
Transforming Data by Calculation

José N. Oliveira

CCTC, Universidade do Minho, 4700-320 Braga, Portugal,
jno@di.uminho.pt

Abstract. This paper addresses the foundations of data-model transformation. A
catalog ofdata mappingsis presented which includes abstraction and representa-
tion relations and associated constraints. These are justified in an algebraic style
via thepointfree-transform, a technique whereby predicates are lifted to binary
relation terms (of the algebra of programming) in a two-level style encompassing
both data and operations. This approach to data calculation, which also includes
transformation of recursive data models into “flat” database schemes, is offered
as alternative to standard database design from abstract models. The calculus is
also used to establish a link between the proposed transformational style and bidi-
rectionallensesdeveloped in the context of the classicalview-update problem.

Keywords: Theoretical foundations; mapping scenarios; transformational design;
refinement by calculation.

1 Introduction

Watch yourself using a pocket calculator: every time a digitkey is pressed, the corre-
sponding digit is displayed on the LCD display once understood by the calculator, a
process which includes representing it internally in binary format:

digits

input

��
binary

display

BB

This illustrates the main ingredients of one’s everyday interaction with machines: the
abstract objects one has in mind (eg. digits, numbers, etc) need to berepresentedinside
the machine before this can perform useful calculations, eg. square root, as displayed
in the diagram below.

digits digits

input

��
binary

display

EE

binary

√
gg

However, it may happen that our calcu-
lator is faulty. For instance, sometimes the
digit displayed is not the one whose key was
just pressed; ornothingat all is displayed; or
even the required operation (such as triggered
by the square root key) is not properly com-
puted. It is the designer’s responsibility to en-
sure that the machine we are using never mis-
behaves and can thus be trusted.

2 J.N. Oliveira

When using machines such as computers or calculators, one issubcontractingme-
chanical services. Inside the machine, the same subcontracting process happens again
and again: complex routines accomplish their tasks by subcontracting (simpler) rou-
tines, and so on and so forth. So, the data representation process illustrated above for
the (interaction with a) pocket calculator happens inside machines every time a routine
is called: input data are to be made available in the appropriate format to the subcon-
tracted routine, the result of which may need to change format again before it reaches
its caller.

Such datarepresent/retrieve processes (analogue to theinput/display process
above) happen an uncountable number of times even in simple software systems.Sub-
contractingthus being the essence of computing (as it is of any organizedsociety),
much trouble is to be expected oncerepresent/retrieve contracts fail: the whole ser-
vice as subcontracted from outside is likely to collapse.

Three kinds of fault have been identified above: loss of data,confusion among data
and wrong computation. The first two have to do withdata representationand the third
with data processing. Helping in preventing any of these from happening in software
designs is the main aim of this paper.

We will see that most of the work has to do withdata transformation, a technique
which the average programmer is often unaware of using when writing, most often in
an ‘ad hoc’ way, middleware code to “bridge the gap” between two different technology
layers. The other part of the story — ensuring the overall correctness of software sub-
contracts — has to do withdata refinement, a well established branch of the software
sciences which is concerned with the relationship between (stepwise) specification and
implementation.

Structure of the paper.This paper is organized as follows. Section 2 presents the over-
all spirit of the approach and introduces a simple running example. Section 3 reviews
the binary relation notation and calculus, referred to as the pointfree (PF) transform.
Section 4 shows how to denote the meaning of data in terms of such unified notation.
Section 5 expresses data impedance mismatch in the PF-style. While sections 6 to 8
illustrate the approach in the context of (database) relational modeling, recursive data
modeling is addressed from section 9 onwards. Then we show how to handle cross-
paradigm impedance by calculation (section 10) and how to transcribe operations from
recursive to flat data models (section 11). Section 12 addresses related work. In particu-
lar, it establishes a link between data mappings and bidirectional lensesdeveloped in the
context of theview-update problemand reviews work on a library for data transforma-
tions (2LT) which is strongly related to the current paper. Finally, section 13 concludes
and points out a number of research directions in the field.

Technical sketch of the paper.This text puts informal, technology dependent approaches
to data transformation together with data calculation formalisms which are technology
agnostic. It is useful to anticipate how such schools of thought are related along the
paper, while pinpointing the key formal concepts involved.

The main motivation for data calculation is the need fordata-mappingsas intro-
duced in section 2: one needs to ensure that data flow unharmedacross the boundaries
of software layers which use different technologies and/oradopt different data models.

Transforming Data by Calculation 3

On the technical side, this is handled (in section 2) by ordering data formats by degree
of abstraction and writingA ≤ B wherever formatA is safely implemented by format
B. Technically,≤ is apreorderand≤-facts are witnessed byrelationstelling how data
should flow back and forth between formatsA andB.

The need for handling such relations in a compositional, calculational way leads to
the relational calculus and the pointfree transform. The whole of section 3 is devoted
to providing a summary of the required background, whose essence lies in a number of
laws which can be used to calculate with relations directly (instead of using set theory
to indirectly convey the same results). The fact that all relations are binary is not a hand-

icap: they can be thought of as arrows of the formA R //B which express data flow
in a natural way and can be composed with each other to expressmore complex data
flows. Data filtering is captured by relations of a particularkind, known ascoreflexives,
which play a prominent role throughout the whole calculus.

The bridge between formal and informal data structuring becomes more apparent
from section 4 onwards, where typical data structures are shown to be expressible not
only in terms of abstract constructs such as Cartesian product (A × B), disjoint sum
(A + B) and equations thereof (as in the case of recursive types), but also in terms
of typed finite relations, thus formalizing the way data models are recorded by entity-
relationship diagrams or UML class diagrams, for instance.

Further to structure,constraints(also known asinvariants) are essential to data
modeling, making it possible to enforce semantic properties on data. Central to such

data constraints ismembership, a relation of typeA TA
∈oo which is able to tell

which data elements can be found in a particular data structure of shapeT. The key
ingredient at this point is the fact that set-theoretic membership can be extended to data
containers other than sets.

Sections 5 and 6 are central to the whole paper: they show how to calculate com-
plex data mappings by combining a number of≤-rules which are proposed and justified
using (pointfree) relation calculus. Compositionality isachieved in two ways: by tran-
sitivity, suitably typed≤-rules can be chained; by monotonicity, they can be promoted
from the parameters of a parametric typeT to the whole type, for instance by inferring
TA ≤ TB fromA ≤ B. The key of the latter result consists in regardingT as arelator,
a concept which traverses relation calculus from beginningto end and explains, in the
current paper, data representation techniques such as those involving dynamic heaps
and pointer dereferencing. On the practical side, a number of ≤-facts are shown to be
applicable to calculating database schemata from abstractmodels (sections 6 and 7) and
reasoning about entity-relationship diagrams (section 8).

