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ABSTRACT 
 
A computational methodology for dynamic description of rigid multibody systems with translational 

clearance joints is presented and discussed in this work. Over the last years, extensive work has been done to 

study the dynamic effect of the revolute joints with clearance in multibody systems, in contrast with the little 

work devoted to model translational joints with clearance. In a joint with translation clearance there are many 

possible ways to set the physical configuration between the slider and guide, namely: (i) no contact between the 

two elements, (ii) one corner of the slider in contact with the guide surface, (iii) two adjacent slider corners in 

contact with the guide surface, (iv) two opposite slider corners in contact with the guide surfaces. The proposed 

methodology takes into account these four different situations. The conditions for switching from one case to 

another depend on the system dynamics configuration. The existence of a clearance in a translational joint 

removes two kinematic constraints from a planar system and introduces two extra degrees of freedom in the 

system. Thus, a translational clearance joint does not constrain any degree of freedom of the mechanical system 
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but it imposes some restrictions on the slider motion inside the guide limits. When the slider reaches the guide 

surfaces an impact occurs and the dynamic response of the joint is modeled by contact-impact forces. These 

forces are evaluated here with continuous contact force law together with a dissipative friction force model. The 

contact-impact forces are introduced into the system’s equations of motion as external generalized forces. The 

proposed methodology is applied to a planar multibody mechanical system with a translational clearance joint 

in order to demonstrate its features. 

 
Keywords: Clearance Joints, Multibody Dynamics, Contact-impact Forces 
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1. INTRODUCTION 

The traditional dynamic analysis of rigid multibody systems has inherent limitations since the kinematic 

joints are not modeled taking into account their physical characteristics but instead as ideal kinematic 

constraints. Consequently, factors like clearance, friction, local elastic/plastic deformations and bodies’ 

flexibility are not considered. In reality, the multibody systems are connected by kinematic joints in which some 

clearance is always present. That clearance is indispensable to permit a correct functioning of the pair elements. 

Causes of clearance in multibody systems have been identified as being due to the manufacturing process, local 

deformation, thermal effects and wear. The clearances always cause collision between the elements that 

compose the clearance joints and, consequently, impact forces are developed and transmitted throughout the 

multibody system. 

Over the last few decades, extensive work has been done to study the dynamic effect of the revolute and 

spherical joints with clearance in multibody systems [1-6]. However, most of these works are referred to 

unlubricated joints. Bauchau and Rodriguez [7] and Flores et al. [8] are among the few who have incorporated 

the lubrication effect at the clearance joints in the simulation of multibody systems. In these works the 

mechanical systems used to demonstrate the proposed approaches are four bar linkage and slider crank 

mechanisms. In contrast to the revolute and spherical clearance joints, little work has been developed to model 

translational joints with clearance. Wilson and Fawcett [9] derived the equations of motion for the different 

scenarios of the slider motion inside the guide. They also showed how the slider motion in a translational 

clearance joint depends on the geometry, speed and mass distribution. Farahanchi and Shaw [10] studied the 

dynamic response of a planar slider-crank mechanism with slider clearance. They demonstrated how complex 

the system’s response is, which can be chaotic or periodic. More recently, Thümmel and Funk [11] used the 

complementary approach to model impact and friction in a slider-crank mechanism with both revolute and 

translational clearance joints. 

The primary aim of this work is to present a computational methodology for dynamic description of rigid 

multibody systems with translational clearance joints. In the present work, the slider and the guide elements that 

constitute a translational clearance joint are modeled as two colliding bodies and the dynamics of the joint is 
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governed by contact-impact forces. The modeling of translational clearance joints is more complicated than that 

for the revolute joints, because in a translational clearance joint there are many possible ways to set the physical 

configuration between the slider and guide, namely: (i) no contact between the two elements, (ii) one corner of 

the slider in contact with the guide surface, (iii) two adjacent slider corners in contact with the guide surface, 

(iv) two opposite slider corners in contact with the guide surfaces. The conditions for switching from one case 

to another depend on the system dynamics configuration. The proposed methodology takes into account these 

four different situations. 

