7.5 8% 0.009 10.14% 6% 
1 13% 0.035 26.44% 9% 

2.5 13% 0.012 9.04% 10% 
5 13% 0.008 5.79% 8% 

12 % 

7.5 13% 0.005 3.78% 6% 
1 22% 0.027 12.17% 11% 

2.5 20% 0.013 6.69% 0% 
5 19% 0.009 4.59% 3% 

A 

20 % 

7.5 19% 0.012 6.14% 4% 

1 4% 0.007 15.65% 5% 
2.5 4% 0.006 13.87% 9% 
5 4% 0.005 11.56% 8% 

4 % 

7.5 4% 0.005 11.17% 10% 
1 9% 0.008 8.83% 9% 

2.5 9% 0.003 3.87% 9% 
5 9% 0.004 4.22% 12% 

8 % 

7.5 9% 0.003 3.49% 12% 
1 13% 0.011 8.50% 10% 

2.5 13% 0.008 6.22% 7% 
5 13% 0.010 7.59% 6% 

12 % 

7.5 13% 0.007 5.63% 5% 
1 21% 0.017 8.27% 6% 

2.5 20% 0.007 3.33% 2% 
5 20% 0.009 4.52% 1% 

B 

20 % 

7.5 20% 0.006 2.95% 1% 

1 4% 0.012 27.79% 12% 
2.5 5% 0.007 15.77% 13% 
5 4% 0.005 11.12% 11% 

4 % 

7.5 4% 0.005 12.07% 11% 

1 9% 0.014 15.27% 14% 
2.5 9% 0.015 16.17% 13% 
5 9% 0.009 10.38% 10% 

8 % 

7.5 9% 0.005 5.61% 7% 

1 12% 0.023 20.28% 4% 
2.5 11% 0.019 17.10% 7% 
5 11% 0.009 8.34% 9% 

12 % 

7.5 11% 0.004 4.08% 9% 

1 20% 0.049 24.87% 1% 
2.5 19% 0.028 14.46% 4% 
5 19% 0.013 7.12% 6% 

C 

20 % 

7.5 19% 0.013 7.05% 5% 

*Error  is  the d i f ference between the expected ( theoret ica l  va lue)  and the 
measured va lue (exper imenta l  va lue) .  Legend:  AVG – Average;  STDEV – 
Standard der ivat ion;  VC – Var iance coef ic ienc 
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Kle in et a l  (2003a) found that r iser d iameter inf luence was crucia l  for 

better sol ids distr ibut ion than r iser length, especia l ly  at h igh gas f lows 

(Kle in et a l . ,  2003a).  In our case, i f  a l l  r iser conf igurat ions are 

compared, the r iser length proves to have better inf luence on sol ids 

distr ibut ion than the diameter increase. The possible explanat ion l ies in 

the amount of l iquid (consequently SG) exchanged between the top and 

bottom part  of  the iGLR. In th is case, the l iquid exchange counteracts 

the sett l ing tendency of the SG part ic les and homogenizes the sol id 

distr ibut ion At th is conf igurat ion the l iquid f low patterns descr ibed by 

Dolgos et a l .  (2001) are not present because the l iquid leaving the r iser 

d irect ly enters in the enlarged top sect ion. This provides a better l iquid 

exchange in the axia l  d irect ion and better sol ids mixing. I t  is  expected 

to have a sharper velocity prof i le  at the lower boundary of the iGLR top 

part  with upward l iquid f lux in the iGLR center and downward f lux near 

the iGLR exter ior wal ls .  I f  the r iser is  shorter ( r iser A),  then the l iquid 

leaving the r iser would need to pass the bubble separator sect ion 

( turbulent region) with i ts f low circulat ions eddies before enter ing the 

a ir l i f t  top sect ion. This would result  in a f latter velocity prof i le  and thus 

weaker l iquid exchange. Moreover,  at  th is conf igurat ion (r iser B),  as 

th is turbulent region is suppressed, the inf luence of sol ids part ic les 

sett l ing is  lower because the mixing between the upward and downward 

l iquid is  reduced. The above mentioned reasons al low a better l iquid 

exchange throughout the axia l  d irect ion result ing in a more 

homogeneous sol id part ic le distr ibut ion between the bottom and the 

top part  of  the a ir l i f t  (Figure V-6 ) .  

Nevertheless, th is homogeneity can have an adverse effect,  when 

cont inuous systems are used, because the probabi l i ty  of carr ier  (SG) 

part ic le to wash-out is  h igher.  That is  why in the top enlarged sect ion 

there is  a double-barr ier  at  the out let  (see sect ion V.2.1) ,  with the 

object ive to decrease the sol ids loses when the iGLR operates in 

cont inuous mode (Figure V-3 )  
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Figure V-6.  Sol ids hold-up at  d i f ferent  GLR posi t ions (A,B,C,D,E)  for  r iser  B 
conf igurat ion at  d i f ferent  gas superf ic ia l  ve loc i ty  (1  cm/s;  2 .5  cm/s;  5  cm/s 

and 7.5 cm/s)  in  r iser .  

V.4.1.1 Riser C 

In  r iser C (Figure V-7 )  as on r iser A (Figure V-5 ) ,  i t  is  a lso present an 

axia l  and radia l  sol ids distr ibut ion at lower gas superf ic ia l  velocit ies.  By 

comparison with r iser A at these condit ions, in r iser C the axia l  

d istr ibut ion is more pronouced with the highest sol id concentrat ion in 

the r iser and downcomer sect ions (C and D respect ively) .  This can be 

expla ined by the decrease of the rat io Ar/Ad (Table V-3 ) ,  meaning that 

the downcomer cross-sect ion is a lso smal ler  and the l iquid velocity in 

that sect ion is h igher (Figure V-11 ) .  This wi l l  increase the mixing and 

the c irculat ion eddies in the turbulence region, which favours the f low 
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patterns A and B, previously expla ined. Being so, the sol ids are 

preferably moved to the downcomer instead of going up to the top 

sect ion and then they c irculate mainly in the iGLR bottom part .  These 

results suggested that an increase in r iser d iameter causes an increase 

in the sol ids non-homogeneit ies and the radia l  and axia l  d istr ibut ion 

was more pronounced. Consider ing that Kle in et a l .  (2003) obtained 

better sol ids distr ibut ion at h igher Ar/Ad the possible explanat ion for 

th is l ies in the dif ferent propert ies of the sol ids used, a lg inate beads 

and SG, used in Kle in et a l  (2003) work and in th is work, respect ively. 

 

Figure V-7 .  Sol ids hold-up at  d i f ferent  GLR posi t ions (A,B,C,D,E)  for  r iser  C 
conf igurat ion at  d i f ferent  gas superf ic ia l  ve loc i ty  (1  cm/s;  2 .5  cm/s;  5  cm/s 

and 7.5 cm/s)  in  r iser .  
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Theresults presented in Table V-3  showed that for the same sol id 

load the highest var iat ion coeff ic ients are a lways for the shortest r isers 

(A and C).  Comparing al l  conf igurat ions used (Riser A, B and C),  i t  can 

be observed that the effect of r iser length has more impact on sol ids 

distr ibut ion than the effect of r iser d iameter.  These results suggest that 

r iser B is better suited to achieve better homogeneity of SG distr ibut ion 

a long al l  iGLR sect ions. 

V.4.2 Gas hold-up 

In  Figure V-8  i t  can be observed that in the iGLR the r iser gas hold-

up increases with gas superf ic ia l  velocity.  General ly  there is  a decrease 

of g lobal gas hold-up when sol ids are present (Figure V-8 ) .  The bigger 

inf luence was detected for r iser A at UG r=7.5 cm/s.  

The low dif ferences found can be expla ined by two factors:  (1 )  the 

method accuracy, which has been proved to have an associated error 

between 15% and 20% (sect ion IV.4.2) ;  and (2)  the propert ies (density )  

of  SG that are very s imi lar  to water and does not inf luence s ignif icant ly 

the l iquid-phase propert ies.   

The gas hold-up in r iser decreases both with internal  r iser d iameter 

decrease (Riser C to Riser A) and with the increase of r iser length (Riser 

A and Riser B).   

The increase of d iameter increases r iser cross-sect ion area and 

consequently several  phenomena can occur.  The gas hold-up in r iser 

when the bubble c irculat ion regime is not present is  re lated with l iquid 

l inear velocity by: 

 

!Gr =
UGr

vLr +Uslip

      Eq. V-7  

When the bubble c irculat ion regime is present (val id for !G d!0.08):  

 

!Gr =
UGr0 + !Gd vLd "Uslip( ) # Ad /Ar

vLr +Uslip

      Eq. V-8  
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Where vL / d r+/-Us l i p  is  the tota l  gas velocity in the r iser and in the 

downcomer. For the same gas superf ic ia l  velocit ies,  gas hold-up 

depends on vL r  and Us l i p .  

 

 

 

Figure V-8 .  Gas hold-up (vo l . /vo l . )  vs .  Gas superf ic ia l  ve loc i ty  in  r iser  (U G r  /  
(cm/s) )  for  d i f ferent  r isers  conf igurat ions.  Legend:  !  -  0% (wt.W E T  B A S I S /vo l . ) ;  

"  -  4% (wt.W E T  B A S I S /vo l . ) ;  !  -  8% (wt.W E T  B A S I S /vo l . ) ;  #  -  12% (wt.W E T  B A S I S /vo l . ) ;  
$  –  20% (wt.W E T  B A S I S /vo l . ) .  

 

Consider ing that vL r  > Us l i p .  changes in Us l i p  in  the r iser would have a 

reduced effect in r iser’s gas hold-up. The higher gas hold-up detected 

in r iser C (compared with r iser A) when no bubble regime circulat ion is 

present (UG r<5 cm/s) is  mainly due to vL r  decrease. From Figure V-11 ,  
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the vL r  decrease is around 10% less in r iser C (vL r=0.9 m/s at 

UG r=7.5 cm/s for 20% (wt.W E T  B A S I S/vol )  of  SG) than in the other r isers 

(Riser B: vL r=1.0 m/s at UG r=7.5 cm/s for 20% (wt.W E T  B A S I S/vol )  of  SG ) .  

Consider ing the vL r  decrease observed in r iser C (Figure V-11 )  and by 

the Eq. V-7 the maximum !G r  increase was expected to be 10%. 

General ly  for UG r=7.5 cm/s the gas hold-up in r iser C is around 20% 

more than in r iser A which can be expla ined by the bubble c irculat ion 

regime present in r iser C and which can be expla ined by Eq. V-7 .  

Apply ing Eq. V-8  to the bubble c irculat ion regime present in r iser C 

when UG r=7.5 cm/s, i t  is  possible to observe that,  using the 

exper imental  values of vL r / d  (Figure V-11 )  and !G d (Figure V-8 ) ,  the Us l i p  

obtained are very low. This is  in accordance with v isual  indicat ions that 

showed the presence of smal l  bubbles ( low Us l i p )  in  the downcomer 

sect ion. 

In Figure V-8  i t  is  shown that gas hold-up decreases with the 

increase of r iser length (Riser A to B),  the exception occurr ing at h igh 

sol ids load (20% (wt.W E T  B A S I S/vol . ) ) ,  where the gas hold-up for r iser A 

(0.062) and r iser B (0.059) are s imi lar  (Figure V-8 ) .  As i t  was shown 

previously,  the gas hold-up in r iser can be expla ined by factors such as 

the l iquid l inear velocity and the dr iv ing force. In th is case (r iser A 

compared with r iser B) the interplay between these two phenomena may 

also be used to expla in the observed results.  General ly , the gas hold-

up in r iser A is  h igher than in r iser B because when bubbles enter in the 

downcomer they reduce the l iquid l inear velocity in the downcomer 

(vL d ) .  This reduct ion occurs because the dr iv ing force (!G r  -!G d )  is  

reduced (Figure V-9 )  when bubbles are entra ined in the downcomer 

(UG r=5 cm/s and UG r=7.5 cm/s).  Thus, by the mass conservat ion law the 

l iquid l inear velocity in the r iser (v L r )  is  a lso reduced. From Eq. V-7  the 

reduction of l iquid l inear velocity in the r iser ( r iser A) increases the gas 

hold-up (consider ing UG r  and U s l i p  constant) ,  which can expla in the 

higher gas hold-ups found in the g-l  system (Figure V-8 )  for  r iser A. 

However,  regarding the Figure V-11  the r iser l inear velocity at 

UG r=7.5 cm/s is 1.02 cm/s and 0.9 cm/s respect ively for r iser A and B. 
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This contradicts Eq. V-7  which by the values from Figure V-11  should 

present h igher gas hold-ups for r iser B and not A as observed (Figure 

V-8 ) .  This discrepancy (mainly for the g-l  system) can be due to several  

factors that interact among them and should be taken in account.  

Among them are: the changes in Us l i p ,  l iquid f low patterns (due to the 

presence/absence of a turbulent region above the r iser top’s end) and 

coalescence phenomena intensity at d i f ferent r iser conf igurat ions.  

When higher sol id load is present at UG r!5 cm/s, the gas hold-up in 

r iser A and r iser B are s imi lar .  This can happen due to bubble 

coalescence, which can be enhanced by the SG part ic les.  Coalescence 

wi l l  increase bubble s ize and thus the bubble s l ip velocity,  which wi l l  

decrease the downcomer gas hold-up. I f  due to sol ids presence the gas 

hold-up in downcomer decreases, the dr iv ing force (!G r  – !G d )  increases. 

By analysing Figure V-8  and Figure V-9  (at  UG r=7.5 cm/s),  i t  can be 

observed the decrease of gas hold-up in downcomer for a l l  sol id load 

(Figure V-8 )  and the consequent dr iv ing force increase (Figure V-9 ) .  

Consequently the r iser l iquid velocity is  h igher and the gas hold-up in 

r iser wi l l  decrease.  

I t  can be argued that the decrease of gas hold-up in the r iser wi l l  

decrease the dr iv ing force. Consequently the previous explanat ion ( for 

g-l-s  system) is  not val id.  However,  f rom Figure V-9  for  r iser A, the 

dr iv ing force remains constant for a l l  sol id loads at UG r=7.5 cm/s. In the 

presence of sol ids,  the gas hold-up is not only inf luenced by the r iser 

conf igurat ion ( l iquid f low patterns, Us l i p ,  coalescence) but a lso by the 

sol id-phase inf luence in the gas-phase. The g-l-s  is  a complex system 

where the sol ids inf luence may alter the gas-phase propert ies,  which 

may or not have inf luence on the f low pattern of the reactor.  This 

inf luence of sol ids in the iGLR f low patterns has dif ferent intensit ies at 

d i f ferent iGLR conf igurat ions. 

.  
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Figure V-9 .  Dr iv ing force (!G R-!G d )  vs .  Gas superf ic ia l  ve loc i ty  (UGr )  for  
d i f ferent  r isers  conf igurat ions.  Legend:  !  -  0% (wt.W E T  B A S I S /vo l . ) ;                  

"  -  4% (wt.W E T  B A S I S /vo l . ) ;  !  -  8% (wt.W E T  B A S I S /vo l . ) ;  #  -  12% (wt.W E T  B A S I S /vo l . ) ;  
$  –  20% (wt.W E T  B A S I S /vo l . ) .  

 

The increase of r iser length in th is reactor conf igurat ion suppresses 

the bubble separator ( lower part  of  dual separator)  present in the other 

two conf igurat ions. This reactor part  is  smal l  (about 20 cm in length) 

and creates resistance to bubble r is ing ( turbulence region),  and might 

lead to more bubbles being dragged to the downcomer.  

For the same gas superf ic ia l  velocit ies in the r iser A, the gas hold-up 

values obtained with SG part ic les,  are in the same range of the results 

obtained by Freitas and Teixeira (1998a) with a lg inate beads (and same 

r iser conf igurat ion).  In their  work the r iser gas hold-up decreases 
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s l ight ly when sol ids are appl ied at low gas f low superf ic ia l  velocit ies,  

s imi lar  results are obtained in our case(Freitas and Teixeira,  1998a).  

Moreover the results presented in Figure V-8  indicate that for r iser B 

the inf luence of SG was even less than in other conf igurat ions.  

The downcomer results show that,  only at low r iser’s length, bubbles 

are going inside the downcomer being th is more s ignif icant at lower 

Ar i /Ad re lat ion (r iser C) as descr ibed in l i terature (Chist i ,  1989; Kle in et 

a l . ,  2003).  On Figure V-8  i t  can be observed that downcomer gas hold-

up in r iser C is s imi lar  at  h igh gas superf ic ia l  velocit ies (UGr=5 cm/s and 

UGr=7.5 cm/s).  The main reason is that at UGr=7.5 cm/s complete bubble 

c irculat ion occurred, even in the presence of SG part ic les. 

I f  A r i /Ad rat io is  low, a lso is the downcomer cross-sect ion area, and 

consequently the l iquid velocity (>0.25 m/s) that goes into the 

downcomer is  h igher,  which drags more bubbles (U s l i p<0.25 m/s) to th is 

part  of  the reactor.  However th is does not happen when r iser length is  

increased due to the suppressing of the intermediate part  between r iser 

and top sect ion, which improves the degasif icat ion of the gas and 

reduces the probabi l i ty  of bubbles to go inside the downcomer. Simi lar  

results were obtained by Kle in et a l  (2003) where a lmost no bubbles 

were present in downcomer when the r iser ends matched the beginning 

of top sect ion (Kle in et a l . ,  2003).  

Previous studies indicated that in g-l  systems bubbles enter in the 

downcomer for gas superf ic ia l  velocit ies between 10 cm/s (Fre itas and 

Teixeira,  1998a) and 15 cm/s. In our case gas hold-up in downcomer 

starts to increase at 2.5 cm/s and 5 cm/s for r iser C and A, 

respect ively.  The main reason for th is d iscrepancy is the type of 

d istr ibutor used. In our work i t  was used a porous plate,  which forms 

smal ler  bubbles than the distr ibuter used by the other authors. 

From the values present in Figure V-8  i t  was determined the re lat ion 

between r iser and downcomer gas hold-up. This re lat ion is l inear and 

the results from the parameters est imation are present in Table V-4 .  
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The values of coeff ic ients aG and bG are presented in Table V-4  and 

result  f rom the l inear re lat ion of r iser and downcomer gas hold-up to 

dif ferent sol id load and r iser conf igurat ion. As in r iser B no gas was 

present in the downcomer th is re lat ion was not possible to obtain,  but 

the values from other two r isers indicate that the values found for aG 

(!G d/!G r )  in  g-l-s  systems are s imi lar  to the ones found in l i terature and 

show a s imi lar  behaviour:  a decrease with sol id load (Freitas and 

Teixeira,  1998a).  On the other hand, the aG values obtained for g- l  

system (0.92 and 0.93) are s l ight ly h igher than the ones presented in 

l i terature:  0.80 (Lu et a l . ,  1995);  0.88 (Fre itas and Teixeira,  1998a) and 

0.89 (Bla et a l . ,  2004).  The dif ferences can be expla ined by the dif ferent 

reactor design and distr ibutor used. In our case the formed bubbles are 

smal ler ,  thus more prone to entra in into the downcomer, which 

increases the downcomer gas hold-up in th is sect ion and consequently 

the rat io (!G d/!G r ) .  

Table V-4 .  Parameters obta ined for  the l inear  re lat ion between downcomer’s  
and r iser ’s  gas hold-up (eG d=aG

1 0eG r+bG)  

Riser A Riser B Riser C % Solids 

(wt.WET BASIS/vol.) aG bG R2 aG bG R2 aG bG R2 

0 0.92 -0.03 0.95 --- --- --- 0.93 -0.02 0.96 

4 0.72 -0.02 0.92 --- --- --- 0.94 -0.01 0.99 

8 0.73 -0.02 0.99 --- --- --- 0.74 0.00 0.93 

12 0.75 -0.02 0.99 --- --- --- 0.61 -0.02 1* 

20 0.52 -0.01 0.99 --- --- --- 0.54 -0.02 1* 

*Corre lat ion based only in two exper imental  points 

V.4.3 Mixing and circulation time 

Mixing t ime is descr ibed as the t ime necessary for achieving 

homogeneity inside the reactor.  General ly  in iGLR the mixing t ime is 

re lated with the gas f low superf ic ia l  velocity by the equat ion:  

 

t
M

= a ! u
Gr

b
      Eq. V-9  

I t  is  re lated with the c irculat ion t ime, which is the t ime necessary for 

a s ingle e lement to complete a loop in an iGLR. The corre lat ion for 

mixing t ime was used to approximate the exper imental  data obtained 
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(Figure V-10 )  and the values from the corresponding parameters are 

presented in Table V-5 .  

In iGLR the mixing t ime decreases rapidly at low gas superf ic ia l  

velocit ies and stabi l izes at h igher velocit ies.  From Figure V-10 ,  i t  is  

possible to observe a s imi lar  trend in a l l  reactor conf igurat ions. I t  is  

ver i f ied that Riser B conf igurat ion showed the lower values of mixing 

t ime (tM)  indicat ing a good mixing prof i le  when compared with other two 

conf igurat ions. This is  probably due to the absence of the bubble 

separator sect ion, which leads to a fast axia l  mixing throughout a l l  

iGLR. The axia l  mixing is promoted by the l iquid c irculat ion intensity 

between r iser and downcomer (Mol ina et a l . ,  1999).  

 

 

Figure V-10 .  Mix ing t ime vs.  Gas superf ic ia l  ve loc i ty  (U / (cm/s) )  a t  d i f ferent  
so l id  load.  Legend:  !  -  0% (wt.W E T  B A S I S /vo l . ) ;  "  -  4% (wt.W E T  B A S I S /vo l . ) ;             

!  -  8% (wt.W E T  B A S I S /vo l . ) ;  #  -  12% (wt.W E T  B A S I S /vo l . ) ;                                     
$  –  20% (wt.W E T  B A S I S /vo l . ) .  

 

As in conf igurat ion B no gas is present in the downcomer, the dr iv ing 
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0!

25!

50!

75!

100!

0.0! 2.5! 5.0! 7.5!

t M
 /

 s
!

UGr / (cm/s)!

Riser A!

0!

25!

50!

0.0! 2.5! 5.0! 7.5!

t M
 /

 s
!

UGr / (cm/s)!

Riser B!

0!

25!

50!

75!

100!

0.0! 2.5! 5.0! 7.5!

t M
 /

 s
!

UGr / (cm/s)!

Riser C!



Universidade do Minho  Chapter V 

 

130 

for th is reactor conf igurat ion indicat ing the good mixing prof i le  of i t .  

Bel lo (1981) c i ted by Mol ina et a l  (1999) proposed a re lat ion between 

the dimensionless mixing t ime (!= tM/ tC)  and the rat io Ad/A r i  to be 

independent from gas velocity: 

      Eq. V-10  

Where, accordingly to Bel lo (1981),  !  var ies between 5.2 and 3.5 for 

external  and internal  GLRs, respect ively.  In our case the !  va lues 

obtained for g-l  system in r iser A are s imi lar  to the values reported in 

l i terature (Bel lo,  1981; Mol ina et a l . ,  1999).  

Table V-5 .  Parameters for  equat ion tM=a .uG r
b   

Configuration %Solids (wt. WET BASIS/vol.) a b R2 tM/tC !  

0 60.78 -0.7 0.98 2.5 3.57 

4 41.87 -0.48 0.99 2.3 3.31 

8 67.3 -0.62 0.96 2.8 3.96 

12 48.76 -0.48 0.91 2.6 3.75 

A 

20 39.13 -0.43 0.74 2.1 3.06 

0 34.64 -0.35 0.82 1.6 2.28 

4 33.24 -0.64 0.86 1.1 1.56 

8 30.94 -0.22 0.98 1.7 2.46 

12 35.06 -0.82 0.92 1.7 2.38 

B 

20 28.45 -0.79 0.81 2.0  2 .85 

0 82.13 -0.46 0.92 5.8 8.00 

4 83.84 -0.76 0.94 4.2 5.79 

8 88.65 -0.76 0.9 4.6 6.36 

12 41.05 -0.39 0.62 3.2 4.45 

C 

20 51.11 -0.4 0.81 4.3 5.96 

 

In case of r iser B the low dimensionless mixing t ime is due to the 

good mixing prof i les thus low !  va lues are obtained. In opposit ion,  the 

r iser C conf igurat ion has !  va lues s imi lar  to external  GLR, which 

indicates that th is conf igurat ion might work as two separated reactors.  

The high mixing t imes obtained in r iser C can be a result  of  several  

factors and how they interact together.  These factors are the r iser 

d iameter,  the presence of a dual top sect ion separator and conductiv i ty 
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probe posit ion (Figure V-3 ) .  From the point of  v iew of the l iquid phase, 

the increase of r iser diameter leads to lower l iquid velocity in the r iser 

(Figure V-11 ) .  Therefore the amount of l iquid that leaves r iser C carr ies 

less energy, and does not reach the top enlarged sect ion as easi ly  as in 

r iser A or B. Therefore,  in th is conf igurat ion (r iser C),  the l iquid 

exchange between the r iser and the downcomer may be reduced which 

leads to lower mixing t imes. In addit ion, the posit ion of the conductiv i ty 

probe, used to read the mixing t ime, is  located at enlarged top sect ion. 

On the other hand, the increase in the l iquid l inear velocity in the 

downcomer leads to an increase of gas hold-up in the downcomer. As 

presented in Figure V-9  in  r iser C the dr iv ing force (! r  -!d )  is  smal l  when 

compared with r iser A/B mainly due to the presence of gas in the 

downcomer. In theory the low dr iv ing force wi l l  reduce the mixing t ime. 

I t  is  then important to understand better which effect is  stronger in the 

mixing prof i le  of iGLR. The interplay between l iquid velocity,  dr iv ing 

force, bubble s l ip velocity is  complex and sensit ive.  In Figure V-10C  i t  

can be also ver i f ied that at h igh sol id content the mixing t ime is smal l .  

A possible explanat ion is the occurrence of coalescence that changes 

the c irculat ion prof i le  of the reactor being more l iquid transported to 

the top degassing sect ion, promoting a better mixing. 

The dimensionless mixing t ime indicates how much bigger is  the 

number of loops necessary for a complete mixing. As predicted, better 

results were obtained for r iser B being the only conf igurat ion that needs 

at most 2 loops for a complete mixing. In general ,  i t  is  possible to 

observe (Figure V-10 )  that SG part ic les decrease the mixing. The 

exception is at 8% (wt.W E T  B A S I S/vol . )  in  r iser B where the mixing was 

higher than the remaining sol ids loads used (Figure V-10 ) .  This may be 

due to coalescence promoted by SG which leads to bigger bubbles that 

drag more l iquid to the top sect ion improving the axia l  mixing. The 

re lat ive velocity between gas- and l iquid-phases promotes the axia l  

mixing, thus i f  b igger bubbles are present,  axia l  mixing is increased, 

which reduces the mixing t ime. 
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V.4.4 Liquid velocity 

As the l inear l iquid velocity can inf luence mixing, mass transfer and 

sol ids suspension propert ies,  i t  is  very important to study th is 

parameter in reactors hydrodynamics, especia l ly  for design and scale-

up purposes (Bla et a l . ,  2004; Freitas,  2002).  The results presented in 

Figure V-11  are in the same range of l inear l iquid velocites found in 

l i terature (Bla et a l . ,  2004; Freitas,  2002) and, as expected indicate that 

l iquid velocity increases with gas f low. No re levant inf luence of sol ids is  

observed, with the exception of some decrease found when 

20% (wt.W E T  B A S I S  /vol . )  of  SG part ic les were added. Even in the l i terature 

consulted, the effect of sol ids in l inear l iquid velocity remains unclear,  

as i t  can increase the l iquid velocity (Fre itas and Teixeira,  1998a) or 

decrease (Fre itas and Teixeira,  1998a; Lu et a l . ,  1995; Merchuk et a l . ,  

1998).  The main reasons for th is are the dif ferent GLR conf igurat ions 

and condit ions ( type of sol ids)  used.  

The results for the dif ferent r isers are in accordance with the ones 

obtained by Kle in et a l  (2003) and suggest that the diameter increase 

(r iser A to C) has more inf luence on l iquid velocity than the r iser length 

increase (r iser A to B).  When the diameter is  increased the gas hold-up 

also increases (Figure V-8 )  but for r iser C the gas hold-up at 

UG r=7.5 cm/s is s imi lar  to the gas hold-up at UG r=5 cm/s, which might 

be due to bubble c irculat ion present at the highest gas superf ic ia l  

velocity (7.5 cm/s).  The bubble c irculat ion regime occurs e ither in the 

presence or absence of SG part ic les.  In th is regime, the higher bubbles 

f low in axia l  posit ion from the bottom to the top, whi le the smal ler  

bubbles (with lower s l ip velocity )  enter in the downcomer. Due to the 

higher downcomer l iquid velocity,  which results from the smal l  

downcomer cross-sect ion area, these smal l  bubbles are dragged to the 

bottom part  of  the iGLR and enter again in the r iser.   
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Figure V-11 .  L iqu id ve loc i ty  (m/s)  in  r iser  and downcomer vs.  Sol id  load 
(% (wt.W E T  B A S I S /vo l . ) )  for  d i f ferent  r isers  conf igurat ions.  Legend:                           

!  -  0% (wt.W E T  B A S I S /vo l . ) ;  "  -  4% (wt.  W E T  B A S I S/vo l . ) ;  "  -  8% (wt.  W E T  B A S I S/vo l . ) ;  
"  -  12% (wt.  W E T  B A S I S/vo l . ) ;  "  –  20% (wt.  W E T  B A S I S/vo l . ) .  
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With the exception of r iser C, Figure V-11  indicates that sol ids 

inf luence affects more the l iquid velocity in the downcomer than in the 

r iser,  especia l ly  at  h igh gas f lows. The main reason is the absence of 

h igh amounts of bubbles in the downcomers A and B. There is  only 

contact between the l iquid- and sol id-phase and the inf luence of sol ids 

in l iquid velocity is  h igher,  part icular ly when high amounts of SG are 

present.   

A f inal  note has to be made concerning the condit ions tested. In 

most of the hydrodynamic studies found in l i terature,  the used gas 

superf ic ia l  velocit ies are the same and higher magnitude than the ones 

in th is work. However,  in cont inuous AFB product ion the superf ic ia l  gas 

velocity is  normal ly 0.5 cm/s (Lehnert  et  a l . ,  2008) and can go up to 3 

cm/s (Brányik et a l . ,  2004) with an acceptable amount of immobi l ized 

biomass. Being so, the presented hydrodynamic exper iments were 

performed both in the hydrodynamic and fermentat ion range. The 

methods used, mainly for gas hold-up determinat ion, due to the 

observed errors (15% to 20%), d id not showed enough accuracy at gas 

superf ic ia l  velocity lower than 1 cm/s (see sect ion V.3.1) ,  therefore no 

results were tested at th is gas f low. However,  i t  is  bel ieved that the 

f inal  conclusions of th is chapter about the best r iser conf igurat ion 

would not be affected. Moreover in the next chapter local  hydrodynamic 

studies, with more ref ined techniques wi l l  be performed at superf ic ia l  

gas velocit ies between 0.5 cm/s and 1 cm/s. 

 

V.5 Conclusions 

The main object ive of th is chapter was to understand the effect of SG 

in three dif ferent conf igurat ions of iGLR with and enlarged top sect ion. 

The obtained results of sol ids distr ibut ion, gas hold-up, l iquid l inear 

velocity c irculat ion and mixing t ime were used to select between the 

conf igurat ions tested the most suitable to perform a cont inuous pr imary 

AFB fermentat ion. 
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Before the f inal  conclusion, i t  is  important to have in mind the ideal  

condit ions for cont inuous AFB fermentat ion: (1 )  good sol id part ic les 

distr ibut ion, (2 )  minimum gas f low rate to f lu id ize a l l  sol id part ic les,  (3 )  

anaerobic condit ions, (4 )  low gas hold-up in r iser to avoid high 

str ipping loses of f lavour compounds, (5)  absence of bubbles in 

downcomer because normal ly CO2 is used and i t  is  known to have 

adverse effect on yeast cel l  metabol ism, (6)  good mixing propert ies,  i  

e . ,  i f  mix ing t ime is smal ler  the inf luence of l iquid f low wi l l  be even 

smal ler .  

A c lose look to the results showed the r iser B is the most suitable 

conf igurat ion tested to perform the cont inuous fermentat ion of AFB. 

Comparing only the lower gas superf ic ia l  velocity (1 cm/s) r iser B was 

the one where i t  was found: better homogenizat ion of SG part ic les;  

lower gas hold-ups in r iser and absence of gas hold-up in downcomer; 

lower mixing and circulat ion t imes, as wel l  as minimum tM/tC.  

Therefore r iser B was considered as the conf igurat ion that includes 

al l  the character ist ics to perform a cont inuous AFB pr imary 

fermentat ion.  

In order to have a better understanding of the real  hydrodynamics in 

th is reactor conf igurat ion local  measurements were made in a 6 L GLR. 

This is  d iscussed in Chapter VI I .  

 

V.6 References 

Banis i ,  S . ,  F inch,  J .  A . ,  Lap lante ,  A .  R .  and Weber ,  M.  E .  (1995a ) .  E f fect  o f  so l id  
par t ic les  on  gas  ho ldup in  f lo ta t ion  co lumns- I .  measurement .  Chemica l  

Eng ineer ing  Sc ience ,  50 (14 ) ,  2329–2334.  
Ban is i ,  S . ,  F inch,  J .  A . ,  Weber ,  M.  E .  and Lap lante ,  A .  R .  (1995b ) .  E f fect  o f  so l id  

par t ic les  on  gas  ho ldup in  f lo ta t ion  co lumns- I I .  Invest igat ion  o f  mechan isms o f  
gas  ho ldup reduct ion  in  presence o f  so l ids .  Chemica l  Eng ineer ing  Sc ience ,  50 (14 ) ,  
2335-2342.  

Be l lo ,  R .  A .  (1981 ) .  A  character iza t ion  s tudy  o f  a i r l i f t  contactors  fo r  app l ica t ion  to  
fe rmentat ions .  PhD thes is .  Un ivers i ty  o f  Water loo ,  Ontar io ,  Canada.  

B la ,  M. ,  K i ,  M.  and Marko,  J .  (2004 ) .  Sca le  in f luence on the  hydrodynamics  o f  an  
in te rna l  loop a i r l i f t  reactor .  Chemica l  Eng ineer ing  and Process ing ,  43 (12 ) ,  1519-
1527.   

Boyer ,  C . ,  Duquenne,  A . -M.  and Wi ld ,  G .  (2002 ) .  Measur ing  techn iques  in  gas- l iqu id  
and gas- l iqu id-so l id  reactors .  Chemica l  Eng ineer ing  Sc ience ,  57 ,  3185-3185.  



Universidade do Minho  Chapter V 

 

136 

Brány ik ,  T . ,  V icente ,  A .  A . ,  Machado Cruz ,  J .  M. ,  and Te ixe i ra ,  J .  A .  (2002 ) .  
Cont inuous pr imary  beer  fe rmentat ion  w i th  brewing yeast  immobi l i zed  on  spent  
g ra ins .  Journa l  Of  The Ins t i tu te  Of  Brewing,  108 (4 ) ,  410-415.   

Ch is t i ,  M.  Y .  (1989 ) .  Air l i f t  B io reactors  (1s t  ed . ) .  Essex :  E lsev ie r  Sc ience Pub l ishers  
LTD.  

C l i f t ,  R . ,  Grace,  J .  R .  and Weber ,  M.  E .  (1978 ) .  Bubbles ,  d rops ,  and par t ic les  (Vo l .  
380 ) .  Academic  press  New York .  

Deckwer ,  W.  D .  (1992 ) .  Bubble  Co lumn Reactors .  (W i ley ,  Ed. ) .  Ch ichester .  
Do lgos ,  O. ,  K le in ,  J . ,  V icente ,  A .  A .  and Te ixe i ra ,  J .  A .  (2001 ) .  Behav iour  o f  dua l  gas-

l iqu id  separator  in  an  in te rna l- loop a i r l i f t  reactor  –  e f fect  o f  top  c learance.  28th  

Conference SSCHE  (pp .  21  -  25 ) .  Tat rankés  Mat l ia re .  
Fan,  L-S. ,  Yang,  G.  Q. ,  Lee ,  D .  J . ,  Tsuch iya ,  K .  and Luo,  X .  (1999 ) .  Some aspects  o f  

h igh-pressure  phenomena o f  bubb les  in  l iqu ids  and l iqu id–so l id  suspens ions .  
Chemica l  Eng ineer ing  Sc ience ,  54 (21 ) ,  4681–4709.  

Fonseca,  M.  M.  and Te ixe i ra ,  J .  A .  (2007 ) .  Reactores  B io lóg icos  ( in  Por tuguese ) .  L .  
L ide l -ed ições  técn icas ,  482.  

F re i tas ,  C . ,  V icente ,  A .  A . ,  Mota ,  M.  and Te ixe i ra ,  J .  A .  (1997 ) .  A  new sampl ing  
dev ice  fo r  measur ing  so l ids  ho ld-up in  a  th ree-phase system.  Biotechno logy  

Techn iques ,  11 (7 ) ,  489-492.  
F re i tas ,  C .  and Te ixe i ra ,  J .  A .  (1998a ) .  Hydrodynamic  s tud ies  in  an  a i r l i f t  reactor  

w i th  an  en la rged degass ing  zone.  Bioprocess  and B iosystems Eng ineer ing ,  18 (4 ) ,  
267–279.  Spr inger .  

F re i tas ,  C .  and Te ixe i ra ,  J .  A .  (1998b ) .  So l id-phase d is t r ibut ion  in  an  a i r l i f t  reactor  
w i th  an  en la rged degass ing  zone.  Biotechno logy  Techn iques ,  12 (3 ) ,  219-224.  

F re i tas ,  C . ,  F ia lová ,  M. ,  Zahradn ik ,  J .  and Te ixe i ra ,  J .  A .  (1999 ) .  Hydrodynamic  
mode l  fo r  th ree-phase in te rna l -and externa l - loop a i r l i f t  reactors .  Chemica l  

Eng ineer ing  Sc ience ,  54 ,  5253-5258.   
F re i tas ,  C . ,  F ia lová ,  M. ,  Zahradn ik ,  J .  and Te ixe i ra ,  J .  A .  (2000 ) .  Hydrodynamics  o f  a  

th ree-phase externa l - loop a i r l i f t  b io reactor .  Chemica l  Eng ineer ing  Sc ience ,  55 (21 ) ,  
4961–4972.  

F re i tas ,  Car la .  (2002 ) .  B io reactores  Mul t i fás icos  -  Caracter ização H idrod inámica  e  
de  Transferênc ia  de  Massa ( in  Por tuguese ) .  PhD thes is ,  Un ivers i ty  o f  M inho.  