Abstract (and language-based) data models often involve recursive data which pose
challenges of their own to data mapping formalization. Sections 9 to 11 show how the
calculus of fixpoint solutions to relational equations (known ashylomorphisms) offers
a basis for refining recursive data structures. This framework is set to work in section
10 where it is applied to the paper’s running example, thePTree recursive model
of pedigree trees, which is eventually mapped onto a flat, non-recursive model, after
stepping through a pointer-based representation. The layout of calculations not only
captures the≤ relationships among source, intermediate and target data models, but

4 J.N. Oliveira

also the abstraction and representation relations implicit in each step, which altogether
synthesize two overall ‘map forward” and “map backward” data transformations.

Section 11 addresses thetranscription level, the third component of amapping sce-
nario. This has to do with refining operations whose input and output data formats have
changed according to such big-step ‘map forward” and “map backward” transforma-
tions. Technically, this can be framed into the discipline of data refinement. The exam-
ples given, which range from transcribing a query overPTree downto the level of its
flat version (obtained in section 10) to calculating low level operations handling heaps
and pointers, show once again the power of data calculation performed relationally, and
in particular the usefulness of so-calledfusion-properties.

Finally, section 12 includes a sketch of how≤-diagrams can be used to capture
bidirectional (asymmetric) transformations known aslensesand their properties.

2 Context and Motivation

On data representation.The theoretical foundation ofdata representationcan be writ-
ten in few words: what matters is theno loss/no confusionprinciple hinted above. Let
us explain what this means by writingc R a to denote the fact thatdatumc represents
datuma (assuming thata andc range over two given data typesA andC, respectively)
and the converse facta R◦ c to denote thata is the datum represented byc. The use of
definite article “the” instead of “a” in the previous sentence is already a symptom of the
no confusionprinciple — we wantc to representonly onedatum of interest:

〈∀ c, a, a′ :: c R a ∧ c R a′ ⇒ a = a′〉 (1)

Theno lossprinciple means that no data are lost in the representation process. Put
in other words, it ensures that every datum of interesta is representable by somec:

〈∀ a :: 〈∃ c :: c R a〉〉 (2)

Above we mention the converseR◦ of R, which is the relation such thata(R◦)c
holds iff c R a holds. Let us use this rule in re-writing (1) in terms ofF = R◦:

〈∀ c, a, a′ :: a F c ∧ a′ F c⇒ a = a′〉 (3)

This means thatF , the converse ofR, can be thought of as anabstraction relation
which is functional(or deterministic): two outputsa, a′ for the same inputc are bound
to be the same.

Before going further, note the notation convention of writing the outputs ofF on
the left hand side and its inputs on the right hand side, as suggested by the usual way
of declaring functions in ordinary mathematics,y = f x, wherey ranges over outputs
(cf. the vertical axis of the Cartesian plane) andx over inputs (cf. the other, horizontal
axis). This convention is adopted consistently throughoutthis text and is extended to
relations, as already seen above1.

1 The fact thata F c is written instead ofa = F c reflects the fact thatF is not a total function,
in general. See more details about notation and terminologyin section 3.

Transforming Data by Calculation 5

Expressed in terms ofF , (2) becomes

〈∀ a :: 〈∃ c :: a F c〉〉 (4)

meaning thatF is surjective: every abstract datuma is reachable byF . In general, it
is useful to let the abstraction relationF to be larger thatR◦, provided that it keeps
properties (3,4) — being functional and surjective, respectively — and that it stays
connectedtoR. This last property is written as

〈∀ a, c :: c R a⇒ a F c〉

or, with less symbols, as

R◦ ⊆ F (5)

by application of the rule which expresses relational inclusion:

R ⊆ S ≡ 〈∀ b, a :: b R a⇒ b S a〉 (6)

(ReadR ⊆ S as “R is at mostS”, meaning thatS is either more defined or less
deterministic thanR.)

To express the fact that(R,F) is a connectedrepresentation/abstraction pair we
draw a diagram of the form

A

R

''
≤ C

F

gg (7)

whereA is the datatype of datato be representedandC is the chosen datatype of
representations2. In the data refinement literature,A is often referred to asthe abstract
typeandC asthe concrete one, becauseC contains more information thanA, which is
ignoredbyF (a non-injective relation in general). This explains whyF is referred to as
theabstraction relationin a (R,F) pair.

Layered representation.In general, it will make sense to chain several layers of ab-
straction as in, for instance,

I

R

''
≤ M

F

ff

R′

''
≤ D

F ′

gg (8)

where lettersI, M andD have been judiciously chosen so as to suggest the words
interface, middlewareanddataware, respectively.

2 Diagrams such as (7) should not be confused with commutativediagrams expressing properties
of the relational calculus, as in eg. [11], since the ordering ≤ in the diagram is an ordering on
objects and not on arrows.

6 J.N. Oliveira

@@R
@@R

@@R

��	

��	

��	

DI M

R′

R

F ′

F

Fig. 1. Layered software architecture.

In fact, data become “more concrete” as
they go down the traditional layers of soft-
ware architecture: the contents of interactive,
handy objects at the interface level (often pic-
tured as trees, combo boxes and the like) be-
come pointer structures (eg. in C++/C#) as
they descend to the middleware, from where
they are channeled to the data level, where
they live as persistent database records. A
popular picture of diagram (8) above is given
in figure 1, where layersI,M andD are rep-
resented by concentric circles.

As an example, consider an interface (I)
providing direct manipulation of pedigree
trees, common in genealogy websites:

Margaret, b. 1923 Luigi, b. 1920

Mary, b. 1956 Joseph, b. 1955

RRRRR
mmmmm

Peter, b. 1991

RRRRR
lllll

(9)

Trees — which are the users’ mental model of recursive structures — become pointer
structures (figure 2a) once channeled to the middleware (M). For archival purposes,
such structures are eventually buried into the dataware level (D) in the form of very
concrete, persistent records of database files (cf. figure 2b).

Modeling pedigree trees will be our main running example throughout this paper.

Mapping scenarios.Once materialized in some technology (eg. XML, C/C++/Java,
SQL, etc), the layers of figure 1 stay apart from each other in different programming
paradigms(eg. markup languages, object-orientated databases, relational databases,
etc) each requiring its own skills and programming techniques.

As shown above, different data models can be compared via abstraction/represen-
tation pairs. These are expected to be more complex once the two models under com-
parison belong to different paradigms. This kind of complexity is a measure of the
impedance mismatches between the various data-modeling and data-processing para-
digms3, in the words of reference [42] where a thorough account is given of the many
problems which hinder software technology in this respect.Still quoting [42]:

Whatever programming paradigm for data processing we choose, data has the
tendency to live on the other side or to eventually end up there. (...) This myriad
of inter- and intra-paradigm data models calls for a good understanding of
techniques for mappings between data models, actual data, and operations on
data. (...)