A translational clearance joint does not constrain any degree of freedom from the mechanical system as an 

ideal joint, but it imposes some restrictions on the slider motion inside the guide limits. When the slider reaches 

the guide surfaces an impact occurs and the dynamic response of the joint is modeled by contact-impact forces. 

These forces are evaluated according to a continuous contact force law [12] together with a dissipative friction 

force [13]. Then these contact forces are added into the system’s equations of motion as external generalized 

forces [14]. The dynamic system’s response is obtained by numerically solving the system’s equations of 

motion and contact-impact forces produced by the collision between the slider and guide. The initial conditions 

necessary to start the integration process are obtained from kinematic simulation of the mechanical system in 

which all the joints are considered to be ideal. The Baumgarte stabilization technique is used to control the 

position and velocity constraint violations [15]. Furthermore, the integration process is performed by employing 

a predictor-corrector algorithm with variable time step and variable order [16,17]. Finally, a planar multibody 

mechanical system is used as numerical example to discuss the assumptions and procedures adopted throughout 

this work. 
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2. MULTIBODY DYNAMICS FORMULATION  

A multibody system is a collection of bodies that is acted upon by forces and moments. These bodies are 

interconnected to each other by different types of kinematic joints that constrain their relative motion in 

different forms. The formulation of multibody system dynamics adopted here follows closely the Nikravesh’s 

work in which the generalized Cartesian coordinates are used to describe the system configuration [14]. 

For a constrained multibody system the kinematic joints can be described by a set of linear and/or nonlinear 

holonomic algebraic equations as 

 ( , )t =Φ q 0 (1)  

where q  is the generalized coordinates vector and t is the time variable. Differentiating Eq. (1) with respect to 

time yields the velocity constraint equation. After a second differentiation with respect to time the acceleration 

constraint equation is obtained 

 γqΦq =  (2)  

in which Φ q is the Jacobian matrix of the constraint equations, q  is the acceleration vector and γ  is the right 

hand side of acceleration equations, which contains the terms that are exclusively function of velocity, position 

and time. 

The translational and rotational equations of motion for an unconstrained multibody system of rigid bodies 

are written as 

 gqM =  (3)  

where M  is the global system mass matrix, containing the mass and moments of inertia of all bodies, and g  is 

the generalized force vector that contains all external forces and moments applied on the system. 

Using the Lagrange multipliers technique the constraint equations (1) is added to the equations of motion (3). 

Thus, the equations of motion are written together with the second time derivative of constraint equations (2) 

yielding a system of equations written as 
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 { } { }T⎡ ⎤
=⎢ ⎥

⎣ ⎦
q

q

M Φ q g
λ γΦ 0
&&  (4)  

where λ  is the vector of Lagrange multipliers, which physically are related to the joint reaction forces. The 

reaction forces, owing to the kinematic joints are expressed as [18], 

 ( )c T= − qg Φ λ  (5)  

Equation (4) is a differential-algebraic equation that has to be solved and the resulting accelerations 

integrated in time. However, they do not use explicitly the position and velocity constraint equations allowing 

for a drift in the system constraints to develop. In order to keep under control such constraint violation during 

the numerical integration the Baumgarte stabilization technique is employed, and Eq. (4) modified as 

 { } { }22

T

α β
⎡ ⎤

=⎢ ⎥ − −⎣ ⎦
q

q

M Φ gq
λ γ Φ ΦΦ 0
&&

&  (6)  

where α and β are prescribed positive constants that represent the feedback control parameters for the velocities 

and positions constraint violations [14,15].   

According to this formulation, the dynamic response of multibody systems involves the evaluation of the 

vectors g and γ , for each time step. Then, Eq. (6) is solved for the system accelerations q . These accelerations 

together with the velocities q  are integrated in order to obtain the new velocities q  and positions q for the next 

time step. This process is repeated until the complete description of system motion is performed. Figure 1 

shows the standard flowchart for the dynamic solution of the differential-algebraic equations of motion (4). 
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3. MATHEMATICAL MODEL FOR TRANSLATIONAL CLEARANCE JOINTS  