Gandh i ,  B . ,  Prakash,  A .  and Bergougnou,  M.  A .  (1999 ) .  Hydrodynamic  behav ior  o f  
s lu r ry  bubb le  co lumn at  h igh  so l ids  concent ra t ions .  Powder  Techno logy ,  103 (2 ) ,  
80–94.  

Jamia lahmadi ,  M.  and Mul le r-Ste inhagen,  H .  (1991 ) .  E f fect  o f  so l id  par t ic les  on  gas  
ho ld-up in  bubb le  co lumns.  Canad ian  Journa l  o f  Chemica l  Eng ineer ing ,  69 ,  390-
393.  

K le in ,  J . ,  V icente ,  A .  A .  and Te ixe i ra ,  J .  A .  (2003a ) .  Hydrodynamic  cons idera t ions  on  
opt ima l  des ign  o f  a  th ree-phase a i r l i f t  b io reactor  w i th  h igh  so l ids  load ing .  Journa l  

o f  Chemica l  Techno logy  and B io techno logy ,  78 ,  935-944.  
K le in ,  J . ,  V icente ,  A .  A .  and Te ixe i ra ,  J .  A .  (2003b ) .  Hydrodynamics  o f  a  Three-phase 

A i r l i f t  Reactor  w i th  an  En la rged Separator  –  App l ica t ion  to  H igh  Ce l l  Dens i ty  
Systems.  The Canad ian  Journa l  o f  Chemica l  Eng ineer ing ,  81 ,  1-11 .  

K le in ,  J . ,  V icente ,  A .  A .  and Te ixe i ra ,  J .  A .  (2004 ) .  S tudy o f  hydrodynamics  and 
mix ing  in  an  a i r l i f t  reactor  w i th  an  en la rged separator  us ing  magnet ic .  3rd  

In te rnat iona l  Sympos ium on Two-Phase F low Mode l l ing  and Exper iemntat ion  (Vo l .  
5 ,  pp .  22-24 ) .  P isa .  

Korp i ja rv i ,  J . ,  O inas ,  P .  and Reunanen,  J .  (1999 ) .  Hydrodynamics  and mass t ransfer  
in  an  a i r l i f t  reactor .  Chemica l  Eng ineer ing  Sc ience ,  54 (13-14 ) ,  2255–2262.  

Lehner t ,  R . ,  Kurec ,  M. ,  Brány ik ,  T .  and Te ixe i ra ,  J .  A .  (2008 ) .  E f fect  o f  Oxygen 
Supp ly  on  F lavour  Format ion  Dur ing  Cont inuous A lcoho l - f ree  Beer  Product ion :  A  
Mode l  Study.  Journa l  o f  Amer ican  Soc ie ty  o f  Brewing Chemis t ,  66 (4 ) ,  233-238.  

Lehner t ,  R . ,  Novák,  P . ,  Mac ie i ra ,  F . ,  Kurec ,  M. ,  Te ixe i ra ,  J .  A .  and Brány ik ,  T .  (2009 ) .  
Opt im isat ion  o f  Lab-Sca le  Cont inuous A lcoho l -Free  Beer  Product ion .  Czech 

Journa l  o f  Food Sc ience ,  27 (4 ) ,  267-275.  
Lu ,  W-J . ,  Hwang,  S-J .  and Chang,  C-M.  (1995 ) .  L iqu id  ve loc i ty  and gas  ho ldup in  

th ree-phase in te rna l  loop a i r l i f t  reactors  w i th  low-dens i ty  par t ic les .  Chemica l  

Eng ineer ing  Sc ience ,  50 (8 ) ,  1301–1310.  E lsev ie r .  
Matsumoto,  T . ,  H idaka,  N .  and Morooka,  S .  (1989 ) .  Ax ia l  d is t r ibut ion  o f  so l id  ho ldup 

in  bubb le  co lumn for  gas– l iqu id–so l id  system.  A. I .Ch.E .  Journa l ,  31 ,  1701-1709.  



Universidade do Minho  Chapter V 

 

137 

Mena,  P .  C . ,  Ruz icka ,  M.  C. ,  Rocha,  F .  A . ,  Te ixe i ra ,  J .  A .  and Drahos,  J .  (2005 ) .  
E f fect  o f  so l ids  on  homogeneous–heterogeneous f low reg ime t rans i t ion  in  bubb le  
co lumns.  Chemica l  Eng ineer ing  Sc ience ,  60 (22 ) ,  6013-6026.  
do i :10 .1016/ j .ces .2005.04 .020  

Merchuk,  J . ,  Cont re ras ,  A . ,  Garc ia ,  F .  and Mol ina ,  E .  (1998 ) .  S tud ies  o f  m ix ing  in  a  
concent r ic  tube a i r l i f t  b io reactor  w i th  d i f fe rent  spargers .  Chemica l  Eng ineer ing  

Sc ience ,  53 (4 ) ,  709-719.  
Mol ina ,  E . ,  Cont re ras ,  A .  and Ch is t i ,  Y .  (1999 ) .  Gas  ho ldup,  l iqu id  c i rcu la t ion  and 

mix ing  behav iour  o f  v iscous newton ian  media  in  a  sp l i t -cy l inder  a i r l i f t  b io reactor .  
Trans   

Ol iv ie r i ,  G . ,  Marzocche l la ,  a ,  Vanommen,  J .  and Sa la t ino ,  P .  (2007 ) .  Loca l  and g loba l  
hydrodynamics  in  a  two-phase in te rna l  loop a i r l i f t .  Chemica l  Eng ineer ing  Sc ience,  
62 (24 ) ,  7068-7077.   

Rodr íguez ,  A . ,  Garc ia-Ca lvo ,  E . ,  Prados,  A .  and K le in ,  J .  (1999 ) .  A  f lu id  dynamic  
mode l  fo r  th ree-phase a i r l i f t  reactors .  Chemica l  Eng ineer ing  Sc ience,  54 ,  2359-
2370.  

Van Benthum,  W. ,  Van der  Lans ,  R . ,  Van Loosdrecht ,  M.  and He i jnen ,  J .  (2000 ) .  The  
b io f i lm a i r l i f t  suspens ion  extens ion  reactor- I I :  Three-phase hydrodynamics .  
Chemica l  Eng ineer ing  Sc ience,  55 (3 ) ,  699–711.  

Wars i to ,  Ohkawa,  M. ,  Maezawa,  A .  and Uch ida ,  S .  (1997 ) .  F low s t ructure  and phase 
d is t r ibut ions  in  a  s lu r ry  bubb le  co lumn.  Chemica l  Eng ineer ing  Sc ience,  52 (21-22 ) ,  
3941-3947.  

X ie ,  T . ,  Gh iaas iaan,  S .  M. ,  Kar r i la ,  S .  and Mcdonough,  T .  (2003 ) .  F low reg imes and 
gas  ho ldup in  paper  pu lp  –  water  –  gas  th ree-phase s lu r ry  f low.  Chemica l  
Eng ineer ing  Sc ience,  58 ,  1417 -  1430.   

Yang,  G.  Q. ,  Du,  B .  and Fan,  L-S.  (2007 ) .  Bubb le  fo rmat ion  and dynamics  in  gas–
l iqu id–so l id  f lu id iza t ion—A rev iew.  Chemica l  Eng ineer ing  Sc ience,  62 ,  2  -  27 .   

Yoo,  D .  H . ,  Tsuge,  H . ,  Terasaka,  K .  and Mizutan i ,  K .  (1997 ) .  Behav ior  o f  bubb le  
fo rmat ion  in  suspended so lu t ion  fo r  an  e levated pressure  system.  Chemica l  
Eng ineer ing  Sc ience,  52 (21-22 ) ,  3701–3707 

Zahradn ik ,  J . ,  F ia lova ,  M. ,  Ru! i!ka,  M. ,  Draho" ,  J . ,  Ka" tánek ,  F .  and Thomas,  N .  H .  
(1997 ) .  Dua l i ty  o f  the  gas- l iqu id  f low reg imes in  bubb le  co lumn reactors .  Chemica l  
Eng ineer ing  Sc ience,  52 (21-22 ) ,  3811–3826.   

 



Universidade do Minho  Chapter VI 

 

138 

VI. Chapter VI – CFD Simulation of Gas Hold-

up and Liquid Interstitial Velocity in Two-

phase iGLR 
 

 

VI.1 Objectives 

 

VI.2 Introduction  

 

VI.3 Material and Methods 

 

VI.4 Results and Discussion 

 

VI.5 Conclusions 

 

VI.6 References 

 



Universidade do Minho  Chapter VI 

 

139 

VI.1 Objectives 

The main object ive of th is chapter was to perform computing f lu id 

dynamic (CFD) s imulat ions for the two-phase iGLR in order to expla in 

and complement the pract ical  results obtained in the previous chapter.  

The main goal was to test the abi l i ty  of our CFD simulat ion setup to 

capture global character ist ics of the f low (mean l iquid interst i t ia l  

velocity and gas hold-up both in r iser and downcomer sect ions) in our 

iGLR with an enlarged degassing zone. Besides th is i t  was also 

important to capture the three exper imental ly  observed bubble 

c irculat ion regimes and so ver i fy i f  the s imulat ion setup could be later 

used to obtain the global character ist ic for:  (1 )  modif ied geometr ies;  (2 )  

d i f ferent f lu ids. The comparison was done for the three dif ferent r iser 

tubes used before (A, B, C see Table VI-1 )  but only for g-l  system (a ir-

water) .  To apply the CFD simulat ions i t  was used the commercia l  code 

Fluent 6.3 using algebraic s l ip mixture mult iphase model.  S imulat ions 

results using dif ferent model ( fu l l  Euler–Euler )  in d i f ferent code (CFX 

12.1) are a lso presented in the paper.  The secondary goal was to test 

the sensit iv i ty of the s imulat ions to the dif ferent bubble s l ip velocity,  

and to the dif ferent turbulence closure models (var iants of !–" ,  !–# ) .  

This was done using the mixture model in F luent 6.3 code. 

VI.2 Introduction  

The knowledge of the iGLR hydrodynamics is needed for the 

reactor’s design. Basic global quant i t ies such as gas hold-up and l iquid 

velocit ies in the r iser and in the downcomer, tota l  interfacia l  area 

among others need to be known. The hydrodynamic and other re levant 

parameters such as the a ir l i f t  geometry are interre lated and their  

re lat ionship can be quite complex because they, d irect ly or indirect ly,  

inf luence each other and sometimes in complex interact ions (Chist i ,  

1998).  As an example: the dr iv ing force for the l iquid c irculat ion is the 

dif ference between the r iser and the downcomer’s gas hold-ups. This is  

balanced by fr ict ion losses in the r iser,  downcomer and in several  parts 

of GLR geometry.  The fr ict ion losses in the case of iGLR also occur and 
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are inf luenced by bottom and top clearances parts,  whi le in external  

GLR these losses are in connect ing pipes (Freitas et a l . ,  1999).  

However,  the result ing l iquid c irculat ion affects the r iser and 

downcomer gas hold-up and thus the dr iv ing force. The gas hold-up 

depends also on bubble s l ip velocity,  which depends on the bubble 

s ize.  Bubble s ize is  inf luenced by: the gas distr ibutor,  coalescence 

propert ies of the involved f lu ids and turbulence. Turbulence is 

inf luenced by l iquid c irculat ion. The re levant hydrodynamic parameters 

need to be either obtained exper imental ly  or predicted by models of 

var ious types. A lot of exper imental  data and corre lat ions have been 

publ ished on global quant i t ies (hold-up, l iquid velocit ies)  for iGLR. A 

large number of corre lat ions for these parameters are compiled (Chist i ,  

1989, 1998; Freitas et a l . ,  1999; Garcia-Calvo et a l . ,  1999; Lu et a l . ,  

1995).  Nevertheless the major i ty of the corre lat ions presented in the 

l i terature are restr icted in their  val id i ty to the same reactor s ize,  type 

and g-l  system used (Young et a l . ,  1991).  Normal ly,  these corre lat ions 

are system specif ic ,  being of l i t t le  use in design or scale-up. The usual 

requirement is  for est imation of expected performance in larger or 

geometr ical ly  d i f ferent reactors or f lu ids (Chist i ,  1998).  Some authors 

employed models based on mechanical  energy balance in the a ir l i f t  

reactor (Chist i ,  1989; Hei jnen et a l . ,  1997; Ver laan et a l . ,  1986),  but the 

information about fr ict ion losses ( f r ict ion coeff ic ients)  must be provided 

as an input parameter.  More recent exper imental  measurements of 

a ir l i f t  g lobal hydrodynamic character ist ics ( r iser and downcomer hold-

up and velocit ies)  can be found for iGLR (Merchuk et a l . ,  1998; van 

Baten et a l . ,  2003) and external  gas- l i f t  reactor (Fre itas et a l . ,  1999; Via l  

et  a l . ,  2002).  
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Figure VI-1 .  Re lat ionships between hydrodynamic parameters and other  
b ioreactor  performance ind ices.  Legend:  U H –  Overa l l  Heat  Transfer  

coef f ic ient  (W/(m 2 ºC) ) ;  kLaL  –  Overa l l  vo lumetr ic  mass t ransfer  coef f ic ient  (s -

1 ) .  Adapted f rom Chist i ,  1989.  

 

Luo and Al-Dahhan (2008, 2010) measured local  l iquid velocity 

prof i les,  turbulent quant i t ies using the computer-automated radioact ive 

part ic le tracking (CARPT) technique and local  gas hold-up prof i les 

using computed tomography in an iGLR. They observed s ignif icant 
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There are two main groups of mult iphase f low models usable for 

s imulat ions on bubble col lumn and gas-l i f t  reactors scale.  In Euler–

Euler models a l l  phases are treated as interpenetrat ing cont inua, whi le 

in Euler–Lagrange models the motion of indiv idual part ic les is  tracked 

through the cont inuous f lu id.  The Euler–Lagrange models,  which track 

the motion of every s ingle part ic le (approximated as a mass point with 

c losure equat ion for the interphase forces),  can be used for smal ler  

scale problems with low gas hold-up. Only Euler–Euler models (mixture 

model and ‘ ‘ fu l l ’ ’  Euler–Euler model)  were used in the presented work, 

thus only Euler–Euler models are considered in the fo l lowing chapter.   

VI.2.1 CFD simulations in iGLR: advantages and limitations 

The main advantage of CFD simulat ions i f  compared to exper iments 

is  that no exper imental  apparatus has to be bui l t ;  therefore equipment 

dimensions and working f lu ids can be easi ly  changed in s imulat ions. 

However,  the qual i ty of the CFD simulat ion predict ions, great ly depends 

on how wel l  or how badly are employed the CFD models,  sub-models 

and closure equat ions that descr ibe f low phenomena occurr ing in the 

reactor.  Since the g-l  f lows are very complex with f low phenomena 

occurr ing on a wide range of space and t ime scales, model ing of g-l  

f lows is st i l l  an open subject and far f rom being complete.  Moreover i t  

is  st i l l  necessary to val idate s imulat ion results against exper iments.  The 

Euler–Euler models need closures for a l l  re levant interphase force 

(drag, l i f t ,  added mass, etc. ) ,  for the turbulence (due to s ingle phase 

f low and due to bubbles) as wel l  as models for bubble coalescence and 

break-up, because the bubble s ize is  present in most of the c losure 

equat ions. 

Sokol ichin et a l .  (2004) d iscussed the re levance of indiv idual 

interphase forces for the s imulat ion and also turbulence model l ing 

issues. They observed a weak dependency of s imulat ion results ( in 

part ia l ly  aerated rectangular bubble column) on the employed value of 

the bubble s l ip velocity.  They expla ined th is weak dependence by the 
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fact that the bubble tota l  velocity was the sum of the bubble s l ip 

velocity and the l iquid velocity,  which can be re lat ively h igh, so the 

change in the bubble s l ip velocity had lower impact on the calculated 

gas hold-up (Sokol ichin et a l . ,  2004).  I t  could be expected from the 

same reason that the s imi lar  behaviour (weak dependence of gas 

holdup on the bubble s l ip velocity )  could be found in a ir l i f t  s imulat ions, 

i f  bubbles are present only in the r iser and the downcomer hold-up is 

zero, may be the dependence could be even weaker due to the more 

ordered f low in the a ir l i f t  i f  compared to the bubble column. However,  i f  

the gas hold-up in the downcomer is  posit ive,  then the effect of the 

bubble s l ip velocity could be much stronger due to counter current f low 

of both phases in th is gas-l i f t  reactor sect ion. I t  is  then not surpr is ing 

that some authors did s imulat ions of gas-l i f t  reactor and obtained a 

good agreement with exper iments even when inappropriate c losure for 

drag force was used (e.g.  Schi l ler–Naumann corre lat ion for r ig id sphere 

drag used for 5 mm equivalent d iameter a ir  bubble in water)  in cases 

with zero downcomer gas hold-up.  

There are a number of papers dedicated to the Euler–Euler CFD 

simulat ions of a ir l i f t  reactors.  External- loop air l i f t  s imulat ion 

comparisons of radia l  prof i les of gas hold-up and l iquid velocity can be 

found (Cao et a l . ,  2007; Roy et a l . ,  2006; Via l  et  a l . ,  2002).  The 

comparison of average gas hold-up and l iquid velocit ies with 

exper iments for iGLR and for zero downcomer gas hold-up can be 

found, (Huang et a l . ,  2008; Mudde and van den Akker,  2001; Van Baten 

et a l . ,  2003).  Huang et a l .  (2008) a lso reported weak dependence of the 

s imulat ion results on the bubble velocity prescr ibed on the top 

boundary condit ion. Simulat ions for cases with nonzero downcomer 

hold-up were done (Huang et a l . ,  2010; J ia et a l . ,  2007; Oey et a l . ,  

2001; Talvy et a l . ,  2007).  Talvy et a l .  (2007) compared vert ical  and 

hor izontal  prof i les of gas holdup in r iser and downcomer, and hor izontal  

l iquid velocity prof i les in downcomer with exper iments in a rectangular 

a ir l i f t .  A lso J ia et a l .  (2007) compared s imulated and exper imental  

hor izontal  prof i les of gas hold-up and l iquid velocit ies in a rectangular 

a ir l i f t  and found a good agreement. 
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VI.3 Material and Methods 

VI.3.1 Experimental setup 

The exper iments were done in the same iGLR with a top enlarged 

degassing zone used in previous chapter (Figure V-3  and Table V-1  

and Table V-2  in  Chapter V sect ion V.3.1)  but only data using air-water 

was considered for CFD simulat ions.  

In Figure VI-3  and Table VI-1  are displayed the reactor d imensions 

and gr id cel ls  used in th is work  

Table VI-1 .  R iser  conf igurat ions used in  th is  work.  

 Riser A Riser B Riser C 

 (mm) 
nr of  gr id 

cel ls  
(mm) 

nr of  gr id 

cel ls  
(mm) 

nr of  gr id 

cel ls  

D1 100 12 100 12 100 12 
D2 62 12 62 12 87 12 
D3 70 14 70 14 92 14 
D4 142 28 142 28 142 28 
D5 420 28 420 28 420 28 
H1 23 5 23 5 23 5 
H2 1200 60 1400 70 1200 60 
H3 200 16 0 0 200 20 
H4 170 14 170 14 170 12 
H5 120 6 120 6 120 6 

Legend:  D1 – Dist r ibutor  d iameter ;  D2 –  R iser  in terna l  d iameter ;  D3 -  R iser  
externa l  d iameter ;  D4 –  Column interna l  d iameter ;  D5 –  Top degass ing zone 
interna l  d iamter ;  H1 – Distance between d ist r ibutor  and beginn ing of  r iser ;  H2 
–  R iser  length;  H3 – Distance between r iser  end and beginn ing of  top part ;  H4 
–  Height  of  conica l  sect ion f rom top part ;  H5 –  Height  of  cy l indr ica l  sect ion of  
top part .  
 

The l iquid interst i t ia l  velocity in the r iser and in the downcomer was 

measured as descr ibed in sect ion V.3.6.  The gas hold-up in the r iser 

and downcomer was est imated using U-tube manometers (sect ion 

V.3.3)  without the sol ids considerat ion (!S i=0 in Eq. IV-2 ) .  The 

agreement of th is est imate with the real  gas holdup in the apparatus 

may be affected by a pressure drop due to f low with a maximum error 

of ±15% (sect ion IV.4.2) .  
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Figure VI-2 .  In terna l  Gas- l i f t  Reactor  geometry  (not  at  sca le ) .  Legend:  D1 – 
Dist r ibutor  d iameter ;  D2 –  R iser  in terna l  d iameter ;  D3 -  R iser  externa l  

d iameter ;  D4 –  Column interna l  d iameter ;  D5 –  Top degass ing zone interna l  
d iameter ;  H1 –  Distance between d ist r ibutor  and beginn ing of  r iser ;  H2 –  

R iser  length;  H3 – Distance between r iser  end and beginn ing of  top part ;  H4 –  
Height  of  conica l  sect ion f rom top part ;  H5 –  Height  of  cy l indr ica l  sect ion of  

top part .  

VI.3.2 Simulation setup 

The main part  of  the s imulat ions was done in CFD code Fluent 6.3 

using the a lgebric s l ip mixture model.  A part  of  the f luent s imulat ions 

was later recalculated in the CFX 12.1 code using the fu l l  Euler–Euler 

model and their  results are a lso presented, a l though for the r iser C 

conf igurat ion CFX simulat ions were not f in ished due to convergence 

problems and the results are not shown.  

The air l i f t  geometry is  shown in Figure VI-2  The gas distr ibutor in the 

s imulat ion domain geometry had the same diameter as the r iser.  The 

computat ional gr id was the same for both s imulat ions (F luent and CFX) 

and contained 48 100 (Riser A),  44 700 (Riser B) and 49 100 (Riser C) 
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gr id cel ls .  The computat ional gr id (at  the a ir l i f t  cross-sect ion) is  shown 

in Figure VI-3  and number of gr id cel ls  per each air l i f t  d imension can 

be found in Table VI-1  The gr id was suff ic ient to obtain gr id 

independent results (see Sect ion VI.4.1 for the gr id independence test 

result ) .  The t ime step in a l l  s imulat ions was 0.005 s. 

  

Figure VI-3 .  Computat ional  gr id  for  the iGLR cross-sect ion at  R isers  A,  B 
( le f t )  and C ( r ight ) .   

VI.3.2.1 Fluent simulations 

The mixture model used in Fluent 6.3 code assumes that two or more 

phases are interpenetrat ing. I t  can solve cases where two (or more) 

phases move at d i f ferent velocit ies and i t  assumes local  equi l ibr ium 

over short  spat ia l  length scales, i .e .  d ispersed phases move at their  

terminal  velocit ies.   This model is  s impler than fu l l  Euler-Euler 

mult iphase model.  The mixture model solves the cont inuity and the 

momentum equat ion for a mixture with averaged propert ies (density,  

velocity and v iscosity ) ,  an a lgebraic equat ion for the dispersed phase(s)  

s l ip velocity and a volume fract ion equat ion for the secondary phase(s) .  

The mixture model should require less computat ional resources than 

the Euler-Euler model,  s ince i t  solves fewer equat ions. However,  i t  can 

be sometimes more dif f icult  to converge with more i terat ions required 

to be done, thus diminishing the mentioned advantage over the Euler-

Euler model.  Model equat ions, boundary condit ions and other solver 

parameters are expla ined below. The mixture model solves the 

cont inuity and momentum equat ion for the mixture,  the a lgebraic 

equat ion for d ispersed phase s l ip velocity and volume fract ion equat ion 
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for the secondary phase (Manninen et a l . ,  1996).  The cont inuity 

equat ion is 

 

!"
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m
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) = 0      Eq. VI–1  

Where: 
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Is  the mass averaged velocity,  and  
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#       Eq. VI 3  

Is  the mixture density.  The sums are over a l l  (n )  phases (k) .  The 

momentum equat ion in the mixture model can be obtained by summing 

momentum equat ions of a l l  phases in the Euler-Euler model.   The 

momentum equat ion is:  
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  Eq. VI–4  

 

Where n  is  the number of phases ( two in our case: a ir ,  water) ,  and 
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k

µ
k
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t
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      Eq. VI–5  

Is  the mixture effect ive v iscosity,  µ t  is  the turbulent v iscosity and µk 

is the molecular v iscosity of phase k,  and  
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Is  the dr i f t  velocity of phase k,  where 

 

v
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= v
k
! v

c       Eq. VI–7  

Is  the s l ip velocity being the “c” subscr ipt for the cont inuous phase. 

The s l ip velocity is  calculated from the fo l lowing algebraic equat ion: 
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     Eq. VI–8  
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The f i rst  term on the r ight hand side of Eq. VI–8  is  due to a drag 

force, where  
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18µ
c

     Eq. VI–9  

Is  k-phase part ic le re laxat ion t ime, and f  is  a drag funct ion: 

 

f = CD ! Re/24      Eq. VI–10  

Being Re expressed by: 
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d
k
v
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!
c

µ
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      Eq. VI–11  

The accelerat ion (a ) :   

 

a = g ! vm ."( )vm !
#vm

#t
      Eq. VI–12  

And CD is drag coeff ic ient.  The drag coeff ic ient (CD)  was calculated 

from Tomiayama’s corre lat ion (Tomiyama et a l . ,  2002) for a s ingle 

bubble:   

 

C
D

= max min 24 /Re 1+ 0.15Re
0.687( ),72 /Re{ },(8 /3)E!

E0 + 4
" 

# $ 
% 

& ' 
    Eq.VI–13  

Where,  

 

E! =
"#gd2

!
      Eq. VI–14  

This means that the drag coeff ic ient is  CD=1.215 for s ingle 5 mm 

bubble,  with a s l ip velocity ~0.23 m/s. In order to test the effect of 

bubble s l ip velocity on s imulat ion results Schi l ler-Naumann’s c losure 

was also employed: 

 

C
D

= 24 /Re(1 + 0.15Re
0.687

) for Re < 1000 and CD = 0.44 for Re > 1000  Eq. VI–15  

Eq. VI–13  was used in a l l  s imulat ions unless said otherwise. At th is 

point is  important to not ice a possible bug either in F luent 6.3 and 

Fluent12 mixture models.  I f  a f i rst  order t ime discret izat ion scheme is 

used then the s l ip velocity is  calculated correct ly.  I f  a second order 

scheme is used then i t  is  calculated incorrect ly (1st order ~0.23 m/s, 

2nd order ~0.47 m/s).  This was tested for both user def ined closure and 
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c losures that are a lready present in the solver.  The second term in Eq. 

VI–8  appears due to a dispersion of secondary phase by turbulence, 

where ! t  is  a turbulent Prandtl  number and " t  is  a turbulent d i f fusiv i ty:  
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%1/ 2( )      Eq. VI–16  

Where: 
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Cµ = 1.8 !1.35cos
2
"      Eq. VI–18  
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v
k
/ v

kc
v
k( )      Eq. VI–19  

C µ  was considered to be equal to 0.09. The # #  is  a t ime rat io between 

the t ime scale of the energet ic turbulent eddies affected by the 

crossing-tra jector ies effect and the part ic le re laxat ion t ime  

 

! ! = 0.165(k /")
1+Cµ#!

2( ) /$ k      Eq. VI–20  

The value of ! t  was set to 0.01. The default  value was 0.75. The 

lower value, which was used in Fluent s imulat ions, enhances a turbulent 

d ispersion. The lower value was chosen, because for Riser B bubbles 

f lowing into the r iser d id not d isperse fast enough across the whole 

r iser cross sect ion as i t  was v isual ly  observed in exper iments. The 

mixture composit ion is  updated by solv ing the transport equat ion for 

the dispersed phases (only one dispersed phase in our case)  
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)     Eq. VI–21  

The standard $%&  model was used to model turbulence. This model 

belongs to a group of Reynolds averaged Navier-Stokes equat ion 

models.  The instantaneous velocity in the momentum equat ion is 

d iv ided into the average and f luctuat ing part   

 

u = v
m

+ v'     Eq. VI–22  

Then the momentum equat ion is ensemble averaged and the result ing 

term  

 

!".(#v'v')     Eq. VI–23  

Is  modeled as  
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T( )[ ]     Eq. VI–24  

Where µ t  is  turbulence v iscosity,  which again requires a c losure 

equat ion. The closure is :   
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/"      Eq. VI–25  

The turbulent k inet ic energy, k ,  and turbulent d issipat ion rate,  ! ,  are 

obtained by solv ing their  t ransport equat ions: 
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Thus unl ike the molecular v iscosity,  the turbulent v iscosity is  not a 

constant,  but i t  depends on a local  f low f ie ld.  The term G k , m is  a 

turbulence product ion due to mean velocity shear. 

 

G
k,m

= µ
t
!v

m
+ (!v

m
)
T[ ] :!vm      Eq. VI–28  

The turbulent model constants were Cµ  = 0.09, " k  = 1,  "!  = 1.3,  C1 !  = 

1.44, C2 !  = 1.92. These are empir ical ly  determined constants found to 

work wel l  for a wide range of wal l-bounded and free shear f lows (F luent 

Inc.,  2006).  The boundary condit ions were no-sl ip condit ion on al l  a ir l i f t  

wal ls .  Standard wal l  funct ion was used to model a velocity prof i le  in the 

wal ls v ic in i ty and to provide inner “boundary” condit ion for Reynolds 

averaged velocity f ie ld.  Zero l iquid velocity and 0.25 m/s gas vert ical  

velocity was prescr ibed at the in let  for a l l  phases. Gas volume fract ion 

was then set to a constant value to obtain the desired gas f low rate into 

the a ir l i f t .  Zero l iquid velocity was set at the out let  boundary and no 

gradients were considered either for gas velocity and gas volume 

fract ion. In i t ia l  condit ion was zero l iquid velocity and gas volume 

fract ion, in i t ia l  turbulence kinet ic energy was #=0.001 m2/s2,  and 

dissipat ion rate !=0.0001 m2/s3.  The t ime interval  of  30 s was then 

s imulated to let  the f low reach a steady or pseudo-steady state.  Then 

another 120 s or more of a f low t ime was s imulated to obtain t ime-

averaged quant i t ies for evaluat ion. 
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The segregated pressure-based solver in F luent was used to solve 

the model equat ions, node based gradient opt ion was used to evaluate 

var iables’ gradients.  Pressure-Impl ic i t  with Spl i t t ing of Operators 

(PISO) scheme was used as a pressure-velocity coupl ing a lgor i thm, 

PRESTO! (PREssure STaggering Option) scheme was used for pressure 

discret izat ion and the QUICK scheme for velocity (F luent Inc.,  2006),  

gas volume fract ion, turbulence kinet ic energy and dissipat ion rate.  A 

f i rst  order impl ic i t  scheme was employed for the t ime discret izat ion. 

VI.3.2.2 CFX simulation 

Euler-Euler two-f lu id model was used in our s imulat ions done in CFX 

12.1. In opposit ion with the mixture model,  th is model solves cont inuity 

and momentum equat ion for each phase. Thus for a two phase f low 

there are two cont inuity and two momentum equat ions, one set for 

cont inuous phase (c )  and one for d ispersed phase (d ) .  The two 

momentum equat ions are coupled v ia pressure (pressure f ie ld is  shared 

by both phases),  and v ia interphase force terms, which accounts for 

var ious forces (drag, l i f t ,  added mass, turbulent d ispersion force and 

others)  and cancel each other out when momentum equat ions of 

indiv idual phases are added together.  Drag force and turbulence 

dispersion force were accounted for in our CFX simulat ions. The 

cont inuity equat ions of phase c  and d  are: 
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The momentum equat ions of phase c  and d  are: 
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 Eq. VI–31  
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 Eq. VI–32  

Where:  

 

M
cd

= !M
dc

     Eq. VI–33 
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Is  a force act ing on the phase c  due to phase d  (drag, l i f t ,  …),  and 

µ c , e f f  and µd , e f f  are effect ive v iscosit ies consist ing of a molecular and a 

turbulent v iscosity:  

 

µc,eff = µc + µ tcand µd ,eff = µd + µtd      Eq. VI–34  

Only drag and turbulence dispersion force were considered in our 

s imulat ions: 
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Where d  is  d ispersed phase part ic le (bubble)  equivalent d iameter.  

Drag coeff ic ient was set to CD = 1.215 result ing in a bubble s l ip velocity 

~0.23 m/s (~5 mm bubble in water) .  
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Where CT D=1, K c d  is  momentum transfer coeff ic ient for drag force, ! t c  

is  turbulent k inematic v iscosity of the cont inuous phase, " t c=0.9.  Two 

equat ions #$%  model were used to model turbulence and to obtain a 

c losure for turbulent v iscosity in the cont inuous phase: 
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Where  
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The turbulent model constants were C µ =0.09, " k=1, " !=1.3, C 1 !=1.44, 

C 2 !=1.92. Turbulence v iscosity in the dispersed phase was calculated 

as: 
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Where "=1. The boundary condit ions were no-sl ip condit ion for l iquid 

and free-sl ip condit ion for gas phase on wal ls.  Zero velocity for l iquid 

and 0.25 m/s for gas phase were used. The volume fract ion of gas 
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phase was set to obtain the desired value of gas f low rate.  The 

“degassing” condit ion was used at the out let  – l iquid velocity is  set to 

zero, whi le the gas phase is a l lowed to escape. 

 

VI.4 Results and Discussion 

The results sect ion is d iv ided in two parts.  Auxi l iary s imulat ion 

results are presented in sect ion VI.4.1.  This sect ion consists of gr id 

independence test result ,  br ief  comparison of few simulat ions with 

dif ferent turbulence models for a selected iGLR r iser conf igurat ion, and 

f inal ly  a comparison of two dif ferent c losures for the drag force. The 

main results and their  comparison with exper imental ly  measured data 

( l iquid interfacia l  velocity and gas hold-up in the r iser and downcomer) 

are presented in sect ion VI.4.2. 

The results for both s imulat ion setups (F luent,  CFX) are presented. In 

exper iments,  there were higher l iquid velocit ies in the downcomer for 

the larger d iameter r iser (Riser C),  due to the lower downcomer cross-

sect ion area, which lead the bubbles (gas-phase) to entra in into th is 

sect ion. I f  Riser A (shorter draft  tube) and B ( longer draft  tube) are 

compared, then for the longer tube the gas separat ion was better 

result ing in no gas in the downcomer, whi le for the shorter draft  tube 

(case A) bubbles were entra ined into the downcomer for the highest gas 

f low rate.  These results are in agreement with the results obtained in 

the former chapter (see sect ion V.4.2) .  

VI.4.1 Auxiliary simulation results 

The gr id independence test was done for the iGLR with r iser B for an 

a ir f low rate of 3.6 L/min (UG=1 cm/s see Table V-2  in  sect ion V-3.1) .  

One s imulat ion (F luent)  was run on a ref ined “f ine” gr id with 8x more 

gr id cel ls  than in the standard “coarse” gr id case (357600 vs  44700 

cel ls ) .  The dif ference in the l iquid interst i t ia l  velocity and gas hold-up in 
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the r iser was with in 1%. Therefore i t  could be ver i f ied that the standard 

gr id was enough to obtain gr id independent results.   

Four addit ional  turbulence models in addit ion to standard !"#  model 

were tested ( in F luent)  at  same condit ions (r iser B, 3.6 L/min),  pr ior to 

the main s imulat ion campaign. These four models were RNG !"#  model,  

RNG !"#  model with swir l  modif icat ion for turbulence v iscosity,  

real izable !"#  model and standard (not SST) !"$  model.  For addit ional  

detai ls  about these models (s imulat ions were run with default  solver 

sett ings) a complete descr ipt ion is present in F luent’s 6.3 User Guide 

(F luent Inc.,  2006).  Using the mentioned turbulence models instead of 

standard !"#  model had only a minor impact on results of the 

s imulat ions. The largest d i f ference between standard !"#  model results 

and the other model results was 1.4% for interst i t ia l  l iquid velocity and 

4.9% for gas hold-up in r iser on “coarse gr id” and 1.7% and 4.9% on 

the f ine gr id respect ively.  Standard !"#  model was then kept for a l l  

subsequent s imulat ions. 

Dif ferent c losures for drag coeff ic ient were tested on Risers A and B 

to test the effect of changing the bubble s l ip velocity on s imulat ion 

results.  Tomiyama et a l .  (2002) c losure for drag (Eq. VI-13 )  for  a s ingle 

bubble (5mm equivalent d iameter)  and Schi l ler-Naumann closure (Eq. 

VI-15 )  for  5mm bubble were compared for case A, and Tomiyama 

closure for 3mm and 5mm bubble were compared for case B. 

Simulat ions were done for f ive gas f low rates in range 1.9 – 13.6 L/min 

(1.0 – 7.5 cm/s) for both r isers conf igurat ions (A and B). 

Riser A comparison between the drag closures is  shown in Figure 

VI-4 .  We are aware that the Schi l ler-Naumann closure is  val id only for 

r ig id spheres, which is certa in ly not the case of 5mm air  bubble in 

water.  However,  the a im of th is comparison was only to examine an 

inf luence of changing a s l ip velocity of bubbles on s imulat ion results.  

The Tomiyama closures resulted in bubble s l ip velocit ies ( r iser volume 

average) in range 22.2 to 22.9 cm/s depending on the gas f low rate 

(was lower for h igher gas f low rates).  The Schi l ler-Naumann sl ip 



Universidade do Minho  Chapter VI 

 

155 

velocity was around 70% higher,  f rom 37.6 to 38.6 cm/s. Nevertheless, 

th is d i f ference in s l ip velocit ies did not cause very s ignif icant changes 

in s imulat ion outputs. The re lat ive dif ference between the gas hold-up 

in r iser was from 11.2 to 15.8% and was decreasing with increasing gas 

f low rate (maximum absolute hold-up dif ference between the two 

closures was 0.8%). 

 

Figure VI-4 .  R iser  A s imulat ion resu l ts  (sect ion VI .  4 .1 ) .  Compar ison of  two 
drag c losures for  5mm bubbles.  (a )  R iser  l iqu id interst i t ia l  ve loc i ty  V L (m/s) ,  

(b )  r iser  gas holdup ! ,  and (c )  downcomer gas holdup !  vs .  r iser  gas 
superf ic ia l  ve loc i ty  U G (m/s) .  Legend:  !  -  Tomiyama (Eq. VI-13 ) ;                   

"  -  Schi l le r-Naumann (Eq. VI-15 ) .  