3 According to [3], the labelimpedance mismatchwas coined in the early 1990’s to capture (by
analogy with a similar situation in electrical circuits) the technical gap between the object and
relational technologies. Other kinds of impedance mismatch are addressed in [67, 42].

Transforming Data by Calculation 7

• Margaret

1923

NIL

NIL

Mary

1956

NIL

NIL

Joseph

1955

•

•

Peter

1991

•

•

Luigi

1920

NIL

NIL

ID Name Birth

1 Joseph 1955
2 Luigi 1920
3 Margaret 1923
4 Mary 1956
5 Peter 1991

ID Ancestor ID

5 Father 1
5 Mother 4
1 Father 2
1 Mother 3

(a) (b)

Fig. 2. Middleware (a) and dataware (b) formats for family tree sample data (9).

Given the fact that IT industry is fighting with various impedance mismatches
and data-model evolution problems for decades, it seems to be safe to start a
research career that specifically addresses these problems.

The same reference goes further in identifying three main ingredients (levels) inmap-
ping scenarios:

– thetype-levelmapping of a source data model to a target data model;
– two maps (“map forward” and “map backward”) between source /target data;
– thetranscription levelmapping of source operations into target operations.

Clearly, diagram (7) can be seen as a succinct presentation of the two first ingredi-
ents, the former being captured by the≤-ordering on data models and the latter by the
(R,F) pair of relations. The third can easily be captured by putting two instances of
(7) together, in a way such that the input and output types of agiven operation, sayO,

8 J.N. Oliveira

arewrappedby forward and backward data maps:

A

R

''

O

��

≤ C

F

gg

P

��
B

R′

''
≤ D

F ′

gg

(10)

The (safe) transcription ofO intoP can be formally stated by ensuring that the picture
is a commutative diagram. A typical situation arises whenA andB are the same (and
so areC andD), andO is regarded as a state-transforming operation of a software
component, eg. one of its CRUD (“Create, Read, Update and Delete”) operations. Then
the diagram will ensure correct refinement of such an operation across the change of
state representation.

Data refinement.The theory behind diagrams such as (10) is known asdata refinement.
It is among the most studied formalisms in software design theory and is available from
several textbooks — see eg. [38, 49, 20].

The fact that state-of-the-art software technologies don’t enforce such formal de-
sign principles in general leads to the unsafe technology which we live on today, which
is hindered by permanent cross-paradigm impedance mismatch, loose (untyped) data
mappings, unsafe CRUD operation transcription, etc. Why isthis so? Why isn’t data
refinement widespread? Perhaps because it is far too complexa discipline for most
software practitioners, a fact which is mirrored on its prolific terminology — cf.down-
ward, upward refinement [31],forwards, backwardsrefinement [31, 70, 48],S,SP,SC-
refinement [21] and so on. Another weakness of these theoriesis their reliance oninvent
& verify (proof)development strategies which are hard to master and get involved once
facing “real-sized” problems. What can we do about this?

The approach we propose to follow in this paper is different from the standard in two
respects: first, we adopt atransformationalstrategy as opposed to invention-followed-
by-verification; second, we adopt acalculationalapproach throughout our data trans-
formation steps. What do we mean by “calculational”?

Calculational techniques.Let us briefly review some background. The idea of using
mathematics to reason about and transform programs is an oldone and can be traced
back to the times of McCarthy’s work on the foundations of computer programming
[46] and Floyd’s work on program meaning [26]. A so-calledprogram transformation
school was already active in the mid 1970s, see for instance references [16, 19]. But pro-
gram transformation becomescalculationalonly after the inspiring work of J. Backus
in hisalgebra of (functional) programs[7] where the emphasis is put on the calculus of
functional combinators rather than on theλ-notation and its variables, orpoints. This is
why Backus’ calculus is said to bepoint-free.

Intensive research on the (pointfree) program calculationapproach in the last thirty
years has led to thealgebra of programmingdiscipline [11, 5]. The priority of this

Transforming Data by Calculation 9

discipline has been, however, mostly on reasoning aboutalgorithmsrather thandata
structures. Our own attempts to set up acalculus of data structuresdate back to [51–
53] where the≤-ordering and associated rules are defined. The approach, however, was
not agile enough. It is only after its foundations are statedin the pointfree style [54, 56]
that succinct calculations can be performed to derive data representations.

Summary.We have thus far introduced the topic of data representationframed in two
contexts, one practical (data mapping scenarios) and the other theoretical (data refine-
ment). In the remainder of the paper the reader will be provided with strategies and tools
for handling mapping scenarios by calculation. This is preceded by the section which
follows, which settles basic notation conventions and provides a brief overview of the
binary relational calculus and the pointfree-transform, which is essential to understand-
ing data calculations to follow. Textbook [11] is recommended as further reading.

3 Introducing the Pointfree Transform

By pointfree transform[60] (“PF-transform” for short) we essentially mean the conver-
sion of predicate logic formulæ into binary relations by removing bound variables and
quantifiers — a technique which, initiated by De Morgan in the1860s [61], eventually
led to what is known today as thealgebra of programming[11, 5]. As suggested in
[60], the PF-transform offers to the predicate calculus what the Laplace transform [41]
offers to the differential/integral calculus: the possibility of changing the underlying
mathematical space in a way which enables agile algebraic calculation.

Theories “refactored” via the PF-transform become more general, more structured
and simpler [58–60]. Elegant expressions replace lengthy formulæ and easy-to-follow
calculations replace pointwise proofs with lots of “· · ·” notation, case analyses and nat-
ural language explanations for “obvious” steps.

The main principle of the PF-transform is that“everything is a binary relation”
once logical expressions are PF-transformed; one thereafter resorts to the powerful cal-
culus of binary relations [11, 5] until proofs are discharged or solutions are found for
the original problem statements, which are mapped back to logics if required.

Relations.Let arrowB A
Roo denote a binary relation on datatypesA (source) and

B (target). We will say thatB Aoo is the typeof R and writeb R a to mean that

pair (b, a) is inR. Type declarationsB A
Roo andA R //B will mean the same.