The purpose of this section is to present a mathematical model for translational joints with clearance in 

multibody systems. Figure 2 shows a planar translational joint with clearance. The clearance c is defined as the 

difference between the distance of the guide and the slider surfaces. Other important geometric characteristics 

of the translational clearance joint are the length of the slider L, the slider width W, and the total distance 

between the guide surfaces H. Mathematically, clearance can be expressed as, 

 
2
WHc −=  (7)  

In an ideal translational joint the two bodies, slider and guide, translate with respect to each other parallel to 

the line of translation, so that, there is neither rotation between the bodies nor relative translation motion in the 

direction perpendicular to the line of translation. Therefore, an ideal translational joint reduces the number of 

degrees of freedom of the system by two. The existence of a clearance in a translational joint eliminates the two 

kinematic constraints and introduces two extra degrees of freedom. Hence, the slider can freely move inside the 

guide limits. When the slider reaches the guide surfaces an impact occurs and the dynamic response of the joint 

is modeled by contact forces. These contact forces are evaluated according to a continuous contact force law 

together with the dissipative friction force law. Then these forces are introduced into the system’s equations of 

motion as external generalized forces. Although a translational clearance joint does not constraint any degree of 

freedom from the mechanical system as an ideal joint, it imposes some restrictions on the slider motion inside 

the guide. Thus, while a perfect joint in multibody system is achieved by kinematic constraints, a clearance joint 

is obtained by a force constraint. 

There are several possible configurations for the relative position between the slider and guide, as illustrated 

in Fig. 3.  These different configurations are: 

• There is no contact between the two elements, i.e., the slider is in free flight motion inside the guide and, 

consequently, there is no reaction force at the joint; 

• One corner of the slider in contact with the guide surface; 
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• Two adjacent slider corners are in contact with the guide surface, which corresponds to have a face of slider 

is in contact with the guide surface; 

• Two opposite slider corners are in contact with the guide surface. 

The conditions for switching from one case to another one depend on the system dynamics configuration. 

For the three last cases, the contact forces are evaluated according to a continuous contact force model. 

In order for the translational clearance joints to be used in the multibody system models it is required that a 

mathematical model is developed. Figure 4 shows a representation of a translation joint with clearance that 

connects bodies i and j. The slider is body i whereas the guide is part of body j. The center of mass of bodies i 

and j are Oi and Oj, respectively. Local coordinate systems are attached at the center of mass of each body, 

while XY coordinate frame represents the global coordinate system. Let points P, Q, S and R in the guide 

surfaces indicate the geometric limits inside which contact may occur. Points Ai, Bi, Ci and Di indicate the four 

slider corners, and Aj, Bj, Cj and Dj are the points on the guide surfaces that are closer to the respective points in 

body j. As the formulation for all the slider corners is similar, in what follows, only the slider corner A is used to 

describe the mathematical model. 

Let vector t, directed along the guide surface from point P to point Q in body j, be written in terms of the 

body fixed coordinates as 

 Q P
j j j′ ′ ′= −t s s  (8)  

Note that if expressed in the inertia frame the tangent vector t=Ajt�, where Aj is the transformation matrix 

from body j frame to the inertial frame. 

Let the position vector for any given point G of a body k be described with respect to inertial reference 

frame as 

 'G G
k k k k= +r r A s ,     (k=i,j) (9)  

where s�k
G is the position of point G in body k expressed in body fixed coordinates. The position of point Aj, 

belonging to the segment PQ  of the guide, closest to point Ai located in the corner of the slider, is given as 
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 ( )A P T A P
j j i j

⎡ ⎤= + −⎣ ⎦r r t r r t  (10)  

The vector that connects the slider corner Ai to point Aj on the guide surface is defined as 

 A A
j i= −δ r r  (11)  

Note that vector δ  has the same direction as the normal n to the guide surface.  However, regardless of this 

identity, let the normal vector n be defined as perpendicular to the tangent vector t, which for two-dimensional 

cases is 

 ( ) ( )

T

y xt t⎡ ⎤= −⎣ ⎦n  (12)  

where t(x) and t(y) are the inertial components of the tangential vector projected onto the X and Y directions, 

respectively. 