 

The reason for th is is  the co-current f low of l iquid and gas phases in 

the r iser.  The gas holdup in the r iser is  g iven by  

     Eq. VI–43  

Where UG is gas superf ic ia l  velocity g iven by a ir f low rate into the 

a ir l i f t  and VG is  gas interst i t ia l  velocity in the r iser,  which is  

      Eq. VI–44  
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As referred in the l i terature the effect of changing the bubble s l ip 

velocity Vs l i p  on the holdup in the a ir l i f t  r iser is  then smal ler  then i t  

would be in a case of bubbles r is ing through a stagnant l iquid (VL=0 

cm/s),  because the l iquid velocity VL in the r iser is  re lat ively h igh i f  

compared to bubble s l ip velocity Vs l i p  (Sokol ichin et a l . ,  2004).  The 

s ituat ion would be dif ferent in the downcomer, where the phases f low 

counter-current ly and the s l ip velocity value could have a deep impact 

on the downcomer and consequently on the whole a ir l i f t  

hydrodynamics. There was effect ively zero gas holdup in the 

downcomer for a l l  gas f low rates where r iser A was used, except for the 

highest one with Tomiyama drag corre lat ion, when the gas just started 

to be entra ined into the downcomer, and the downcomer holdup was 

~8% of the r iser holdup. The dif ference between l iquid intersti t ia l  

velocit ies for the two drag coeff ic ient corre lat ions was from 1.6 to 8.5% 

and was decreasing with increasing of the gas f low rate with a sharper 

drop of th is d i f ference for the highest gas f low rate,  where the dr iv ing 

force for l iquid c irculat ion was decreased by the smal l  amount of gas 

entra ined into the downcomer (Tomiayama corre lat ion case). 

For Riser B conf igurat ion, the comparison between s imulat ions 

assuming 3mm and 5mm diameter bubbles is  shown in Figure VI-5 .  

Tomiyama drag corre lat ion was used for both.  

  

F igure VI-5 .  Case B s imulat ion resu l ts  (sect ion VI I .4 .1 ) .  Tomiyama drag 
c losure (Eq. VI-13 )  resu l ts  for  3  mm (! )  and 5mm bubble (" ) .  Legend:  (a )  -  
R iser  l iqu id interst i t ia l  ve loc i ty  V L (m/s) ,  (b )  -  r iser  gas holdup vs.  r iser  gas 

superf ic ia l  ve loc i ty  U G (m/s) .  
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The result ing volume averaged bubble s l ip velocit ies in the r iser were 

from 19.4 to 20.0 cm/s (3 mm bubble)  and from 22.3 to 23.0 cm/s 

(5 mm bubble) .  There was only a very smal l  d i f ference between 3 mm 

and 5 mm bubble s imulat ions, being reasons for th is the same 

previously descr ibed. The re lat ive dif ference between gas hold-up in 

the r iser was from 2.2% to 3.5%, and from 0.6% to 1.8% for the r iser 

l iquid interst i t ia l  velocity.  Once more th is d i f ference was decreasing 

with increasing of gas f low rate and no gas was present in the 

downcomer at a l l  gas f low rates.  

I t  could be stated that i f  the gas phase is present only in the r iser 

and not in the downcomer, then the impact of a bubble s l ip velocity 

change is not so s ignif icant due to co current f low of both phases. 

However,  i f  the gas phase is r is ing through a stagnant l iquid or even i f  

the phases are f lowing counter current ly (downcomer),  then, of course, 

th is impact can be much more s ignif icant. 

VI.4.2 Comparison with experiments 

Simulat ion results for the three a ir l i f t  conf igurat ions (A, B and C) and 

their  comparison with exper imental ly  measured data are presented in 

th is sect ion. Both Fluent and CFX simulat ion results are shown for 

r isers A and B, s imulat ions for r iser C were done only in F luent.  Gas 

f low rates in the s imulat ions were from 1.9 to 13.6 L/min (1.05 –

 7.51 cm/s gas superf ic ia l  velocity based on r iser cross sect ion) for 

r isers A and B, and from 1.9 to 26.8 L/min (0.53 – 7.51 cm/s) for r iser 

C.  

VI.4.2.1 Case A 

Liquid interst i t ia l  velocit ies and gas hold-up in the r iser and in the 

downcomer obtained from simulat ions (F luent and CFX) and from 

experiments as a funct ion of gas f low rate are shown in Figure VI-6 .  

Gas holdup f ie lds for d i f ferent gas f low rates can be seen in Figure 

VI-7 .  A very good agreement was obtained for l iquid interst i t ia l  velocity.  
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The re lat ive dif ference between s imulat ions (F luent)  and exper iments 

was from 0.7 to 4.4% and i t  was increasing with gas f low rate.   

The Fluent and CFX simulat ions a lso agreed very wel l  with each other 

with CFX predict ing s l ight ly lower values. The s ituat ion was worse in 

the case of gas hold-up. 

  

  

Figure VI-6 .  R iser  A s imulat ions vs.  exper iments (Sect ion VI I -4 .2 ) :  F luent  
s imulat ions (! ) ,  CFX s imulat ions (" ) ,  exper iments (# ) .  (a )  R iser  l iqu id 

interst i t ia l  ve loc i ty  V L (m/s) ,  (b )  downcomer l iqu id interst i t ia l  ve loc i ty  V L,  (c )  
r iser  gas holdup (! ) ,  and (d )  downcomer gas holdup !  vs .  r iser  gas superf ic ia l  

ve loc i ty  U G  (m/s) .  

 

S imulat ions strongly underpredicted both gas hold-up in the r iser 

(30% relat ive dif ference at the highest gas f low rate used) and in the 

downcomer, at  the moment when bubbles were start ing to be entra ined 

into the downcomer. The gas hold-up from simulat ions in the 

downcomer for the highest gas f low rate was less than 1/10 of the 

exper imental ly  obtained value. I f  a gas interst i t ia l  velocity is  est imated 

from VG=UG/!G,  where UG is the gas superf ic ia l  velocity g iven by gas 

f low rate and !G is  the exper imental ly  measured gas holdup, then for 
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the highest gas f low rate the VG  would be ~74 cm/s. This VG  va lue is  

actual ly  lower than the measured and s imulated l iquid velocity (VLexp= 

86.5 cm/s at maximum gas f low rate:  in Figure VI-6 )  and, consider ing 

the Eq. VI-44  would result  in a negat ive bubble s l ip velocity,  which is of 

course not possible. 

 

Figure VI-7 .  R iser  A s imulat ions:  Gas holdup f ie lds for  gas f low rates 1.9,  
3 .6 ,  4 .5 ,  9 .1  and 13.6 L/min ( r iser  gas superf ic ia l  ve loc i ty  ~ 1.0,  2 .0 ,  2 .5 ,  5 .0 ,  

7 .5  cm/s) .  

 

 The reason of the discrepancy between s imulat ion and exper iment is  

then probably e ither due to the exper imental  method used to obtain 

est imates of gas hold-up in the downcomer or due to imperfect model 

considerat ions (bubble shape, r ise velocity,  etc) .  A pressure drop due 

to l iquid f low can negat ively inf luence hold-up measured with U-tube 

manometers.  Nevertheless, i t  was v isual ly  observed gas bubbles in the 

downcomer at h igher gas superf ic ia l  velocit ies in r iser A conf igurat ion. 

Being so the discrepancy obtained for downcomer gas hold-up can be 

inf luenced either by the measur ing method and by s imulat ion 

considerat ions. 
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VI.4.2.2 Case B 

Simulat ions (F luent and CFX) and exper iments of r iser B are 

compared in Figure VI-8 .  Gas holdup f ie lds for d i f ferent gas f low rates 

can be seen in Figure VI-9 .   

A good agreement was obtained for l iquid interst i t ia l  velocity.  The 

re lat ive dif ference between s imulat ions (F luent)  and exper iments var ied 

from 4.6 to 8.3%. As for the case A, the Fluent and CFX simulat ions 

gave very s imi lar  results with CFX predict ing s l ight ly lower values of 

l iquid interst i t ia l  velocity.  The s imulated and exper imental ly  measured 

gas hold-up agreement in the r iser was poor.  The re lat ive dif ference in 

the r iser hold-up for the lowest gas f low rate was 40.4% and cont inual ly  

decreased to 15.5% for the highest gas f low rate. 

  

 

Figure VI-8 .  R iser  B s imulat ions vs.  exper iments.  Legend:  !  -  F luent  
s imulat ions (b lack marks) ,  "-  CFX s imulat ions (s tars ) ,  #  -  exper iments (whi te  
marks) .  (a )  R iser  l iqu id interst i t ia l  ve loc i ty  V L,  (b )  downcomer l iqu id interst i t ia l  

ve loc i ty  V L (m/s) ,  and (c )  r iser  gas holdup !  vs.  r iser  gas superf ic ia l  ve loc i ty  
U G(m/s) .  
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The gas hold-up was overpredicted by s imulat ions in th is s i tuat ion 

(r iser B) contrary to the previous r iser conf igurat ion (A).  I f  r iser B 

s imulat ions are compared with r iser A s imulat ions (Riser B has 20 cm 

longer draft  tube),  then i t  can be not iced that the predicted l iquid 

interst i t ia l  velocit ies are very s imi lar ,  with r iser B velocit ies 2.7% – 

2.9% higher i f  compared to r iser A except for the highest gas f low rate,  

where the Riser B velocity is  6.1% higher,  because of start ing bubble 

penetrat ion into the downcomer in r iser A. Exper imental ly  measured 

r iser l iquid interst i t ia l  velocit ies for r iser B were 6.3-11.6% higher then 

in r iser A depending on the gas f low rate.  I f  the same comparison is 

done for gas hold-up (Riser A vs.  Riser B) then for s imulat ions the 

re lat ive dif ference is again low (Riser B r iser holdup 1.7-4.6 re lat ive % 

lower) .  However,  the exper imental ly  measured hold-up in Riser B was 

24.7% - 33.2% relat ive lower than in r iser A (except for the lowest gas 

f low rate) .   The dif ference between r iser A and Riser B in exper iments 

was much higher than in s imulat ions.  

 

Figure VI-9 .  R iser  B s imulat ions:  Gas holdup f ie lds for  gas f low rates 1.9,  
3 .6 ,  4 .5 ,  9 .1  and 13.6 l /min ( r iser  gas superf ic ia l  ve loc i ty  ~ 1.0,  2 .0 ,  2 .5 ,  5 .0 ,  

7 .5  cm/s)  
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This suggest that the reason for b igger discrepancy between 

exper imental  and s imulat ion data in Riser B is probably a consequence 

of the exper imental  method used to est imate gas holdups (U-tube 

manometers) .   

VI.4.2.3 Case C 

In  the Riser C three dif ferent regimes were exper imental ly  observed 

with the change of gas f low rate.  At f i rst ,  for the lowest gas f low rate,  

there were no gas bubbles inside the downcomer. Then for h igher rates 

the bubbles started to be entra ined into the downcomer, but the bubble 

front d id not reach the downcomer bottom yet.  And f inal ly ,  for the 

highest gas f low rate,  the front reached the a ir l i f t  bottom and bubbles 

started to c irculate with a corresponding change of interst i t ia l  l iquid 

velocity and gas holdup vs. gas f low rate curve trends. 

The results are shown in Figure VI-10  (gas hold-ups and l iquid 

interst i t ia l  velocit ies)  and in Figure VI-11  (s imulated gas hold-up 

f ie lds) .The main quest ion was i f  the s imulat ions were able to capture 

th is behaviour.  The answer was that they could, but only part ia l ly .  

There was an in i t ia l ly  good agreement in l iquid interst i t ia l  velocit ies.  

The dif ference between the s imulat ion and the exper iment for the 

lowest exper imental ly  measured gas f low rate was <3.5 % and i t  was 

cont inual ly  increasing with gas f low rate.  I t  was 8.5 % for the second 

highest f low rate,  which is st i l l  ok,  but for the highest f low rate,  where 

there was a steeper r ise of the exper imental ly  measured l iquid velocity 

due to the regime change, the exper iment/s imulat ion dif ference was 

46%.  

Gas hold-up in the r iser and in the downcomer and also the point at 

which bubbles start  to enter the downcomer was captured very wel l .  

However,  the agreement for the highest gas f low rate was rather bad. 

The bubble front d id not reach the a ir l i f t  bottom in the s imulat ions and 

there appeared no bubble c irculat ion regime even for the maximal gas 

f low rate. 
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Figure VI-10 .  R iser  C s imulat ions vs.  exper iments Legend:  !  -  F luent  
s imulat ions (b lack marks) ,  "-  CFX s imulat ions (s tars ) ,  #  -  exper iments (whi te  

marks) .  (a )  R iser  l iqu id interst i t ia l  ve loc i ty  V L (m/s) ,  (b )  downcomer l iqu id 
interst i t ia l  ve loc i ty  V L (m/s) ,  (c )  r iser  gas holdup ! ,  and (d )  downcomer gas 

holdup !  vs .  r iser  gas superf ic ia l  ve loc i ty  U G (m/s) .  

 

The l iquid interst i t ia l  velocity d id not change much with an increase 

in gas f low rate in the s imulat ions, except for the lower rates (only 6.2% 

increase from gas f low rate 4.5 L/min to 26.8 L/min).  The l iquid 

superf ic ia l  velocity in s imulat ions (and thus a tota l  c irculat ing l iquid 

f low rate) ,  was even decreasing with gas f low rate.  The reason was that 

the dr iv ing force for the l iquid c irculat ion, the dif ference between 

average hold-up in the r iser and in the downcomer, was s lowly 

decreasing with gas f low rate from a certa in point (QG=4.5 L/min, 

UG=1.26 cm/s),  whi le the gas hold-up in the r iser and the downcomer 

were r is ing l inear ly.  The absolute dif ference between them 

(r iser/downcomer) was 1.7 % at QG = 4.5 L/min (UG=1.26 cm/s) and 

1.2% at 26.8 L/min (UG=7.51 cm/s).  The l iquid superf ic ia l  velocity in the 

r iser dropped from 34.6 cm/s to 32.3 cm/s in th is gas f low rate range in 

s imulat ions.  
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Figure VI-11 .  R iser  C s imulat ions:  Instantaneous gas holdup f ie lds for  gas 
f low rates 1.9,  3 .6 ,  4 .5 ,  9 .1 ,  13.6,  17.9 and 26.8 l /min ( r iser  gas superf ic ia l  

ve loc i ty  ~ 0.5,  1 .0 ,  1 .3 ,  2 .6 ,  3 .8 ,  5 .0 ,  7 .5 cm/s) .  

 

For r iser C s imulat ions, there was a very good agreement with 

exper iments for low gas f low rates. The deviat ion from experiments 

then started to increase s lowly with gas f low rate and then i t  rose 

suddenly for the highest gas f low rate with the onset of a bubble 

c irculat ion regime, which was not captured. As i t  was pointed out 

ear l ier ,  f low in a downcomer (counter-current f low) is  inf luenced by a 

bubble s l ip velocity much more than a f low in a r iser (co-current) .  

Demands on the accuracy of drag force c losure are then quite h igh i f  

bubbles are present in the downcomer. Drag coeff ic ient and bubble s l ip 

velocity for g iven f lu ids depend on bubble s ize,  shape, local  gas holdup 

and other factors (presence of surfactants) .  To obtain a correct bubble 

s l ip velocity (a )  a re l iable c losure equat ion for i t  is  needed and (b)  

correct inputs into th is c losure are required. Our c losure was Eq. VI-8 .  

A bubble s ize can be either prescr ibed direct ly or i t  can be a result  

f rom a bubble coalescence/break-up model solut ion. Solv ing governing 

equat ions of the f low provides the local  gas hold-up. In our s imulat ions 

the bubble s ize was prescr ibed direct ly (5 mm for a l l  f low rates, a l l  

bubbles assumed to have a same size) .  The weak point of  our 

s imulat ions and the cause of d isagreement between simulat ions and 

exper iments can be any of the above-mentioned issues, probably the 

specif icat ion of bubble s ize and/or the s l ip velocity adjustment on the 
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local  gas holdup. Although measurements of bubble s ize were done 

with a h igh-speed camera, they could be done only for very low gas 

f low rates not re levant for our study. The bubbly layer soon became 

opaque as the holdup increased.  

The use of local  techniques (eg. opt ical  probes) to measure the 

bubbles propert ies (velocity,  s ize)  is  now very important and i t  seems 

the next step in th is process. Local axia l  measurements wi l l  a lso a l low 

studying the occurrence of coalescence and break-up as wel l  as 

measur ing i ts intensity,  which can be computed latter using s imi lar  

CFD’s setups. This information seems crucial  in order to get c loser the 

s imulat ions and the exper imental  values. F inal ly  th is can be 

complemented by measurements and s imulat ion using SG as sol id 

phase in a g-l-s  system. 

 

VI.5 Conclusions 

The pr imary goal of  th is work was to make a comparison between 

s imulat ions and exper iments to see how wel l  the s imulat ions are able to 

predict l iquid interst i t ia l  velocity and gas hold-up both in the r iser and 

in the downcomer for a g-l  system. Three dif ferent a ir l i f t  r iser tubes for 

a range of gas f low rates were tested. I t  was shown that there was a 

good agreement regarding the l iquid interst i t ia l  velocit ies in the r iser 

and the downcomer with errors most ly wel l  below 10% with an 

exception of h igher gas f low rates (and especia l ly  the highest one) in 

larger d iameter r iser (Riser C).  The agreement of the gas hold-up (r iser 

and downcomer) between s imulat ions and exper iments was poorer.  The 

s imulat ions over-predicted the r iser gas holdup in r iser A and under-

predicted i t  in  r iser B. However,  as i t  was discussed, i t  could be an 

error in exper imental  measurements rather than a s imulat ion error.  The 

agreement of the gas hold-up (r iser and downcomer) for Riser C was 

good, except for the highest gas f low rate,  where a f low regime had 

already changed to a bubble c irculat ion regime, which was not 

captured by s imulat ions. A more accurate model l ing of the drag 
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force/bubble s l ip velocity would be needed to obtain better agreement 

with exper iments in the cases, when there is  a gas phase present in the 

downcomer. The s imulat ion setup is considered to be good enough to 

model cases with no gas phase being entra ined into the downcomer.  

The secondary goal was to test an effect of var ious models and 

parameters on s imulat ion results.   This included comparison between 

two commercia l  codes with two dif ferent models,  mixture model (F luent)  

and Euler-Euler model (CFX),  test ing dif ferent drag force c losures and 

turbulence models (var iants of !"# ,  !"$ ) .  The Fluent s imulat ions with 

mixture model and CFX simulat ions with Euler-Euler model gave the 

same results with only minor di f ferences between them. The test ing of 

drag closures suggested that an accurate model l ing of drag 

force/bubble s l ip velocity is  required, i f  there are bubbles present in a 

downcomer due to counter-current f low of gas- and l iquid-phase. Not 

so much accuracy is needed for a r iser f low model l ing, because the co-

current f low of gas- and l iquid-phase and the re lat ively h igh l iquid 

velocity i f  compared to the bubble s l ip velocity.  Three vers ions of a !"#  

turbulence model and a !"$  model gave very s imi lar  results. 
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VII.1 Objectives 

The main object ive in th is chapter was to study the local  inf luence of 

SG in the GLR hydrodynamics, in order to understand better the 

inf luence of such part icular ly part ic les.  In addit ion and due to in i t ia l ly  

technical  problems other object ives l ie  under the main object ive,  such 

as: 

-  Development and cal ibrat ion of a method to measure gas-phase 

propert ies using an OP, 

-  Evaluat ion of the effect of low sol id concentrat ion in iGLR local 

hydrodynamics at s imi lar  gas f low condit ions used in cont inuous AFB 

pr imary fermentat ion, 

-  Study the inf luence of yeast cel ls  in opt ical  probe measurements as 

wel l  as the inf luence of microorganisms growth on the gas-phase after 

star-up and immobi l izat ion stage (see chapter IV) .  

 

VII.2 Introduction  

In  chapter V. the global hydrodynamic parameters of three-phase 

iGLR were studied and discussed. The main conclusion indicated the 

adequate iGLR conf igurat ion for cont inuous AFB pr imary fermentat ion. 

Among the opt ions tested, the ideal  conf igurat ion should have an Ad/Ar 

rat io equal to 3.67 and the length of r iser should go from two 

cent imetres above sparger (should ensure bubbles diameter between 2 

and 4 mm) to the beginning of conical  part  f rom enlarged top sect ion. 

The inf luence of SG part ic les on gas hold-up for th is conf igurat ion was 

not ent ire ly c lear (see sect ion V.4.2) .  Therefore in th is chapter i t  wi l l  be 

studied the inf luence on local  iGLR hydrodynamics of SG part ic les for a 

s imi lar  conf igurat ion iGLR. 

As referred before local  measurements of gas-,  sol id- and l iquid-

phase require the use of d i f ferent and ref ined techniques to better 

understand the effect of SG have in the g-l  mixture. 
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VII.2.1 Measurement of local gas-phase properties 

In  chapter V global gas hold-up and l iquid velocity for the selected 

r iser conf igurat ion were not s ignif icant ly affected by the presence of 

sol ids.  However i t  was mentioned that i t  was due to the low sensibi l i ty  

of  the methods used. Therefore i t  was important to study the local  

hydrodynamics of the three-phase iGLR using SG as sol id-phase. 

There are several  techniques to study local  f low structures (Boyer et 

a l . ,  2002) and are represented in Figure VII-1 .   below. 

Among these techniques, the main non-invasive are tomography (!- 

or X-ray, capacitance or resist iv i ty,  u l trasound) and v isual izat ion (High 

Speed Camera (HSC),  PIV, etc)  techniques, whi le among invasive 

techniques are phase detect ion probes: needle,  heat transfer and 

ultrasound probes (Boyer et a l . ,  2002; Ala in Carte l l ier ,  1990).   

Invasive techniques besides more expensive and hard to apply are 

often used at industr ia l  scale.  The reasons for th is are:  (1 )  the typical  

turbulent f low regimes found in industr ia l  reactors;  (2 )  opaque reactors;  

and (3)  abi l i ty  to col lect data onl ine and cont inuously (Boyer et a l . ,  

2002).  Although, in the later years,  tomography begins to be appl ied in 

some industr ia l  process, the main drawback of th is technique 

appl icat ion in g-l-s  systems remains the equipment cost.  On the other 

hand, phase detect ion probes are cheaper and easier to apply in 

industr ia l  processes. Sensors based on temperature,  capacitance, 

opt ical  propert ies and conductiv i ty are commonly used. Frequently they 

are appl ied for two-phase f low (Ol iv ier i  et  a l .  2007; Jhawar and Prakash 

2007) and more recent ly to three phase f low systems (Mena et a l .  

2008),  usual ly  at low sol ids hold-up (Boyer et a l .  2002).  In our work, to 

study the gas-phase two techniques were used: photographic method 

(h igh speed camera) and opt ical  probe (OP).  The choice for these two 

methods was to measure with maximum accuracy the local  gas-phase 

propert ies in the g-l-s  system present in the r iser of an iGLR. 
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Figure VI I-1 .  Techniques used for  loca l  hydrodynamics character izat ion in  g- l  
and g- l-s  systems. 

VII.2.1.1 Photographic technique: high speed camera 

High speed camera (HSC) is  the tool for the photographic technique. 

This is  a method used in v isual izat ion techniques mainly appl ied for 

qual i tat ive f low analysis and quant i tat ive bubble propert ies such as: 

shape, s ize,  area and volume. Basical ly ,  i t  consists in f i lming the 

system (g-l  or  g-l-s )  f low, which is very important because due to their  

smal l  scale and fast bubble ra is ing human eye is l imited to capture a l l  

information. However some l imitat ions are known as the inabi l i ty  to use 

th is technique at h igh gas f lows, reactor wal l  transparency, out of 
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focus, i l luminat ion and image analysis (Boyer et a l . ,  2002; Ferre ira et 

a l . ,  2011).  The reactor wal l ,  as wel l  as focus and i l luminat ion can be 

solved, or reduced exper imental ly ,  especia l ly  by using a backl ight were 

l ight passes trough a dif fusion layer before i l luminat ing the reactor.  

(Mena et a l ,  2005a, 2005c, 2008).  Nevertheless, treatment of the 

obtained images is not an easy task to perform. Most of the commercia l  

systems for bubble populat ion character izat ion, i  e . ,  the ident i f icat ion 

of s ingle and over lapping bubbles are done by manual or semi-manual 

methods (Ferre ira et a l . ,  2011).  This ident i f icat ion can be done by a 

cr i ter ium as the concavity index (CI)  but i t  is  normal ly used at gas 

superf ic ia l  velocit ies below 3 cm/s. When bubbles are separated and 

classif ied then the commercia l  programs are able to determine 

successful ly  the bubbles propert ies as: the projected area, equivalent 

d iameter,  the Feret d iameters distr ibut ion, e longat ion and spher ic i ty 

(Ferre ira et a l . ,  2011; Mena et a l . ,  2005c).   

Recent ly Ferre ira et a l .  (2011) developed an automatic method based 

on an onl ine technique for sucrose crystal  morphology to ident i fy 

between s ingle and a group (two or more) of  bubbles. This 

c lassif icat ion is based on a ser ies of probabi l i t ies and also a l lows the 

character izat ion of system complexity/turbulence (Ferre ira et a l . ,  2011).  

Usual ly  when three-phase systems are appl ied, the use of automatic 

image analysis of bubbles is  very di f f icult ,  especia l ly  when the 

dif ference of grey level  between sol ids and bubbles is  not s ignif icant.  

HSC videos can be also used to determine part ic les (bubbles or sol ids)  

velocity,  however even in commercia l  programs the treatment is  done 

manual ly .  

VII.2.1.2 Optical probes characteristics: the LEGI optical probe 

Over the last two decades opt ical  probes have been developed and 

successful ly  appl ied in BC reactor local  gas-phase hydrodynamics (Dias 

et a l . ,  2000; Hamad and He, 2010; Hong et a l . ,  2004; Poupot and 

Carte l l ier ,  1999; Shen et a l . ,  2008).  They operat ion is re lat ively s imple 

and consequently their  ut i l izat ion have been increased. They al low 
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measur ing not only gas-phase concentrat ions (hold-up) but a lso bubble 

velocit ies,  s ize distr ibutions, mean interfacia l  area, mean Sauter 

d iameter and are a lso able to ident i fy f low regimes. However,  th is is  

only possible i f  some f low structures or bubble shape assumptions are 

taken in account (Carte l l ier ,  1992; Mena et a l . ,  2008).   

Double (or mult i )  t ip probes are a lso appl ied in order to measure 

parameters such as bubble velocit ies,  d iameter and interfacia l  area 

(Boyer et a l . ,  2002; Chaumat et a l . ,  2005; Dias et a l . ,  2000).  The major 

drawback on th is is  the reduct ion of spat ia l  resolut ion. In addit ion, 

when double t ip probes are appl ied on g-l-s  systems, there is  a h igher 

probabi l i ty  to promote an increase of sol ids near the t ip,  which can lead 

to inaccurate measures. 

 

Figure VI I-2.  Optica l  f iber  typ ica l  operat ion method and ind icator  funct ion 
obta ined dur ing bubble p ierc ing.  From Vejrazka et  a l .  (2010) .  

 

Carte l l ier  (1990) developed a s ingle t ip probe, which al lows a ref ined 

descr ipt ion of the f low. This probe is able to measure void fract ion and 

bubble velocity (Carte l l ier ,  1990).  Due to their  smal l  s ize the spat ia l  

resolut ion is very h igh, which also a l lows the descr ipt ion of 

microstructurat ion. However some complex interact ions ( t ip-bubble 
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interact ion) must be taken in account on th is system, part icular ly when 

bubble velocity is  measured (Carte l l ier  and Riv ière,  2001).  

Optical  probe pr inciple is  very s imple (Figure VII-2 ) .  The l ight is  

generated in a LED or Laser diode (600 to 800 mm) and passes trough a 

f iber connected to a coupler.  This device connects the probe and 

receives i ts response s ignal that is  transmitted to an opt ical/e lectr ic 

convertor.  The opt ical  s ignal is  then convert  into e lectr ical  s ignal 

(Ol iv ier  1999).  

The electr ical  s ignal is  f ragmented in order to extract a l l  

character ist ic points ( f ragments)  and carr ied out a sampling order ing 

based on i ts ampl i tude.  

In Figure VII-3  are presented the most important points to be 

detected from the s ignal when a bubble is  p ierced by the f iber.  The 

electr ical  s ignal t reatment method, cal led Treatment for Gaseous 

Velocity (TVG),  was proposed by Carte l l ier  (1992),  and can be div ided in 

four stages: 

1.  Detect ion of typical  ampl i tudes (VL and VG);  

2.  Detect ion of the character ist ic points A and B; 

3.  Detect ion of the character ist ics points C and D; 

4.  Exploitat ion of the reduced data. 

In i t ia l ly  the knowledge of three ampl i tudes is important:  l iquid (VL) ,  

gas (VG)  and noise (VB)  voltage levels,  which represent the surrounding 

phase around the probe t ip.  VG is not easy to def ine mainly due to 

dif ference between VG in a dry probe and VG of a bubble.  VB,  the 

e lectr ic noise, is  considered s imi lar  both in l iquid- or gas-phase. These 

parameters can be manual ly  introduced or computed. The VB can easi ly  

be determined from a scope reading whi le the VL and VG determinat ion 

impl ies the assurance of two cr i ter ia:  (1 )  VG-VL>1 and (2)  VL/VB>3. To 

avoid possible f luctuat ions a safety coeff ic ient (SC) is  taken in account 

and for computat ion purposes VB is  def ine as VB C=SCxVB/2, where SC is  

usual ly  lower than 2. Then, s ignal f ragmentat ion is done by isolat ing a l l  

t ime intervals from raw signal f rom which voltage exceeds VL+VB C.   



Universidade do Minho  Chapter VII 

 

175 

 

Figure VI I-3 .Bubble detect ion and determinat ion of  “bubble caracter is t ic  
points” .  Legend:  A –  Beginn ing of  Bubble;  B –  End of  Bubbles;  C –  Begin 

r is ing;  D –  End of  R is ing.   ( in  Carte l l ie r ,  1992)  

 

For each interval ,  A and B are determined, the used cr i ter ia for A and 

B being the very beginning of the ascending and the very beginning of 

the descending ramp, respect ively. To reduce errors that may occur,  

cr i ter ia parameters are introduced to ensure the correct determinat ion 

of A and B. Determinat ion of C and D points depends on a correct 

bubble piercing and several  cr i ter ia are used to ensure that only 

bubbles s ignal with the wel l  def ine plateau are used. For every interval ,  

the dif ference in ampl i tude (DV)  between l iquid and gas is computed. 

Then, using the levels 10% and 90% of DV,  points C and D are 

obtained by interpolat ion between the c losest points corresponding to 

such levels.  The TGV software determines the t imes ser ies of tA,  tB,  tC 

and tD.  The latter two are zero i f  the previous referred cr i ter ia are not 

achieved. Gas residence t ime (TG)  is  g iven by tB-tA whi le r is ing t ime (TU)  

is  calculated by tD-tC.  I f  TU values are less than the sampling rate they 

are e l iminated. Using TG and TU is  possible to determined local  gas 

phase and bubble propert ies according the fo l lowing equat ions: 

Gas hold-up 

 

!G =
TG"

tacq
      Eq. VII–1  
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Bubble Velocity:  

 

v
B

= A ! T
M

B       Eq. VII–2  

Bubble Chord: 

 

ch
B

= v
B
! T

G
      Eq. VII–3  

The analysis of a l l  measurements in a TG-TU or chB- |V0 |  p lane can be 

useful  to dist inguish several  bubble populat ions and get information 

about the f low regime. 

Some errors have been reported for local  character ist ic 

measurements using opt ical  probes and are re lated mainly with the 

pierc ing between opt ical  f iber and bubble as exempli f ied in Figure 

VII-4  (Carte l l ier  1992, 1998; Carte l l ier  and Barrau, 1998).  The most 

usual are effects of:  (1 )  b l inding; (2 )  dr i f t ing and (3)  crawl ing. In 

addit ion, avoiding errors in TU and vB measurement as wel l  as in probe 

cleanl iness is essent ia l  to achieve an accurate measurement.   

 

Figure VI I-4 .  Bubble inter face/probe interact ion parameters .  In  Carte l l ie r ,  
1992.  

 

The “bl inding” effect occurs when smal l  chords are not detected due 

to imperfect t ip dewett ing. The “dr i f t ing” effect happens when the 

bubble tra jectory changes leading to a smal l  chord detect ing or even to 

no detect ion at a l l .  F inal ly  the “crawl ing” effect is  due to bubble 

deformation and desacelerat ion of the bubble when is p ierced by the 

t ip.  Bl inding and dr i f t ing lead to an underest imation of gas hold-up, 

interface at t 

amplitude VB 
-Active length of the probe 

FIG. 1. Idealized locii of the characteristic events on a bubble signature. 

FIG. 2. Parameters for the analysis of a two-dimensional probe/interface 
interaction. 

II. PIERCING EXPERIMENTS 

The analysis of the response of a probe to the passage 

of a well controlled interface provides an opportunity to 

correlate the rise time to the interface characteristics. In a 

previous work,8 the correlation between T, and Vi has 

been determined for a probe axis either parallel to or per- 

pendicular to a plane interface. These ideal cases may not 

be representative of real measuring conditions, and addi- 

tional parameters (such as the interface curvature for ex- 
ample) must be considered. However, owing to the com- 

plexity of the hydrodynamics phenomena occurring during 

a probe-interface interaction,’ the present analysis will be 
restricted to controllable macroscopic parameters. For a 

pair of fluids and a given probe, these are: the geometric 

displacement velocity of the interface Vi, the radii of cur- 

vature R, and R2, the orientation of the probe axis with 
respect to the normal to the interface p1 and /3*. These 

variables are defined at the point of contact between the 
probe and the interface. According to the transit time in- 

terpretation justified in Ref. 8, the transition between a wet 

and a dry probe tip involves the passage of an interface 
along a distance of magnitude L on the probe. Thus, the 

time evolution of the actual dewetted distance should also 
depend on the bubble shape, orientation, and trajectory. 

The introduction of all these parameters leads to a rela- 
tionship untractable in practice. The analysis could be sim- 
plified as follows. Since the probes are unable to detect tiny 
bubbles,’ in most cases the distance L could be assumed 
negligible compared with the bubble size. Thus, the bubble 
shape and orientation are dropped out, and the trajectory 
effect intervenes only by way of the orientation of the bub- 

ble mass center velocity Vc. The relationship becomes then 

T,=f( I VOI,R~,R~,/~,,PZ,Y,,Y~) for a probe and a 

liquid/gas pair, (1) 

where the angles y, and y2 define the direction of I’, rela- 
tive to the probe axis. In this work, the analysis is further 

restricted to the two-dimensional case illustrated in Fig. 2, 
so that a single curvature is taken into account. Moreover, 
the velocity V, will be always parallel to the probe axis 
(y=O). Although this parameter is expected to modify the 
rise times, it was not possible to easily adapt our experi- 
mental facilities for such tests. Thus, the correlation to be 

established reduces to 

T,=f( I vol ,R,B) f or a probe and a liquid/gas pair. 

(2) 

Let us recall that the previous experiments’ lead to a spe- 

cial case of Eq. (2) of the form 

T,=L*/I V,l for R- CO, fl=O” or 90”, (3) 

where L* is a constant when 1 V,l is greater than 10 cm/s. 

In the tests presented hereafter, the influence of both R and 
fi is also investigated. The rise time is still defined as the 
duration between the point C at 10% and the point D at 

90% of the voltage difference DV between liquid and gas 
levels. More precisely, DV is defined by the static liquid 

level VL on one hand, and by the asymptotic value of the 

plateau VG, even if this level deviates from the static gas 
level. The uncertainty on T, is determined for every test; it 

never exceeds 7% including some subjectivity of the oper- 
ator in the determination of DV. The latency length L is 

defined by the product T, I V, I. 
The sensors tested are Optoflow probes connected to 

an optoelectronic detector whose response time is 10 ,us.~ 

The probe previously used (named probe I)* was acci- 
dently broken, and a pair of new probes of the same type 

(respectively, probe 2 and 3) are now tested. Their char- 
acteristics are not identical to those of the probe 1. Their 
tip diameters are larger ( =: 5 1 pm for 2 and =: 36 pm for 3, 

to be compared with 13 ,um for the probe 1). The polar 
distribution of the light intensity leaving the tip have been 
determined for the probes immersed in water. As shown in 

Fig. 3, the probes 2 and 3 are much more directional than 

FIG. 3. Polar distribution of the light intensity leaving the probe tips 
immersed in water. 

5443 Rev. Sci. Instrum., Vol. 63, No. 11, November 1992 Two-phase flow 5443 
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whi le the crawl ing leads to an overest imation as the bubble “stays” 

more t ime pierced by t ip.   

Errors re lated with pierc ing are very important because r is ing t ime 

(TU)  depend on !  (angle between the probe and the normal to interface) 

and "  (angle between the probe and the bubble velocity vector)  

(Carte l l ier  and Barrau, 1998).  I t  was shown that for !  va lues infer ior to 

10º TU is  weakly sensible however when !  increases the r is ing t ime TU 

starts to be impossible to determine (TU*vB!cte=L ) .  Thus, i t  is  d i f f icult  

to arrange some corre lat ion between al l  these parameters especia l ly ,  in 

real  s i tuat ions, where i t  is  d i f f icult  to predict ! .  In order to have low 

values of ! ,  and be able to determine velocity from TU,  the probe needs 

to be almost in perpendicular posit ion compared to the f low direct ion 

(Carte l l ier  and Barrau, 1998; Mena et a l . ,  2008).  

Vejrazka et a l  (2010) found that gas hold-up measurement errors are 

due to the intrusive property of probes. They studied the interact ion 

between an opt ical  probe and a bubble where both opt ical  probe 

displacement and bubble deformation were found to be the causes for 

the measurement errors displayed, especia l ly  when chords distr ibut ion 

is calculated (Vejrazka et a l . ,  2010).  However i t  is  bel ieved that the 

abi l i ty  to evaluate gas hold-up is not so roughly affected by these 

causes. 

When opt ical  probes are appl ied in g-l-s  systems the sol ids should 

not:  (1 )  have such r ig id ity so that they could break the opt ical  f iber 

when interact ion occurs;  (2 )  contaminate the opt ical  f iber.  Optical  f iber 

contaminat ion depends mainly from the sol ids propert ies and s ize. In 

general  sol id propert ies are such that have no inf luence in opt ical  probe 

s ignal,  but there are exceptions. For example i t  was found by Mena et 

a l  (2008) that a lg inate beds, a semi-r ig id sol id,  let  some residues after 

t ip-sol id interact ion and wrong signals in probe voltage were reported 

as i t  can be observed in Figure VII-5  (Mena et a l . ,  2008).   

On the other hand smal l  part ic les may form an agglomerate around 

the opt ical  f iber avoiding the interact ion between t ip and bubbles. This 
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agglomerat ion of smal l  part ic les depends on their  propert ies 

(hydrophobicity;  surface charge; etc)  leading to the formation of a 

sol ids c luster around the t ip. 

 

Figure VI I-5 .  S ignal  ampl i tude d ist r ibut ion (Left  Graph)  and t ime ser ies 
ampl i tude (R ight  Graph)  obta ined by Mena et  a l  (2008)  for  g- l-s  system us ing 

a lg inate beads.  Adapted f rom Mena et  a l .  (2008) .  