R∪S (resp.R∩S) denotes the union (resp. intersection) of two relationsR andS.
⊤ is the largest relation of its type. Its dual is⊥, the smallest such relation (the empty
one). Two other operators are central to the relational calculus: composition (R · S)
and converse (R◦). The latter has already been introduced in section 2. Composition is
defined in the usual way:b(R · S)c holds wherever there exists some mediatinga such
thatbRa ∧ aSc. Thus we get one of the kernel rules of the PF-transform:

b(R · S)c ≡ 〈∃ a :: bRa ∧ aSc〉 (11)

10 J.N. Oliveira

Note that converse is an involution

(R◦)◦ = R (12)

and commutes with composition:

(R · S)◦ = S◦ ·R◦ (13)

All these relational operators are⊆-monotonic, where⊆ is the inclusion partial
order (6). Composition is the basis of (sequential) factorization. EverywhereT = R ·S
holds, the replacement ofT byR · S will be referred to as a “factorization” and that of

R · S by T as “fusion”. Every relationB A
Roo allows for two trivial factorizations,

R = R · idA andR = idB ·R where, for everyX , idX is the identity relation mapping
every element ofX onto itself. (As a rule, subscripts will be dropped wherevertypes
are implicit or easy to infer.) Relational equality can be established by⊆-antisymmetry:

R = S ≡ R ⊆ S ∧ S ⊆ R (14)

Coreflexives and orders.Some standard terminology arises from theid relation: a

(endo) relationA A
Roo (often called anorder) will be referred to asreflexiveiff

id ⊆ R holds and ascoreflexiveiff R ⊆ id holds. Coreflexive relations are fragments
of the identity relation which model predicates or sets. They are denoted by uppercase
Greek letters (eg.Φ, Ψ) and obey a number of interesting properties, among which we
single out the following, which prove very useful in calculations:

Φ · Ψ = Φ ∩ Ψ = Ψ · Φ (15)

Φ◦ = Φ (16)

The PF-transform of a (unary)predicatep is the coreflexiveΦp such that

b Φp a ≡ (b = a) ∧ (p a)

that is, the relation that maps everya which satisfiesp (and only sucha) onto itself. The
PF-meaning of a setS isΦλa.a∈S , that is,b ΦS a means(b = a) ∧ a ∈ S.

Preorders are reflexive and transitive relations, whereR is transitive iffR · R ⊆
R holds. Partial orders are anti-symmetric preorders, whereR being anti-symmetric
meansR ∩ R◦ ⊆ id. A preorderR is an equivalenceif it is symmetric, that is, if
R = R◦.

Taxonomy.Converse is of paramount importance in establishing a widertaxonomy of
binary relations. Let us first define two important notions: the kernelof a relationR,

kerR def
= R◦ ·R and its dual,imgR def

= R ·R◦, theimageof R 4. From (12, 13) one

4 As explained later on, these operators are relational extensions of two concepts familiar from
set theory: the image of a functionf , which corresponds to the set of ally such that〈∃ x ::
y = f x〉, and the kernel off , which is the equivalence relationb(ker f)a ≡ f b = f a .
(See exercise 3.)

Transforming Data by Calculation 11

immediately draws

ker (R◦) = imgR (17)

img (R◦) = kerR (18)

Kernel and image lead to the following terminology:

Reflexive Coreflexive

ker R entireR injectiveR

img R surjectiveR simpleR

(19)

In words: a relationR is said to beentire (or total) iff its kernel is reflexive and to be
simple(or functional) iff its image is coreflexive. Dually,R is surjectiveiff R◦ is entire,
andR is injectiveiff R◦ is simple.

Recall that part of this terminology has already been mentioned in section 2. In this
context, let us check formula (1) against the definitions captured by (19) as warming-up
exercise in pointfree-to-pointwise conversion:

〈∀ c, a, a′ :: c R a ∧ c R a′ ⇒ a = a′〉

≡ { rules of quantification [5] and converse}

〈∀ a, a′ : 〈∃ c :: a R◦ c ∧ c R a′〉 : a = a′〉

≡ { (11) and rules of quantification}

〈∀ a, a′ :: a(R◦ ·R)a′ ⇒ a = a′〉

≡ { (6) and definition of kernel}

kerR ⊆ id

Exercise 1.Derive (2) from (19).
2

Exercise 2.Resort to (17,18) and (19) to prove the following four rules of thumb:

– converse ofinjectiveis simple(and vice-versa)
– converse ofentire is surjective(and vice-versa)
– smaller than injective (simple) is injective (simple)
– larger than entire (surjective) is entire (surjective)

2

A relation is said to be afunction iff it is both simple and entire. Following a
widespread convention, functions will be denoted by lowercase characters (eg.f , g, φ)
or identifiers starting with lowercase characters. Function application will be denoted
by juxtaposition, eg.f a instead off(a). Thusbfa means the same asb = f a.

The overall taxonomy of binary relations is pictured in figure 3 where, further to the
standard classes, we addrepresentationsandabstractions. As seen already, these are
the relation classes involved in≤-rules (7). Because of⊆-antisymmetry,imgF = id

whereverF is anabstractionandkerR = id whereverR is arepresentation.
Bijections (also referred to as isomorphisms) are functions, abstractions and rep-

resentations at the same time. A particular bijection isid, which also is the smallest
equivalence relation on a particular data domain. So,b id a means the same asb = a.

12 J.N. Oliveira

binary relation
ZZZZZZZZZZZZZ

QQQnn
n

ddddddddddddddd

injective
PP

entire
nn

n QQQ
simple

OOOmmm
surjective

ppp

representation
PP

function
QQ

Q
nn

n
abstraction
ooo

injection
QQ

surjection
mmm

bijection

Fig. 3.Binary relation taxonomy

Functions and relations.The interplay between functions and relations is a rich part
of the binary relation calculus [11]. For instance, the PF-transform rule which follows,
involving two functions (f, g) and an arbitrary relationR

b(f◦ ·R · g)a ≡ (f b)R(g a) (20)

plays a prominent role in the PF-transform [4]. The pointwise definition of the kernel
of a functionf , for example,

b(ker f)a ≡ f b = f a (21)

stems from (20), whereby it is easy to see that⊤ is the kernel of every constant function,

1 A
!oo included. (Function! — read “!” as “bang” — is the unique function of its

type, where1 denotes the singleton data domain.)

Exercise 3.Given a functionB A
foo , calculate the pointwise version (21) ofker f and

show thatimg f is the coreflexive associated to predicatep b = 〈∃ a :: b = f a〉.
2

Given two preorders≤ and⊑, one may relate arguments and results of pairs of
suitably typed functionsf andg in a particular way,

f◦· ⊑ = ≤ · g (22)

in which case bothf, g are monotone and said to beGalois connected. Functionf (resp.
g) is referred to as thelower (resp.upper) adjoint of the connection. By introducing
variables in both sides of (22) via (20), we obtain, for alla andb

(f b) ⊑ a ≡ b ≤ (g a) (23)

Quite often, the two adjoints aresectionsof binary operators. Given a binary opera-
tor θ, its two sections(aθ) and(θb) are unary functionsf andg such that, respectively:

f = (aθ) ≡ f b = a θ b (24)

g = (θb) ≡ g a = a θ b (25)

Transforming Data by Calculation 13

Galois connections in which the two preorders are relation inclusion (≤,⊑ :=
⊆,⊆) and whose adjoints are sections of relational combinatorsare particularly inter-
esting because they express universal properties about such combinators. Table 1 lists
connections which are relevant for this paper.