Figure 5 shows the slider and guide in two different scenarios, namely in a non contact situation and in the 

case of penetration between the slider and guide surface. For the contact case, the vectors δ  and n are parallel 

but oriented in opposite directions, i.e. their scalar product is negative. Thus, the condition for penetration 

between the slider and guide is expressed as 

 0T <n δ  (13)  

The magnitude of the penetration depth for point Ai is evaluated as 

 Tδ = δ δ  (14)  

The impact velocity, required for the evaluation of the contact force, is obtained by differentiating Eq. (11) 

with respect to time yielding 

 ' 'A A
j j j i i i= + − −δ r A s r A s& & && &  (15)  

The evaluation of the contact forces is made in next sections.  However, note that the points of application 

of such forces in bodies i and j are points Ai and Aj, respectively. 
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4. CONTACT FORCE MODEL 

In dealing with translational clearance joints, it is essential to define how the slider and guide surfaces 

contact each other and, consequently, what is the most adequate contact force model. In a general way, the 

contact-impact force models can include three different components: the elastic force, the damping force and 

the friction force [19]. Furthermore, the contact force model is expected to contribute to the stable integration of 

the equations of motion of the multibody system. In this work different contact force models based on 

penalization methods are presented and applied to a demonstrative problem with a translational clearance joint. 

4.1. Elastic Contact Force 

The elastic force developed in the contact collision between the slider and guide surfaces can be modeled by 

applying the Hertz contact law, which is based on the elasticity theory [20]. The Hertz contact model represents 

the contact force as a nonlinear function of the penetration. This is expressed as [21] 

 n
N Kf δ=  (16)  

in which K is the generalized stiffness constant and δ is the relative penetration depth. The exponent n is equal 

to 1.5 for metals. Hunt and Crossley [22] suggested the use of the contact law given by Eq. (16) with a power 

exponent 1<n<1.5. The generalized stiffness depends on the materials and on the geometry of the contacting 

bodies. For instance, for the contact between a spherical body i and a plane surface the generalized stiffness 

constant depends on the radius of the sphere and the materials properties, and is expressed by [23] 

 4
3(σ σ ) i

i j

K R=
+

 (17)  

where Ri is the radius of curvature of the sphere and σi and σj are given by 

 
21 νσ k

k
kE

−= ,    (k=i,j) (18)  

variables νk and Ek are, respectively, the Poisson’s ratio and the Young’s modulus associated with the material 

of each body. 
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For contact between square plane surfaces a linear elastic force model is expressed as [24] 

 Nf Kδ=  (19)  

where the stiffness parameter K is given by 

 
0.475( )i j

aK
σ σ

=
+

 (20)  

the area of contact is a square with a side of 2a, and the variables σi and σj are given by Eq. (18). The contact 

force law given by Eq. (19) is linear, which seems acceptable since there is no geometric nonlinearity due to the 

curvature of the bodies. 

The continuous contact force model described here uses, for each contact conditions, fixed values for the 

proportional coefficient K that appears in equations (16) through (20).  However, it should be emphasized that 

during a general contact problem the shape of the contacting surfaces may change and that a particular 

expression for K, regardless of being equation (17) or (20) are not valid anymore, in a strict sense. For instance, 

when considering a single corner contact as implied by figure 6(b) the motion of the system may be such that its 

evolution leads to a two surface contact as depicted by figure 6(a) without any contact lost in between those two 

instants in time. Clearly the need for a transition model for the parameter K is required, provided that it would 

not violate the basic assumptions of the Hertz elastic contact theory implied in equation (16). Such model is not 

presented here but may be required to complement with more realism the applications of the methodologies 

proposed here. 

4.2. Damping Force 

Hunt and Crossley [22] proposed a nonlinear viscous-elastic model to represent the damping force, which 

simulates the energy transferred during the impact process. Based on the work of Hunt and Crossley, Lankarani 

and Nikravesh [12] presented a continuous contact force model in which a hysteretic damping factor is 

incorporated in order to account for the energy dissipation during the contact. This contact force model is 

expressed as 
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 ( )

23(1 ) δδ 1
4 δ

n
N

ef K −

⎡ ⎤−= +⎢ ⎥
⎣ ⎦

&
&  (21)  

where the generalized stiffness parameter K is evaluated by equations such as (17) and (18), e is the restitution 

coefficient, δ  is the relative penetration velocity and )( −δ  is the initial impact velocity. Equation (21) is used to 

simulate the impact because it accounts for energy dissipation and exhibits good numerical stability at low 

impact velocities [25]. 