 

Sol id-t ip interact ion may induce inadequate s ignals due to 

contaminat ion of the opt ical  f iber.  Mena et a l  (2008) found that a lg inate 

beds contaminat ion induces a s ignif icant s ignal increasing (voltage 

peak) affect ing the s ignal processing (Figure VII-5 ) .  Having in mind that 

a l l  methods developed in s ignal processing are opt imized for two-phase 

f low, i t  is  necessary to adapt them when three-phase systems are used. 

Therefore a new problem ar ises due to t ip mechanical  sensit iv i ty and 

their  resistance to sol id part ic les impact.  In their  work other sol ids 

(g lass and polystyrene) were tested in order to evaluate the effects of 

sol ids on measurement accuracy. Among al l  studied sol id only a lg inate 

beds induces errors in opt ical  probe response s ignal.  Consider ing the 

complex exper imental  and s ignal analysis procedures used, the 

successful l  appl icat ion of this specif ic  probe on three phase systems 

was achieved (Mena et a l . ,  2008).  

The contaminat ion caused by c luster formation around the t ip is  a 

very dif ferent type of contaminat ion and dist inct f rom the one that 

occurred in Mena et a l  (2008) work. The part ic le agglomerat ion avoids 

bubble-t ip interact ion and i t  is  not possible to accurately measure the 

local  propert ies of the system.  
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VII.2.2 Solid-phase properties and distribution 

The part ic les tested on th is work were the cel lu lose-based (SG).  The 

SG are general ly  hydrophobic and have a negat ive charge at low pH, 

which along with their  rugosity and non-uniform surface fu l l  of  cavit ies 

and holes a l lows them to immobi l ize cel ls  very effect ively.  The abi l i ty  of 

SG, when in the presence of water,  to form aggregates especia l ly  in the 

sect ions of the reactor (conical  part ,  see Sect ion V.4.1)  where the l iquid 

velocity is  lower (dead zones) can result  f rom their  hydrophobic 

surface. Part ic les and bubbles s ize are in the same range so the t ip can 

pierce one or more SG part ic les that are f lowing upwards in the r iser.  

These pierced part ic les wi l l  then interact with the moving part ic les and 

agglomerat ion of SG is observed around the probe t ip unt i l  no bubble 

s ignal is  detected.  

To overcome this problem it  was implemented an in jection system 

(Figure VII-6 )  that acts per iodical ly  near the probe t ip.  The l iquid-phase 

is in jected per iodical ly  and the turbulence that i t  promotes c leans the 

t ip of a l l  c luster formed.  

 

Figure VI I-6 .  Photo of  in ject ion t ip  developed around the opt ica l  f iber  ( le f t ) .  
D iagram of  In ject ion system operat ing ( r ight ) .  Legend:  A l iqu id in ject ion 

tubes;  B –  Opt ica l  probe output  s ignal ;  C –  Opt ica l  probe t ip  (opt ica l  f iber ) ;  D 
–  L iqu id in jected arount  opt ica l  f iber  (dashed l ine)  
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However there are some drawbacks when in ject ion near the probe is 

appl ied: because of the induced perturbat ions, parts of the s ignal,  

corresponding to the t imes when in ject ion is done, must be removed 

from the opt ical  probe raw signal in order to achieve an accurate s ignal 

evaluat ion. In pract ical  terms, the in ject ion system was not able to be 

used at more than 6.1 % sol ids (wt W E T  B A S I S . /vol . ) .  

As ver i f ied in Chapter V, in an iGLR not only sol id inf luence on gas 

hold-up is important but a lso sol id distr ibut ion throughout the reactor.  

Consider ing the results from previous chapter,  i t  is  expected to have 

s imi lar  sol ids distr ibut ion in the iGLR tested. Being so and to easier 

future evaluat ion, the sol ids distr ibut ion throughout the iGLR was 

considered to be almost homogeneous (see sect ion V.4.1.2) .  

VII.2.3 Liquid-phase  

I t  is  a lso important to take into account the l iquid-phase propert ies 

in three-phase systems. The sol ids may induce changes in the l iquid-

phase propert ies,  which wi l l  af fect the g-l  mixture.  Usual ly  c irculat ion 

and mixing t imes are important parameters to study the mixing, 

d ispersion and tension f ie ld propert ies of the GLRs. Associated to th is,  

l iquid velocit ies in downcomer and r iser are normal ly determined, these 

velocit ies being important parameters to use in several  models that 

descr ibe the GL reactor hydrodynamics. 

Tracer techniques used in the previous chapter do not a l low us to 

know the local  f low character ist ics in the downcomer. For th is,  f ine 

techniques may be used (Figure VII-1 .  )  as,  for example, LDA – Laser 

Doppler Anemometry (non invasive);  PIV – Part ic le Image Velocimetry 

(non-invasive);  Heat probes ( invasive).  In th is work, consider ing the 

l iquid velocity and the inf luence of SG, PIV was used.  
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VII.2.3.1 Particle image velocimetry 

Part ic le image velocimetry (PIV) is  a technique that has been 

successful ly  used to determine velocity f ie lds in s ingle-phase f low at 

low gas hold-up values. A laser sheet is  used to i l luminate a def ined 

part  of  the f lu id that contains seeding part ic les (density s imi lar  to the 

f lu id) .  A HSC is synchronized with the laser beam and two or more 

pictures are taken in short  t ime intervals (! t ) .  Then these images are 

treated ( f i l tered and “cleaned” of noise) and the distance between the 

two seeding part ic les is  calculated. Knowing the t ime interval  between 

the pictures, i t  is  then possible to determine the instantaneous velocity 

f ie ld of the l iquid. By processing the instantaneous velocity,  the 

average velocity in d i f ferent zones of the reactor can be obtained. The 

main problem of using PIV is to ident i fy the seeding part ic les between 

the frames. Usual ly  to discr iminate wel l  the dif ferent phases f luorescent 

seeding part ic les are used for the l iquid and the f i l tered s ignal is  

analysed (Boyer et a l . ,  2002; Unadkat et al . ,  2009).  PIV technique is a 

ref ined technique general ly  used to obtain instantaneous l iquid velocity 

and f lu id propert ies.  In our case, we used i t  to determine the type of 

f low in the dowcomer where only l iquid and sol id-phase were present. 

In gas-l i f t  reactors the l iquid-phase velocity and circulat ion depends on 

the gas f low rate according to: 

 

v
Li

= a !U
Gr

b
 for i = r or d       Eq. VII–4  

Where a  depends on the f lu id propert ies whi le UGr  is  determined by 

the f low regime and both by the reactor geometry (Onken and Wei land, 

1983).  L iquid velocity inf luences circulat ion and mixing t ime in th is k ind 

of reactors,  as showed in a previous chapter,  depends on geometry 

propert ies as the rat ios:  Ad/Ar and Hr/HC, the presence or absence of a 

top sect ion as wel l  as i ts conf igurat ion (Fonseca et Teixeira,  2007).  

Kle in et a l  (2003) working with a s imi lar  gas- l i f t  reactor found that l iquid 

f low through the reactor ( to di lut ion rates up to 0.6 h-1) has no re levant 

inf luence in the main hydrodynamic parameters (sect ion VI.3)  (K le in et 

a l . ,  2003).  So, a l l  measurements were done in batch system.  
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VII.2.4  Hydrodynamic model: local hydrodynamics 

For th is work a hydrodynamic model was developed based on the 

hydrodynamic models present in l i terature (Chist i  1989; Lu et a l .  1995; 

Freitas et a l .  1999).  This a l lows having a better understanding of the 

inf luence of the sol id phase on system hydrodynamics. Some 

assumptions were made: 

-  reactor contains four sect ions: Bottom (b),  Riser ( r ) ,  Downcomer 

(d)  and Top (t ) .  

-  a pseudo-homogeneous phase (H) was considered. 

-  sol ids distr ibut ion is homogeneous which leads to the fact that the 

propert ies of the pseudo-homogeneous phase are constant in a l l  parts 

of the reactor.   

-  no gas is present in downcomer. 

From the “dr i f t- f lux” model developed by Zuber et F indlay (1965) the 

re lat ion between gas l inear velocity and superf ic ia l  velocity of gas and 

l iquid, as wel l  as bubble terminal  velocity can be writ ten as:  

 

v
G

= C ! (U
G

+U
L
) +U

bt
      Eq. VII–5  

Where C is the distr ibut ion parameter and indicates the f lux pattern. 

When C=1 i t  means that the f lux distr ibut ion is f lat .  C is re lated to gas 

distr ibut ion and not velocity prof i le .  In the a ir- l i f t  reactor r iser:  

 

v
Gr

= C ! (U
Gr

+U
Lr
) +U

bt
      Eq. VII–6  

The re lat ion between l iner and superf ic ia l  velocity with gas hold-up 

can be def ined as: 

 

!
Gr

=
U

Gr

v
Gr

      Eq. VII–7  

Combining Eq. VII–6  and Eq. VII–7  one gets:  

 

!
Gr

=
U

Gr

C " (U
Gr

+U
Lr
) +U

bt

      Eq. VII–8  
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Eq. VII–8 wil l  be used to obtain,  by f i t t ing to exper imental  data,  the 

parameters:  C and Ub t .  The determinat ion of l iquid velocity in r iser is  

done consider ing that the pressure dif ference between donwcomer and 

r iser (Pd )  is  equal to the tota l  f r ict ion loss (-!PT ) (Lu et a l . ,  1995):  

 

Pd = !H"Hd # !G"Gd( ) $ !L"Lr + !G"Gr( )[ ]# g # H      Eq. VII–9  

Knowing that !H>>!G and consider ing that "Hr=1-"Gr  and "Hd=1, 

"Gd=0, the Pd equat ion can be re-writ ten: 

 

Pd = !H "#Gr " g " H       Eq. VII–10  

The tota l  f r ict ion loss in each reactor sect ion is g iven by the 

equat ion: 

 

!"PT = !"Pf( )#
i
      Eq. VII–11  

Where ( -!Pf) i  is  the pressure drop in sect ion “ i” ( i=r iser,  downcomer, 

top, bottom) and is determined by: 

 

!"Pf( )
i

= 1/2 # $H # k fi # vLi
2       Eq. VII–12  

For Riser and Downcomer k f i  is  determined accordingly: 

 

k fr = 4 ! f r ! Hr /dr and k fr = 4 ! fd ! Hd /(dc " dr,ext )       Eq. VII–13  

Where f i  ( for  i=r  or  d )  is  determined by the Blasius equat ion:  

 

fi = 0.0791Re
!0.25      Eq. VII–14  

And 

 

Re
Hi

=
!
Hi
" v

Li
" d

i

µ
Hi

      Eq. VII–15  

Using correct ion factor proposed  (a )  by Garcia-Calvo and Letón 

(Freitas 2002) and consider ing #H i  and µH i  constant throughout a l l  

reactor,  the k f i  equat ion can be re-writ ten: 

 

k fi =
4 !" ! 0.0791! Hi ! µHi

0.25

#Hi

0.25 ! di
0.25 ! vLi

0.25
      Eq. VII–16  
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As !  ,  "H i  and µ H i  depend on sol id concentrat ion a parameter #  was 

considered (Freitas et a l .  1999):  

 

! = " # 4 # 0.0791# µ 0.25 # $%0.25      Eq. VII–17  

As k f t o p<<kf b o t t o m only the pressure drop in the bottom wi l l  be 

considered and determined accordingly (Chist i  1989):  

 

k fbb = 11.4 !
Ad

Alb

" 

# 
$ 

% 

& 
' 

0.79

0.2 <
Ad

Alb

< 1.8       Eq. VII–18  

Thus at steady-state consider ing the re lat ion: 

 

P
d

= !"P
T
      Eq. VII–19  

Combining Eq. VII–10 ,  Eq. VII–11 ,  Eq. VII–12  and Eq. VII–13  

consider ing: 

 

v
Li

=
U

Li

1!"
Gi
!"

Si

      Eq. VII–20  

And  

 

A
i
!U

Li
= A

r
!U

Lr
      Eq. VII–21  

The f inal  equat ion for l iquid superf ic ia l  velocity is 

 

2 ! g ! Hr,d ! ("Gr #"Gd ) =
Ar

Ad

$ 

% 
& 

' 

( 
) 

2

!
k fbb

1#"Gd #"Sd( )
2ULr

2
+ ...

...+
Dr

#1.25

(1#"Gr #"Sr)
1.75

+
Ar
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* 

+ 

, 
, 

- 

. 

/ 
/ 
! Hr,d ! 0 !ULr

1.75

 

Eq. VII–22  

These equat ions are solved according to the fo l lowing diagram 

(Figure VII-7 ) .  
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Figure VI I-7 .F low d iagram for  MATLAB program used in  th is  model .  Start ing 
f rom in i t ia l  model  parameters and exper imenta l  data,  new parameters are 
ca lcu lated in  order  to  achieved va lues of  U G r ,  eG r  and U L r  that  are s imi lar  

(±5%) to the exper imenta l  data.  

Experimental Data: 

UGr, eGr, ULr 

Model Parameters: 

C,!,Ubt 

!Gr determination (eq.15)  

ULr determination (eq. 29)  

Initial conditions: 

Ugr00=Ugr;  

egr00=eGr,  

Ulr00=Ulr. 

Initial estimations (literature): 

C0=1;  

b0=0.02,  

ubt0=0.25. 

New conditions: 

Ugr00=Ugr(i);  

egr00=egr(i),  

ulr00=ulr(i)Ulr. 

Ulr(i)-ulr(i-1)"0.001  

Error"[(ULrEXP-ULr)/ULREXP+(eGrEXP-eGr)/

eGREXP] 

New parameters: 

C; B; ubt0. 

Yes 

Yes 

No 

No 
End 



Universidade do Minho  Chapter VII 

 

186 

VII.3 Material and Methods 

VII.3.1 Experimental apparatus for gas hold-up measurements 

 

Figure VI I-8 .  Exper imenta l  setup for  gas hold-up exper iments.  Legend:  1 .  A i r-
L i f t  Reactor ;  2 .  Opt ica l  Probe;  3 .  E lectro va lve;  4 .  L ight  source+ Photo 

detector ;  5 .  Osci l loscope;  6 .  Acquis i t ion Board 

 

The iGLR used in th is work is  of the concentr ic draught tube type 

with an enlarged top sect ion for degassing and a tota l  working volume 

of 6 L (Figure VII-8 ) .  The dimensions of the reactor are as fo l lows: tota l  

height= 96 cm; downcomer’s length= 66 cm and inside diameter= 7 cm; 

draught tube length= 64 cm, diameter=3 cm, and th ickness= 0.5 cm; 

and cyl indr ical  part ’s length= 19.5 cm and diameter= 19 cm. The angle 



Universidade do Minho  Chapter VII 

 

187 

between the conical  sector and the main body was 51°.  Gas was 

in jected through a distr ibutor (1-cm diameter)  with f ive needles, each of 

0.2 mm in diameter,  and placed 1.7 cm below the annulus of the r iser.  

The outf low of the reactor was placed behind a sedimentat ion barr ier ,  

thus minimiz ing carr ier  losses. The water level  in the reactor was 

always kept constant at the same height.  Temperature and pressure 

were ambient (21 ºC and 1 atm).  The desired gas f low was adjusted 

with a rotameter (MR3000 ser ies Flowmeter, Key Inst. ,  Trevose, USA) 

operat ing at 1 atm and 21 ºC. 

The cycl ic in ject ion ( In ject ion t ime(s)/Total  cycle t ime(s)=0.5/2.5)  was 

performed by using one electro-valve (Sira i ,  Mi lan, I ta ly )  control led by 

PC equipped with LABVIEW (Nat ional Instruments, Aust in,  Texas, USA).  

The s ignal acquis it ion of the e lectro-valve and opt ical  probe were 

recorded using an acquis it ion board NI BNC-2110 (Nat ional 

Instruments, Aust in,  Texas, USA) and LABVIEW program, which saves 

the s ignal in a binary f i le  per assay. Then each f i le  was treated using 

MATLAB 6.1 (MathWorks, Nat ick, MA, USA) developed to read the 

binary f i les obtained. The same program was used to determinate a l l  

character ist ic points from optical  probe s ignal (tA,  tB,  tC and tD) ,  as wel l  

as to calculate a l l  gas phase propert ies determined from Eq. VII–1, VII-

2 and  VII-3 .  The sampling rate was 10kHz and the durat ion of each 

assay was 800 s.  Each exper imental  condit ion was repeated 5 t imes in 

order to have enough measured bubbles (at  least 1000) that assure 

stat ist ical  evaluat ion.  
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Figure VI I-9 .  MATLAB program layout  (see Appendix I ) .  

VII.3.2 New signal processing and validation 

In  the raw data treatment the inf luence of the in ject ion is removed 

and only the data where no in ject ions are performed is analysed to 

determined gas-phase propert ies:  gas hold-up, bubble chord and 

velocity.  For val idat ion of the new system, tests were performed only in 

g-l  system in order to evaluate i f  the modif icat ion ( in ject ion system plus 

new method) made has a real  inf luence in the measurement. 

The obtained s ignal is  composed by two curves: one where the s ignal 

recorded by the OP is present and other which corresponds to the 

s ignal of  the in ject ions (Figure VII-10 ) .   

At each in ject ion there is  a perturbat ion in the probe and in the f low 

leading to measurement errors due to:  (1 )  probe movement;  (2 )  

increased bubble residence t ime (h igher tG) ;  (3 )  bubble def lect ion 

(detect ion of a bubble that normal ly was not detected and v ice-versa).  

Binary File from Optical Probe (OP) Experiment Reading!

Conversion of binary file in two arrays: OP voltage; Electro valve 

voltage!

Removing Injection times in OP voltage array (Sections)!

Determination per section: VG; VL ; Nr of Bubbles (Nº Bub)!

YES! If Nº Bub/Section > 1! NO!

Section Rejected!
Determination of tG; tU; 

tAQ; !SECTION;
!
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Figure VI I-10 .  Raw s ignal  obta in  for  r iser  rad ia l  centra l  pos i t ion at  
Q G A S=400mL/min.  Top graph shows opt ica l  probe s ignal .  Bottom Graph shows 

e lectovalve s ignal .  (The tota l  t ime where corresponds to 7 seconds)  

 

In order to avoid these errors the s ignal is  then cut before and after 

the in ject ion and only the rest of the s ignal is  used for gas hold-up 

determinat ion. The cut s ignal is  then analysed and the gas hold-up 

calculated. So the cutt ing t ime (percentage of in ject ion t ime) becomes 

one of the cr i t ical  parameters for hold-up determinat ion. Dif ferent 

cutt ing zones around the in ject ion were performed and gas hold-up 

determined for each zone. The val idat ion exper iments were performed 

in a ir-water mixture using the in ject ion system and without the in ject ion 

system. Then the results were compared between the new system and 

the obtained using the a lgor i thm developed by Ala in Carte l l ier  (1992) – 

TGV. The results from the new developed system were performed at 

d i f ferent cutt ing percentages before and after the in ject ion t ime 

(d i f ferent cutt ing zones).  The cutt ing zones (Figure VII-11 )  include not 
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only the t ime when the in ject ion was performed but a lso fract ions of 

t ime before and after the referred in ject ion. Consider ing that the 

in ject ion inf luence is b igger after i t  occurs than before, the zones 

evaluated were: ADD1 - up to 50% less t ime before the beginning of 

in ject ion; ADD2 - up to 100% more after the in ject ion t ime. This means 

that,  per each in ject ion per iod (2.5 s) ,  the minimum t ime removed was 

0.5 s corresponding only to the in ject ion and the maximum t ime was 

1.25 s corresponding to a cutt ing of 50% before and 100% after the 

in ject ion ( included) as expla ined in Figure VII-11 .  

 

Figure VI I-11 .  Graphica l  explanat ion of  cutt ing zones.  Legend:  Add1 area 
removed before in ject ion ( f rom 0% to 50% of  In ject ion peak t ime) .  Add2 area 

removed af ter  in ject ion ( f rom 0% to 100% of  In ject ion peak t ime)  

 

The error between gas hold-up measure using the TGV program and 

using the new method was calculated using the equat ion: 

 

%Error =
abs(x

TGV
! x

INJ
)

x
TGV

"100      Eq. VII–23  

Where x  represents the gas-phase propert ies:  hold-up (!B ) ;  bubble 

velocity (vB )  or  bubble chord length (chB ) .  
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VII.3.3 Experimental conditions 

 

Figure VI I-12 .Opt ica l  probe measurement locat ion in  the GL reactor  

 

The opt ical  probe was located at two heights from the top of the 

r iser:  hA=10 cm and hB=30 cm and measurements were performed 

varying the radia l  posit ion. The radia l  posit ions were, respect ively,  r=0, 

±7 mm. r=0 corresponds to the column axis.  The few posit ions studied 

in the radia l  posit ions were because of (1 )  the lower spat ia l  resolut ion 

due to in ject ion system used, and (2)  the t ime/storage space that was 

necessary to obtained enough data for each studied posit ion.  

6 L

A

B

Legend:

0 <-> A : 10 cm
A <-> B : 20 cm

ri <-> rj : 7 mm

0

Top view of Riser

r7 r15 r22
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VII.3.4  Solids properties 

Spent grains were pre-treated according to the acid/base method 

proposed by Brányik et a l .  (2001).  Spent grains after pre-treatment are 

a lmost f lat  part ic les,  with equivalent d iameter dE Q<2.1 mm and density 

!=1037 kgW E T  B A S I S/m3.  The s ize distr ibut ion of the part ic les was 

determined by s ieving into fract ions using a portable s ieve shaker 

(Model Analysette,  Fr i tsch, Germany).  With the obtained data, the 

equivalent d iameter was calculated. The sol ids are completely wettable 

with a water adsorpt ion index (WAI)  of  8,12 gW E T/gD R Y and sedimentat ion 

velocity is  about (0.83 ± 0.16) cm/s. The fo l lowing f ive sol id loadings 

were used 0% (water) ,  2%, 4%, 6% (wt.W E T  B A S I S/vol . ) .   

VII.3.5 High speed camera measurements and image analysis 

To analyse the specif ic behaviour and inf luence of the SG in g-l  

mixture a HSC, recording at 1000 frames per second, was used. This 

a l lows v isual  evaluat ion and conf irmation of the information obtained by 

the opt ical  probe using the new method. However th is was only 

achieved at low sol id concentrat ion (up to 2% (wt.W E T  B A S I S/vol . ) )  

because at h igher values no information from images was possible to 

be obtained. HSC videos were recorded using FlowView T M  program and 

the bubble propert ies (mean chord and minimum and maximum Feret 

d iameters)  analysis was performed manual ly.  Image s izes obtained have 

a 1280x1024 resolut ion and the manual measurement error was below 

5%. In order to conf irm the qual i ty of the manual analysis process, 

some exper iments were a lso analysed using the stat ist ical  tool 

proposed by Ferre ira et a l .  (2011).  This tool  was successful ly  appl ied in 

the automatic ident i f icat ion of s ingle bubbles and bubble groups with a 

minimum agreement of 90% (Ferre ira et a l . ,  2011).  
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VII.3.6 Statistical method 

The stat ist ical  analysis of the gas-phase propert ies (hold-up, 

velocity,  chord s ize)  was carr ied out using s ingle-factor analysis of 

var iance (ANOVA),  whi le mult ip le comparison tests were used to 

determine the stat ist ical  s ignif icance with a 95% conf idence level .  For 

the data analysis,  MATLAB software was used. 

VII.3.7  PIV measurements 

PIV measurements were made to determine the l iquid velocity f ie ld in 

the downcomer. The PIV-LIF system was a LaVis ion DAVIS with a Twins 

Ultra Yag 2x30 mJ Laser (wave peak 532 nm).  The camera (ProX2M) 

with a minimum interframe of 110 ns was used to recorde PIV-LIF 

images. The laser was passed through a lens, which shaped the 

result ing beam into a l ight sheet.  The delay between two pictures was 

120 µs. The f ie ld of v iew was 232 mm!150 mm and included the 

dowcomer center.  Consequently,  150 double image pairs were obtained 

in each assay, and were considered to be suff ic ient to obtain stat ist ics 

results.  Each assay was performed in tr ip l icate 

 

Figure VI I-13 .  Exper imenta l  setup for  PIV measurements.  Legend:  1 .  A i r  
Source;  2 .  Rotameter ;  3 .  A i r-L i f t  Reactor ;  4 .  Laser  + Laser  sheet  maker;  5 .  
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Recording camera;  6 .  Acquis i t ion and Synchronized System; 7.  Laser  sheet  
measurement v iewed f rom above 

VII.3.8 Microorganism and medium 

The microorganism used dur ing the exper imental  work was a brewing 

yeast stra in (Saccharomyces cerevis iae )  suppl ied by the company 

UNICER (Bebidas de Portugal,  S.A.,  S. Mamede de Infesta) . 

The yeast was cult ivated in a synthet ic model medium (SMM) with 

same composit ion as presented in Chapter VI I I .2.  Barre ls with 50 L of 

SMM were ster i l ized by autoclaving at 120 ºC, 100 kPa for 60 min. 

VII.3.9 Free biomass determination 

A sample of 10 mL was removed from the reactor outf low and i t  was 

centr i fuged (Hett ich, Universal  320R) for 5 min at 5000 rpm and 4 ºC. 

The supernatant was removed and the sediment was di luted (1:5 rat io)  

with isotonic solut ion (0.9% (wt./vol . )  NaCl) .  The opt ical  density of the 

solut ion was measured with a spectrophotometer (WPA - Biowave I I )  at  

600 nm wavelength. Each sample determinat ion was done in tr ip l icate.  

The results of b iomass concentrat ion were calculated using a 

cal ibrat ion curve that re lated gB I O M A S S/L vs.  O.D. (600nm). 

VII.3.10 Immobilized biomass determination 

A sample contain ing approximately 1 g of dry biocatalyst (carr ier  + 

immobi l ized cel ls )  was taken from the reactor.  The bulk l iquid was 

removed with a syr inge and the carr ier  was washed with dist i l led water 

in order to remove the free cel ls  captured between the carr ier  part ic les 

and dr ied at 80 °C. Then the dry sample was weighed and div ided in 

three Er lenmeyer f lasks (previous weighted) with 50 mL of 3% (w/v)  

NaOH solut ion and was shaken at 150 rpm for 24 h. Dur ing th is t ime the 

immobi l ized cel ls  were completely removed from the carr ier .  The 

re leased cel ls  were washed with dist i l late water and dr ied at 80 ºC. The 
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amount of immobi l ized yeast b iomass was determined from the weight 

d i f ference before and after the treatment with NaOH solut ion. 

Correct ions of the biomass weight were carr ied out admitt ing 6% of 

losses. 

VII.3.11 Cell viability – flow cytometry 

The f low cytometry measurements were taken using a Accuri  C6 f low 

cytometer (Accur i ,  Michigan, USA).  The FCM analyzer contains a sol id 

state 488 nm (FL1-H) and a 640 nm (FL2-H) diode laser and is a lso 

equipped with an auto sampler unit .  The cel l  v iabi l i ty  was determined 

by sta in ing yeast cel ls  with Propidium iodide (PI ) .  For that,  1 mL of 

yeast cel ls  suspension was mixed with 10 µL of PI in a dark room for 

10 min. Then 10 µL of yeast suspension was analysed by f low 

cytometry.   Cel l  suspension was di luted in order to achieve a 

concentrat ion that corresponds to a minimum of 150 events (or 

cel ls )/µL detected in FL1-H channel.  The dead cel ls  sta ined in red by PI 

were detected in FL2-H channel and considered non v iable.  A 

cal ibrat ion curve that re lated number of Total  cel ls/mL vs. O.D. 

(600 nm) was determined.  
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VII.4 Results and Discussion 

VII.4.1 Calibration of new system 

Before measur ing the gas phase propert ies in g-l-s  systems i t  was 

necessary to know the range of cutt ing zones where the new method is 

val id,  i  e . ,  where the error between the new and TGV methods is lower.  

An in i t ia l  observat ion indicated that the new system general ly  over 

est imates the gas-phase propert ies for 250 mL/min, whi le for 400 

mL/min the results are underest imated. The re lat ive error between the 

two methods is presented in Figure VII-14 .  I t  is  shown that e i ther 

Bubble Velocity or Chord Size are not very affected by the dif ferent 

cutt ing zones. However,  the same does not happen for gas hold-up. I t  

is  important to have in account that among the gas-phase 

character ist ics determined using the OP, only the gas hold-up is 

dependent on the acquis it ion t ime (Eq. VII–1 ) .  So i t  is  understandable 

why dif ferent cutt ing zones rat ios affect the f inal  acquis it ion t ime, and 

therefore inf luence the gas hold-up. Thus the best ( less error )  cutt ing 

zones obtained were: for 250 mL/min – Add1<37.5% and Add2<37.5%, 

and for 400 mL/min – 25%<Add1<50% and 50%<Add2<100%. Inside 

these values the error for 250 mL/min was always below 10% and for 

400 mL/min below 5%. The error for bubble velocity was 10% and 20% 

for 250 mL/min and 400 mL/min repect ively,  whi le for bubble chord was 

15% and 20%. The biggest error in bubble propert ies (velocity and 

chord) is  mainly re lated with low frequency acquis it ion used – 10 kHz, 

when compared with the used in the TGV method – 50 kHz (Carte l l ier ,  

1998).  The low frequency of s ignal used was necessary to avoid huge 

binary f i les that were not possible to be treated by avai lable methods. 
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Figure VI I-14.  Error  obta ined at  d i f ferent  Add1 and Add 2 for  d i f ferent  gas-
phase character is t ics:  Gas hold-up,  Bubble Veloc i ty  and Bubble Chord.  

Legend:  A –  Q A I R= 250 mL/min;  B –  Q A I R= 400 mL/min;  !  -  0 .0% Add1;  "  -  
12.5% Add1;        "  -  25.0% Add1;  "  -  12.5% Add1;  "-  50.0% Add1 

0.0!

5.0!

10.0!

15.0!

20.0!

%
 E

rr
o

r 
(G

as
 H

o
ld

-u
p

)!

% Add2!

A!

0.0!

5.0!

10.0!

15.0!

20.0!

%
 E

rr
o

r 
(G

as
 H

o
ld

-u
p

)!

% Add2!

B!

0.0!

5.0!

10.0!

%
 E

rr
o

r 
(B

ub
b

le
 V

el
o

ci
ty

)!

% Add2!

0.0!

5.0!

10.0!

15.0!

20.0!

%
 E

rr
o

r 
(B

ub
b

le
 V

el
o

ci
ty

)!

% Add2!

0.0!

5.0!

10.0!

15.0!

%
 E

rr
o

r 
(B

ub
b

le
 C

ho
rd

)!

% Add2!

0.0!

5.0!

10.0!

15.0!

20.0!

%
 E

rr
o

r 
(B

ub
b

le
 C

ho
rd

)!

% Add2!



Universidade do Minho  Chapter VII 

 

198 

VII.4.2 Gas-phase measurements 

The main results obtained to determine the gas-phase propert ies in 

the r iser were done using an opt ical  probe. However and due to the 

implementat ion of the new method to use th is probe for th is system 

some bubble character ist ics were a lso determined using a HSC in order 

to evaluate and val idate the results.  The maximum sol id content that 

the new system was able to work was 6% SG (wt.W E T  B A S I S/vol . ) .  Above 

th is value, the c leaning system was not able to do an eff ic ient t ip 

c leaning. 

To check the s ignif icant d i f ferences between al l  measurements, the 

results were stat ist ical ly  evaluated. As indicated in sect ion VI I .3.3,  data 

from two dif ferent axia l  posit ions in the r iser (A and B in Figure VII-12 )  

were analysed. For each sol ids concentrat ion, two dif ferent gas f lows 

were tested: 250 and 400 mL/min. Branyik et a l  (2005) found that 

250 mL/min was a good compromise between mixing t ime, b iocatalyst 

sedimentat ion, and the maximum immobi l izat ion for yeast cel ls  (around 

0.6 gB I O M A S S/gC A R R I E R ) .  As at lowers gas f lows SG sedimentat ion was 

observed, the gas f low of 400 mL/min was also tested in order to study 

gas f low effect.  Between the two axia l  studied points (A and B in Figure 

VII-12 ) ,  no stat ist ic d i f ference was found. Being so and consider ing 

that the exper iments using the HSC were made at the axia l  posit ion in 

the middle of the r iser (B in Figure VII-12 )  only the values obtained 

using the opt ical  probe at th is posit ion are presented in the results. 

Radia l  gas-phase propert ies was also analysed for each condit ion 

(axia l  posit ions, d i f ferent gas f lows and sol id loads) as indicated in 

Figure VII-12 .  However i t  was ver i f ied that no s ignif icant d i f ferences in 

the results were detected between the radia l  posit ions studied. Then, 

for the gas-phase a f lat  regime in radia l  posit ion can be considered. In 

addit ion, th is was val id not only in gas hold-up measurements, but a lso 

for bubble velocity and bubble chord. 

From Figure VII-15 ,  i t  is  possible to ver i fy that gas hold-up 

decreases when sol ids are present.  By the stat ist ical  analysis and for 
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the lowest gas f low tested (250 mL/min),  the gas hold-up decrease is 

only s ignif icant for sol ids load above 4% (wt.W E T  B A S I S/vol . ) .  On the other 

hand, for the highest gas f low (400 mL/min) the gas hold-up decrease 

when sol ids are added. However no s ignif icant d i f ference on gas hold-

up decreases was noted among the dif ferent sol ids concentrat ions. SG 

are known to general ly  decrease the gas hold-up at h igh gas velocit ies 

in BC mainly due to occurrence of coalescence (Chapter IV) .  

Coalescence increases bubble s ize and velocity.  In our case the chord 

s ize and velocity increased with sol id load. Chord s ize increase is not 

d irect ly re lated with bubble s ize as bubble propert ies (shape, sher ic i ty )  

can also change. From stat ist ical  analysis,  i t  is  c lear that bubble chord 

increased, which is an indicat ion for bubble coalescence to occur.  

Simi lar  results were found when an ident ical  opt ical  f iber was used and 

tested with a lg inate beads (Mena et a l . ,  2008).  To access the real  

bubble s ize distr ibut ion, i t  is  necessary to assume a specif ic  f low 

structure (Mena et a l . ,  2008).  Moreover,  to transform chord in actual  

d iameter is  not an easy task even at a narrow bubble chord distr ibut ion 

for a lmost spher ical  bubbles in homogeneous regime.  

In addit ion the gas hold-up results at 400 mL/min (0.94 cm/s) 

presented in Figure VII-15  for  g-l  and g-l-s  systems 

(4% (wt.W E T  B A S I S/vol . ) )  and the results obtained for the lowest gas 

superf ic ia l  velocity (1 cm/s) in Chapter V are s imi lar  ( range of gas hold-

up between 1% (vol ./vol . )  and to 2% (vol ./vol . ) ) .  These results show 

accordance between global and local  hydrodynamic methods used in 

th is thesis.  Even at d i f ferent reactor scales 60 L and 6 L in Chapter V 

and VI I  respect ively th is s imi lar i ty between the results is  in accordance 

with the scale results obtained by Bla and co-workers (2004).  They 

worked with three iGLR (10 L, 32 L and 200 L) and their  results 

indicated that for gas superf ic ia l  velocit ies below 0.15 m/s the gas hold 

up in r iser of iGLR is not inf luenced by the increase of reactor scale 

(Bla et a l . ,  2004).   
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To get a better understanding of the underly ing physical  mechanisms 

involved in the chord s ize and velocity increase, data were  obtained  

using the HSC. 

 

Figure VI I-15 .  Sol ids in f luence in  loca l  gas-phase propert ies.                         
Legend:  A –  Q A I R= 250 ml/min;  B –  Q A I R= 400 ml/min;  !  -  Gas Hold-up 

(% (vo l . /vo l . ) ) ;  "  -  Bubble Veloc i ty  (cm/s) ;  #  -  Bubble Chord (mm).  
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V isual izat ion techniques are very useful  in g-l  and g-l-s  systems 

(Boyer et a l .  2002; Mena et a l . ,  2005; Maceiras et a l . ,  2010; Ferre ira et 

a l . ,  2011).  The obtained information may be either qual i tat ive or 

quant i tat ive.  Despite the commercia l  methods developed to perform 

automatic image analysis there is  st i l l  the need for the operator to do a 

semi-manual bubble character izat ion. This is  more re levant when image 

analysis is  appl ied to determine bubble propert ies in g-l-s  systems. 

When sol ids are present,  i t  is  possible to use automatic methods i f  the 

sol ids grey level  is  d i f ferent f rom bubbles’ grey level  (Mena et a l . ,  

2005b).  Otherwise these methods can loose accuracy due to sol ids 

presence. In our case the sol ids used l imited the images obtained by 

HSC because the grey level  of  SG is s imi lar  to bubbles grey level .  That 

made more dif f icult  to dist inguish between bubble and part ic le (see 

Figure VII-16 ) .  Even the manual determinat ion of bubble propert ies 

above 2% (vol ./vol . )  was not possible below the reported error.  The 

stat ist ical  tool  proposed by Ferre ira et a l .  (2011) was used, but only to 

analyse the g-l  systems and g-l-s  system images at lowest gas f low and 

sol id content (0.8% (vol ./vol . ) ) .  Being so, the results were obtained 

manual ly and then compared with the possible results obtained by the 

stat ist ics tool method. 

The main a im of using HSC in th is work was to obtain more data that 

conf irms and val idates the results obtained from optical  probe 

measurements. To do th is,  HSC images and v ideos were used to 

determined bubble velocity and bubble chord (manual ly ) .  Bubble 

velocity was determined by manual ly  tracking bubbles between 20 

frames that correspond to a t ime interval  of  20 mi l l i -seconds. Bubble 

Chord was determined by consider ing a v ir tual  opt ical  probe pierc ing a 

bubble in a perpendicular posit ion (see image below). 

In Table VII-1  are presented the dif ferences between HSC results 

and Optical  Probe for the lowest gas f low at 0 and 2% (vol ./vol . )  sol id 

load. 
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Figure VI I-16 .  HSC Images f rom GL reactor ’s  r iser .  White  l ines are the 
s imulated theor iaca l ly  p ierc ing of  a  bubble and each length was used to 

determined chord.  Legend.  A –  A i r-Water ;  B –  A i r-Water-SG 
(0 .8% (wt.W E T  B A S I S /vo l . ) ) ;  B –  A i r-Water-SG (2% (wt.W E T  B A S I S  /vo l . ) ) ;  

 

In Table VII-1  i t  is  possible to observe that the results obtained with 

the opt ical  probe are in accordance with the ones obtained by the HSC. 