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

converse ()◦ ()◦

shuntingrule (h·) (h◦·) h is a function

“converse”shuntingrule (·h◦) (·h) h is a function

domain δ (⊤·) left ⊆ restricted to coreflexives

range ρ (·⊤) left ⊆ restricted to coreflexives

difference (− R) (R ∪)

Table 1. Sample of Galois connections in the relational calculus. The general formula given on
top is a logical equivalence universally quantified onS andR. It has a left part involving lower
adjointf and a right part involving upper adjointg.

It is easy to recover known properties of the relation calculus from table 1. For
instance, the entry marked “shuntingrule” leads to

h ·R ⊆ S ≡ R ⊆ h◦ · S (26)

for all h,R andS. By taking converses, one gets another entry in table 1, namely

R · h◦ ⊆ S ≡ R ⊆ S · h (27)

These equivalences are popularly known as “shunting rules”[11]. The fact thatat most
and equality coincide in the case of functions

f ⊆ g ≡ f = g ≡ f ⊇ g (28)

is among many beneficial consequences of these rules (see eg.[11]).
It should be mentioned that some rules in table 1 appear in theliterature under

different guises and usually not identified as GCs5. For a thorough presentation of the
relational calculus in terms of GCs see [1, 5]. There aremanyadvantages in such an
approach: further to the systematic tabulation of operators (of which table 1 is just a
sample), GCs have a rich algebra of properties, namely:

– both adjointsf andg in a GC are monotonic;
– lower adjointf commutes with join and upper-adjointg commutes with meet,

wherever these exist;

5 For instance, theshuntingrule is calledcancellation lawin [70].

14 J.N. Oliveira

– two cancellation laws hold,b ≤ g(f b) and f (g a) ⊑ a , respectively known as
left-cancellationandright-cancellation.

It may happen that a cancellation law holds up to equality, for instancef (g a) = a, in
which case the connection is said to beperfecton the particular side [1].

Simplicity. Simple relations (that is, partial functions) will be particularly relevant in
the sequel because of their ubiquity in software modeling. In particular, they will be
used in this paper to model dataidentityand any kind of data structure “embodying a
functional dependency” [58] such as eg. relational database tables, memory segments
(both static and dynamic) and so on.

In the same way simple relations generalize functions (figure 3),shuntingrules (26,
27) generalize to

S ·R ⊆ T ≡ (δ S) ·R ⊆ S◦ · T (29)

R · S◦ ⊆ T ≡ R · δ S ⊆ T · S (30)

for S simple. These rules involve thedomainoperator (δ) whose GC, as mentioned in
table 1, involves coreflexives on the lower side:

δ R ⊆ Φ ≡ R ⊆ ⊤ · Φ (31)

We will draw harpoon arrowsB A
Ro or A R /B to indicate thatR is simple.

Later on we will need to describe simple relations at pointwise level. The notation we
shall adopt for this purpose is borrowed from VDM [38], whereit is known asmapping
comprehension. This notation exploits the applicative nature of a simple relationS by
writing b S a as a ∈ dom S ∧ b = S a, where ∧ should be understood non-strict
on the right argument6 anddom S is the set-theoretic version of coreflexiveδ S above,
that is,

δ S = Φdom S (32)

holds (cf. the isomorphism between sets and coreflexives). In this way, relationS itself
can be written as{a 7→ S a | a ∈ dom S} and projectionf · S · g◦ as

{g a 7→ f(S a) | a ∈ dom S} (33)

providedg is injective (thus ensuring simplicity).

Exercise 4.Show that the union of two simple relationsM andN is simpleiff the following
condition holds:

M · N◦ ⊆ id (34)

(Suggestion: resort to universal property(R ∪ S) ⊆ X ≡ R ⊆ X ∧ S ⊆ X.) Furthermore
show that (34) converts to pointwise notation as follows,

〈∀ a :: a ∈ (dom M ∩ dom N) ⇒ (M a) = (N a)〉

— a condition known as (map)compatibilityin VDM terminology [25].
2

6 VDM embodies a logic of partial functions (LPF) which takes this into account [38].

Transforming Data by Calculation 15

Exercise 5.It will be useful to order relations with respect to how defined they are:

R � S ≡ δ R ⊆ δ S (35)

From⊤ = ker ! draw another version of (35),R � S ≡ ! · R ⊆ ! · S, and use it to derive

R · f◦ � S ≡ R � S · f (36)

2

Operator precedence.In order to save parentheses in relational expressions, we define
the following precedence ordering on the relational operators seen so far:

◦ > {δ , ρ } > (·) > ∩ > ∪

Example:R · δ S◦ ∩ T ∪ V abbreviates((R · (δ (S◦))) ∩ T) ∪ V .

Summary. The material of this section is adapted from similar sections in [59, 60],
which introduce the reader to the essentials of the PF-transform. While the notation
adopted is standard [11], the presentation of the associated calculus is enhanced via the
use of Galois connections, a strategy inspired by two (stillunpublished) textbooks [1,
5]. There is a slight difference, perhaps: by regarding the underlying mathematics as
that of atransformto be used wherever a “hard” formula7 needs to be reasoned about,
the overall flavour is more practical and not that of afine art only accessible to the
initiated — an aspect of the recent evolution of the calculusalready stressed in [40].

The table below provides a summary of the PF-transform rulesgiven so far, where
left-hand sides are logical formulæ (ψ) and right-hand sides are the corresponding PF
equivalents ([[ψ]]):

ψ [[ψ]]

〈∀ a, b :: b R a⇒ b S a〉 R ⊆ S

〈∀ a :: f a = g a〉 f ⊆ g

〈∀ a :: a R a〉 id ⊆ R

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦ · R · g)a

TRUE b ⊤ a

FALSE b ⊥ a

(37)

Exercise 6.Prove that relational composition preservesall relational classes in the taxonomy
of figure 3.
2

7 To use the words of Kreyszig [41] in his appreciation of the Laplace transform.

16 J.N. Oliveira

4 Data structures

One of the main difficulties in studying data structuring is the number of disparate (inc.
graphic) notations, programming languages and paradigms one has to deal with. Which
should one adopt? While graphical notations such as the UML [15] are gaining adepts
everyday, it is difficult to be precise in such notations because their semantics are, as a
rule, not formally defined.