When two adjacent slider corners contact with the guide surface, the resulting contact force is applied at the 

geometric center of the penetration area, denoted as GC in Fig. 6(a), and the contact force model given by Eq. 

(19) is used. Otherwise, when one or two opposite slider corners contact the guide surface, the contact area is 

too small. Thus, the contact is assumed to be between a spherical surface and a plane surface, allowing for the 

contact model given by Eq. (21) to be applied. In order to evaluate the equivalent stiffness a small curvature 

radius R is assumed on the contact corner, represented in Fig. 6(b). 

4.3. Friction Force 

In a multibody system a friction force is likely to appear in joints where the contacting surfaces have a 

relative sliding motion. The Coulomb law [26] of sliding friction can represent the most fundamental and 

simplest model of friction between dry contacting surfaces. However, the implementation of the standard 

Coulomb friction model in a general-purpose program can lead to numerical difficulties. In order to avoid such 

difficulties, a modified Coulomb law is used [13] 

 T
T f d N

T

f c c f= − v
v

 (22)  

where cf is the friction coefficient, fN is the normal force, vT is the relative tangential velocity and cd is a dynamic 

correction coefficient, which is expressed as [13] 

 
0

0
0 1

1 0

1

0 if

if

1 if

T

T
d T

T

v v
v vc v v v
v v

v v

⎧ ≤
⎪ −⎪= ≤ ≤⎨ −⎪

≥⎪⎩

 (23)  
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where v0 and v1 are given positive tolerances for the velocity. The dynamic correction factor cd prevents that the 

friction force changes direction in the presence of almost null values of the tangential velocity, which would be 

perceived by the integration algorithm as a dynamic response with high frequency contents, forcing it to reduce 

the time step size. The modified friction model represented by Eq. (22) does not account for other tribology 

phenomena like adherence between the sliding contact surfaces. 

4.4. Force Resultants and Equivalent Moments on the Rigid Bodies 

As seen before, when the contact between the slider and the guide surface takes place, normal and tangential 

forces act at the contact point or surface. These forces need to be transferred to the center of mass of each body. 

Referring to Fig. 7, the equivalent system of forces and moments acting on the center of mass of body i is 

expressed by 

 i N T= +f f f  (24)  

 ( ) ( )Q x Q y
i i i i i i iy y x x= − − + −m f f  (25)  

The forces and moments corresponding to the body j are written as 

 ij ff −=  (26)  

 ( ) ( )Q y Q x
j j j j j j jx x y y= − − −m f f  (27)  
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5. NUMERICAL RESULTS AND DISCUSSION 

In order to examine the effectiveness of the formulation developed for the translational clearance joint, the 

planar slider-crank mechanism is considered as a numerical example. The slider-crank mechanism is made up 

of four rigid bodies connected by three ideal revolute joints and one translational joint with clearance, 

composed by a guide and a slider as shown in Fig. 8. This joint has a finite clearance constant along the length 

of the slider. The dimensions and inertia properties of each body are given in Table 1 [27]. 

It is assumed that the crank is driven with a constant angular velocity equal to 5000 rpm maintained by a 

kinematic driving constraint. Initially, the slider is at the same distance from the upper and lower guide surfaces. 

Furthermore, the initial simulation configuration of the slider-crank mechanism corresponds to the top dead end. 

The impact between the slider and guide surfaces is frictionless and modeled by the Lankarani and Nikravesh 

contact force model expressed by Eq. (21). For convenience, a small radius of curvature at each slider corner is 

assumed. Table 2 shows the dynamic parameters used in the simulations. 

 

Body No Length [m] Mass [Kg] Moment of inertia [Kgm2] 
2 0.05 0.30 0.00010 
3 0.12 0.21 0.00025 
4 - 0.14 0.00010 

Table 1. Dimensions and inertia properties of the slider-crank mechanism. 