General ly ,  for velocity values the HSC results are h igher,  whi le for 

bubble chord these only occur in g-l  (a i r-water) .  When SG part ic les are 

present the analysis of the images is more dif f icult  (Figure VII-16 ) ,  even 

using the manual methods and maintain ing the same cr i ter ia.  For these 

cases, the sol ids “noise” in the image affects the ident i f icat ion and 

determinat ion of bubble boundary,  i .  e . ,  the interface between gas and 

l iquid phases. (Figure VII-16 ) .  This may expla in the lowest bubble 

chord obtained by HSC results. 

Table VI I-1 .Resul ts  eva luat ion by OP and HSC for  Q A I R=250 mL/min.  

Air-Water 
Air-Water-2 % 

SG (wt.W E T  B A S I S/vol . )  
Gas-phase 

propert ies 
HSC OP HSC OP 

Bubble Veloc i ty  
(cm/s)  

48.4±5.7 44.3±7.5 66.9±5.9 64.8±5.0 

Bubble Chord (mm) 1.7±0.5 1.3±0.3 2.0±0.3 2.1±0.4 

 

For the velocity determinat ion using the HSC, the bubble reference 

point used was the bubble centra l  point,  which is easier ( less error )  to 

access even when sol ids are present. 

The mean Sauter d iameter and bubbles spher ic i ty were determined 

for a l l  tested condit ions using the HSC (see Mater ia l  and Methods).  This 



Universidade do Minho  Chapter VII 

 

203 

was then compared with the results obtained by the stat ist ics tool 

method proposed by Ferre ira et.  a l  (2011).  In Table VII-2  the results 

show that the error between Manual Image Analysis (MIA) and 

Automatic Stat ist ics Tool (AST) analysis is  no more than 6% and 7% for 

D3 2 and Spheric i ty respect ively. 

Table VI I-2 .  D 3 2  (mm) and Spher ic i ty  determined by Manual  Image Analys is  
(MIA)  and us ing the Automat ic  Stat is t ics Tool  (AST) .  Both were obta ined f rom 

the same images by the HSC. 

D 3 2 (mm) Spheric ity  % 

Sol ids 

Q A I R  

(mL/min)  MIA AST MIA AST 

250 3.82 3.86 0.599 0.564 
0 

400 3.96 3.90 0.598 0.586 
250 3.62 3.43 0.588 0.563 

0.1 
400 3.86 NP 0.576 NP 
250 3.80 NP 0.625 NP 

0.25 
400 3.72 NP 0.620 NP 

Legend:  NP – Not poss ib le  to  eva luate by the program due to bad image 
qual i ty .  

 

In Table VII-2  i t  is  possible to ver i fy that for 250 mL/min the value of 

D3 2 ( for bubble)  is  lower when sol ids are present with a minimum at 

0.8% (vol ./vol . ) ,  whi le at 400 mL/min the values decreased with sol id 

content.  However in terms of bubble spher ic i ty there is  a smal l  

decrease for 0.8% (vol ./vol . )  sol ids and for 2% (vol ./vol . )  an increase is 

noted. At th is sol id content the spher ic i ty is  even higher than the one 

observed in a ir-water system. This result  is  in accordance with the 

previous where an increase in chord s ize occurs in the presence of 

sol ids.  I f  bubbles are considered as a f lattened obletenoid, the 

spher ic i ty is  determined by the rat io between the minor and major axes 

(Mena et a l . ,  2008).  Therefore the increase in spher ic i ty can be due to:  

increase of minor axe (which correspond to the chord measured with 

the opt ical  probe) or the decrease of major axis.  In fact the results from 

HSC showed an increase in minor axis accomplished by a decrease of 

major axis.  General ly ,  bubble spher ic i ty increases with gas f low and for 

h igh sol ids load (Mena et a l . ,  2008).  Increasing sol id content or gas 

blows promotes bubble-bubble interact ion and coalescence, which 

leads to bigger and rounded bubbles. In our case, spher ic i ty increased 

at low sol id content,  which is consistent with the previous results 



Universidade do Minho  Chapter VII 

 

204 

obtained. The obtained results suggested that our part ic les promote 

coalescence. Bubble coalescence occurs in three steps: (1 )  in i t ia l  f i lm 

formation, (2 )  f i lm th inning and f inal ly ,  (3 )  f i lm rupture. Zon et a l  (2002) 

showed that the increase of hydrophobic part ic les concentrat ion leads 

to a bubble populat ion swift  f rom smal l  to bigger.  Hydrophobic 

part ic les act in g-l  interface reducing the energy barr ier  to f i lm rupture 

and consequently coalescence is promoted (Zon et a l . ,  2002).  On the 

other hand completely wettable part ic les were found to increase gas 

hold-up (Zon et a l . ,  2002).  SG are completely wettable part ic les,  

however their  surface is mainly hydrophobic (Jamialahmadi and Mul ler-

Steinhagen, 1991).  Being so, and consider ing the observed gas hold-up 

decrease, i t  means that hydrophobic propert ies of SG have more 

inf luence in bubble propert ies than their  wettabi l i ty .  Thus coalescence 

can occur in g-l-s  where SG are present. 

For a l l  exper iments (gas f lows and sol ids loads) by analysing Figure 

VII-15  and Figure VII-16  as wel l  as Table VII-1  and Table VII-2 ,  i t  is  

possible to conclude that opt ical  probes results are consistent and 

feasible.  Nevertheless, i t  was necessary to cert i fy  the results,  ensur ing 

that our data obtained by the opt ical  probe were indeed accurate.  To 

do th is,  the theoret ical  gas f low across the r iser cross-sect ion was 

calculated from the bubble velocity results.  In the next f igure (Figure 

VII-17 )  i t  is  shown that the gas f low was underest imated at 400 mL/min 

whi le for 250 mL/min i t  is  shown the results are around the theoret ical  

value.  

 

Figure VI I-17 .  Expected gas f low (! )  vs .  Exper imenta l  gas f low ("and# ) .  
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As referred before the opt ical  probe underest imation is re lated with 

bl inding and dr i f t ing effects.  In the case of our iGLR it  was possible to 

observe dur ing the HSC measurements that some bubbles were not 

ra is ing vert ical ly  and th is was more frequent when sol ids were present.  

This behaviour from bubbles is  def ined by the l iquid propert ies,  as wel l  

as by the reactor conf igurat ion. In th is part icular iGLR there is  a 

degassing top part  where there is  a sedimentat ion barr ier  that reduces 

carr ier  losses dur ing a cont inuous fermentat ion. As the top part  is  not 

exact ly symmetr ical  the l iquid that goes down the downcomer is  not 

uniformly distr ibuted through al l  the cross sect ion. I t  means that the 

l iquid f low is not exactly the same in some parts of the bottom-r iser 

connect ion whereas the amount of l iquid that goes into the r iser is  

h igher in some zones promoting bubble spin and dr i f t ing. This has an 

effect in the opt ical  probe accuracy to measure the r is ing t ime (TU ) .  

Moreover the acquis it ion rate (10 kHz) used was f ive t imes infer ior to 

the normal ly one used by commercia l  program where the TGV method 

(Carte l l ier ,  1992) is  appl ied for two-phase f low. In addit ion, cal ibrat ion 

studies a lready indicated that at 400 mL/min the errors obtained to 

measure bubble velocity in two-phase f low are underest imated by 20% 

when comparing the new with the former TGV method. At 250 mL/min 

gas f low, the new system over est imated bubble velocity by 10% 

(Carte l l ier ,  1992).  This 10% diference is inside the opt ical  probe error 

for two-phase f lows (Carte l l ier ,  1992).  I t  is  then possible to conclude 

that the system used was successful ly  appl ied at the lower gas f low 

rate used and the results can be evaluated with accuracy. The 

method/technique appl ied was hand-made; especia l ly  the in ject ion 

system, and al l  th is system can be largely improved. This improvement 

wi l l  a l low for example a stronger in ject ion f lux and consequently a more 

accurate measure at h igher gas f lows. 

VII.4.2.1 Cell influence in gas properties of two-phase flow 

The dr iv ing force of th is work was to understand not only the 

inf luence of SG in GL reactors hydrodynamics but a lso how it  is  
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affected by a fermentat ion using yeast cel ls :  S. cerevis iae .  Being so, i t  

was necessary to evaluate how the yeast by i tsel f  inf luences gas-phase 

propert ies.  Studies where increasing amounts of a concentrated cel l  

solut ion (0.105 g/mL) were added to a ir-water system were performed, 

results from optical  probe and HSC were taken and evaluated. In Figure 

VII-18  are presented the inf luence of cel l  concentrat ion in gas-phase 

propert ies.  Figure VII-18  shows that l i t t le  cel l  concentrat ion has a lot  

of  inf luence in the gas-phase propert ies.  General ly  i t  is  observed an 

increase of gas hold-up, bubble velocity and chord s ize.  This indicates 

that a minimum volume of cel ls  was able to induce changes in the gas-

phase. However,  bubbles propert ies did not change s ignif icant ly above 

the lower cel l  concentrat ion, i .  e . ,  gas hold-up, bubble velocity/chord 

dif ference at h igh cel l  concentrat ion is s imi lar  to the values obtained at 

low cel l  concentrat ion. 

In Figure VII-18  i t  is  possible to observe that an increase of gas 

hold-up is accomplished by an increase of bubble chord and velocity.  

These results are odd because i f  gas hold-up increases the bubble 

velocity was expected to decrease as wel l  as bubble chord. Smal ler  

bubbles r ise s lower thus residence t ime is h igher,  which increases the 

gas hold-up. One possible explanat ion for th is phenomenon is the cel l  

inf luence on the opt ical  f iber measurement mechanism. This inf luence 

can be: (1 )  gener ic inf luence in a l l  parameters (gas hold-up; bubble 

velocity and chord);  (2 )  specif ic  effect by affect ing only the 

measurement of bubble velocity and bubble chord. In the f i rst  case, the 

overest imation was due to crawl ing effect caused by the presence of 

cel ls .  Cel ls  may act on the l iquid propert ies inf luencing also the 

ref lect ive index of the l iquid and consequently TG and TM measurements 

are affected leading to wrong values. The second explanat ion takes into 

account the fact that TU measurement is  more sensible to errors than 

TG.  This is  just i f ied consider ing the tendency to underest imate bubble 

velocity for th is probe (see Figure VII-16 ) .  In th is case, cel ls  wi l l  act on 

l iquid-gas interface leading to wrong TM measurements. According to 

Brányik et a l .  (2004),  yeast cel ls  hydrophobicity increases by 30% in 

cont inuous systems when the biof i lm starts to be developed (Brányik,  
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et  a l .  2004).  Moreover,  i t  is  known that in BC reactors,  hydrophobic 

part ic les promote coalescence (Zon et a l .  2002).  

 

Figure VI I-18 .  Cel l  concentrat ion in f luence in  gas-phase propert ies (vo idage,  
bubble ve loc i ty  and chord)  on water-a i r  system at  250 mL/min.   

 

According to Figure VII-18 ,  coalescence does not occur in our 

system because no gas hold-up decrease is observed. Consider ing th is,  

i t  is  more l ike ly that cel ls  induce some error on the bubble-t ip 
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interact ion and the s ignal over est imation in their  presence is an 

important aspect to consider when opt ical  probe is used to determine 

gas-phase character ist ics in fermentat ions broth. Being so the increase 

of gas hold-up, bubble velocity and bubble chord when in the presence 

of these yeast cel ls  was found to be: 42.74±3.31%, 36.74±4.42% and 

30.26±3.57% respect ively.  Further studies are needed to have a better 

of  th is type of phenomena and how biomass can real ly  affect bubble 

propert ies (shape, velocity,  f requency).  Further studies using HSC were 

made when cel ls  were present.  As when SG where used, only a smal l  

concentrat ion of cel ls  were tested, because the increase of cel ls  leads 

to an increase of the turbidity when they are added to g-l  systems.  

 

Figure VI I-19 .  The evolut ion of  Sauter  (D 3 2 ) ,  equiva lent  (D E Q)  d iameter  and 
spher ic i ty  with  the yeast  ce l ls  concentrat ions.  Va lues obta ined f rom the HSC 

images.  Legend:  !  -  D E Q (mm);  "  -  D 3 2  (mm);  #  -  Spher ic i ty  ( - ) .  

 

This turbidity was measured in terms of cel l  absorpt ion and the 

re lat ion between absorpt ion and cel l  concentrat ion was plotted. Figure 

VII-19  shows that a smal l  amount of cel ls  does not have s ignif icant 

inf luence either on spher ic i ty,  equivalent or Sauter d iameter.  Even 

though a smal l  decrease is detected, the results indicated that used 

yeast cel ls  d id not have a real  inf luence on gas-phase propert ies.  

Therefore the var iat ion obtained by the opt ical  probe is more l ike ly to 

be due to yeast cel l  inf luence in opt ical  probe measurement 

mechanism. 
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VII.4.3 Liquid-phase measurements 

The PIV technique used al lows us not only to determine the average 

l iquid velocity in the downcomer for d i f ferent sol id load, but a lso to 

obtain the l iquid velocity prof i le .   

In Figure VII-20A/B  i t  is  possible to observe that the l iquid velocity 

prof i le  in the downcomer is  h igher at centra l  posit ion between r iser and 

downcomer than near the column wal l  ( r=1.5 cm).  These results were 

only obtained in the outer part  of  the downcomer, but the prof i le  in the 

inner part  should have s imi lar  behaviour.  I f  we consider the dimensions 

of the gas-l i f t  reactor,  in two-phase f low (a ir-water)  the theoret ical  f low 

regime is transient (Re<2300) for l iquid velocit ies in downcomer below 

8 cm/s. Adding sol ids,  according to the equat ions proposed by Lu et a l .  

(1995) for pseudo-homogeneous phase, the apparent v iscosity and 

density wi l l  increase. For these two propert ies the apparent v iscosity 

increase is h igher than the apparent density increase. According to 

Reynolds (Re) equat ion (Eq. VII-15 ) ,  i f  the former phenomenon occurs 

then the Re number wi l l  decrease and theoret ical ly  the sol ids added wi l l  

help to stabi l ize the laminar f low of the pseudo-homogeneous phase in 

the downcomer sect ion. Consider ing the laminar regime stabi l izaton by 

SG, i t  is  feasible to admit a transient prof i le  of the pseudo-

homogeneous phase in the downcomer. In Figure VII-20C/D  i t  is  shown 

that for both gas f lows the inf luence of SG in the average l iquid velocity 

in the downcomer is  negl ig ib le at 400 mL/min. Nevertheless at 250 

mL/min, a smal l  decrease in l iquid velocity is  present.  The values 

presented in Figure VII-20C/D  are obtained by averaging the two 

centra l  radia l  points (Figure VII-20A/B ) .  The results in Figure 

VII-20C/D  are a mere indicat ion that sol ids increase stabi l ized the f low 

in downcomer, which means that the turbulence decreases. In a l imit  

s i tuat ion, i f  sol ids amount is  s ignif icant ly increased, no circulat ion 

would be observed because the gas f low would not be enough to 

f lu id ize a l l  sol ids.  This is  in accordance with results obtained by other 

authors (Fre itas,  2002).  
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Figure VI I-20 .  Study of  l iqu id ve loc i ty  in  the downcomer.  vs rad ia l  prof i le  (A –  
Q A I R=250 mL/min;  B –  Q A I R=400 mL/min)  and the in f luence of  SG 

concentrat ion in  average l iqu id ve loc i ty  (C)  and l iqu id f low (D)  in  the 
downcomer.  Legend:  !  -  0% (wt.W E T  B A S I S /vo l . )  SG;                                       

"  -  2% (wt.W E T  B A S I S /vo l . )  SG; !  -  4% (wt.W E T  B A S I S /vo l . )  SG;                             
#  -  6% (wt.W E T  B A S I S /vo l . )  SG; $  -  Q A I R=250 mL/min;  %  -  Q A I R=400 mL/min.  

 

The SG concentrat ion effect in pseudo-homogeneous phase is 

affected by the SG propert ies (density,  wettabi l i ty ,  hydrophobicity ) ,  

which induces a smal l  drag force when vLd  is  h igher than 10 cm/s as i t  

occurs at 400 mL/min. By the values from l inear l iquid velocity in 

downcomer, is  possible to obtained the l inear velocity in r iser,  as wel l  

as the superf ic ia l  velocity using Eq. VII-20  and VI-21  (Fre itas,  2002).  In 
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Table VII I-3  are present these values that wi l l  be used in the model l ing 

sect ion. 

Table VI I-3 .  Va lues of  r iser  l inear  and superf ic ia l  ve loc i t ies  ca lcu lated f rom 
equat ions 9 and 10 for  a l l  s tudied s i tuat ions.  

Q g i  

(mL/min)  

eS d  % 

(wt./vol . )  

v L d  /  

(cm/s)  

eG d  % 

(vol ./vol . )  

eS d  % 

(vol ./vol . )  

U L d  /  

(cm/s)  
A d/A r  

0.00 9.1 0.0 0.0 9.1 3.7 

0.25 9.0 0.0 2.0 8.8 3.7 

0.50 8.6 0.0 3.9 8.2 3.7 
250 

0.75 8.1 0.0 5.9 7.6 3.7 

0.00 10.7 0.0 0.0 10.6 3.7 

0.25 10.1 0.0 2.0 9.9 3.7 

0.50 10.1 0.0 3.9 9.7 3.7 
400 

0.75 10.7 0.0 5.9 10.1 3.7 

Q g i  

(mL/min)  

eS d  % 

(wt./vol . )  

A d/A r  
U L r  /  

(cm/s)  

eG r  % 

(vol ./vol . )  

v L r  /  

(cm/s)  
A d/A r  

0.00 3.7 33.3 1.1 33.7 3.7 

0.25 3.7 32.5 1.0 33.5 3.7 

0.50 3.7 30.2 0.9 31.8 3.7 
250 

0.75 3.7 28.0 0.9 30.0 3.7 

0.00 3.7 38.8 2.9 39.6 3.7 

0.25 3.7 36.5 1.1 37.6 3.7 

0.50 3.7 35.6 09 37.3 3.7 
400 

0.75 3.7 36.9 0.7 39.5 3.7 

VII.4.4 Solids-phase measurements 

To complete the analysis of the three-phase system, i t  was also 

important to study and analyse the sol id-phase (SG) behaviour.  A 

previous study shows that,  for th is r iser length, the sol ids distr ibut ion 

is a lmost constant even at low gas f lows (Chapter V) .  So i t  was 

considered in th is work that sol ids hold-up and distr ibut ion is 

homogeneous throughout the ent ire iGLR. 

In th is case, the study was focused on the downcomer and using the 

images from HSC, the average sol id velocity in the downcomer was 

manual ly  determined. The results are presented in Figure VII-21 .  
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Figure VI I-21 .  Sol ids Veloc i ty  (cm/s)  in  downcomer versus the a i r  f low rate.  
The va lues were obta ined by HSC v ideos and determined manual ly .  The SG 

load was 2% (wt.W E T  B A S I S /vo l . ) .  

 

As expected and as for the l iquid-phase the sol ids velocity increased 

with the gas-f low increase. I t  is  interest ing to ver i fy that th is increase is 

s imi lar  to the increase that occurs in l iquid phase, which indicates that 

the assumption of a pseudo-homogeneous phase can be used in order 

to s impl i fy the appl icat ion of hydrodynamic models in the three-phase 

reactor.  

Having in mind al l  the techniques appl ied in th is work, i t  was 

possible to determine the average velocity of l iquid- and sol id-phase in 

the iGLR’s downcomer. With these values i t  was possible to determine 

by calculat ion the average velocity of the dif ferent phases in the r iser 

mainly the l iquid and the pseudo-homogeneous phases. In Table VII-4  

are indicated these values. The pseudo-homogeneous phase velocity 

was determined consider ing the equat ion: 

 

v
Hd

= v
Ld
! (1"#

Sd
) + v

Sd
!#

Sd
      Eq. VI I–24  

This equat ion (Eq. VII–24 )  means that both l iquid and sol id-phase 
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is  a lso interest ing to note that sol ids velocity are 1.3% and 9.8% higher 

than l iquid velocity in the downcomer for 250 mL/min and 400 mL/min 

respect ively.  Moreover,  the pseudo-homogeneous velocit ies in 

downcomer are 0.02% and 0.2% higher than l iquid velocity for the 

referred gas f lows. This result  val idates the appl icat ion of a pseudo-

homogeneous phase to be used later in hydrodynamic models.  The r iser 

velocit ies of l iquid and pseudo-homogeneous phases were determined 

according the fo l lowing equat ions, respect ively (Chist i  1989; Freitas 

and Teixeira,  1998):  
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= v
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      Eq. VI I–25 

 

v
Hr

= v
Hd

!
A
d

A
r

" 

# 
$ 

% 

& 
' !
1()

Gd

1()
Gr

      Eq. VI I–26  

F inal ly  in Table VII-4  are presented the values of gas velocity re lat ive 

to the pseudo-homogeneous phase. This value was calculated 

according to the re lat ive velocity equat ion between these two phases. 

As they f low both upwards the equat ion for s l ip velocity in r iser is : 

 

Uslip,r = vGr + vHr       Eq. VI I–27  

The results presented in Table VII-4  a l low us to a lso determine, 

according to Eq. V–5  the c irculat ion t ime of the gas-l i f t  reactor,  which 

is 9.00 s and 8.00 s for 250 mL/min and 400 mL/min respect ively.  

Consider ing the previously determined mixing t ime of 22.6 and 12.76 s,  

i t  is  possible to establ ish a re lat ion between Tc and Tm for these gas 

f lows. According to Mol ina et a l .  (1999) tm is  affected by two 

mechanisms. The dr iv ing force is the re lat ive velocity between gas and 

l iquid in the r iser that promotes axia l  mixing, as the gas transports the 

l iquid upwards. Also the distance in which the former mechanism 

occurs ( twice the dispersion distance) d irect ly affects the mixing t ime. 

The equat ion proposed by Mol ina et a l.  (1999) for tm determinat ion is:  
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      Eq. VI I–28 
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In Table VII-4  i t  is  possible to observe that Eq. VII–28  is  wel l  

adjusted to the data obtained at 250 mL/min, but the result  is  very 

di f ferent for the other gas f low (400 mL/min).  The main reason for that 

is  the re lat ive velocity in the r iser.  As the gas f low is a lmost double,  

a l though the pseudo-homogeneous phase velocity does not increase 

too much, the gas velocity should be higher.  Thus with h igher gas f low 

i t  was expected to increase the re lat ive velocity.  As such did not occur,  

the mixing t ime determined by Eq. VII-28  was overest imated when 

compared with the mixing t ime from experimental  results.  This result  is  

in agreement with the previous results where the gas f low was 

underest imated at 400 mL/min. In fact i t  conf irms that the lower 

acquis it ion rate did not a l low a correct evaluat ion from optical  probe of 

TU  va lues at th is condit ion. That eventual ly  led to an underest imation of 

vB  and consequently UG r  and QG  (previously reported).  In addit ion, i f  we 

use the theoret ical  gas l inear velocity (around 94 cm/s) based only on 

the gas hold-up at th is condit ion (2%SG (vol ./vol . ) )  and gas f low 

(400 mL/min) the est imated mixing t ime wi l l  be 12.19 s which is 4 % 

lower than the determined exper imental ly . 

Table VI I-4 .  Ve loc i ty  va lues of  d i f ferent  phases in  d i f ferent  zones of  GL 
reactor  for  2%(vol . /vo l . )  o f  so l ids.  

 

*  Determined by PIV 
**  Determined manual ly  us ing HSC v ideos 
# Calcu lated va lue us ing equat ions VI I -26,  V I I-27,  V I I-28 and VI I-29.  
+ Calcu lated us ing Equat ion VI-5 
++ Determined by in ject ion t racer  technique us ing H 2SO 4 

Gas Flow 

Parameter 250 

mL/min 

400 

mL/min 

vL d  / (cm/s)*  9.0 10.1 
vS d   / (cm/s)**  9 .1  11.1 
vH d  / (cm/s)#  9 .0  10.2 
vL r  / (cm/s)#  33.4 37.6 
vH r  / (cm/s)#  33.4 37.7 

U s l i p _ r  / (cm/s)#  97.5 103.9 
tC

+  /  (s )  9.00 8.0 
tm  + +/  (s )  22.3 12.8 

tm T E O
+/  (s )  19.9 21.1 

Error  10.7% 65.3% 
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VII.4.5 Model optimization results  

The model used i t  was a mult i-parameter model were the opt imizat ion 

parameters (C, Ub t ,  ! )  were adjusted to the exper imental  data.  In Figure 

VII-22  i t  is  presented the re lat ions between the results obtained from 

experimental  data and the model.  General ly  the gas hold-up and 

superf ic ia l  l iquid velocity in the r iser were in agreement and errors are 

with in 20% for gas hold-up and 10% for l iquid superf ic ia l  velocity.  

These errors are considered to be acceptable and in accordance with 

the errors obtained by Freitas (2002).  I t  is  a lso important to consider 

the exper imental  errors from optical  probe new method plus PIV 

method.  

 

 

Figure VI I-22 .  Model izat ion Values versus Exper imenta l  resu l ts .  Legend:  !  -  
250 mL/min;  !  -  400 mL/min.  

 

In Table VII-5  i t  can be found the results of model parameters after 

opt imizat ion for each sol id condit ion. The distr ibut ion parameter (C) 

was near unity as expected (Freitas et a l . ,  1999; Lu et a l . ,  1995).  

However,  th is does not mean that p lug f low prevai ls  because the 

magnitude of C is re lated with the gas hold-up distr ibut ion rather than 

phase velocity prof i le  (Fre itas et a l . ,  1999; Lu et a l . ,  1995).  This is  can 

be conf irmed by the opt ical  probe results above where no s ignif icant 

d i f ferences were found in radia l  posit ion.  
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Consider ing the !  parameter and for a ir-water system, i t  is  possible 

to determine a value of "  = 1.37 (Eq. VII–16 ) ,  which is s imi lar  to the 

proposed value for "  ("= 2) (Garcia-Calvo and Letón) for two-phase 

system. However,  when SG are added "  va lues decrease. This decrease 

can be attr ibuted to the hydrophobic propert ies of SG that act in the g-l  

interface.  

Table VI I-5 .  Parameters obta ined af ter  opt imizat ion.  

% Sol ids 

(vol . /vol . )  
C !  U b t  Error 

0.00 0.897 0.014 0.160 14.65% 

2.00 0.999 0.008 0.406 18.74% 

3.90 1.010 0.006 0.714 23.66% 

5.90 1.065 0.005 0.632 21.83% 

 

General ly  Ub t  increases with sol id load which is in agreement,  and in 

the same range, with the results obtained by other authors (Fre itas et 

a l . ,  1999).  Ub t  is  the bubble terminal  velocity in the dr i f t- f lux model and 

i t  is  assumed that bubbles do not interact or are affected by 

neighbouring  bubbles. Moreover the normal values for Ub t  are between 

0.2 m/s and 0.45 m/s (Lu et a l . ,  1995).  The higher values obtained can 

be a c lue that expla ins coalescence as bigger bubbles r ise fast then 

their  terminal  velocity.  Fre itas et a l  (2002) considered that the r iser 

smal l  cross sect ion area was the factor that increases bubble 

interact ion and cause the formation of bubbles r is ing with h igher speed 

in the r iser centre (Lu et a l . ,  1995).  This explanat ion is consistent with 

the occurrence of coalescence in g-l-s  system. 

VII.4.6 Fermentation results 

In  th is chapter our object ive was also to do an exper iment that a l low 

us to study how the biomass ( f ree + immobi l ized) can affect 

hydrodynamic behaviour of the bioreactor at local  scale after the start-

up stage. In order to do that,  i t  was performed a fermentat ion that 

s imulates the in i t ia l  stage of a cont inuous pr imary AFB fermentat ion. 
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Previous studies reported that th is stage can take from seven to twelve 

days at d i lut ion rate of 0.2 h- 1  and 0.15 h- 1 ,  respect ively (Brányik,  et  a l .  

2004).  In our case, the di lut ion rate was between 0.05 h- 1  and 0.09 h- 1  

and the t ime to achieve the stabi l izat ion of iBio was about 13 days. I t  is 

possible to observe that the temperature was higher than normal ly 

reported which, even at lower l iquid f low, lead to a reduct ion in the 

t ime for b iof i lm stabi l izat ion in the carr ier  (Table VII-6 ) .  The 

stabi l izat ion of iBio occurred around the 8 t h  day.  

In Table VII-6  are presented the results from the f inal  day of 

fermentat ion. At that t ime, gas-phase propert ies were a lso measured in 

order to have a c lue i f  yeast cel ls  ( f ree + immobi l ized) inf luence GL 

reactor hydrodynamics. At 13t h  day of fermentat ion the tota l  amount of 

b iomass was about 14.7 g/L being iBio only 10% of tota l  yeast b iomass 

present.  The f inal  SG concentrat ion leads to a sol id hold-up near 

4% (wt.W E T  B A S I S/vol . ) .  The results after fermentation showed for a s imi lar  

sol id concentrat ion that gas hold-up increased up to 22% (for corrected 

value).  Bubble velocity decreased by 2% indicat ing that yeast cel ls  

have more inf luence in GL bioreactor hydrodynamic than SG. I t  is  

reported that yeast cel ls  ( f ree and immobi l ized) become more 

hydrophobic when exponentia l  growth starts in the carr ier .  However 

dur ing the fermentat ion ethanol is  produced and, as i t  is  a coalescence 

inhibitor,  the increase of gas hold-up occurs.  Kennard et Janekeh 

(1991) found that f rom 0 g/L to 2 g/L of ethanol in solut ion bubble 

diameter decreases s ignif icant ly and consequently gas hold-up 

increases. For ethanol concentrat ion above 2 g/L th is effect was not 

noted (Kennard and Janekeh, 1991).  Zahradnik et a l .  (1997) found that 

l imit  ethanol concentrat ion was around 5.06 g/L in accordance with 

Oolman et Blanch (1986) that suggested a value of 6.48 g/L (Kennard 

and Janekeh, 1991).  In BC reactor at the maximum value of ethanol 

concentrat ion def ined by Zahradnik et a l .  (1997) the gas hold-up may 

increase by 20%. AFB can contain up to 0.5% (vol ./vol . )  of  ethanol 

(around 3.9 g/L).  In our case ethanol at  13t h  day had a concentrat ion of 

6 g/L above al l  l imit  concentrat ion def ined in l i terature,  so the 20% gas 

hold-up increase observed can be considered due to ethanol presence. 
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Moreover th is fact conf irms that the inf luence of yeast cel ls  in opt ical  

probe measurement is  real .  This was out of the scope in th is thesis,  

however further studies should be done to access the real  inf luence of 

yeast cel ls  in opt ical  probe measurements.  

Consider ing SG as a carr ier  for yeast cel ls  in cont inuous 

fermentat ions seems ideal for immobi l izat ion, not only due to their  h igh 

cel ls  load capacity,  but a lso because even i f  they inf luence the iGLR 

hydrodynamics th is has l i t t le  effect when compared by the 

microorganisms effect mainly i f  compounds which ar known to have 

hydrodynamic inf luence such as ethanol are produced. 

Table VI I-6 .  Fermentat ion and Gas-phase propert ies obta ined at  last  day of  
fermentat ion.  

Day 
Free Cel ls  /  

(g/L)  

iBio 

(g B i o/gC a r r i e r )  

W C A R R I E R /  

g  

13 13.1 0.3 27.7 

eS 

% (wt.W E T  B A S I S/vol . )  

eG /  

% (vol ./vol . )  
vB /  (cm/s)  chB /  mm 

4 
1.9±0.1 

(1 .1±0.1)*  
97.2±26.0 
(61.5±9.5)*  

5 .7±3.4 
(3 .9±1.0)*  

*  va lues corrected consider ing f ree ce l ls  in f luence in  Opt ica l  probe measur ing 
mechanism. 

 

Moreover at th is immobi l izat ion levels a lmost a l l  SG surface is 

colonized by yeast cel ls ,  which have dif ferent surface propert ies and 

lower hydrophobic propert ies.  Then the negat ive effect of SG is a lso 

reduced by the yeast cel ls  that are immobi l ized on the carr ier  (Brányik 

et a l . ,  2004).  Overal l ,  more invest igat ion seems to be necessary to 

real ly  access biomass inf luence on gas-l i f t  b ioreactors hydrodynamics. 

 

VII.5 Conclusions 

At the end of th is Chapter i t  was possible to study and better 

understand the SG effect on gas-l i f t  b ioreactor hydrodynamics, with 

and without act ive yeast cel ls .  Consider ing only the g-l-s  system 

composed by Air-Water-SG, i t  is  c lear that SG due to their  part icular 

surface propert ies decrease gas hold-up increasing bubble velocity and 
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bubble chord. However those results are more re l iable for the lowest 

gas f low tested (250 mL/min) as at the highest gas f low the new 

in ject ion system used (appl ied in the opt ical  probe) seemed not to be 

enough for a correct measurement of bubble velocity.  In addit ion the 

exper iments made with HSC al lowed us to conf irm the opt ical  probe 

results and together with PIV measurements, i t  was possible to 

conclude that an assumption of a pseudo-homogeneous phase can be 

made for th is system, th is being used on the model proposed. The 

developed model shows a good agreement with the exper imental  data.  

I t  seems that SG promotes coalescence and th is was proved by the 

increase of bubble terminal  velocity up to 4 % (vol ./vol . )  of  SG. Final ly  

i t  was proved that yeast cel ls  inf luence OP measuring mechanism by 

increasing 42.74±3.31%, 36.74±4.42% and 30.26±3.57% the local  gas 

hold-up, bubble velocity and chord s ize,  respect ively.  Consider ing th is 

and a correct ion value after fermentat ion, i t  was noted that gas hold-up 

general ly  increases by 22% in the presence of cel ls .  As SG reduce gas 

hold-up, i t  is  c lear that immobi l ized yeast cel ls  and ethanol product ion 

play an important ro le on gas-l i f t  b ioreactor hydrodynamics having a 

h igher inf luence than the sol id-phase (SG),  at  least for the SG 

concentrat ion considered. 
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VIII.1 Objectives 

In  th is chapter cont inuous AFB pr imary fermentaion is studied and 

the inf luence of several  parameters is  evaluated, such as: 

-  the effect of d i f ferent yeast stra ins,  reactor types and carr iers in 

AFB pr imary fermentat ion performance and f lavour compunds formation 

- the inf luence of the gas-phase composit ion in cont inuous pr imary 

AFB fermentat ion performance and in the f lavour compunds, using an 

iGLR and SG as a carr ier .   

-  the inf lucence of yeast ageing in a cont inuous pr imary AFB using an 

iGLR and SG as carr ier .  

 

VIII.2 Introduction 

The appl icat ion of cont inuous pr imary fermentat ion for AFB 

product ion at industr ia l  scale is  not yet implemented (Chapter I I .3.1) .  

The reasons behind th is are mainly:  unbalanced f lavour;  engineer ing 

problems (process hygiene);  contaminat ion issues; accuracy of 

economic prospects;  the use of l imited yeast stra ins that only a l low the 

cont inuous product ion of a l imited type of beers;  and tradit ion in 

brewing industry (Brányik et a l ,  2005; Wil laert  and Nedovic,  2006).  

Among al l  d i f ferent reactor conf igurat ion and systems using ICT 

already studied (see Chapter I I  and I I I )  i t  is  possible to dist inguish two 

main types that have been more studied: packed-bed (Van Iersel  et  a l ,  

1995; Virkajarv i  and Pohja la,  2000) and gas-l i f t  (Bezbradica et a l ,  2007; 

Brányik,  et  a l ,  2004) reactors.  Both have advantages and disavantages 

in cont inuous AFB product ion. Between these two reactor types the 

choice depends mainly on the type of carr ier  and the type of 

immobi l izat ion method appl ied. Thus i t  is  d i f f icult  to compare a l l  

systems present in l i terature with accuracy.  
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VIII.2.1 Gas-lift reactor  

The gas-l i f t  is  a reactor without moving parts,  where the mixing and 

circulat ion are promoted by the gas-phase in jected (perfect ly agitated 

reactor) .  This confers to gas-l i f ts  reactors good mass transfers and 

mixing propert ies,  which associated with the low value of tension 

forces f ie ld make th is reactor ideal  for using ICT with h igh 

immobi l izat ion load capacity and consequently h igher product ions can 

be obtained (Fonseca and Teixeira,  2007).  Several  conf igurat ions of 

gas-l i f t  reactor can be found in l i terature (see Chapter V)  for d i f ferent 

purposes. In a three-phase iGLR, the gas phase is in jected into the 

r iser tube through a distr ibutor to provide the dr iv ing force for l iquid 

c irculat ion and energy for the sol id-phase distr ibut ion (Brányik et a l . ,  

2004a).  

For cont inuous AFB product ion the iGLR is usual ly  used in main 

fermentat ion (Bezbradica et a l . ,  2007; Brányik et a l . ,  2004; Domény et 

a l . ,  1999; Lehnert et  a l . ,  2008).  The immobi l izat ion of yeast cel ls  in the 

carr ier  may occur by adsorpt ion onto the sol id phase (carr ier ) ,  dur ing 

the f i rst  days of fermentat ion (Brányik et a l ,  2004b) or by previous 

entrapment pr ior to fermentat ion (Bezbradica et a l . ,  2007; Decamps et 

a l  ,  2004).  Nevertheless, detachment of b iomass under condit ions of 

mechanical  stress (Bezbradica et a l . ,  2007; Brányik et a l . ,  2004a),  

gradual d is integrat ion and wash out of carr ier  (Brányik et a l ,  2004a, 

2004b) may inf luence stabi l i ty  of immobi l ized biomass in a long-term 

fermentat ion. This problem is more s ignif icant i f  the immobi l izat ion 

occurs by adsorpt ion and i t  is  necessary to obtain a balance between 

mixing t ime, sedimentat ion, and the maximum load of immobi l ized 

biomass (Brányik et a l ,  2004b).  Moreover in long-term cont inuous 

fermentat ions, replacing fresh carr ier  might be needed to maintain cel l  

concentrat ion and avoid/reduce cel l  ageing problems. I t  was observed 

that,  in around one week after adding new carr ier ,  the immobi l ized 

biomass achieved the values before addit ion (Brányik et a l ,  2004b).  The 

main disadvantages of using a iGLR to preform main fermentat ion are 
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foaming formation and the complexity of scale-up (Pi lk ington et a l .  ,  

1998).  

Continuous pr imary fermentat ion of AFB in an iGLR is normal ly 

d iv ided in two stages. The in i t ia l  one, a lso cal led start-up, is  

character ized by: a ir  as gas-phase; h igher temperature (around 12 ºC);  

lower di lut ion rate (0.05 h- 1  to 0.15 h- 1 ) ;  medium as l iquid phase 

( instead of beer wort ) .  This condit ions are ideal  to a rapid yeast cel ls  

growth and immobi l izat ion of these onto SG. Normal ly d i lut ion rate 

used is below the maximum yeast growth rate (µM A X)  at  g iven 

temperature to a l low the increase of yeast cel ls  inside the reactor.  Then 

the second stage, which corresponds to the pr imary fermentat ion 

begins. The main character ist ics are:  CO2 as gas-phase; lower 

temperature (8 ºC);  h igher di lut ion rate (0.2 h- 1  to 0.4 h- 1 )  and wort as 

medium (Brányik et a l ,  2002, 2004b; Lehnert et  a l . ,  2008, 2009).  