Our approach will be rather minimalist: we willmap such notations to the PF-
notation whose rudiments have just been presented. By the word “map” we mean a
light-weight approach in this paper: presenting a fully formal semantics for the data
structuring facilities offered by any commercial languageor notation would be more
than one paper in itself.

The purpose of this section is two fold: on the one hand, to show how overwhelm-
ing data structuring notations can be even in the case of simple data models such as
our family tree (running) example; on the other hand, to showhow to circumvent such
disparity by expressing the same models in PF-notation. Particular emphasis will be put
on describing Entity-relationship diagrams [30]. Later onwe will go as far as capturing
recursive data models by least fixpoints over polynomial types. Once again we warn the
reader that types and data modeling constructs in current programming languages are
rather more complex than their obvious cousins in mathematics. For the sake of sim-
plicity, we deliberately don’t consider aspects such as non-strictness, lazy-evaluation,
infinite data values [65] etc.

Back to the running example.Recall the family tree displayed in (9) and figure 2. Sup-
pose requirements ask us to provide CRUD operations on a genealogy database col-
lecting such family trees. How does one go about describing the data model underlying
such operations?

The average database designer will approach the model viaentity-relationship(ER)
diagrams, for instance that of figure 4(a). But many others will regard this notation too
old-fashioned and will propose something like the UML diagram of figure 4(b) instead.

Uncertain of what such drawingsactually mean, many a programmer will prefer to
go straight into code, eg. C

typedef struct Gen {
char * name / * name is a string * /
int birth / * birth year is a number * /
struct Gen * mother; / * genealogy of mother (if known) * /
struct Gen * father; / * genealogy of father (if known) * /
} ;

— which matches with figure 2a — or XML, eg.

<!-- DTD for genealogical trees -->
<!ELEMENT tree (node+)>
<!ELEMENT node (name, birth, mother?, father?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>
<!ELEMENT mother EMPTY>

Transforming Data by Calculation 17

Individual
ID: String
Name: String
Birth: Date

0..2

Parent

(a) (b)

Individual

ID

Name Birth

Parent

0:nof

0:2is

Fig. 4. ER and UML diagrams proposed forgenealogies. Underlined identifiers denote keys.
.

<!ELEMENT father EMPTY>
<!ATTLIST tree

ident ID #REQUIRED>
<!ATTLIST mother

refid IDREF #REQUIRED>
<!ATTLIST father

refid IDREF #REQUIRED>

— or plain SQL, eg. (fixing some arbitrary sizes for datatypes)

CREATE TABLE INDIVIDUAL (
ID NUMBER (10) NOT NULL,
Name VARCHAR (80) NOT NULL,
Birth NUMBER (8) NOT NULL,
CONSTRAINT INDIVIDUAL_pk PRIMARY KEY(ID)

);

CREATE TABLE ANCESTORS (
ID VARCHAR (8) NOT NULL,
Ancestor VARCHAR (8) NOT NULL,
PID NUMBER (10) NOT NULL,
CONSTRAINT ANCESTORS_pk PRIMARY KEY (ID,Ancestor)

);

— which matches with figure 2b.
What about functional programmers? By looking at pedigree tree (9) where we

started from, an inductive data type can be defined, eg. in Haskell,

data PTree = Node {
name :: [Char],
birth :: Int ,
mother :: Maybe PTree,
father :: Maybe PTree
}

(38)

18 J.N. Oliveira

whereby (9) would be encoded as data value

Node
{name = "Peter", birth = 1991,

mother = Just (Node
{name = "Mary", birth = 1956,

mother = Nothing,
father = Nothing}),

father = Just (Node
{name = "Joseph", birth = 1955,

mother = Just (Node
{name = "Margaret", birth = 1923,

mother = Nothing, father = Nothing}),
father = Just (Node

{name = "Luigi", birth = 1920,
mother = Nothing, father = Nothing})})}

Of course, the same tree can still be encoded in XML notation eg. using DTD

<!-- DTD for genealogical trees -->
<!ELEMENT tree (name, birth, tree?, tree?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT birth (#PCDATA)>

As well-founded structures, these trees can be pretty-printed as in (9). However,
how can one ensure that the sameprint-family-treeoperation won’t loop forever while
retrieving data from eg. figure 2b? This would clearly happenif, by mistake, record
1 Father 2 in figure 2b were updated to1 Father 5 : Peter would become

a descendant of himself!
Several questions suggest themselves: are all the above data models “equivalent”?

If so, in what sense? If not, how can they be ranked in terms of “quality”? How can we
tell apart theessenceof a data model from its technology wrapping?

To answer these questions we need to put some effort in describing the notations
involved in terms of a single, abstract (ie. technology free) unifying notation. But syntax
alone is not enough: the ability toreasonin such a notation is essential, otherwise
different data models won’t be comparable. Thus the reason why, in what follows, we
choose the PF-notation as unifying framework8.

Recordsare inhabitants of products.Broadly speaking, a database is that part of an
information system which collectsfactsor recordsof particular situations which are
subject to retrieving and analytical processing. But, whatis a record?

8 The “everything is a relation” motto implicit in this approach is also the message of Alloy [36],
a notation and associated model-checking tool which has been successful inalloyinga number
of disparate approaches to software modeling, namely model-orientation, object-orientation,
etc. Quoting [36]:(...) “the Alloy language and its analysis are a Trojan horse: an attempt to
capture the attention of software developers, who are miredin the tar pit of implementation
technologies, and to bring them back to thinking deeply about underlying concepts”.

Transforming Data by Calculation 19

Any row in the tables of figure 2b is a record, ie.records a fact. For instance, record
5 Peter 1991 tells:Peter, whose ID number is 5, was born in 1991. A mathemati-

cian would have written(5, P eter, 1991) instead ofdrawingthe tabular stuff and would
have inferred(5, P eter, 1991) ∈ IN ×String× IN from 5 ∈ IN ,Peter ∈ String and
1991 ∈ IN , where, given two typesA andB, their (Cartesian) productA×B is the set
{(a, b) | a ∈ A ∧ b ∈ B}. So records can be regarded astupleswhich inhabitproducts
of types.