 

Clearance size 0.5 mm Young’s modulus 207 GPa 
Slider length 50.0 mm Poisson’s ratio 0.3 
Slider width 50.0 mm Baumgarte - α 5 

Slider thickness 50.0 mm Baumgarte - β 5 
Corner curvature radius 1.0 mm Integration step size 0.00001 s 
Restitution coefficient 0.9 Integration tolerance 0.000001 

Table 2. Simulation parameters used in the dynamic simulation of the slider-crank mechanism. 

 

The dynamic performance of the slider-crank mechanism simulation is quantified by plotting the values of 

the slider velocity and acceleration, and the moment acting on the crank. Additionally, the slider trajectories 

inside the guide are plotted in a non-dimensional form. Results for to two full crank rotations are given in Fig. 

9. 
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The observation of the slider velocity and acceleration curves, presented in Fig. 9(a) and 9(b) shows very 

clearly the influence of the translational clearance joint in the kinematics of the slider. The slider velocity 

diagram is very smooth and close to ideal joint simulation. The smooth changes in the velocity also indicate that 

the slider and guide surfaces are in permanent contact for long periods. Some sudden changes in the velocity are 

due to the impacts between the slider and guide surfaces. These impacts are better visible in the acceleration 

diagram by high peak values. Since the bodies of the slider-crank mechanism are rigid, the impact forces are 

propagated from the slider to the crank, leading to visible high peaks on the crank diagram moment shown in 

Fig. 9(c). 

The dimensionless slider trajectories are shown in Fig. 9(d), where the different types of motion between the 

slider and guide observed are associated with the different guide-slider configurations, i.e., no contact, contact-

impact followed by rebound and permanent contact. The dimensionless X-slider motion varies from 0 to 1, 

which corresponds to the low and top dead ends, respectively. When the dimensionless Y-slider motion is 

higher than 0.5, corresponds to the case in which the slider and the upper guide surface are in a contact 

situation, whereas, when the dimensionless Y-slider motion is lower than -0.5, corresponds to the case in which 

the slider and lower guide surface are in contact. The horizontal lines in the slider path diagrams represent 

geometric limit for contact situation between the slider and guides surfaces. 

In order to understand the influence of the clearance size in the dynamic behavior of the slider-crank 

mechanism, the driving crank moment is plotted in Fig. 10. In addition to the crank moment, the slider 

trajectories and the Poincaré maps are presented in Fig. 11 and 12, respectively. Clearance values of 0.5 mm, 

0.2 mm, 0.1 mm and 0.01 mm are analyzed.  

By observing Fig. 10 it is evident that when the clearance size is small the crank moment peaks are lower 

and the dynamic response tends to be closer to the ideal translation joint case. This suggests that the periods of 

permanent contact between the slider and guide surfaces are longer and, hence, the slider and guide experiment 

fewer impacts. This observation can be confirmed by the slider trajectories and Poincaré maps provided in 

figures 11 and 12 respectively. In fact, when the clearance size is reduced, the system response changes from 

chaotic or nonlinear, as displayed in Fig. 12(a), to periodic or regular, as observed in Fig. 12(d). This feature 
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can be useful in calculations of the acceptable range for clearance for any type of construction where this type 

of joints is applied. 

The influence of employing different contact force models on the global slider-crank behavior is also 

analyzed in this work. Figures 13 and 14 show the contact force and driving crank moment for the contact force 

models given by Eqs. (20) and (18), respectively. In the case of the linear contact model for two plane surfaces, 

the average penetration is used to evaluate the magnitude of the contact force. This force is then applied at the 

geometric center of the penetration area, as schematically shown in Fig. 6(a). 

By observing Figs. 13 and 14 it is visible that the linear force model produces higher peaks when compared 

to the case of nonlinear contact force model. Both the joint contact force and the driving crank moment peaks 

are about ten times higher in the linear force model than the peaks observed for when the nonlinear contact law 

is applied. This can be explained by the fact of the linear model does not account for the energy dissipation 

during the impact process whereas the continuous contact force model besides being based on the Hertz contact 

law also represents the energy dissipation. 