Normal ly the gas phase present in GLR reactors var ies from the f i rst  

to the second stage. In the f i rst  one the main a im is to increase yeast 

cel l  growth as wel l  as the formation of a sol id yeast b iof i lm around 

carr ier  part ic les.  Being so the gas-phase is a ir  to promote yeast gowth. 

When the biof i lm is formed around the carr ier  the gas-phase is 

gradual ly  changed to CO2 in order to maintained the reactor at 

anaerobic condit ions (Brányik et a l . ,  2004a; Lehnert et  a l . ,  2008, 2009).  

The gas-phase leaving the reactor can be recover and the CO2 is then 

pur i f ied and re-used in the iGLR (Kourkoutas et a l . ,  2004).   

In order to maintain anaerobic condit ions i t  is  important to 

understand al l  oxygen f lux present in an iGLR operat ing in cont inuous 

mode. Oxygen is important to synthet ize esterols for membrane l ip ids 

product ion, that wi l l  be used dur ing yeast growth. Lehnert et  a l  (2008) 

obtained better results at minimum oxygen transfer rate (OTR) used 

(1 mg/(L .h) ) .  I f  the wort barre l  is  not maintained at anaerobic condit ions, 

some oxygen can be dissolved in the inf low medium. Moreover whi le 

the wort is  added to the reactor,  the barre l  headspace increases which 

wi l l  increase s l ighty the dissolved oxygen in the wort.  Being so the OTR 

also depends on the inf low that enters in the GLR when operat ing in 
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cont inuous mode, (OTRD O).  When the inf low is maintained at 8 ºC the 

average oxygen concentrat ion (CO D  A V G)  is  3 mg/L (Macie ira,  2008) and 

the average OTR is calculated by: OTRT O T A L=OTRO S+OTRD O 

I f  the gas-phase is CO2 the OTRO S=0 mg/(L .h)  and the 

OTRD O=D*CO D  A V G mg/(L .h) ,  where D is the di lut ion rate.  Consider ing that 

d i lut ion rate normal ly are not above 0.3 h- 1  (Lehnert ,  2009) when AFBs 

are produced in cont inuous the f inal  OTR wi l l  a lways be infer ior to the 

ones present in the l i terature (Lehnert  et  a l . ,  2008, 2009; Macie ira,  

2008).  These minimum oxygen condit ions are considered to be the ideal  

to ensure a good f inal  product qual i ty in terms of f lavour compounds 

and at the same t ime to maintain yeast cel l  growth at a minimum.  

VIII.2.2 Packed-bed reactor 

The packed-bed reactor (PBR) or p lug f low reactor,  is  usual ly  used 

for maturat ion and in that case low temperatures (0 ºC to 5 ºC) are 

appl ied (Dömény et a l . ,  1998; Van Iersel  et  a l . ,  1995; Virkajarv i  and 

Pohja la,  2000; Perpète and Col l in,  1999b).  These condit ions lead to:  (1 )  

low yeast growth and consequently a low r isk of c logging; (2 )  h igh 

v iabi l i ty  over longer per iods; (3 )  enough reduct ion of a ldehydes and 

other carbonyls;  (4 )  low ethanol formation; (5 )  s impl ic i ty of operat ion. In 

theory,  the plug f low present in th is reactor operat ing at ideal  

condit ions a l low to mimicked wel l  the dif ferent stages present in batch 

fermentat ions. However in pract ice, i t  is  very di f f icult  to achieve the 

ideal  condit ions. In addit ion, i t  is  reported the occurrence of channel ing 

(deviat ions to ideal  p lug regime),  mass transfer l imitat ions, d i f f icult ies 

in CO2 evacuat ion (gas pockets) ,  compression of carr ier  mater ia ls and 

foul ing (Brányik et a l . ,  2005; Wil laert  and Nedovic,  2006; Pi lk ington et 

a l .  ,  1998).  
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VIII.3 Material and Methods 

VIII.3.1 Microorganisms and medium 

The microorganisms used in the exper iments were for in i t ia l  study: a 

bottom fermenting brewing yeast (Saccharomyces pastor ianus )  stra in 

W96  (col lect ion of Research Inst i tute of Brewing and Malt ing Prague, 

Czech Republ ic ) ;  and Saccharomyces cerevis iae BY4743 with disrupt ion 

in the KGD2  (!-ketoglutarate dehydrogenase) gene. For studing the 

ageing and gas compositon efect an industr ia l  Portuguese bottom yeast 

stra in from UNICER, SA was used. 

Table VI I I-1 .  Wort  used in  th is  chapter  (V I I I )  for  a lcohol  f ree-beer  product ion 

Name 
Type of  

Wort/Medium 

Sugar ContentA V G 

(g/L)  
Manufacturer 

W A 
powder wort  
concentrate 

32.6 
Research Inst i tute of  

Brewing and Malt ing,  P lc . ,  
Czech Republ ic  

W B concentrated wort  39.3 UNICER SA, Portugal  

SMM 
Synthet ic  minera l  

medium 
20 -  

 

The powder wort concentrate (WA) was prepared by dissolut ion of 

1 kg in 20 L of previously ster i l ized water (121 °C, 60 min) in order to 

achieved 5 ºP wort.  Then solut ion was heated to 100 °C dur ing 30 min. 

The pH of wort was adjusted to 4.5 with the addit ion of lact ic acid 

(80% wt./vol . ,  IFC Food, Ltd.,  Czech Republ ic ) .  For each exper iment 

the inoculum was grown in 500 mL of wort at  8 ºC for 48 h in an orbita l  

shaker (150 rpm).  I f  necessary,  the cel ls  were col lected by 

centr i fugat ion (5000 rpm, 5 ºC, 10 min).  

The concentrated wort f rom Unicer (WB) was di luted in order to 

achieve an average concentrat ion of 5.3 ºP. The pH was adjusted with 

lact ic acid to 4.5 and the wort was ster i l ized at 100 ºC dur ing 60 min.  

The SMM composit ion used to study the effects of ageing in a 

cont inuous pr imary fermentat ion of AFB is presented in Table VII I-2 .  
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Table VI I I-2 .  Composit ion of  the SMM and respect ive concentrat ions.  

Compound Concentrat ion 

KH 2PO 4 5 g/L 

MgSO 4  
.  7 H 2O 0.4 g/L 

(NH 4)2SO 4 2 g/L 

Yeast  Extract  2  g/L 
Glucose 20 g/L 

Ant i foam 10 mL/10 L 

3-methy lbutanal  200 mg/L 
2-methy lpropanal  100 mg/L 

Hexanal  100 mg/L 
Furfura l  100 mg/L 

 

Barre ls with 20 L of SMM were ster i l ized by autoclaving at 120 ºC, 

100 kPa for 40 min. 

VIII.3.2 Carrier preparation 

For th is work two types of carr ier  were tested: corncobs and spent 

grains. Each one was prepared according to the methods descibred 

below. 

VIII.3.2.1 Corncobs 

Corncobs with a diameter between 2 and 2.5 cm and total  length of 

ca. 10 cm were cut into cyl inders with a maximum height of 0.6 cm. 

Then each piece was cut in two pieces of the same size a long the 

width. These half  cyl inder part ic les were used as carr ier  in PBR. For 

GLR the corncobs were dis integrated in a knife mi l l  (Cutt ing Mil l  SM 

2000, Retsch GmbH, Germany) into part ic les with a maximum diameter 

of 0.1 !  cm. Then 100 g (dry base) of  previously mi l led corncobs were 

further separated into two fract ions (equivalent d iameter:  1 mm and 0.5 

mm)  using a portable s ieve shaker (Model Analysette,  Fr i tsch, 

Germany).  Smal ler  part ic les with an equivalent d iameter lower than 0.5 

mm were discarded due to their  low sedimentat ion velocity and 

consequently easy washout from iGLR reactor.  
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Pr ior to use, a l l  corncob part ic les were autoclaved (121 °C, 60 min) 

as a suspension (10% (wt./vol . ) )  in  d ist i l led water in order to remove the 

soluble compounds that might inf luence the beer f lavour (Brányik et a l . ,  

2006).   

VIII.3.2.2 Spent grains 

Spent grains were prepared according to method present in sect ion 

I I I .2.4.1.  

VIII.3.3 Packed-bed reactor 

The PBR used was made of g lass and had a tota l  working volume of 

2.12 L. The dimensions of the reactor are:  tota l  height – 51 cm; 

diameter – 8 cm and packed bed height – 38.5 cm. Inf low was at 

bottom of the reactor and three samplings points were located at 3,  

17.6 and 31.4 cm from the bottom of the reactor (point I , I I  and I I I  in  

Figure VII I-1 ) .  The out f low is located 41 cm from bottom. The reactor 

was maintained at 8 ºC by placing i t  into a control led temperature cold 

room. 

The PBR f i l led with corncob part ic les (210 g dry weight)  had a sol id 

voidage of 0.36. The charged PBR was autoclaved at 121 ºC for 20 min. 

After th is the PBR was washed with 10 L of ster i le  d ist i l led water and 

f inal ly  the water was al lowed to drain.  Then 500 mL of previously grown 

inoculum was added and the remaining reactor volume was f i l led with 

fresh wort.  After 24 h of batch growth, the reactor was cont inuously fed 

with wort,  using a per ista lt ic  pump (Figure VII I-1 ) .  The cont inuous 

system was considered to reach steady state after f ive residence t imes. 



Universidade do Minho  Chapter VIII 

 

230 

 

Figure VI I I-1 .  Exper imenta l  layout  of  the cont inuous packed-bed reactor :  1  = 
co ld room, 2 = wort  barre l ,  3  = per is ta l t ic  pump, 4  = PBR, 5 = cool ing system; 

I ,  I I  and I I I  =  sampl ing points ,  IV  = beer  out f low, V = gas out let .  

VIII.3.4 Gas-lift reactor characteristics and startup 

The gas-l i f t  reactor layout (Figure VII I-2 )  and startup was ident ical  

for both used carr iers (spent grains, corncobs) and i t  was descr ibed in 

Lehnert et a l .   (2008, 2009).  The tota l  amount of spent grains and mil led 

corncob part ic les in gas-l i f t  reactor was 40 and 55  g dry weight,  

respect ively.  Air  f low (0.25 L/min) was suppl ied in the f i rst  12 days of 

fermentat ion to promote yeast growth and when a fu l ly  developed yeast 

b iof i lm was formed around the carr ier  part ic les the intensity of aerat ion 

was decreased by switching to a ir  + CO2 mixture,  whi le the tota l  gas 

f low rate was kept constant (0.25 L/min).  The switching to a fu l ly  CO2 

(0.25 L/min) gas f low was gradual to avoid cel l  stress. As in PBR, the 

cont inuous system was considered to reach steady state after f ive 

residence t imes. The iGLR used in a l l  exper iments has a working 

volume of 3 L (Lehnert  et  a l . ,  2008, 2009) with the exception of the 

reactor used in the sect ion VI I I .4.5,  which has 6 L (same used in sect ion 

VI I .4.6) .   

 



Universidade do Minho  Chapter VIII 

 

231 

 

Figure VI I I-2 .  Laboratory  sca le  insta l la t ion for  pr imary beer  fermentat ion:  1-
a i r  supply ;  2-mass f low contro l ler ;  3-gas ster i l izat ion f i l ter ;  4-CO2 bott les;  5-
rotameters;  6-per is ta l t ic  pump; 7-thermostated cold room; 8-wort  barre l ;  9-

gas out let ;  10-gas- l i f t  reactor ;  I .  beer  sampl ing;  I I .  carr ier  sampl ing.  

VIII.3.5 Batch fermentations 

The batch fermentat ions were started by cool ing the ster i le  wort (2 L)  

to 8 ºC and aerat ing (700 mL/min)  for 15 min. The f inal  oxygen 

concentrat ion in aerated wort was approximately 8 mg/L. The pitching 

rate with previously grown and centr i fuged cel ls  was 3!106 cel l /mL. 

In i t ia l ly  the fermentat ion was performed at 8 ºC for 24 hr and then the 

part ia l ly  fermented wort was cooled to 2°C for 48 hr.   

VIII.3.6 Yeast cells analysis 

VIII.3.6.1 Methylene blue staining 

Brewing yeast v iabi l i ty  was determined also by methylene blue 

method which is appl icable to a l l  samples contain ing brewing yeast.  
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V iable cel ls  reduce methylene blue enzymatical ly  to a colour less 

compound. The yeast suspension was di luted with 1 % (wt./vol . )  

methylene blue solut ion in a test tube unt i l  a  suspension with 

approximately 5-10 cel ls  in a microscopic f ie ld was obtained. The 

count ing was made using a magnif icat ion of 400 t imes dur ing a 

maximum of 5 minutes. Cel ls  sta ined dark blue were considered to be 

dead along with broken, shr ivel led and plasmolyzed cel ls .  Cel ls  sta ined 

l ight b lue should be considered al ive and the yeast cel ls  that were 

budded were counted as one cel l  i f  the bud is less than one half  the 

s ize of the mother cel l .  V iabi l i ty  was calculated from the rat io between 

tota l  and v iable cel ls  (ASBC, 1996).  

VIII.3.6.2 Free biomass concentration 

A sample of 10 mL was removed from the reactor outf low and i t  was 

centr i fuged for 3 min at 5000 rpm. The supernatant was removed and, i f  

necessary, the sediment was di luted (1:5 rat io)  with dist i l led water.  The 

opt ical  density of the solut ion was measured with spectrophotometer at 

a wavelength of 600 nm. The results of b iomass concentrat ion were 

calculated using a cal ibrat ion curve, b iomass vs. absorbance. 

VIII.3.6.3 Immobilized biomass determination 

Due to dif f icult ies with col lect ing biocatalyst (carr ier  + immobi l ized 

cel ls )  samples from the running PBR (Brányik et a l . ,  2006) the values of 

immobi l ized biomass on corncob part ic les were only determined after 

f in ishing the fermentat ion. Samples of b iocatalysts (3 to 4 g)  were 

col lected and placed in 200 mL of 15 g/L aqueous solut ion of NaCl 

(pH=3).  The suspension was then agitated at 700 rpm for 30 min. Then 

the cel l  suspension absorbance (600 nm) was read and the cel l  b iomass 

was calculated by using a cal ibrat ion curve.  

The amount of b iomass adhered to mi l led corncobs part ic les (Cc3 

see chapter I I I .3.2)  was determined in 50 mL samples taken from iGLR 

to a 100 mL Er lenmeyer f lask. This sample contained approximately 

0.5 g of dry biocatalyst.  Then the bulk of the l iquid phase was removed 
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with a syr inge and the carr ier  was washed with 3 x 75 mL of d ist i l led 

water in order to remove the free cel ls  captured between the carr ier  

part ic les.  These operat ions were carr ied out very careful ly  avoiding 

shocks that would detach the immobi l ized cel ls  f rom the surface of the 

carr ier .  After dry ing (40 °C for 48 h) ,  the biocatalyst was weighted and 

then added into 50 mL of NaCl (15 g/L  at pH=3).  The attached cel ls  

were removed from the carr ier  by strong mixing (600 rpm) for 30 min. 

The amount of re leased biomass was determined after sett l ing the 

carr ier  by measur ing the absorbance (A6 0 0 )  of  the bulk l iquid at 600 nm 

and was corre lated to cel l  dry weight by a cal ibrat ion curve. The whole 

procedure of mechanical  cel l  removal was repeated whi le the bulk 

l iquid contained a s ignif icant amount of re leased cel ls  (A6 0 0> 0.1)  

(Brányik et a l . ,  2001).  This procedure was repeated in dupl icate for 

each sample. 

The iBio in SG was determined according to the method descr ibed by 

Brányik et a l .  (2004a).  Br ief ly  a sample contain ing approximately 1.0 g 

of dry biocatalyst was taken from the reactor in a form of s lurry through 

a sampling port  (point I I  in  Figure VII I-2 )  to a previously weight 

Er lenmeyer f lask. The bulk l iquid was removed with a syr inge, and the 

carr ier  was washed with 200 mL (2 x 100 mL) of d ist i l led water.  Then 

the f lask+biocatalyst were dr ied at 105 °C for 12 h and weight.  After 

100 mL of 3 % (wt./vol . )  NaOH solut ion was added and shaken at 

120 rpm for 24 h. Dur ing th is t ime the attached biomass was completely 

removed from the carr ier  and th is was ver i f ied with microscopy. The 

biomass free suspension was removed from the SG part ic les and the 

Er lenmeyer contain ing only SG was dr ied at 105 °C for 5 h.  The amount 

of yeast b iof i lm was determined from the weight d i f ference before and 

after the treatment with caust ic.  Correct ions of the biomass weight for 

the losses of SG itsel f  (approximately 6.3% of in i t ia l  weight)  dur ing the 

washing procedures were carr ied out with blank exper iments with c lean 

carr ier .  
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VIII.3.6.4 Microbial adhesion to solvents (MATS) analysis 

The cel ls  were harvested from yeast suspension by centr i fugat ion at 

6000 rpm, 8 ºC for 5 min, d iscarding the supernatant and re-suspending 

the cel ls  in 150 mM NaCl solut ion at a concentrat ion of about 4 x 107 

cel ls/mL (opt ical  density O.D. of 0.8 at 400 nm).  A high ionic strength 

e lectrolyte was used to avoid charge interference by a masking cel ls ’  

charge. At the end, the opt ical  density of the suspension was measured 

(O.D.0)  at  a wavelength of 400 nm. 

Then 3 mL of washed yeast suspension were vortexed for 60 seconds 

with 0.5 mL of the organic solvent (chloroform, hexadecane, ethyl  

acetate,  and decane).  To ensure the complete separat ion of the two 

phases the mixture was kept st i l l  for  10 min. Then 2 mL sample from 

the aqueous phase were removed and the O. D. was measured at 

400 nm. The cel ls  aff in i ty for each solvent was calculated by Eq. VII I—

1 .  Each assay was performed in tr ip l icate. 
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(       Eq. VII I–1  

VIII.3.6.5 Glycogen and neutral lipids (NL) content 

Immobi l ized cel ls  were harvested and kept as descr ibed below and 

glycogen, neutra l  l ip ids, and bud scars were analysed by f low 

cytometry.   

The f low cytometr ic measurements were taken using a Partec Pas I I I  

(Partec GmbH, Münster,  Germany) analyzer equipped with an argon ion 

laser (15 mW laser power with excitat ion wavelength 488 nm).   

The re lat ive content of g lycogen in cel ls  was determined using 

Acr i f lav ine, which is a f luorescent dye able to covalent ly b ind to 

glycogen after permeabi l isat ion of the cel l  membrane by ethanol 

( f ixat ion).  An al iquot of 0.5 mL (OD=0.8 at 600 nm) of the sample was 

removed and 10 µL of Acr i f lav ine (Sigma Aldr ich, Germany) solut ion 

(1 mg/mL in PBS, stored at 4ºC) were added. Incubat ion occurred at 

room temperature in darkness for 30 min. The sample was then 
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analyzed by f low cytometry in FL1 channel (530 nm).  The re lat ive 

content of neutra l  l ip ids was detected after react ion with 20 ml of n i le  

red solut ion (0.1mg/ml acetone).  React ion was carr ied out in dark at 

room temperature for 10 min. Sample was subsequently washed three 

t imes with PBS (8 g/L NaCl;  1.14 g/L Na2PO4; 0.2 g/L KCl;  

0.8 g/L KH2PO4  – in d ist i l led water)  and analysed by f low cytometry in 

FL3 channel (630 nm).  

VIII.3.6.6 Bud scars staining 

An al iquot of 0.5 mL (OD=0.8 at 600 nm) of the sample was washed 

twice in PBS. After i t  was re-suspended in 0.5 mL PBS and 20 mL of 

Alexa Fluor 488-label led wheat-germ agglut in in ( lect in from Tr i t icum 

vulgar is;  Sigma-Aldr ich, UK),  at  a concentrat ion of 1 mg/mL. Cel ls  were 

gent ly agitated at room temperature for 15 min in dark,  harvested by 

centr i fugat ion (5 000 r .p.m. for 3 min) and washed three t imes in PBS. 

The sta ined cel l  culture was re-suspended in 0.5 mL PBS and examined 

using f low cytometry with a 488 nm argon ion laser for f luorescence 

excitat ion. F luorescence was detected in FL1 channel (530 nm).   

VIII.3.7 Out-flow analytical methods 

VIII.3.7.1 Ethanol determination 

Ethanol was analyzed by HPLC (Pump LCP 4000, Column oven LCO 

101, ECOM Ltd.,  Prague, Czech republ ic)  using a Polymer IEX Ca form 

column (250x8 mm, Watrex Internat ional Inc.,  San Francisco, USA),  and 

a RIDK 102 refract ion index detector (Laboratorní  p! ís tro je Praha, 

Prague, Czech republ ic ) .  E lut ion was performed with degassed and 

demineral ized water at 85 °C and the f low rate was 0.7 mL/min.  

VIII.3.7.2 Higher alcohols, esters and organic acids – method A 

The f lavour and aroma compounds (HA and ES) were measured 

according to the current European Brewery Convent ion recommended 
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methods (EBC, 1987).  The concentrat ion of OA was determined by a 

capi l lary zone electrophoret ic analyzer (EA 101, Labeco-Vi l la ,  Ltd.,  

S lovak Republ ic ) ,  with separat ion capi l lar ies (PTFE, length 90 mm, 

diameter 0.8 mm, 150 µA) connected to analyt ical  capi l lary ( length 

90 mm; diameter 0.3 mm; 20 µA) and a detector (conduct ive and UV 

detect ion at 254 nm).  The analysis was carr ied out by a leading 

electrolyte (5 mM HCl + 10 mM glycylglycin + 0.05% 

hydroxyethylcel lu lose) and a f in ishing electrolyte (10 mM caproic acid) .  

The concentrat ion of reducing sugars was determined 

spectrophotometr ical ly  after react ion with 3,5-din itrosal icy l ic acid at 

530 nm. 

VIII.3.7.3 Higher alcohols, esters and aldehydes – method B 

These methods were used to determine the volt i le  compounds from 

the samples obtained in sect ion VI I .4.5.  The quant i f icat ion of the major 

volat i le  (acetaldehyde, ethyl  acetate,  1-propanol,  2-methyl-1-propanol,  

2-methyl-1-butanol,  3-methyl-1-butanol,  2-phenylethanol )  and minor 

( tyrosol,  isoamyl acetate,  ethyl  caprylate,  2-phenylethyl  acetate,  ethyl  

hexanoate, ethyl  decanoate, 2-phenylethyl  acetate,  5-

(hdroxymethyl ) furfura l  (HMF))  compounds were performed with the 

fo l lowing methods.  

Major volat i le  compounds 

To 5 mL of sample, f i l tered previously through a 0.2 µm membrane 

f i l ter  (Whatman ME24),  100 µL of internal  standard (4-nonanol,  Merck 

ref .  818773, in a lcohol ic solut ion at 4.1 g/L) were added. 

Major volat i le  const i tuents were analyzed direct ly,  by in ject ing 1 µL 

of sample in the spl i t  mode on a Chrompack CP-9000 gas 

chromatograph equipped with a Spl i t /Spl i t less in jector and a f lame 

ionizat ion detector.  A capi l lary column, coated with CP-Wax 57 CB 

(50 m !  0.25 mm i .d. ,  0.2 µm f i lm th ickness; Chrompack),  was used. 

The temperatures of the in jector and detector were both set to 250 ºC. 

The oven temperature was held at 60 ºC, for 5 min, then programmed to 

r ise from 60 ºC to 220 ºC, at 3 ºC /min, and f inal ly  held at 10 min at 
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220 ºC. Hel ium GHE5!  (Praxair )  at  125 kPa was used as carr ier  gas, 

and the spl i t  vent was set to 15 mL/min. Ident i f icat ion of volat i le  

compounds was carr ied out by comparing retent ion indices with those 

of pure standard compounds. Quanti f icat ion was performed with 

software Star – Chromatography Workstat ion, vers ion 6.41 (Var ian),  

after the determinat ion of detector’s response factor for each volat i le 

compound. 

Minor volat i le  compounds 

Extract ion of volat i le  compounds were determined according the 

method proposed by Ol iveira et a l .  (2006).  In a 10 mL culture tube 

(Pyrex, ref .  1636/26MP),  8 mL of beer,  3.582 µg of internal  standard (4-

nonanol)  and a magnetic st i r  bar (22.2 mm!4.8 mm) were added. 

Extract ion was done by st i r r ing the sample with 400 µL of 

d ichloromethane (Merck, ref .  1.06050) dur ing 15 min, over a magnetic 

st i r rer .  After cool ing at 0 ºC dur ing 10 min, the magnetic st i r  bar was 

removed and the organic phase was detached by centri fugat ion 

(RCF=5118, 5 min, 4 ºC) being the extract recovered into a v ia l ,  using a 

Pasteur pipette.  Then, the aromatic extract was dr ied with anhydrous 

sodium sulphate (Merck, ref .  1.06649) and picked up again into a new 

via l .  Each sample was extracted in tr ip l icate.  The extreacts were 

anal ized by gas chromatographic.  The analysis of volat i le  compounds 

was performed using a GC–MS system const i tuted by a Var ian 3800 

Chromatograph, with a 1079 in jector,  and an ion-trap mass 

spectrometer Var ian Saturn 2000. A 1 µL in ject ion (spl i t less for 30 s;  

spl i t  rat io of 30 mL/min) was made into a capi l lary column, coated with 

VF-Wax ms (30 m!0.15 mm i .d. ,  0.15 µm film thickness, Var ian).  In jector 

and transfer l ine temperatures were both set to 250 ºC. The oven 

temperature was held at 60 ºC, for 2 min, then programmed to r ise from 

60 ºC to 234 ºC, at 3 ºC/min, and from 234 ºC to 250 ºC, at 10 ºC/min, 

then held 10 min at 250 ºC. The carr ier  gas was hel ium GHE5!  (Praxair )  

at  a constant f low rate of 1.3 mL/min. The detector was set to 

e lectronic impact mode (70 eV),  with an acquis it ion range from 35 m/z 

to 260 m/z, and an acquis it ion rate of 610 ms. Ident i f icat ion of volat i les 
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was performed with Var ian MS Workstat ion software, vers ion 6.9.3,  by 

comparing retent ion indices with those of pure standard compounds. 

Volat i le  compounds were quant i f ied as 4-nonanol equivalents (Ol iveira 

et a l . ,  2006).  

VIII.3.7.4 Determination of vicinal diketones 

Total  VDK’s (2,3-butanodione (d iacety l )  and 2,3-pentanodione) were 

measured according to the current European Brewery Convent ion 

recommended methods (EBC, 1999).  

VIII.3.8 Determination of residence time distribution  

Carr ier  prepared was added to both PBR and iGLR and the working 

volume of l iquid phase in the reactors was calculated. Then a pulse of 

2 mL of methylene blue (3.5 g/L) was in jected at the inf low of both 

reactors and samples (1.5 mL) were col lected at regular intervals (3 

min) in the outf low. The amount of methylene blue in the outf low was 

determined by spectrophotometr ic measurement (600 nm) and these 

data were used to plot real  (exper imental )  residence t ime distr ibut ion 

(RTD) curves.  
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The exper imental  data from PBR were obtained at hydraul ic 

residence t ime of 16.7 min. The axia l  dispersion in PBR was evaluated 

by adjust ing the dispersion parameter (D/uL )  of  the model (Eq. VII I–2 )  

suggested by Levenspie l  (1999).  In order to obtain more information 

about the hydrodynamic behavior in th is reactor,  the exper imental  data 

from PBR were also s imulated with a mult iparameter model (Eq. VII I–3 )  
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and a CSTR in ser ies model (Eq. VII I–4 )  suggested by same author 

(Levenspie ld,  1999).   

The RTD determinat ion in the iGLR was done at gas f low rate of 0,25 

L/min, which corresponds to the normal gas f low used in th is reactor 

for cont inuous fermentat ion of a lcohol-free beer (Lehnert  et  a l ,  2008),  

and at a hydraul ic residence t ime of 39.2 min. The hydrodynamic 

behavior inside the iGLR was determined by adjust ing the RTD curve to 

the CSTR in ser ies model Eq. VII I–4  suggested by Levenspie l  (1999).  

The exper imental  values on both reactors were treated by non-l inear 

adjustment using Solver from Excel (Microsoft  Corp.) .  Solver was 

appl ied on the minimizat ion of the square sum of the errors between the 

theoret ical  (model)  and exper imental  values. 

VIII.3.9 Fermentations  

In  the Chapter VI I  several  cont inuous fermentat ions were performed 

either in iGLR or in PBR. To study the inf luence of yeast stra in,  carr ier  

type and reactor design the fermentat ions done are presented in Table 

VII I-3 .  

Table VI I I-3 .  Condit ions used for  opt imiz ing cont inuous pr imary AFB’s 
fermentat ion.  

Reactor PBR GLR GLR PBR Batch Batch Batch a  

Yeast stra in W96  W96  W96  !KGD2 !KGD2 W96  Industr ia l  

Carr ier Cc Cc SG Cc - -  -  

Temperature (ºC) 8 8 8 8 8 8/2 NAa 
a  NA – In format ion not  ava i lab le  

 

The study of gas composit ion in pr imary cont inuous AFB 

fermentaiton was performed in a iGLR using SG as carr ier  ( IV.3.5) .  The 

same reactor system and immobi l izat ion method was used in the study 

of the effect of ageing in cont inuous pr imary AFB fermentat ion ( IV.3.6) .  
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VIII.4 Results and Discussion 

VIII.4.1 General considerations 

I t  has been stated that cont inuous beer fermentat ion could, under 

favourable c ircumstances, produce a considerable economical benef i t  

through t ime savings. In spite of th is expectat ion, most of the industr ia l  

implementat ion attempts stumbled on f lavours defects and engineer ing 

complexness of cont inuously fermented beers (Brányik et a l . ,  2008; 

Mensour et a l . ,  1992; Wil laert  et  a l . ,  2006).  Conversely to regular beer,  

the f lavour dissimi lar i ty of AFB is usual ly  better accepted by the 

consumers. Therefore,  a suitably matched yeast stra in with 

immobi l izat ion method (carr ier )  and process conf igurat ion could be an 

attract ive a lternat ive for the industry to sat isfy the AFBs worldwide 

growing market.  

VIII.4.1.1 Measurement and modeling of mixing regimes in two 

different bioreactors 

From the point of  v iew of reactor design there are two fundamental  

and many combined approaches to design a mult i-reactor cont inuous 

beer fermentat ion system. The fundamental  systems are based on either 

a ser ies of cont inuous st i r red-tank reactors (CSTR) or p lug f low-l ike 

reactors (PFR),  whi le the combined systems use reactor vessels with 

both types of mixing regime. The goal of  these mult i-reactor systems is 

to mimic the sequentia l  substrate uptake and by-product formation 

typical  for fermentat ion in batch (Brányik et a l . ,  2008; Wil laert  et  a l . ,  

2006).  Unl ike for regular beers,  the cont inuous AFBs product ion 

requires only a s ingle reactor system. Nevertheless, the knowledge of 

the hydrodynamic mixing regime inside the reactor for AFB product ion 

can help avoiding the potent ia l  engineer ing problems, choosing the 

most convenient carr ier  mater ia l  and understanding the behaviour of 

immobi l ized yeast.  
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Comparing the exper imental  and theoret ical  residence t ime 

distr ibut ion (RTD) curves for both reactors,  a near ly perfect ly mixed 

regime and a plug f low with s ignif icant axia l  d ispersion can be seen for 

the GLR and PBR, respect ively (Figure VII I-3 ) .   

In the case of iGLR, the best f i t  for exper imental  t racer response was 

achieved with a non-l inear adjustment of CSTR-in-ser ies model (Table 

VII I-4 ) ,  which represents an a lmost ideal ly  mixed reactor as expected. 

The CSTR model adjusts the number of cont inuous agitated tanks in 

ser ies to the exper imental  data.  In th is case the adjusted parameter 

was near ly 1,  indicat ing the perfect ly mixed character of the studied 

GLR. As dispersion model is  normal ly appl ied for PFR it  was useless to 

apply i t  for th is type of reactor.  On the other hand i t  is  commonly 

known that more than 10 CSTR in ser ies mimic wel l  the plug-f low 

regime, which means that th is model can be appl ied to PBR, where a 

plug-f low regime is expected. 

Al l  tested models (CSTR in ser ies,  d ispersion with and without dead 

zones) can be adjusted to plug-f low regime. The in i t ia l  observat ions of 

the exper imental  data indicated the presence of plug f low regime in our 

PBR, therefore in th is case al l  models were appl ied (Figure VII I-3  and 

Table VII I-4 ) .  

For the axia l  d ispersion model,  the f i t t ing parameter D/uL = 0 

corresponds to ideal  p lug f low, and D/uL = !  to ideal  mixed f low. The 

obtained exper imental  d ispersion coeff ic ient for PBR (D/uL = 0.23) 

suggests the presence of a s ignif icant axia l  d ispersion (Table VII I-4 ) .  

This h igh dispersion was not obtained neither by the CSTR in ser ies or 

by the dispersion models.  Both fa i led in s imulat ing the exper imental  

data (Figure VII I-3 ) .  The PBR in it ia l ly  d id not f i t  into the concept of 

ideal ly  mixed or p lug f low-l ike reactors.  This di f ference indicated the 

presence of dead zones inside the PBR, which caused the CSTR and 

dispersion models to be beyond the l imits of their  val id i ty (Levenspie l ,  

1999).  
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Table VI I I-4 .  Hydrodynamic propert ies of  packed-bed (PBR) and gas- l i f t  
(GLR) reactors.   

Experiment/  

Model 
Parameter GLR Error a  PBR Error a  

Exper iment  D/uLd
 -  -  0 .23 -  

CSTR b in  ser ies N c 1 .05 0.14 5.07 4.54 

Dispers ion D/uLd
 -  -  0 .16 10.47 

VD Z
e  -  -  437.97 

Dispers ion with  
dead zones D/uLd

 -  -  0 .03 
0.79 

a  Sum of  the errors  between the exper imenta l  curves and theoret ica l  
models  as obta ined f rom Solver  appl icat ion.   

b  Cont inuous st i r red tank reactor  
c  Number of  CSTR in  ser ies  
d  D imension less d ispers ion parameter  (u  –  l inear  ve loc i ty ,  L  –  he ight  of  the 

carr ier  bed,  D –  ax ia l  d ispers ion coeff ic ient )  
e  Vo lume of  dead zones (mL)  
 

In order to achieve a better f i t  to exper imental  data,  a mult i-

parameter model was appl ied. The chosen model was a modif icat ion of 

the dispersion model,  taking into account the presence of dead zones, 

and descr ibed sat isfactor i ly  the exper imental  data (Figure VII I-3A ) .  The 

modif ied dispersion model has two main parameters:  the dispersion 

coeff ic ient (D/uL) and the volume of dead zones – VD Z (Table VII I-4 ) .  

The s ignif icant volume of dead zones inside the PBR (ca 33 %) both 

decreases the real  working volume of PBR and hinders the c irculat ion 

of the l iquid phase inside the reactor.  The occurrence of dead zones 

promotes the formation of non-product ive areas with mass transport 

l imitat ions. In addit ion these l imitat ions can inf luence negat ively the 

f inal  product qual i ty because the mass transfer l imitat ions might lead to 

autolysis of starv ing cel ls  (Verbelen et a l . ,  2006; Virkajarv i  and Linko, 

1999).   

Consider ing the PBR conf igurat ion the main dead zones may be at 

the bottom near the inf low, because the l iquid was not wel l  d ispersed. 

In order to decrease the volume of dead zones in PBR a porous 

distr ibut ion layer (g lass spheres, sand, etc. )  can be inserted on the 

bottom of the reactor,  promoting a better l iquid f low distr ibut ion 
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throughout the cross sect ion area of the system (Richardson et a l . ,  

2002).   

 

Figure VI I I-3 .  Exper imenta l  res idence t ime d ist r ibut ion (RTD) curves (! )  for  

PBR (A)  and GLR (B)  vs.  mathemat ica l  s imulat ions (models )  of  RTD curves:   -  
CSTR in  ser ies model ;  -  -  -  d ispers ion model ;  !  !  d ispers ion model  wi th  dead 

zones.   

 

The s ize of carr ier  part ic les appl ied in PBR also inf luences the l iquid 

f low distr ibut ion and consequently the ut i l izat ion of b igger part ic les 

might reduce dispersion; as a result ,  a typical  p lug f low regime might 

be achieved i f  desired (Richardson et a l . ,  2002).  General ly ,  the 

granular i ty of the bed should ref lect a compromise between the carr ier  

and reactor s ize,  b iomass growth rate and the desired f low pattern 

inside the column. 

VIII.4.2 Fermentations performance and flavour compounds 

AFBs are often character ized by the lack of f lavour compounds found 

in regular beers (Perpète and Col l in,  1999a, 1999b).  Therefore the two 
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stra ins studied in th is thesis were evaluated based on tota l  HA, ES and 

OA content,  as wel l  as HA/ES rat io.  The comparison was made either 

between real  or hypothet ical ly  d i luted or concentrated AFBs. Whi le 

di lut ion of more concentrated beers is  nowadays a common pract ice, 

the hypothet ical  “concentrat ion” of AFBs is based on a s impl i fy ing 

assumption that further fermentat ion would increase the content of 

each f lavour act ive compound l inear ly by the same factor as that of 

ethanol.   

VIII.4.2.1 Ethanol and higher alcohols 

The f inal  ethanol concentrat ion at d i f ferent fermentat ions (see…) was 

strongly inf luenced by the process condit ions and the product ion 

stra in.   

The results obtained under comparable condit ions (eg. batch 

fermentat ion) imply that the genet ical ly  manipulated !KGD2 stra in 

produces less ethanol and at a considerably lower y ie ld than the stra in 

W96  (Table VII I-5 ) .  The comparison of ethanol formation in cont inuous 

systems is less stra ightforward, s ince the tr ia ls d i f fer  in b iomass 

content and di lut ion rates. However,  the y ie ld of ethanol formation by 

the !KGD2 stra in in cont inuous systems is again s ignif icant ly lower 

than for the stra in W96  (Table VII I-5 ) .  