Product datatypeA × B is essential to information processing and is available in
virtually every programming language. In Haskell one writes (A,B) to denoteA×B,
for A andB two given datatypes. This syntax can be decorated with names, eg.

data C = C { first :: A, second :: B }

as is the case ofPTree (38). In the C programming language, theA × B datatype is
realized using “struct”’s, eg.

struct { A first; B second; };

The diagram below is suggestive of what productA × B actually means, wheref
andg are functions, the two projectionsπ1, π2 are such that

π1(a, b) = a ∧ π2(a, b) = b (39)

A A×B
π1oo π2 // B

C

f

ffLLLLLLLLLLLL

〈f,g〉

OO

g

88rrrrrrrrrrrr

and function〈f, g〉 (read:“ f split g”) is defined

by 〈f, g〉c
def
= (f c, g c). The diagram expresses

the two cancellation properties,π1 · 〈f, g〉 = f

andπ2 · 〈f, g〉 = f , which follow from a more
general (universal) property,

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (40)

which holds for arbitrary (suitably typed) functionsf , g andk. This tells that, given
functionsf andg, each producing inhabitants of typesA andB, respectively, there is a
unique function〈f, g〉 which combinesf andg so as to produce inhabitants of product
typeA×B. Read in another way: any functionk delivering results into typeA×B can
be uniquely decomposed into its two left and right components.

It can be easily checked that the definition of〈f, g〉 given above PF-transforms to
〈f, g〉 = π◦

1 · f ∩ π◦
2 · g. (Just re-introduce variables and simplify, thanks to (39), (20),

etc.) This provides a hint on how to generalize thesplit combinator to relations9:

〈R,S〉 = π◦
1 ·R ∩ π◦

2 · S (41)

To feel the meaning of the extension we introduce variables in (41) and simplify:

〈R,S〉 = π◦
1 ·R ∩ π◦

2 · S

≡ { introduce variables; (37)}

9 Read more about this construct (which is also known as afork algebra[28]) in section 7 and,
in particular, in exercise 27.

20 J.N. Oliveira

(a, b)〈R,S〉c ≡ (a, b)(π◦
1 · R)c ∧ (a, b)(π◦

2 · S)c

≡ { (20) twice }

(a, b)〈R,S〉c ≡ π1(a, b) R c ∧ π2(a, b) S c

≡ { projections (39)}

(a, b)〈R,S〉c ≡ a R c ∧ b S c

So, relational splits enable one to PF-transform logical formulæ involving more than
two variables.

A special case ofsplit will be referred to asrelational product:

R× S
def
= 〈R · π1, S · π2〉 (42)

So we can add two more entries to table (37):

ψ [[ψ]]

a R c ∧ b S c (a, b)〈R,S〉c
b R a ∧ d S c (b, d)(R× S)(a, c)

Finally note that binary product can be generalized ton-ary productA1 × A2 ×
. . .×An involving projections{πi}i=1,n such thatπi(a1, . . . , an) = ai.

Exercise 7.Identify which types are involved in the following bijections:

flatr(a, (b, c))
def
= (a, b, c) (43)

flatl((b, c), d)
def
= (b, c, d) (44)

2

Exercise 8.Show that the side condition of the followingsplit-fusionlaw 10

〈R,S〉 · T = 〈R · T, S · T 〉 ⇐ R · (img T) ⊆ R ∨ S · (img T) ⊆ S (45)

can be dispensed with in (at least) the following situations: (a) T is simple; (b)R or S are
functions.
2

Exercise 9.Write the following cancellation law with less symbols assuming thatR � S and
S � R (35) hold:

π1 · 〈R, S〉 = R · δ S ∧ π2 · 〈R, S〉 = S · δ R (46)

2

10 Theorem 12.30 in [1].

Transforming Data by Calculation 21

Data type sums.The following is a declaration of a date type in Haskell whichis
inhabited byeitherBooleans or error strings:

data X = Boo Bool | Err String

If one queries a Haskell interpreter for the types of theBoo andErr constructors, one
gets two functions which fit in the following diagram

Bool
i1 //

Boo

))SSSSSSSSSSSSSSSSS Bool + String

[Boo ,Err]

��

String
i2oo

Err

uukkkkkkkkkkkkkkkkk

X

whereBool+String denotes the sum (disjoint union) of typesBool andString, func-
tions i1, i2 are the necessaryinjectionsand[Boo ,Err] is an instance of the“either”
relational combinator :

[R ,S] = (R · i◦1) ∪ (S · i◦2) cf. A
i1 //

R
&&LLLLLLLLLLLL A+B

[R ,S]

��

B
i2oo

S
xxrrrrrrrrrrrr

C

(47)

In pointwise notation,[R ,S] means

c[R ,S]x ≡ 〈∃ a :: c R a ∧ x = i1a〉 ∨ 〈∃ b :: c S a ∧ x = i2b〉

In the same waysplit was used above to define relational productR× S, eithercan
be used to definerelational sums:

R+ S = [i1 ·R , i2 · S] (48)

As happens with products,A+B can be generalized ton-ary sumA1 +A2 + . . .+An

involvingn injections{ii}i=1,n.
In most programming languages, sums are not primitive and need to be programmed

on purpose, eg. in C (using unions)

struct {
int tag; / * eg. 1,2 * /
union {

A ifA;
B ifB;

} data;
};

where explicit integer tags are introduced so as to model injectionsi1, i2.

22 J.N. Oliveira

(Abstract) pointers.A particular example of a datatype sum is1 + A, whereA is an
arbitrary type and1 is the singleton type. The “amount of information” in this kind of
structure is that of a pointer in C/C++: one “pulls a rope” andeither gets nothing (1)
or something useful of typeA. In such a programming context “nothing” above means
a predefined value NIL . This analogy supports our preference in the sequel for NIL as
canonical inhabitant of datatype1. In fact, we will refer to1 + A (or A + 1) as the
“pointer toA” datatype11. This corresponds to theMaybe type constructor in Haskell.

Polynomial types, grammars and languages.Types involving arbitrary nesting of prod-
ucts and sums are calledpolynomialtypes, eg.1 +A×B (the “pointer to struct” type).
These types capture the abstract contents of generative grammars (expressed in ex-
tended BNF notation) once non-terminal symbols are identified with types and terminal
symbols are filtered. The conversion is synthesized by the following table,

BNF NOTATION POLYNOMIAL NOTATION

α | β 7→ α+ β

αβ 7→ α× β

ǫ 7→ 1
a 7→ 1

(49)

applicable to the right hand side of BNF-productions, whereα, β range over sequences
of terminal or non-terminal symbols,ǫ stands foremptyanda ranges over terminal
symbols. For instance, productionX → ǫ | a A X (whereX,A are non-terminals and
a is terminal) leads to equation

X = 1 +A×X (50)

which hasA⋆ — the “sequence ofA” datatype — as least solution. Since1 + A ×X

can also be regarded as instance of the “pointer to struct” pattern, one can encode the
same equation as the following (suitably sugared) type declaration in C:

typedef struct x {
A data;
struct x * next;

} Node;

typedef Node * X;

Recursive types.Both the interpretation of grammars [68] and the analysis ofdatatypes
with pointers [69] lead to systems of polynomial equations,that is, to mutually recursive
datatypes. For instance, the twotypedefs above lead toNode = A × X and toX =
1 +Node. It is the substitution ofNode byA×X in the second equation which gives
raise to (50). There is a slight detail, though: in dealing with recursive types one needs
to replaceequalityof types byisomorphismof types, a concept to be dealt with later

11 Note that we are abstracting from the reference/dereference semantics of apointer as under-
stood in C-like programming languages. This is why we refer to 1 + A as anabstractpointer.
The explicit introduction of references (pointers, keys, identities) is deferred to section 9.