At this point it must be emphasized that the use of the driving constraint, which ensures that the crank 

rotates with constant angular velocity, is a very simplified model of a realistic driving system. In fact, provided 

that there are no kinematic jamming conditions in the mechanism, i.e., that the mechanism does not lock due to 

its kinematic constraints, the driving constraint implied in equation (5) is always able to force the crank to move 

with the same angular velocity because it is always able to provide any power required to oppose resisting 

forces in the mechanism. Certainly that other descriptions of the driving mechanism not based on the use of 

kinematic driving constraints would be sensitive to the raise in forces opposing the slider motion, such as those 

arising from normal contact and friction.  In this case it can be expected that the peaks in the contact forces, and 

also in the accelerations, are lower than what is observed for the ideal kinematically driven crank. Also, the 

existence of friction in the model would lower the size of the force and acceleration peaks and lead to more 

realistic values for the system response.  However, none of these features has any relation with the detection of 

contact of the prismatic clearance joint that is the objective of the methodology described in this work. 
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6. CONCLUDING REMARKS 

A methodology for translational joints with clearance in rigid multibody systems was presented and 

discussed in the present work. The slider and the guide elements that constitute a translational clearance joint 

are modeled as two colliding bodies being the dynamics of the joint controlled by the contact-impact forces. 

The equations of motion that govern the dynamic response of the general multibody systems incorporate the 

impact forces due to the collisions of the bodies that constitute the translational clearance joints. A continuous 

contact force model provides the intra-joint impact forces that develop during the normal operations of the 

mechanisms. 

The planar slider-crank mechanism with a translational clearance joint was used as a numerical example to 

illustrate the methodology proposed. In general, the dynamic response of the slider-crank mechanism presents 

some peaks due to the impact between the slider and guide, namely in what concerns to the accelerations and 

crank driving moments.  It was observed that all curves for the kinematic and dynamic variables are similar to 

those obtained with ideal joints, with the exception of the peaks especially visible for the forces and 

accelerations.  These peaks have been clearly related to the existence of the clearances and to their magnitude. 

The relative motion between the guide and slider showed a very high nonlinearity or even chaotic behavior 

when a translational clearance is included. When the clearance size is reduced the systems response becomes 

closer to the case for ideal joints. Furthermore, the dynamic behavior of the slider-crank model tends to be 

periodic or regular. This feature can be a useful tool in calculations of the acceptable range for clearance during 

the design of a multibody system. 
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Fig. 1: Standard procedure to solve the differential-algebraic equations of motion of a multibody system. 
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Fig. 2: Planar translational joint with clearance constituted by a slider and its guide. 
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Fig. 3: Different scenarios for the slider motion inside the guide: (a) no contact; (b) one corner in contact with 

the guide; (c) two adjacent corners in contact with guide; (d) two opposite corners in contact with guide. 
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Fig. 4: Generic translational clearance joint in a multibody system. 
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Fig. 5: (a) Non contact situation; (b) Penetration between the slider corner A and guide surface. 

 

 

 

R

GC

R

GC

 
(a) (b) 

 
Fig. 6: (a) Contact between two plane surfaces; (b) Contact between a spherical surface and a plane. 
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Fig. 7: Contact forces defined at the points of contact between the slider and guide. 
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Fig. 8: Slider-crank mechanism with a translational clearance joint. 
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Fig. 9: (a) Slider velocity; (b) Slider acceleration; (c) Crank moment; (d) Dimensionless slider trajectories inside 

the guide. 
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(c) c=0.1mm (d) c=0.01mm 

Fig. 10: Driving crank moment for different clearance sizes in the translational clearance joint. 
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(c) c=0.1mm (d) c=0.01mm 

Fig. 11: Dimensionless slider path for different clearance sizes in the translational clearance joint. 
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(c) c=0.1mm (d) c=0.01mm 

Fig. 12: Poincaré maps for different clearance sizes in the translational clearance joint. 
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Fig. 13: Contact force between the slider and guide surface: (a) Lankarani and Nikravesh model given by Eq. 

(20); (b) Linear contact model for two plane surfaces expressed by Eq. (18). 
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Fig. 14: Driving crank moment: (a) Lankarani and Nikravesh model given by Eq. (20); (b) Linear contact model 

for two plane surfaces expressed by Eq. (18). 
 