In order to make easier the comparison of f lavour act ive by-products 

(HA, ES and OA) formed in di f ferent systems two dif ferent analysis were 

made: (1)  based on AFBs with dif ferent degree of attenuat ion and 

ethanol content and/or (2)  on hypothet ical  products unif ied by the 

legal ly  admitted maximum ethanol content (0.5% by volume or 

3.945 g/L in the EU countr ies) .  These results are presented in Table 

VII I-6  below. 

The results indicate that the !KGD2 stra in showed an increased HA 

formation, part icular ly when comparing the hypothet ical  potent ia l  for 

HA formation at unif ied 0.5% (vol ./vol . )  ethanol content (Table VII I-6 ) .  
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Table VI I I-5.  Product ion condit ions and bas ic  parameters of  rea l  a lcohol- f ree 
beers produced in  cont inuous PBR and iGLR with  SG and Cc as carr iers ,  and 

in  batch fermentat ions.   

Reactor PBR GLR GLR PBR Batch Batch Batcha 

Yeast strain W96 W96 W96 !KGD2 !KGD2 W96 Industr ia l  

Carr ier  Cc Cc SG Cc -  -  -  

Temperature 

(ºC)  
8 8 8 8 8/2 8/2 NAd 

Dilut ion rate 

(hr - 1 )  
0.30 0.07 0.28 0.15 -  -  -  

X I B b (g D B/gD C)  0.05 0.19 1.20 0.07 -  -  -  

X T O T
c  (g/L)  4.8 3.8 17.5 8.1 1.08 1.26 NAd 

% Ethanol   

(vol/vol )  
0.50 0.39 1.14 0.25 0.22 0.36 !0.50 

Reducing 

sugars (g/L)  
23.90 25.78 14.13 24.34 25.14 25.78 NAd 

Yielde (g E/gU R S)  0.453 0.451 0.487 0.239 0.232 0.416 NAd 

a  Commercia l  AFBs produced in  the Czech republ ic  by l imited fermentat ion 
us ing bottom ferment ing yeast  st ra ins. ;  

b  Immobi l ized b iomass concentrat ion (g D r y  B i o m a s s /gD r y  C a r r i e r ) . ;   
c  Tota l  b iomass concentrat ion. ;  
d  In format ion not  ava i lab le . ;  
e  Y ie ld of  ethanol  (g E t h a n o l /gU t i l i z e d  R e d u c i n g  S u g a r s )  
 
This appl ies both for l imited batch and cont inuous PBR with 

corncobs (Cc).  Simultaneously i t  can be seen that the real  HA content 

in most of the AFBs produced under laboratory condit ions was 

s ignif icant ly lower than in the commercia l  products.  The only exception 

is the stra in W96  immobi l ized in spent grains (SG) in GLR, which can be 

expla ined by the highest tota l  b iomass present (Table VII I-5 )  that,  in 

turn,  can be re lated with HA product ion (Wi l laert  and Nedovic,  2006).  

The stra in !KGD2 was able to produce amounts of HA comparable to 

industr ia l  AFBs only when the hypothet ical  HA content corresponding to 

maximum al lowed ethanol concentrat ion was considered (Table VII I-5 ) .  

In terms of ES formation under comparable condit ions (batch and 

PBR with Cc) the !KGD2 stra in seems to be again super ior to stra in 

W96 .  The higher ester formation by !KGD2 stra in is  even more obvious 

for hypothet ical  AFBs with 0.5% (vol/vol )  ethanol content (Table VII I-6 ) .  

Under laboratory condit ions the ES content of commercia l  AFBs was in 
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fact achieved only in the iGLR with stra in W96  and SG and theoret ical ly  

i t  could be reached or surpassed by stra in !KGD2 both in batch and 

cont inuous PBR with Cc (Table VII I-6 ) .  

The HA/ES rat io in regular beers is  considered favorable in the range 

3 to 4 (Kunze, 2004) but in the three analyzed commercia l  AFBs 

produced in the Czech Republ ic th is rat io was in the range 4 to 10. 

Therefore a l l  the real  AFBs produced dur ing th is work are comparable 

to the commercia l  AFBs. Among them three cont inuously fermented 

products were re lat ively c lose (5.0-5.7)  and one product (batch, !KGD2) 

was in the range for regular beers (Table VII I-6 ) .  The concentrat ion of 

each indiv idual HA and ES was below the taste thresholds found in 

regular beers (see Table I I-4 ) .  On the other hand when compared with 

the thresholds in water,  a general  overproduct ion of isoamyl a lcohol 

was observed both in cont inuous and batch systems. This fact was also 

ver i f ied for commercia l  Czech beers.  This effect was not perceived in 

terms of the character ist ic f lavour on the tested samples. Some authors 

mentioned that the threshold of compounds in AFBs should be 

comparable to the threshold of the compound in water instead of 

comparing with the treshold in regular beers,  as i t  is  done by the 

major i ty of the studies (Perpète and Col l in,  1999a).  In th is case, for a l l  

samples, the isoamyl a lcohol has bigger concentrat ion than the normal 

treshold in water and a strong banana f lavour should be noted. 

However i t  was not detected even in the commercia l  Czech AFBs..  

Therefore,  and consider ing that regular beer thresholds are used by 

a lmost every studies (Brányik et a l . ,  2005; Wil laert  and Nedovic,  2006) 

in the present thesis the same cr i ter ia were be used. In fact i t  is  very 

important to evaluate the correct f lavour componds’ treshold in AFBs. 

The main reason is to have a correct evaluat ion of the inf luence that 

each compound has in the f inal  AFB f lavour.  From Table I I-4 the 

treshold of ethanol in water is  990 mg/L whi le in regular beers i t  is  

14000 mg/L. In AFB the maximum ethanol content a l lowed in EU 

countr ies is  3900 mg/L (Table I I-4 ) .   
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Table VI I I-6 .  H igher  a lcohol  (HA) ,  Esters  (ES)  and Organic Acids (OA)  content  
(mg/L)  of  rea l  AFBs produced in  cont inuous PBR and iGLR with  SG and Cc as 

carr iers ,  and in  batch fermentat ions.  

Reactor PBR GLR GLR PBR Batch Batch Batcha 

Strain W96 W96 W96 !KGD2 !KGD2 W96 Industr ia l  

Carr ier  Cc Cc SG Cc -  -  -  

Isobutanol  0 .31 
0.20 
0.26b 

1 .15c 
0 .47 
0.94b 

0.69 
1.57b 

0.26 
0.36b 

0.82±0.18 

1-Butanol  0 .03 
0.08 
0.1 b  

-  -  -  -  0 .01±0.01 

Amyl  A lcohol  0 .93 
0.38 
0.49 b  

2 .06 c  
0 .66 
1.32 b  

0 .21 
0.48 b  

0 .37 
0.52 b  

1 .64±0.35 

Isoamyl  A lcohol  2 .92 
2.69 
3.44 b  

3 .87 c  
2 .91 
5.82 b  

2 .39 
5.43 b  

2 .16 
3.0 b  

5 .78±0.75 

2-Phenylethanol  0 .24 
0.28 
0.36 b  

1 .20 c  
0 .24 
0.48 b  

0 .43 
0.98 b  

0 .15 
0.21b 

1 .73±0.82 

Total  HA 4.43 
3.62 
4.65 b  

8 .32 c  
4 .27  

8 .55 b  
3 .71 
8.44 b  

2 .94 
4.09b 

10.3±2.14 

Ethy l  acetate 0.79 
0.30 
0.38 b  

1 .36 c  
0 .56 
1.12 b  

0 .74 
1.68 b  

0 .31 
0.43b 

1 .56±0.55 

Amyl  acetate  0.04 -  0 .02 c  
0 .08 
0.16 b  

0 .06 
0.13 b  

-  0 .01±0.02 

Isoamyl  acetate  0.06 -  0 .12 c  
0 .11 
0.22 b  

0 .11 
0.25 b  

-  0 .18±0.09 

Ethy l  capry late  -  
0 .10 
0.13 b  

0 .04 c  -  
0 .20 
0.45 b  

-  0 .01±0.01 

2-Phenylethy l  
acetate 

-  -  0 .06 c  -  -  -  0 .02±0.03 

Total  ES 0.89 
0.40 
0.51 b  

1 .60 c  
0 .75 
1.50 b  

1 .11 
2.52 b  

0 .31 
0.43 b  

1 .79±0.68 

HA/ES 5.0 9.2 5.2 5.7 3.35 9.5 7.1±3.2 

Pyruvate 23.3 
22.5 
28.8 b  

13 c  
21.8 
43.6 b  

29.8 
67.7 b  

38.4 
53.3b 

34.5±6.4 

Cit rate  85.3 
77.7 
99.6 b  

83.6 c  
81 
162 b  

145 
329.5 b  

129 
179.2 b  

111.3±22.2 

Malate 40.5 
65 
83.3 b  

32.2 c  
24 
48 b  

19.5 
44.3 b  

87.8 
122 b  

87.2±25.6 

Lactate 66.6 
46.8 
60 b 

44.3 c  
214.6 
429.2 b  

276 
627 b  

57.8 
80.3 b  

156±48.4d 

Succinate 8.6 
12.2 
15.6 b  

9 .8  c  
71.8 
143.6 b  

124 
282 b  

45 
62.4 b  

12.4±6.7 

Propionate 9.0 
7.8 
10 b  

2 .8  c  
7 .3  
14.6 b  

10.7 
24.3 b  

14 
19.4 b  

7 .4±1.6 

Total  OA 233.4 
232 
297.3b 

185.7c 
420.4 
841b 

605 
1375b 

372 
516.7b 

408.9±53 

a  Three d i f ferent  commercia l  AFBs produced in  the Czech republ ic  were 
analyzed to obta in  the average content  of  the i r  f lavour  act ive compounds. ;  b  
Va lues were obta ined af ter  mult ip l icat ion of  the exper imenta l  h igher  a lcohol  
concentrat ion by a factor  corresponding to the rat io  between the maximum 
al lowed (0 .5% (vo l /vo l ) )  and exper imenta l ly  determined ethanol  content  for  
the g iven AFB.;  c  Va lues were obta ined af ter  d i lu t ion of  the fermented AFB to 
ethanol  content  of  0 .5% (vo l /vo l . ) ;  d  Ac id i f icat ion with  lact ic  ac id was 
ind icated on two out  of  three commercia l  AFBs used in  th is  work 
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Therefore i t  is  essencia l  to determine new tresholds for the ethanol 

range normal ly found in AFBs; th is was not found in the l i terature,  and 

i t  was not the main scope of th is thesis.  

In order to minimize the r isk of microbiological  contaminat ion, the pH 

of wort in barre ls was adjusted to 4.5 with lact ic acid pr ior to 

fermentat ion (see sect ion IV.2.1) .  As lactate is  not a fermentat ion by-

product,  i t  was excluded from the data shown in Table VII I-6 .  In terms 

of OA formation the yeast stra in with disrupt ion in the KGD2 gene 

behaved, both in l imited batch and cont inuous (PBR with Cc) 

fermentat ions, as expected (Selecky et a l ,  2003).  I t  showed signif icant ly 

h igher OA formation as compared to stra in W96  and commercia l  AFBs 

(Table VII I-6 ) .  The genet ical ly  manipulated stra in produced amounts of 

OA (except malate)  in concentrat ions comparable with those found in 

regular a lcohol ic beers (see Chapter. I I .4.3) ;  th is happened both in batch 

and cont inuous operat ion (Br iggs et a l . ,  2004).   

Besides, the formation of lactate by !KGD2 stra in was higher than 

the overal l  content ( lactate as brewing by-product plus lactate added 

for acidi f icat ion) of  th is OA in commercia l  AFBs (Table VII I-6 ) .  The tota l  

OA content atta ined the highest values in l imited batch fermentat ion, 

for both yeast stra ins (Table VII I-6 ) .  The W96  stra in showed a s l ight ly 

h igher formation of c i trate and malate,  both in batch and cont inuous 

systems, whi le the average OA concentrat ion in commercia l  AFBs 

revealed a re lat ively low succinate content (Table VII I-6 ) .  

VIII.4.3 Effect of yeast strain 

The AFBs produced by the two studied stra ins (W96  and  !KGD2 )  

were rather d i f ferent in a l l  analyzed parameters.  Their  d i f ferent behavior 

can be shown on the easi ly  comparable examples of l imited 

fermentat ion in batch mode and cont inuous fermentat ion in PBR with 

corncobs (Cc) as carr ier .  The !KGD2  stra in showed ( in both systems) 

h igher HA, ES and OA (Table VII I-6 )  formation, part icular ly when 

comparing the hypothet ical  potent ia l  for formation of volat i les at an 
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unif ied 0.5% (vol/vol )  ethanol content.  Understandably,  the tota l  

organic acid (OA) formation by the !KGD2  stra in surpasses the lager 

yeast stra ins due to the OA overproduct ion caused by incomplete TCA 

cycle operat ion (Zawislak et a l . ,  1999; Selecky et a l . ,  2003).  Keeping in 

mind that volat i les (HA, ES) and OAs are desirable for the f lavour of 

AFBs the results show that the performance of the !KGD2  stra in was 

s ignif icant ly better than that of W96  in  l imited batch fermentat ion, whi le 

th is advantage s l ight ly d iminished in cont inuous PBR with Cc. This 

s l ight reduct ion in cont inuous PBR proved the importance of test ing in 

cont inuous systems yeast stra ins that have good performance in batch 

(Selecky et a l . ,  2003).  The importance of a careful  stra in select ion for 

AFB product ion can be demonstrated also by comparing the products 

of our two studied stra ins with the average composit ion of three 

commercia l  AFBs produced by l imited batch fermentat ion. Whi le the 

stra in W96  seems to be suitable for AFB product ion only in cont inuous 

GLR with SG, the !KGD2  stra in has a potent ia l  for suff ic ient OA and 

volat i le  formation dur ing both cont inuous (PBR with Cc) and batch AFB 

fermentat ion. The fact that d i f ferent yeast stra ins produce volat i les and 

OAs in di f ferent proport ions supports the promising potent ia l  of  stra in 

select ion for improving the qual i ty of industr ia l  AFBs. 

Besides the favorable fermentat ion performance, the !KGD2  stra in 

turned out to be unable to f i rmly adhere to SG. The reason for low 

biof i lm formation by !KGD2  stra in on SG l ies probably in di f ferent 

surface propert ies of these cel ls  together with iGLR typical  turbulent 

regime (especia l ly  in the r iser ) .  The pract ical  consequence of th is fact 

was that the use of !KGD2  stra in in cont inuous GLR with SG fa i led. 

However,  the choice of a proper reactor and carr ier  type (PBR with Cc) 

showed that a wel l  performing, but loosely adher ing stra in can be used 

in a cont inuous fermentat ion system. In PBR the yeast cel ls  

immobi l izat ion method is s l ight d i f ferent than in iGLR. In iGLR i f  the 

adsorpt ion is weak, the loosely attached cel ls  may be more easi ly  

re leased to the fermentat ion bulk due to the turbulence typical  of  th is 

type of reactors.  In the PBR the l iquid velocity is  quite smal ler ,  

consequently both bulk turbulence and velocity are lower in th is type of 
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reactor.  Then, b iof i lm formation in the carr ier  is  favoured (h igh t ickness) 

and   more yeast cel ls  are reta ined inside the PBR .  In addit ion, 

sedimentat ion of cel ls  may be present thus a l lowing even higher yeast 

cel l  concentrat ions to be reached. This is  c lear i f  the yeast cel l  prof i le  

trough the reactor’s length is  analysed (Figure VII I-4 ) .  

 

Figure VI I I-4 .  Ethanol  (A )  and f ree ce l ls  (B )  concentrat ion t roughout the PBR 
length ( f rom 0 cm to 41 cm) for  S. pastor ianus  s t ra in  W96  ( )  and S. 

cerev is iae BY4743 ( )  

 

Figure VII I-4  shows that the biomass concentrat ion is h igher at the 

PBR bottom for both stra ins.  The main reasons for th is phenomenon 

are:  (1 )  h igh sugar concentrat ion in that area; (2 )  near fresh wort inf low 

with h igh dissolved oxygen; (3)  sedimentat ion of yeast cel ls .  The f i rst  

two factors increase yeast growth intensity and the th ird one increases 

yeast cel l  in  the bottom by sedimentat ion of cel ls  that are detached 

from higher posit ions of the PBR. Even consider ing these reasons, i t  is  

very di f f icult  to assess the real  impact of each factor in the f inal  

b iomass concentrat ion at the reactor bottom.  
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VIII.4.4 Effect of reactor design and carrier type 

The combined effect of reactor design and carr ier  mater ia l  on 

formation of f lavour act ive compounds (HA, ES, OA) can be shown by 

the most suitable stra in:  the bottom fermenting lager used (stra in W96) ,  

which was tested in two dif ferent cont inuous reactors (PBR, iGLR) with 

two carr iers (Cc, SG),  p lus in l imited batch fermentat ion. 

As previously stated, the stra in W96  tends to produce lower amounts 

of HA and ES (Table VII I-6 )  both in cont inuous and batch arrangement 

comparing to !KGD2  and industr ia l  stra ins.  However,  in the iGLR with 

SG, the stra in W96  produced an AFB with HA (8.32 mg/L) and ES 

(1.6 mg/L),  after d i lut ion of beer to 0.5% (vol ./vol . )  ethanol,  comparable 

with AFBs produced by industr ia l  batch process. As expected, the 

product iv i ty in cont inuous system (3.6 h residence t ime) is  s ignif icant ly 

h igher than that in batch operat ion (72 h residence t ime).  

The dif ferent composit ion of AFB from cont inuous iGLR with SG, 

comparing to other tr ia ls with stra in W96 ,  can be most probably 

ascr ibed to the s ignif icant ly h igher tota l  b iomass concentrat ion with a 

large proport ion of immobi l ized biomass (Table VII I-5 ) .  A lthough 

adhesion belongs to the most gent le and natural  immobi l izat ion 

methods (Smogrovicová and Domény, 1999),  the immobi l ized biomass 

present on SG in a form of th ick yeast b iof i lm is certa in ly exposed to 

severe mass transfer l imitat ions and specif ic  microenvironment with 

concentrat ion gradients of substrates and products studies (Brányik et 

a l . ,  2005).  The direct evaluat ion of immobi l izat ion effects on cel l  

physiology is d i f f icult ,  but an increased product ion of HA and ES has 

already been descr ibed in the case of cel ls  immobi l ized by attachment 

(Shen et a l . ,  2003).  The performance of the stra in W96  in  cont inuous 

iGLR with SG as a carr ier  was an exception, proving that even a stra in 

that seems to be less suitable for AFB product ion can under favorable 

condit ions produce an acceptable f inal  product (Table VII I-6 ) .   

The hypothesis that the biof i lm th ickness may play an important ro le 

in by-product formation by stra in W96  can be also supported by the 
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exper iment with the same stra in in the iGLR with Cc. In th is case, the 

biomass concentrat ion was lower than in the cont inuous GLR with SG 

(Table VII I-5 )  and i t  led to a product with a s imi lar  composit ion as 

achieved by the stra in W96  in  batch and PBR with Cc (Table VII I-6 ) .  

Nevertheless in the iGLR with Cc the effect of the low di lut ion rate 

(0.07 hr - 1 ,  Table VII I-5 )  has to be considered as wel l ,  because at 

prolonged residence t ime of wort in the cont inuous reactor a more 

s ignif icant str ipping of volat i le  compounds by dr iv ing gas can be 

expected (Lehnert et  a l . ,  2009; Virkajarv i  and Linko, 1999).  

Another process parameter that s ignif icant ly d i f fers between 

cont inuous immobi l ized cel l  systems and batch fermentat ions and 

s imultaneously strongly inf luences the product ion of HA, ES and OA is 

the oxygen supply (Lehnert  et  a l . ,  2008).  The tota l  oxygen load of wort 

was approximately 8 and 3 mg/L for batch and cont inuous systems, 

respect ively.  However,  the supply of oxygen not only di f fers on the tota l  

amount but a lso in i ts  supply dur ing the fermentat ion t ime. Batch 

fermentat ion is character ized by high in i t ia l  oxygen concentrat ion (ca. 8 

mg/L) and subsequent decl ine whi le in the cont inuous systems oxygen 

is constant ly suppl ied (0.2-0.9 mg/(L h) )  into the fermentat ion system 

through wort inf low.  

The content of OA was the highest for both yeast stra ins in l imited 

batch fermentat ion (Table VII I-6 ) .  Therefore th is d i f ference can be most 

probably ascr ibed to the combined effect of immobi l izat ion (changes in 

metabol ic funct ions induced by contact of cel ls  with sol id carr ier )  and 

reactor propert ies (supply of CO2 and O2,  reactor mixing) (Shen et a l . ,  

2004).  The dif ferences in oxygen supply to cont inuous and batch 

fermentat ions can be important as regards OA formation s ince the 

degree of respiro-fermentat ive metabol ism inf luences the act iv i ty of 

enzymes involved in the TCA cycle (Yamauchi et  a l . ,  1995).  
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VIII.4.5 Effect of gas-phase in the final product 

Both pur i f icat ion processes of CO2 or industr ia l  CO2 are expensive 

and i ts ut i l izat ion at industr ia l  scale must reduce at minimum the 

industr ia l  needs. That is  why i t  is  extremely important to achieve a 

compromise between the minimum gas-f low and a good immobi l izat ion 

load capacity (Brányik et a l . ,  2004b).  In order to maintain anaerobic 

condit ions dur ing pr imary fermentat ion CO2 is usual ly  employed. 

General ly ,  in systems using iGLR for pr imary beer or AFB fermentat ion, 

a ir  is  in i t ia l ly  in jected to promote growth, which wi l l  increase 

immobi l izat ion, then the gas-phase is gradual ly  changed to pure CO2 

(Brányik et a l . ,  2006, 2004a; Lehnert et  a l . ,  2008, 2009).   

This sect ion discusses the effect of gradual ly  changing the gas-

phase from air  to CO2 and the use of other inert  gases, which can 

maintain the anaerobic condit ions (such as nitrogen, N2) .  Dissolved CO2 

can affect yeast cel ls  metabol ism and performance by: (1 )  a l ter ing 

membrane structure inf luencing the compound’s dif fusion; (2 )  a l ter ing 

the structure of amino acids, pept ides and proteins; and (3)  inf luencing 

enzymes responsible for carboxi lat ion/descarboxi lat ion react ions. The 

CO2 dissolut ion depends on reactor desing, presence/absence of sol id 

part ic les,  pH, temperature,  and medium propert ies.  High concentrat ions 

of d issolved CO2 decrease the pH in the bulk and enter in the yeast cel l  

cytoplasm. In order to maintain cytoplasm propert ies the cel ls  spent 

energy to force CO2 to leave and a decrease in HA and ES formation is 

reported (Shen et a l . ,  2004).  On the other hand N2 is  an inert  gas at 

general  temperatures and pressure. At 10 ºC and atmospheric pressure 

N2 solubi l i ty  in water is  around 24 mgN 2/kgH 2 O,  whi le for CO2 at same 

condit ions is around 25 000 mgC O 2/kgH 2 O.  In addit ion, N2 seems to be 

economical ly  better than CO2. Consider ing the avai labi l i ty  of N2 in 

atmosphere i t  wi l l  be cheaper for brewery industry to col lect and pur i fy 

N2 instead of CO2. Consider ing th is and the adverse effects of CO2 on 

cel l  wal l  membrane i t  was suggested to study the effect of d i f ferent 

gas-phases in pr imary AFB fermentat ion in an iGLR. 
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I t  is  a lso very important to understand the oxygen supply in 

cont inuous fermentat ions of beer because i t  inf luences yeast cel ls  

metabol ism and consequently the formation of act ive volat i le  and 

f lavour compounds (HA, ES).  The inf luence of the gas-phase in beer 

f lavour was tested in order to understand how could the gas-phase 

inf luence the volat i le  compounds. For that several  mixtures of a ir ,  CO2 

and N2 were tested (20% CO2 vs 80% air ;  50% CO2 vs 50% air ; ;  

80% CO2 vs 20% air ;  100% CO2; 50% CO2 vs 50% N2;  100% N2) .  Dur ing 

these fermentat ions samples for HA and ES analysis were taken when 

steady state was achieved (sect ion VI I I .3.4) .  Parameters as reactor and 

wort barre l  temperature (8 ºC) and residence t ime (14.3 h)  were kept 

constant.  Consider ing the dif ferences in solubi l i ty  of N2 and CO2 in the 

wort,  and knowing that CO2 decreases the pH in the bulk,  a change in 

pH was expected, thus pH was monitored dai ly .  Figure VII I-5A  shows 

that when CO2 was used the bulk pH was s l ighty below 4.5, even 

keeping the inf low pH constant at 4.5;  the opposite was observed when 

pure N2 was in jected. In terms of f ree biomass i t  was detected an 

increase of 50% on free biomass concentrat ion when pure N2 was used. 

On the other hand immobi l ized biomass did not show real  d i f ferences 

either in pure CO2 or N2.  These dif ferences can be expla ined by the CO2 

dissolut ion in the bulk medium. The effect of CO2 on cel ls  growth has 

been ver i f ied to reduce free and immobi l ized cel l  growth by 30% and 

10% respect ively (Shen et a l . ,  2004).   In our case the inexistence of 

changes in iBio concentrat ion can be expla inded by dif ferences in the 

immobi l izat ion method and by the method use to determine immobi l ized 

cel ls  mass, which has an error of 6.3% (sect ion VI I-3.6.3) .  

Sugar uptake and ethanol formation patterns show that when the 

rat io of CO2 in CO2/AIR mixture was increased ( f rom the 15t h  day to the 

25t h  day) sugar consumption decreases mainly the maltose uptake, 

which led to a decrease of ethanol product ion (Figure VII I-6A/B ) .  By 

the analysis of Figure VII I-5B  and Figure VII I-6  i t  is  possible to re late 

maltose consumption with free-cel ls  concentrat ion, under anaerobic 

condit ions. Between the 31s t  day and the 35t h  day, when pure N2 was 

in jected, the increase on free-cel ls  concentrat ion was accompanied by 



Universidade do Minho  Chapter VIII 

 

255 

a s imultaneous decrease of maltose concentrat ion. 

 

Figure VI I I-5 .A  –  pH evolut ion vs gas composit ion dur ing pr imary AFB 
fermentat ion;  B –  Free and Immobi l ized b iomass evolut ion vs gas-phase 

composit ion;  !  -  pH; "  -  iB IO (gB I O M A S S/gD R Y  C A R R I E R ) ;  !  -  Concenrat ion of  f ree 
ce l ls  (g/L ) ;  --  :  CO 2/Air  mixture;  --  :  CO 2/N 2 mixture;  _  :  Wort  barre l  pH.  

 

Maltotr iose concentrat ion was constant and around 5 g/L under 

anaerobic condit ions. As for g lucose concentrat ion, a s l ight re lat ion 

with immobi l ized biomass can be observed indicat ing that immobi l ized 

biomass consumes preferably glucose. Immobi l ized cel ls  are reported 

to have changes in cel l  wal l  composit ion but these changes do not 

depend on the gas-phase (Shen et a l . ,  2004).  The gas-phase 

composit ion can affect the membrane solubi l i ty  and select iv i ty to some 
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compounds, leading immobi l ized cel ls  to consume glucose instead of 

maltose. However,  th is re lat ion is not stra ightforward as i t  occurs for 

maltose and free cel ls  and further studies must be undertaken. 

 

Figure VI I I-6 .  A  –  Sugars evolut ion vs gas composit ion dur ing pr imary AFB 
fermentat ion;  B –  Ethanol  evolut ion vs gas-phase composit ion;  !  -  G lucose;  
"  -  Maltose;  !  -  Maltotr iose;!  -  Ethanol  ;  --  :  CO 2/Air  mixture;  --  :  CO 2/N 2 

mixture.  

 

In addit ion, the evaluat ion of some volat i le  compounds was 

performed and is presented in Table VII I-7 .  As i t  was expla ined in 

sect ion VI I .3.7.3 the method used in th is sect ion is d i f ferent f rom the 

method proposed by the European Brewery Convent ion (EBC, 1987).  I t  

is  important to not ice that the methods used are:  (1 )  val id and reported 

by other authors;  (2 )  a l l  samples were analysed by the same procedure 

and therefore are perfect ly comparable.  Moreover the range of the 

values present in Table VII I-7  for  several  compounds (e.g.  1-propanol 

and ethyl  acetate)  is  s imi lar  to the values present in l i terature as 

displayed in Table I I  -4  (Lehnert  et  a l . ,  2008).  

A f i rst  look at Table VII I-7  shows that ethanol product ion exceeded 
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the maximum al lowed in EU legis lat ion for AFBs (CCE, 1992).  In fact in 

brewing industry beers made in batch are not exact ly equal in terms of 

ethanol content,  and in order to obtain a standard f inal  product some 

processes are appl ied. When, at the end of a batch fermentat ion, the 

f inal  ethanol content of a tradit ional  beer is  h igher than usual th is beer 

can be di luted in ster i l ized water or mixed with other beer from other 

batch fermententat ion in order to obtain the required ethanol content.  

In our case, to achieve the legal ethanol content a di lut ion is required. 

The theoter ical  results from this di lut ion (consider ing for each 

compound the same factor as for ethanol )  are presented in brackets in 

Table VII I-7 .  Therefore,  th is corrected values are the ones used to be 

compare with the l i terature and with the results obtained for the 

commercia l  Portuguese AFBs analysed (Comm1 and Comm2). 

An anal isys on Table VII I-7  shows a strong inf luence of the 

condit ions used (gas-phase change) on the f inal  concentrat ion of HA. 

The tota l  product ion of HA is in the same range of commercia l  beers 

but below the treshold values (Table I I–4 ) .  General ly,  the tota l  content 

of HA in cont inuous AFB produced is h igher that Comm1 and lower than 

Comm2. In Comm1 the tota l  HA content is  mainly supported by the 

content of 2-phenylethanol ( f lavour treshold: 125 mg/L in Mei lgaard 

(1975)) ,  which is quite h igh even when i t  is  compared with the content 

of th is a lcohol in commercia l  Czech AFBs (Table VII I-6 ) .   

Among the cont inuous AFB samples, as expected, the HA product ion 

is h igher when air  is  present.  This is  s imi lar  to the exper iments 

performed by Lehnert et  a l .  (2008),  who demonstrate an increase of HA 

with an increase of OTR. As expla ined, the OTR depends both from the 

in i t ia l  oxygen on the inf low wort and the transfer f rom the gas-phase to 

the fermentat ion bulk.  In our case the l iquid f low in th is s i tuat ion was 

constant therefore only di f ferences in the gas-phase are considered. 

Comparing the two anaerobic gas-phases (pure N2 with pure CO2) i t  

is  possible to observe that with pure N2 the amount of tota l  HA is h igher 

than with pure CO2. Consider ing the high solubi l i ty  of CO2 and i ts 

adverse effects i t  is  bel ieved that yeast cel ls  in the presence of h igh 
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amounts of d issolved CO2 a lter their  metabol ism to counter-balance 

such CO2 adverse effects,  leading to an underproduct ion of HA. 

Moreover the HA is re lated to yeast metabol ism intensity,  which was 

higher in pure N2 than in pure CO2 (Figure VII I-5 ) .  The values of tota l  

HA obtained when pure CO2 (9.7 mg/L) was appl ied is s imi lar  to the 

values obtained previously (8.32 mg/L in Table VII I-6 )  when SG were 

used as carr ier  in an iGLR.  

Concerning the ES content in Table VII I-7  i t  can be observed that 

they are in the same range of commercia l  AFBs and below their  

threshold (Table I I  4 ) .  As reported in chapter I I  (sect ion I I .4.2)  ES 

prodution is inf luenced by oxygen content and the metbol ism intensity 

(Lehnert  et  a l . ,  2008; Shen et a l . ,  2003; Van Iersel  et  a l . ,  1999; Wil laert  

and Nedovic,  2006).  In our case low ES product ion occurs in the 

presence of a ir ,  being higher when in presence of N2 or CO2. When in 

the presence of a ir  a dual effect occurs,  which inf luences ES synthesis.  

In one hand yeasts’  metabol ism is h igher (h igh HA produciton),  but in 

the other hand the presence of oxygen represses the ATTase act iv i ty.  In 

the presence of oxygen yeast cel ls  metabol ism is dr iven to repiratory 

metabol ism and away from fermentat ive metabol ism. Therefore the ideal  

s i tuat ion is to achieve a condit ion where yeast metabol ism is increased 

in anaerobic (or c lose to anaerobic)  condit ions. As showed before 

(Figure VII I-5  and Figure VII I-6 )  in  the presence of N2 there was an 

increase of yeast cel ls  in our iGLR (mainly free cel ls ) .  This is  an 

indicator that when N2 is  used as gas-phase in iGLR less stress is  

induced and yeast metabol ism increases. In addit ion, as there is  few 

oxygen avai lable (only the dissolved oxygen from the inf low) the ATTase 

act iv i ty is  not negat ively inf luenced. Therefore i t  is  not surpr is ing that 

the best condit ion as far as ES product ion is concerned was achived 

when pure N2 was in jected in the iGLR. As found by Lehnert and co-

workers (2008) i t  is  important that some oxygen is present ( for HA 

product ion and sterols synthesis)  in cont inuous AFBs product ion. 

However i t  is  a lso important to reduce the adverse effect of CO2 in the 

fermentat ion performance and that was achieved with N2.  Nevertheless 

CO2 is an important compound in beer f lavour being considered one of 
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the pr imary f lavour const i tuents (Br iggs, et a l .  2004).  Therefore an AFB 

produced only in the presence of N2 wi l l  lack the CO2 inf luence in the 

f inal  AFB f lavour.  In fact th is was conf irmed by the dai ly  degustat ion 

test performed. However th is was just a mere indicat ion and of course 

at industr ia l  scale CO2 can always be added. Of course CO2 is 

expensive but adding only CO2 at the end of the process wi l l  reduce the 

costs to minimum values as i ts in ject ion can be fu l ly  control led. 

Observing the composit ion of the dif ferent analysed ES (Table VII I-7 )  i t  

can be ver i f ied, as expected that ethyl  acetate is  in h ighest amount 

being fo l lowed by ethyl  caprylate.  I f  ethyl  acetate is  in the same range 

in cont inuous and commercia l  AFBs the opposite does not occur with 

ethyl  caprylate.  The synthesis of th is specif ic  ES is not yet fu l ly  

understood, as wel l  as their  inf luence in AFB f inal  f lavour (Brányik et 

a l . ,  2008; Verstrepen et a l . ,  2003; Wil laert  and Nedovic,  2006).  However 

i t  seems that immobi l izat ion induces i ts product ion. In the reactor used 

( iGLR) there are phenomena, such as gas str ipping, that should be 

taken into account because they may reduce the amounts of volat i le  

compounds in the f inal  product.  Macie ira (2008) found that losses of 

volat i le  compounds by gas str ipping mainly occur for a ldehydes and 

diacety l  (h igher than 60% for D!0.2 h- 1 )  whi le such losses are reduced 

for ES (around 30% in s imi lar  condit ions).  The exception in ES was 

ethyl  caprylate,  with losses by str ipping of up to 50% (D!0.2 h- 1 ) .  

Consider ing that the gas composit ion is  not changing s ignif icant ly the 

gas str ipping, i t  can be concluded that ethyl  caprylate formation is 

somehow induced in immobi l ized yeast in a cont inuous AFB product ion 

process using SG as carr ier  and an iGLR. However,  and as ES synthesis 

is  a lso stra in specif ic ,  th is result  can also be a character ist ic of the 

stra in used in th is sect ion (see sect ion VI I .3.1) .  
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Table VI I I-7 .  Mean concentrat ion and associated error  (p=0.05)  of  vo lat i le  compounds dur ing d i f ferent  stages of  

cont inuous fermentat ions.   

Compound 100% Air 

20% Air 

and 

80% CO2 

50% CO2 

and 

50%N2 

100% N2 100% CO2 Comm.1 Comm2. 

Ethanol (g/L) 9.2 (3.9) 5.4 (3.9) 6.4 (3.9) 5.2 (3.9) 4.6 (3.9) < 3.9 < 3.9 

1-propanol (mg/L) 4.8±0.4 (2.0) 2.8±0.6 (2.0) 2.2±0.4 (1.3) 2.7±0.5 (2.0) 1.8±0.2 (1.5) 1.0±0.1 0.9±0.1 

2-methyl-1-propanol (mg/L) 3.1±0.2 (1.3) 1.2±0.1 (0.9) 1.5±0.1 (0.9) 3.7±0.7 (2.8) 1.1±0.3 (0.9) 0.7±0.3 1.2±0.2 

Amyl-alcohol (mg/L) 2.1±0.7 (0.9) 1.5±0.2 (1.1) 1.6±0.4 (1.0) 3.2±0.3 (2.4) 1.4±0.0 (1.2) 0.6±0.1 1.5±0.3 

Isoamyl-alcohol (mg/L) 14.1±2.3 (6.0) 11.1±1.8 (8.0) 8.4±1.3 (5.1) 11.4±1.6 (8.6) 5.7±0.4 (4.8) 2.7±0.3 7±1.2 

2-phenylethanol (mg/L) 3.9±0.6 (1.7) 2.8±0.9 (2.0) 2.2±0.4 (1.3) 2.9±0.9 (2.2) 1.4±0.8 (1.2) 0.9±0.4 25.4±2.5 

tyrosol* (µg/L) 3.7±0.5 (1.6) 2.1±0.9 (1.5) 2.7±1.3 (1.6) 6.0±2.3 (4.5) tr tr 24.7±5.2 

Total HA 28 (11.9) 19.4 (14.0) 15.9 (9.7) 23.9 (17.9) 11.4 (9.7) 5.9 36 

ethyl acetate (mg/L) 1.6±0.7 (0.7) 1.2±0.3 (0.9) 2.1±0.6 (1.3) 5.2±0.5 (3.9) 0.9±0.3 (0.8) 1.5±0.2 4.0±1.1 

Isoamyl acetate* (µg/L) 22.1±1.5 (9.4) 9.6±0.7 (6.9) 44.7±5.2 (27.2) 199.7±105.8 (149.8) 22.5±1.6 (19.1) 14.2±0.4 297.4±148.1 

Ethyl caprylate* (µg/L) 225.2±8.8 (95.5) 109.6±12.0 (79.2) 378.4±72.2 (230.6) 639.7±338.4 (479.8) 600.8±40.9 (509.4) 3.9±1.1 67.3±25.6 

2-Phenylethyl acetate* (µg/L) 130.5±2.6 (55.3) 22.3±1.9 (16.1) 209.2±14.8 (127.5) 163.5±74.6 (122.6) 44.4±3.6 (37.6) 12.0±0.1 88.7±36.8 

ethyl hexanoate* (µg/L) 67.1±5.2 (28.4) 32.9±1.5 (23.8) 66.4±6.8 (40.5) 134.5±71.5 (100.9) 78.0±5.0 (66.1) 3.4±0.2 52.3±28.2 

ethyl decanoate* (µg/L) 41.9±4.5 (17.8) 11.8±2.6 (8.5) 134.2±27.2 (81.8) 252.8±153.2 (189.6) 270.8±16.2 (229.6) 4.7±1.4 8.0±3.8 

Total ES 2.1 (0.9) 1.4 (1.0) 2.9 (1.8) 6.6 (4.9) 1.9 (1.6) 1.6 4.6 

HA/ES 12.6 13.8 5.1 3.5 5.8 3.8 7.8 

acetaldehyde (mg/L) 8.7±2.6 (3.7) 5.9±2.0 (4.3) 3.0±0.2 (1.8) 3.7±0.8 (2.8) 2.0±0.3 (1.7) 3.7±1.8 2.0±0.7 

Total AL 8.7 (3.7) 5.9 (4.3) 3.0 (1.8) 3.7 (2.8) 2.0 (1.7) 3.7 2.0 

Legend:  In  brackets are present  the theoret ica l ly  va lues obta ined i f  a  d i lu t ion of  the fermented AFB was done to obta in  

an ethanol  content  of  0 .5% (vo l /vo l )  or  3 .9 g/L;  Comm1 and Comm2: Commercia l  Protugues AFBs.  
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F inal ly  Table VII I-7  a lso shows the amount of a ldehydes. As 

expected in the presence of a ir  (h igher metabol ism) the acetaldehyde 

concentrat ion is h igher.  However,  in the absence of a ir  the values of 

tota l  a ldehydes are comparable with the commmercia l  beers and below 

the threshold. As in pure N2 the yeast growth increased, an increase of 

acetaldehyde was also expected, which accordingly to the data in 

Table VII I-7  was not observed. Aldehydes are responsible for the worty 

off- f lavours and as their  threshold is  low (10 mg/L, see Table I I-4 ) ,  they 

contr ibute largely for AFBs off- f lavours.  Studies performed in iGLR by 

Lehnert and co-workers (2008) showed that a ldheydes losses by gas 

str ipping are very h igh for th is reactor design (above 80%), which is 

one more advantage of using iGLR for cont inuous AFB product ion 

(Lehnert  et  a l . ,  2008; Macie ira,  2008).  

VIII.4.6 Effect of ageing: preliminary studies 

The cont inuous fermentat ion for test ing ageing effect on fermentat ion 

performance and in yeast physiology was div ided in two per iods (Figure 

VII I-7 ) :  

A – In the f i rst  per iod carr ier  losses were replaced, maintain ing the 

amount of carr ier  ins ide the reactor approximately constant;   

B – In the second stage no carr ier  was added; th is was considered as 

an ageing per iod.  

This a l lowed comparing the two situat ions, being the f i rst  33 days 

(Per iod A) descr ibed as a c losed steady-state,  whi le the subsequent 23 

days (Per iod B) character ised by a gradual ageing of the immobi l ized 

biocatalyst.  After the ageing per iod one l i t re of reactor contents (ca. 

1/3 of the tota l  reactor’s volume),  including spent grains (ca. 

8% (vol ./vol . )  and medium was replaced (at the 56t h  day);  th is a l lowed 

to understand better the effect of carr ier  replacement that occurred 

dur ing per iod A. 
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Figure VII I-7  shows the evolut ion of carr ier  ins ide the reactor and 

immobi l ized biomass at 8 ºC. Immobi l ized biomass accumulat ion 

f in ished after approximately 14 days, atta in ing a maximum 

concentrat ion of approximately 1.7 gb i o m a s s/gd r y  c a r r i e r ,  fo l lowed by a 

gradual decrease to around 1.2 gb i o m a s s/gd r y  c a r r i e r ,  va lue at which an 

equi l ibr ium was establ ished (Figure VII I-7 ) .  The 1/3 of the reactor 

volume replaced by a suspension of c lean carr ier  suspended in 

synthet ic model medium led to a sudden decrease of the tota l  

immobi l ized biomass. However,  th is was subsequently fo l lowed by a 

gradual adhesion of cel ls  onto the c lean spent grain part ic les result ing 

in an increasing amount of immobi l ized biomass. The carr ier  losses that 

occur due to outf low losses (an average of 0.25 gD R Y C A R R I E R/day was 

considered) and immobi l ized biomass samples were monitored and 

control led. 

 

Figure VI I I-7 .  Var iat ion of  immobi l ized b iomass concentrat ion (! )  and carr ier  

amount ins ide the reactor  (! )  dur ing the exper iment.  B lack arrows ident i fy  

carr ier  addit ion at  fermentat ion days ( le f t  to  r ight ) :  18 t h  (6 .9  g ) ;  20 t h  (2 .4  g ) ;  

22n d  (3 .8  g ) ;  26 t h  (3 .8  g ) ;  33 r d  (2 .9  g )  and 56 t h  (12.9 g ) .  

 

Dur ing the whole cont inuous fermentat ion exper iment the free cel l  

v iabi l i ty  remained re lat ively constant.  A s l ight decrease was observed 

from approximately 92.5% to 88% viable free cel ls  unt i l  the 17t h  day of 
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fermentat ion, remaining re lat ively constant around the last value for the 

rest of the t ime. This equi l ibr ium results from the balance between 

yeast cel l  growth and yeas cel ls  wash-out from the reactor.  Regarding 

the v iabi l i ty  of immobi l ized cel ls ,  i t  was observed that under the 

condit ions of Per iod A the v iabi l i ty  (± 85%) was re lat ively constant,  

however when the carr ier  replacement stopped dur ing the second 

per iod (Per iod B),  a decrease in immobi l ized cel l  v iabi l i ty  was detected 

up to 77% of cel l  v iabi l i ty .  After the carr ier  replacement,  the 

immobi l ized biomass increased again to values s imi lar  to those exist ing 

at the end of Per iod B. This can be expla ined by the mechanism of 

adhesion of the new cel ls  onto spent grain part ic les (Brányik et a l . ,  

2004a).  When the free biomass adhesion to spent grains restored the 

maximum immobi l ized biomass concentrat ion (69t h  day of fermentat ion) 

the v iabi l i ty  of immobi l ized cel ls  was s imi lar  to the obtained before 

(Per iod A).  

Theoret ical ly  the immobi l ized cel ls  in fu l ly  developed biof i lm remain 

inside the reactor for long per iods of t ime and natural ly  exceed their  

capabi l i ty  to grow reaching i ts Hayf l ick l imit ,  which is f inal ly  leading 

them to die.  The biocatalyst (carr ier  + cel ls )  replacement occurred 

every t ime clean carr ier  was added, because non-colonized carr ier  

surface was introduced into reactor a l lowing the adhesion of f ree cel l  

populat ion. Free cel ls  have a h igher v iabi l i ty  that helped to maintain the 

high v iabi l i ty  values of the cel ls  immobi l ized onto the carr ier .  This 

keeps the immobi l ized cel l  v iabi l i ty  s imi lar  to that of the free cel ls  and 

as the tota l  amount of immobi l ized cel ls  is  h igher,  the ethanol 

product ion was high with low glucose present Table VII I-8 .   

Table VI I I-8 .  Ageing Fermentat ion performance parameters at  d i f ferent  

stages.  

Concentration* (g/L) 
Stage 

Glucose Ethanol 

Y etanol / 

glucose 

Total VDK’s 

/ (mg/L) 

Period A 3.51 9.29 0.50 0.06±0.007 

Period B 5.69 5.18 0.49 0.04±0.001 

End of 

Fermentation 
2.33 7.23 0.46 0.06±0.009 

*  Va lues corrected consider ing maximum carr ier  load (8% (vo l . /vo l . ) )  
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The addit ion of a larger amount of c lean carr ier  (56t h  day) supports 

the previous idea. After 56t h  day of fermentat ion an increase of g lucose 

consumption and ethanol formation was noted. The f inal  amount of 

g lucose and ethanol in the outf low at the end of the fermentat ion is 

s imi lar  to values obtained in the per iod of carr ier  addit ion (Per iod A – 

see Figure VII I-7 ) .  There is  no s ignif icant decrease or a c lear tendency 

of the ethanol/glucose y ie ld.  This result  indicates that possibly no 

metabol ic changes were present in immobi l ized cel ls ;  however,  is  

expected that d i f ferent results wi l l  occur i f  cel l  v iabi l i ty  decreases 

further.  Table VII I-8  shows the values of tota l  VDK’s product ion; over 

every per iods studied the tota l  VDK’s concentrat ion is s ignif icant ly 

below the taste threshold considered for lager beers (See Table I I-4 ) .  A 

re lat ionship between the increase of immobi l ized biomass with the 

increase of VDK’s seems to be present both in Per iod A and after 

replacing 1/3 of reactor volume.  

VIII.4.6.1 Yeast physiology and cell properties 

The intracel lu lar  compounds of the immobi l ized biomass sta ined by 

f luorescent dyes dur ing the cont inuous exper iment were chit in r ings, 

g lycogen and neutra l  l ip ids. Dur ing Per iod A the values of these 

compounds seem to be near to steady state condit ion. On the contrary,  

in Per iod B an increase of the intensity of f luorescence of chit in r ings 

(bud scars)  and neutra l  l ip ids accompanied the decrease of v iabi l i ty . 

The number of bud scars present on the cel l  surface is d irect ly 

re lated to the number of t imes a cel l  has div ided, and can represent a 

biomarker for repl icat ive cel l  age est imation. The fact that the 

f luorescence bud scar s ignal increased before the increase of dead cel l  

number means that i t  can be appl ied as an indicator of the immobi l ized 

biomass ageing with pract ical  impl icat ions. This indicator ( f luorescent 

bud scar s ignal )  could be used for schedul ing the replacement of aged 

biocatalyst dur ing log term fermentat ions.  
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F igure VI I I-8.  Relat ionships between immobi l ized dead/non v iab le  ce l ls  (! )  

and int racel lu lar  g lycogen (" ) ,  neutra l  l ip ids (# ) ,  and bud scars (! )  dur ing 

the course of  the fermentat ion exper iment.  

 

Besides the bud scars an accumulat ion of neutra l  l ip ids (NL) was also 

observed in repl icat ively aged cel ls ,  which can also be used as an 

indicator to predict ageing. However,  the physiological reason for l ip id 

accumulat ion may not be ent ire ly re lated with ageing and further 

research efforts wi l l  be required. Glycogen concentrat ion did not show 

a s ignif icant var iat ion over the studied per iods. 

Microbia l  adhesion tests to solvents (MATS) – Figure VII I-9  –  were 

carr ied out to evaluate the changes of re lat ive cel l  surface 

hydrophobicity for f ree and immobi l ized cel ls  dur ing the dif ferent 

per iods studied. Both free and immobi l ized yeast showed a s ignif icant ly 

h igher adhesion to chloroform, an e lectron acceptor solvent,  suggest ing 

thus a strong electron donor nature of the used yeast based on Lewis 

acid-base (e lectron donor/acceptor)  interact ions (Figure VII I-9 ) .   

Regarding free cel ls ,  the most s ignif icant change occurs dur ing the 

immobi l izat ion process at the beginning of the exper iment.  Assuming 

that the yeast b iof i lm is in a dynamic equi l ibr ium 

(adsorpt ion/desorpt ion) with the surrounding free cel ls ,  the increased 

adhesion to the hydrophobic solvents could be expla ined with the 

select ion pressure inside the cont inuous reactor favour ing the select ion 

of hydrophobic cel ls  able to e ither adhere to carr ier  and/or f locculate.   
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Figure VI I I-9.  MATS analys is  resu l ts  for  f ree ce l ls  (Top)  and immobi l ized ce l ls  

(Bottom).  Resul ts  are expressed as a percentage of  ce l ls  adhered to a  g iven 

so lvent .  Legend:  Per iod A:  up to 30 t h  day;  Per iod B:  f rom 30 t h  to  56 t h  day;  !  -  

C loroform; "  -  Hexane;  #  -  Decane;  !  -  Ethy l  Acetate.  

 

Moreover,  the adhesion propert ies of immobi l ized cel ls  show, for the 

same fermentat ion t ime, the same values as free cel ls ,  suggest ing thus 

the existence of a dynamic equi l ibr ium between free and immobi l ized 

microbia l  populat ions. A s ignif icant decrease in adhesion of 

immobi l ized yeast to non-polar solvents (decane and hexadecane) was 

observed dur ing the ageing per iod of the cont inuous exper iment 

(Figure VII I-9 ) .  The nature of th is phenomenon is not c lear,  but i t  can 

be most probably l inked with the a lterat ion of cel l  surface dur ing yeast 

ageing. Further exper iments wi l l  have to be carr ied out in order to 

e lucidate th is observat ion. 
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VIII.5 Conclusions 

The product ion of AFB by l imited fermentat ion, as compared to 

regular beer,  has i ts own part icular i t ies that require e ither a l terat ion in 

product ion procedure and/or the use of a specia l  yeast stra in.  The 

same specia l  approach is required for cont inuous fermentat ion with 

immobi l ized yeast in order to exploit  i ts  potent ia l  product iv i ty combined 

with suff ic ient product qual i ty.   

I t  was shown that the laboratory yeast stra in with disrupt ion in the 

KGD2 (!-ketoglutarate dehydrogenase) gene had suff ic ient potent ia l  for 

volat i les formation (HA, ES),  whi le i t  produced an amount of organic 

acids comparable to regular beer fermentat ion. In terms of f lavour 

formation th is genet ical ly  manipulated laboratory stra in performed 

equal ly  wel l  in  batch and cont inuous PBR. However,  i t  was unable to 

form biof i lm around spent grain part ic les and therefore i ts use was not 

possible in the iGLR.  

Conversely the bottom fermenting stra in W96  adhered wel l  to both of 

the sol id supports,  but the formation of f lavour act ive compounds was 

insuff ic ient with the exception of immobi l izat ion onto SG in iGLR. This 

system arrangement proved that even a stra in that seems to be less 

suitable for AFB product ion can, under appropriate condit ions, produce 

an acceptable f inal  product. 

The inf luence of the type of gas-phase in the iGLR showed to be 

more intense for f ree cel ls  than for immobi l ized cel ls .  Under anaerobic 

condit ions with N2 an increase in free cel ls  concentrat ion and in 

maltose consumption was ver i f ied. Moreover the results indicate that 

there is  a re lat ion between maltose uptake and free cel ls  concentrat ion. 

The results obtained with CO2 and N2 suggested that N2 is  a good 

subti tute as gas-phase in iGLR used for cont inuous AFB pr imary 

fermentat ion. The evaluat ion of f lavour act ive compounds (HA,ES and 

AL) showed that in the presence of N2 the formation of important 

fa lvour act ive compounds as ES was enhanced. Part iculary the 
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formation of ethyl  crapylate was higher in the cont inuous system tested 

( iGLR with SG).   

The ageing effects exper iments suggest that dur ing carr ier  addit ion 

per iod condit ions c lose to steady-state were achieved with a lmost 

constant (1)  g lucose and ethanol content in the outf low; (2)  specif ic  

metabol ic rates; (3 )  VDK formation; and (4)  f ree and immobi l ized cel ls  

v iabi l i ty .  The constant cel l  v iabi l i ty  may be re lated to equi l ibr ium 

between cel l  adhesion, growth and washout inf luenced by regular 

addit ion of c lean, non-colonized carr ier  surface. I t  appears that regular 

replacement of smal l  amounts of b iocatalyst with c lean carr ier  could be 

a suitable strategy to maintain a long-term viabi l i ty  and constant 

fermentat ion condit ions inside of a bioreactor.  On the other hand dur ing 

ageing per iod a gradual decrease of immobi l ized cel ls  v iabi l i ty  

occurred. A re lat ionship between increase of bud scars and neutra l  

l ip ids and decrease of immobi l ized cel ls  v iabi l i ty  was observed. These 

phenomena, especia l ly  for bud scars,  could serve as an indicator for 

schedul ing the biocatalyst replacement of long-term fermentat ions. The 

hidden effect of smal l  b iocatalyst addit ions was demonstrated by the 

replacement of 1/3 of reactor volume by a suspension of c lean carr ier  

part ic les.  I t  was fo l lowed by a sudden decrease of immobi l ized 

biomass, which was subsequently gradual ly  replaced by cel l  

colonizat ion of the avai lable carr ier  surface. As regards dead cel l  

number,  the result  was an improvement in immobi l ized cel l  v iabi l i ty . 
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IX. Chapter IX – Conclusions and Future Work  
 

 

 The main a im of th is thesis was the development of a cont inuous 

AFB system that would overcome the industr ia l  batch systems and the 

reported cont inuous methods. To reach these object ives, th is thesis 

was div ided in two main parts:  AFB cont inuous fermentat ion and 

bioreactor hydrodynamics. Overal l ,  the obtained results improved the 

exist ing knowledge on AFB product ion and pointed out for the work 

that needs to be done in order to del iver to the brewery industry a 

re l iable and economical ly  advantageous solut ion for cont inuous AFB 

product ion. 

In the f i rst  part  of  the work, brewer´s yeast immobi l izat ion studies on 

corn cobs (Cc) and spent grains (SG) were fo l lowed by the 

character izat ion of the inf luence of several  parameters in cont inuous 

pr imary AFB fermentat ion. The main conclusions were: 

-  Non-treated Cc and SG (see Table I I I-4 )  are eff ic ient carr iers for 

yeast immobi l izat ion;  

-  Chemical modif icat ion with DEC of these carr iers does not improve i ts 

yeast immobi l izat ion capacity; 

Yeast stra in,  reactor type and carr ier  are key parameters to be 

considered in the select ion of the best cont inuous AFB process. Bottom 

yeast stra ins performed better in iGLR using SG as carr ier ,  whi le 

mutant yeast stra ins a l lowed for better results in PBR with Cc as 

carr ier .  This,  together with the use of bottom fermenting yeast stra ins 

by the Portuguese breweries and the EU laws concerning the use of 

genet ical ly  modif ied yeasts,  a l lowed us to select the iGLR with SG as 

carr ier  as the most adequate system for cont inous AFB product ion.  

In th is system, the effect of introducing CO2 and N2 in the gas-phase 

was studied, being shown that N2 has a posit ive inf luence in the 

formation of f lavour act ive compounds.  
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Yeast ageing was also studied and in a long-term fermentat ion the 

constant adding of f resh carr ier  proved to be a suitable strategy for 

maintain ing a steady performance of the cont inuous pr imary AFB 

fermentat ion. Moreover bud scars were determined as a suitable 

indicator of the loss of iBio v iabi l i ty  in long term fermentat ions . 

In the second part  of  the thesis,  the hydrodynamic aspects re lated 

with the operat ion of immobi l ized cel l  systems were studied, start ing 

from the inf luence of SG in BC regime f low stabi l i ty  fo l lowed by the 

global and local  study of hydrodynamic parameters such as: mixing 

t ime, gas hold-up, l iquid velocity,  sol ids distr ibut ion. The main 

conclusions were: 

-  SG, a cel lu lose-based carr ier ,  reduces HoR regime stabi l i ty  and a 

re lat ion between the pseudo-viscosity induced by the presence of these 

part ic les and cr i t ical  f low regime parameters was establ ished; 

-  For the several  iGLR conf igurat ions, the best mixing pattern was 

obtained for the highest Ad/Ar  rat io (3.67) and r iser length (1.4 m);  

-  An improved method using as an OP was developed and appl ied to 

measure gas-phase propert ies in g- l-s system with SG as sol id-phase 

- The effect of SG in iGLR hydrodynamics at used concentrat ions 

was negl ig ib le and the evaluat ion of i ts  importance was only possible 

using advanced techniques such as OP and HSC; 

-  A hydrodynamic model for three-phase iGLR using SG was 

developed and good agreement with exper imental  data was obtained; 

-  The ethanol produced by the yeast was found to have a bigger 

effect than SG on gas-phase propert ies;  SG loading up to 

6% (wt.W E T  B A S I S/vol . )  is  the adequate amount to be use for cel ls  

immobi l izat ion in a lcohol ic fermentat ion as i t  wi l l  not induce any 

re levant hydrodynamic modif icat ions 

- SG are a suitable carr ier  to perform alcohol ic fermentat ion as i t  

does not inf luence iGLR hydrodynamics under fermentat ion condit ions. 
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-  As a f inal  appointment and consider ing that a lot  has st i l l  to be 

done, some suggest ions for future work are presented: 

A systematic study to improve yeast attachement in SG should  be 

done by modify ing the convent ional pre-treatment by a s impler and less 

cost ly one; 

To perform a systematic study in order to understand the use of N2 

as the gas-phase in big industr ia l  iGLRs and i ts effect on AFB 

propert ies.  An economical evaluat ion comparing N2 use as gas phase 

and CO2 reut i l izat ion should be performed; 

Long term fermentat ion strategies must be developed to tackle with 

yeast ageing effects and deal with the loss of iBio v iabi l i ty  without the 

need of stop and start  procedures; 

For the OP measurements, to develop the in ject ion system so that 

data acquis it ion may be performed a high gas f low rates and high 

acquis it ion rate.   

To study the inf luence that yeast cel ls  have in OP measurement 

mechanism as wel l  as to develop a system that a l lows OP to be used 

onl ine in order to obtain gas-phase propert ies evolut ion dur ing 

fermentat ion.  
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X. Apendix I 
Matlab program used to determined the gas-phase propert ies in g-l-s  

(SG) system using an OP. 

c lea r  a l l ;  c lose  a l l  

So l ids= ' I : \Dados  IBM\Resume\Da ta \0 .25%\ ' ;  Gas_F low='A  -  250mLmin-1 \ ' ;  

Pos i t ion= 'Cen t ra l \ ' ;  Pa th= [So l ids  Gas_F low Pos i t ion ] ;  f i l eL i s t=d i r ( [Pa th , 'ASSAY* . * ' ] ) ;  

npos i t ion  =  nume l ( f i l eL i s t ) ;  %number  o f  f i l es  

fo r  n=1 :nume l ( f i l eL i s t ) ;  F i l ename= [Pa th  f i l eL i s t (n ) .name ] ;  

% Aqu is i t i on  boa rd  con f igu ra t ion  

MaxVo l tage_ca r te  =  10 ;  M inVo l tage_ca r te=-MaxVo l tage_ca r te ;  P rec is ion_ca r te  =  12 ;  

F req_ech  =  0 .01 ;  % in  MHz  

%Read ing  the  s i ze  and  number  o f  po in ts  i n  the  f i l e  

i n fo_ f i c  =  d i r (F i l ename ) ;  nb_p t_ f i c  =  in fo_ f i c .by tes /4 ;  nb_p t_b loc=Freq_ech*1E6*10*20 ;  

nb_b loc  =  ce i l ( nb_p t_ f i c /nb_p t_b loc ) ;  du ree_b loc  =  nb_p t_b loc / (F req_ech*1E6 ) ;  

% Range  o f  aqu is i t i on  boa rd  

du= (MaxVo l tage_ca r te -M inVo l tage_ca r te ) / ( 2^Prec is ion_ca r te ) ;  f i d= fopen (F i l ename, ' r ' ) ;  

fo r  i  =  1  :  nb_b loc ;  %1 

Da ta_B ina i re  =  f read ( f id ,nb_p t_b loc , ' i n t ' , 'b ' ) ;  i _c  =  1 :2 :nb_p t_b loc ;  

Da ta_B ina i re_1=Data_B ina i re ( i _c ) ;  Da ta_B ina i re_2  =  Da ta_B ina i re ( i _c+1 ) ;  

b loc ( i ) .Da ta_Vo l t _1=Data_B ina i re_1 . *du ;  b loc ( i ) .Da ta_Vo l t _2=Data_B ina i re_2 . *du ;  

end  %1 

% Assemb le  a l l  b locks  in  two  s igna ls :  op t ica l  p robe  and  va lve  in jec t ions  

P robe_a r ray= [ ] ;  Va lve_a r ray= [ ] ;  

fo r  i  =  1  :  nb_b loc ;  %2  

P robe_a r ray= [P robe_a r ray  b loc ( i ) .Da ta_Vo l t _1 ' ] ;  

Va lve_a r ray= [Va lve_a r ray  b loc ( i ) .Da ta_Vo l t _2 ' ] ;  

end  %2 

F ina l= [P robe_a r ray '  Va lve_a r ray '  T ime_a r ray ] ;  

% Pa ramete rs  

Sp l_ ra te  =  F req_ech*1E6 ;  I n j _ t ime  =  0 .5 ;  d t=1 /Sp l_ ra te ;  P rb_vo l t=F ina l ( : , 1 ) ;  

I n j _vo l t _0=F ina l ( : , 2 ) ;  Ze ro_pos= f ind ( In j _vo l t _0<0 ) ;  I n j _vo l t= [ ] ;  I n j _vo l t= In j _vo l t _0 ;  

I n j _vo l t (Ze ro_pos ,1 )= [0 ] ;  

Ze ro_pos_1= f ind ( In j _vo l t>3 ) ;  add0=Zero_pos_1- In j _ t ime*Sp l_ ra te *0 .375 ;  add1=  

un ion (Ze ro_pos_1 ,add0 ) ;  % es te  a r t i f i c io  pe rm i te -me  u t i l i za r  as  f requenc ias  de  co r te  que  

qu ise r .  add2=  Ze ro_pos_1+ In j_ t ime*Sp l_ ra te *0 .75 ;  Ze ro_pos_2=  un ion (add1 ,add2 ) ;  

neg_e lements= f ind (Ze ro_pos_2<=0 ) ;  Ze ro_pos_2 (neg_e lements )= [1 ] ;  P rb_vo l t _2= [ ] ;  

P rb_vo l t _2=Prb_vo l t ;  P rb_vo l t _2 (Ze ro_pos_2 ,1 )= [0 ] ;  X= f ind (P rb_vo l t _2 ) ;  

P rb_vo l t _3=Prb_vo l t _2 (X ) ;  T ime_a r ray_2=T ime_a r ray (X ) ;  % t ime  co r rec t ion  

c lea r  Da ta_B ina i re_1 ;  c lea r  Da ta_B ina i re_2 ;  c lea r  F ina l ;  c lea r  P rob_vo l t _2 ;  c lea r  I n j _vo l t _0 ;  

c lea r  I n j _vo l t ;  

%Gas  leve l  Gene ra l  and  P la te  l eve l  de f in i t i on  

no ise=0 .4 ;  Ove rshoo t_ in_Prob_vo l t= f ind (P rb_vo l t _3>5 ) ;  

F i r s t_max= f ind (P rb_vo l t _3>3 ,1 , ' f i r s t ' ) ;  

P rb_vo l t _3 (Ove rshoo t_ in_Prob_vo l t ,1 )= [P rb_vo l t _3 (F i r s t_max ) ] ;  

I nGasGera l= f ind (P rb_vo l t _3> (max (P rb_vo l t _3 ) -0 .05 * (max (P rb_vo l t _3 ) -m in (P rb_vo l t _3 ) ) ) ) ;  

GasLeve lGera l  =  mean (P rb_vo l t _3 ( InGasGera l ) ) ;  N ivP la t=GasLeve lGera l -2 *no ise ;  

%F i l t e r  acqu is i t i on  p rob lems  

Y=d i f f (X ) ;  end_b lock= f ind (Y>1 ) -1 ;  beg in_b lock= f ind (Y>1 )+1 ;  

beg in_b lock= [X (1 ,1 ) ;beg in_b lock ] ;  number_b lock=nume l (beg in_b lock ) ;  

i f   number_b lock>nume l (end_b lock ) ;  end_b lock= [end_b lock ;nume l (P rb_vo l t _3 ) ] ;  end  

% Er ros  in  b locks  due  to  acqu is i t i on  i ssues  

B locks_d i f f=end_b lock-beg in_b lock ;  B locks_d i f f _pos= f ind (B locks_d i f f>0 ) ;  

end_b lock=end_b lock (B locks_d i f f _pos ) ;  beg in_b lock=beg in_b lock (B locks_d i f f _pos ) ;  

number_b lock_cor r=nume l (beg in_b lock ) ;  

fo r  i=1 :number_b lock_cor r ;  %3  

b loc ( i ) .P rb_vo l t _4=Prb_vo l t _3 (beg in_b lock ( i ) : end_b lock ( i ) ) ;  

b loc ( i ) . T ime_a r ray_3=T ime_a r ray_2 (beg in_b lock ( i ) : end_b lock ( i ) ) ;  no ise=0 .4 ;  

b loc ( i ) . I nL iqu id= f ind (b loc ( i ) .P rb_vo l t _4< (m in (b loc ( i ) .P rb_vo l t _4 )+0 .025* (max (b loc ( i ) .P rb_vo l t _4

) -m in (b loc ( i ) .P rb_vo l t _4 ) ) ) ) ;  

% So lv ing  p rob lems  when  b lock  a re  too  sma l l  

i f  nume l (b loc ( i ) .P rb_vo l t _4 )<3 ;  b loc ( i ) . I nL iqu id  =1 ;  end  

b loc ( i ) . L iqu idLeve l  =  mean (b loc ( i ) .P rb_vo l t _4 (b loc ( i ) . I nL iqu id ) ) ;  

b loc ( i ) . t r esho ld=b loc ( i ) . L iqu idLeve l+no ise ;   % t resho ld  in  Vo l t s  

% To  de te rm ine  when  a  b lock  does  no t  have  bubb les  
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i f  max (b loc ( i ) .P rb_vo l t _4 )<2 ;  b loc ( i ) . t r esho ld= [2 ] ;  end  

Taq= [ ] ;  i ndexSta r t  = [ ] ;  i ndexStop  = [ ] ;  

% Bubb le  De tec t ion  

t r y  

P rb_Boo lean  =  (b loc ( i ) .P rb_vo l t _4>b loc ( i ) . t r esho ld ) ;  de tec tChange=xor (P rb_Boo lean (1 :end-1 ) ,  

P rb_Boo lean (2 :end ) ) ;  de tec tR ise=de tec tChange  &  P rb_Boo lean (2 :end ) ;  

de tec tFa l l=de tec tChange&Prb_Boo lean (1 :end-1 ) ;  i ndexSta r t= f ind (de tec tR ise ) ;  

i ndexStop= f ind (de tec tFa l l ) ; end  

% ca lcu la te  t ime  o f  s igna l  s ta r t / s top  and  bubb le  s ta r t / s top  

b loc ( i ) . T r i se  =  b loc ( i ) . T ime_a r ray_3 ( indexSta r t ) ;  b loc ( i ) . T fa l l=b loc ( i ) . T ime_a r ray_3 ( indexStop ) ;  

i f  nume l (b loc ( i ) . T r i se )<nume l (b loc ( i ) . T fa l l ) ;  b loc ( i ) . T fa l l=b loc ( i ) . T fa l l ( 2 :nume l (b loc ( i ) . T fa l l ) , 1 ) ;  

end  

i f  nume l (b loc ( i ) . T fa l l )<nume l (b loc ( i ) . T r i se ) ;  b loc ( i ) . T r i se=b loc ( i ) . T fa l l ( 1 :nume l (b loc ( i ) . T r i se ) -

1 ,1 ) ;  end  

% Tm de te rm ina t ion  

n r_Bubb les_ in_b lock=nume l  (b loc ( i ) . T fa l l -b loc ( i ) . T r i se ) ;  

fo r  j=1 :n r_Bubb les_ in_b lock ;  %4  

b loc ( j ) .P rb_vo l t _5=b loc ( i ) .P rb_vo l t _4 ( indexSta r t ( j ) : i ndexStop ( j )+1 ) ;  

b loc ( j ) . I nGas= f ind (b loc ( j ) .P rb_vo l t _5> (m in (b loc ( j ) .P rb_vo l t _5 )+0 .5 * (max (b loc ( j ) .P rb_vo l t _5 ) -

m in (b loc ( j ) .P rb_vo l t _5 ) ) ) ) ;  b loc ( j ) .GasLeve l=mean (b loc ( j ) .P rb_vo l t _5 (b loc ( j ) . I nGas ) ) ;  

%F ind  Las t  Moun t ing  po in t  ( 2nd  po in t  fo r  Tm de te rm ina t ion )  

b loc ( j ) . I ndex_F i r s t_Gas_Po in t= f ind (b loc ( j ) .P rb_vo l t _5>b loc ( j ) .GasLeve l *0 .9 ,1 , ' f i r s t ' ) ;  

b loc ( j ) . F i r s t_Gas_Po in t=b loc ( j ) .P rb_vo l t _5 (b loc ( j ) . I ndex_F i r s t_Gas_Po in t ) ;  

%Tm fo r  each  bubb le  

b loc ( j ) . Tm=nume l (b loc ( j ) .P rb_vo l t _5 (1 :  b loc ( j ) . I ndex_F i r s t_Gas_Po in t ) ) *d t ;  

b loc ( j ) .CC1= (b loc ( i ) . T fa l l ( j ) -

(b loc ( i ) . T r i se ( j )+b loc ( j ) . I ndex_F i r s t_Gas_Po in t *d t ) ) / (b loc ( i ) . T r i se ( j )+b loc ( j ) . I ndex_F i r s t_Gas_Po i

n t *d t -b loc ( i ) . T r i se ( j ) ) ;  

i f  n r_Bubb les_ in_b lock<1 ;  b loc ( j ) .CC1= [2 ] ;  end  

i f  b loc ( j ) .P rb_vo l t _5 (b loc ( j ) . I ndex_F i r s t_Gas_Po in t )<N ivP la t ;  b loc ( j ) . Tm= [0 ] ;  end  

i f  b loc ( j ) .CC1<0 .66 ;  b loc ( j ) . Tm= [0 ] ;  end  

%Tg fo r  each  bubb le  

b loc ( j ) . Tg=b loc ( i ) . T fa l l ( j ) -b loc ( i ) . T r i se ( j ) ;  b loc ( j ) . Ta=b loc ( i ) . T r i se ( j ) ;  end  %( j )4  

% Vo idage  De te rm ina t ion  

b loc ( i ) . sumTg=sum(b loc ( i ) . T fa l l -b loc ( i ) . T r i se ) ;  b loc ( i ) . n rBubb les=nume l (b loc ( i ) . T fa l l ) ;  

b loc ( i ) . Taq=end_b lock ( i ) *d t -beg in_b lock  ( i ) *d t ;  b loc ( i ) . vo idage=b loc ( i ) . sumTg/b loc ( i ) . Taq*100 ;  

% Assemb le  a l l  Tm and  Tg  in  an  a r ray  o f  the  ma in  b lock  ( i )  

b loc ( i ) . Tg1= [ ] ;  b loc ( i ) . Tm1= [ ] ;  b loc ( i ) . Ta1= [ ] ;  

fo r  j=1 :n r_Bubb les_ in_b lock ;  

b loc ( i ) . Tg1= [b loc ( i ) . Tg1  b loc ( j ) . Tg ] ;  b loc ( i ) . Tm1= [b loc ( i ) . Tm1  b loc ( j ) . Tm ] ;  

b loc ( i ) . Ta1= [b loc ( i ) . Ta1  b loc ( j ) . Ta ] ;  

end ;  end  %( i )3  

b loc (n ) .Tg_assay= [ ] ;  b loc (n ) .Tg_assay= [b loc (n ) .Tg_assay  b loc (1 :number_b lock_cor r ) .Tg1 ] ;  

b loc (n ) .Tm_assay= [ ] ;  b loc (n ) .Tm_assay= [b loc (n ) .Tm_assay  b loc (1 :number_b lock_cor r ) .Tm1 ] ;  

b loc (n ) .Ta_assay= [ ] ;  b loc (n ) .Ta_assay= [b loc (n ) .Ta_assay  b loc (1 :number_b lock_cor r ) .Ta1 ] ;  

b loc (n ) . vo idage_assay= [ ] ;  

b loc (n ) . vo idage_assay= [b loc (n ) . vo idage_assay  b loc (1 :number_b lock_cor r ) . vo idage ] ;  

b loc (n ) .n rBubb les_assay= [ ] ;  

b loc (n ) .n rBubb les_assay= [b loc (n ) .n rBubb les_assay  b loc (1 :number_b lock_cor r ) . n rBubb les ] ;  

b loc (n ) .Taq_assay= [ ] ;  b loc (n ) .Taq_assay= [b loc (n ) .Taq_assay  b loc (1 :number_b lock_cor r ) .Taq ] ;  

b loc (n ) .Sec_ in t i t a l _ t ime= [ ] ;  

b loc (n ) .Sec_ in t i t a l _ t ime= [b loc (n ) .Sec_ in t i t a l _ t ime  beg in_b lock (1 :number_b lock_cor r ) . * (d t /0 .57

5 ) ] ;  

b loc (n ) .Sec_ f ina l_ t ime= [ ] ;  

b loc (n ) .Sec_ f ina l_ t ime= [b loc (n ) .Sec_ f ina l_ t ime  end_b lock (1 :number_b lock_cor r ) . * (d t /0 .575 ) ] ;  

end  %(n )  2  

Sec t_Resu l t s_C_A_250_mLmin_025_1= [b loc (1 ) . vo idage_assay '  b loc (1 ) .n rBubb les_assay '  

b loc (1 ) .Taq_assay '  b loc (1 ) .Sec_ in t i t a l _ t ime  b loc (1 ) .Sec_ f ina l_ t ime ] ;  

Sec t_Resu l t s_C_A_250_mLmin_025_2= [b loc (2 ) . vo idage_assay '  b loc (2 ) .n rBubb les_assay '  

b loc (2 ) .Taq_assay '  b loc (2 ) .Sec_ in t i t a l _ t ime  b loc (2 ) .Sec_ f ina l_ t ime ] ;  

Sec t_Resu l t s_C_A_250_mLmin_025_3= [b loc (3 ) . vo idage_assay '  b loc (3 ) .n rBubb les_assay '  

b loc (3 ) .Taq_assay '  b loc (3 ) .Sec_ in t i t a l _ t ime  b loc (3 ) .Sec_ f ina l_ t ime ] ;  

% Assemb le  a l l  Tg ,Tm and  Ta  

Cen te r_A_250_mLmin_025_1= [b loc (1 ) .Tg_assay '  b loc (1 ) .Tm_assay '  b loc (1 ) .Ta_assay ' ] ;  

Cen te r_A_250_mLmin_025_2= [b loc (2 ) .Tg_assay '  b loc (2 ) .Tm_assay '  b loc (2 ) .Ta_assay ' ] ;  

Cen te r_A_250_mLmin_025_3= [b loc (3 ) .Tg_assay '  b loc (3 ) .Tm_assay '  b loc (3 ) .Ta_assay ' ] ;  

save ( '…\Cen te r_A_250_mLmin_025%' , 'Cen te r_A_250_mLmin_025_1 ' , 'Cen te r_A_250_mLmin_0

25_2 ' , 'Cen te r_A_250_mLmin_025_3 ' , 'Sec t_Resu l t s_C_A_250_mLmin_025_1 ' , 'Sec t_Resu l t s_C_

A_250_mLmin_025_2 ' , 'Sec t_Resu l t s_C_A_250_mLmin_025_3 ' ) ; f c lose ( f id ) ;  
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