Transforming Data by Calculation 23

on in section 5. So, for instance, thePTreedatatype illustrated above in the XML and
Haskell syntaxes is captured by the equation

PTree ∼= Ind× (PTree+ 1) × (PTree+ 1) (51)

whereInd = Name × Birth packages the information relative to name and birth
year, which don’t participate in the recursive machinery and are, in a sense, parameters
of the model. Thus one may writePTree ∼= G(Ind, PTree), in whichG abstracts the
particular pattern of recursion chosen to model family trees

G(X,Y)
def
= X × (Y + 1) × (Y + 1)

whereX refers to the parametric information andY to the inductive part12.
Let us now think of the operation which fetches a particular individual from a given

PTree. From (51) one is intuitively led to an algorithm whicheitherfinds the individual
(Ind) at the root of the tree,or tries and finds it in the left sub-tree (PTree) or tries and
finds it in the right sub-tree (PTree). Why is this strategy “the natural” and obvious
one? The answer to this question leads to the notion of datatypemembershipwhich is
introduced below.

Membership.There is a close relationship between theshapeof a data structure and
the algorithms which fetch data from it. Put in other words: every instance of a given
datatype is a kind ofdata containerwhose mathematical structure determines the par-
ticularmembershiptests upon which such algorithms are structured.

Sets are perhaps the best known data containers and purport avery intuitive notion
of membership: everybody knows whata ∈ S means, wherevera is of typeA and
S of typePA (read: “the powerset ofA”). Sentencea ∈ S already tells us that (set)

membership has typeA PA
∈oo . Now, lists are alsocontainer types, the intuition

being thata belongs (or occurs) in listl ∈ A⋆ iff it can be found in any of its positions.

In this case, membership has typeA A⋆∈oo (note the overloading of symbol∈). But
even productA×A has membership too:a is a member of a pair(x, y) of typeA×A

iff it can be found in either sides of that pair, that isa ∈ (x, y) meansa = x ∨ a = y.
So it makes sense to define agenericnotion of membership, able to fully explain the
overloading of symbol∈ above.

Datatype membership has been extensively studied [32, 11, 59]. Below we deal with
polynomial type membership, which is what it required in this paper. A polynomial type
expression may involve the composition, product, or sum of other polynomial types,
plus the identity (Id X = X) and constant types (FX = K, whereK is any basic
datatype, eg. the Booleans, the natural numbers, etc). Generic membership is defined,
in the PF-style, over the structure of polynomial types as follows:

∈K

def
= ⊥ (52)

∈Id

def
= id (53)

12 Types such asPTree, which are structured around another datatype (cf.G) which captures its
structural “shape” are often referred to astwo-level typesin the literature [66].

24 J.N. Oliveira

∈F×G

def
= (∈F · π1) ∪ (∈G · π2) (54)

∈F+G

def
= [∈F ,∈G] (55)

∈F·G
def
= ∈G · ∈F (56)

Exercise 10.Calculate the membership of typeFX = X × X and convert it to pointwise
notation, so as to confirm the intuition above thata ∈ (x, y) holds iff a = x ∨ a = y.
2

Generic membership will be of help in specifying data structures which depend on
each other by some form ofreferential integrityconstraint. Before showing this, we
need to introduce the important notion ofreference, or identity.

Identity. Base clause (53) above clearly indicates that, sooner or later, equality plays
its role when checking for polynomial membership. And equality of complex objects
is cumbersome to express and expensive to calculate. Moreover, checking two objects
for equality based on their properties alone may not work: itmay happen that two
physically different objects have the same properties, eg.two employees with exactly
the same age, name, born in the same place, etc.

This identificationproblem has a standard solution: one associates to the objects
in a particular collectionidentifierswhich are unique in that particular context, cf. eg.
identifierID in figure 2b. So, instead of storing a collection of objects of(say) typeA in
a set of (say) typePA, one stores an association of unique names to the original objects,
usually thought of in tabular format — as is the case in figure 2b.

However, thinking in terms oftabular relationsexpressed by sets of tuples where
particular attributes ensure unique identification13, as is typical of database theory [45],
is neither sufficiently general nor agile enough for reasoning purposes. References [56,
58] show that relationalsimplicity 14 is what matters in unique identification. So it
suffices to regard collections of uniquely identified objects A as simple relations of
type

K ⇀ A (57)

whereK is a nonempty datatype ofkeys, or identifiers. For the moment, no special
requirements are put onK. Later on,K will be asked to provide for a countably infinite
supply of identifiers, that is, to behave such asnatural number objectsdo in category
theory [47].

Below we show that simplicity and membership are what is required of our PF-
notation to capture the semantics of data modeling (graphical) notations such asEntity-
Relationshipdiagrams and UML class diagrams.

Entity-relationship diagrams.As the name tells, Entity-Relationship data modeling
involves two basic concepts:entitiesandrelationships. Entities correspond tonounsin
natural language descriptions: they describe classes of objects which have identity and

13 These attributes are known askeys.
14 Recall that a relation is simple wherever its image is coreflexive (19).

Transforming Data by Calculation 25

Book
ISBN
Title
Author[0-5]
Publisher
id: ISBN

Reserved
Date

Borrower
PID
Name
Address
Phone
id: PID

0:N 0:N

Fig. 5. Sample of GER diagram (adapted from [30]). Underlined identifiers denote keys.

exhibit a number of properties or attributes. Relationships can be thought of asverbs:
they record (the outcome of) actions which engage differententities.

A few notation variants and graphical conventions exist forthese diagrams. For its
flexibility, we stick to thegeneric entity-relationship(GER) proposal of [30]. Figure 5
depicts a GER diagram involving two entities:Book andBorrower. The latter pos-
sesses attributesName, Address, Phoneand identityPID. As anticipated above where
discussing how to model object identity, the semantic modelof Borrower is a simple
relation of typeTPID ⇀ TName × TAddress × TPhone, where byTa we mean the
type where attributea takes values from. For notation economy, we will drop theT...

notation and refer to the typeTa of attributea by mentioninga alone:

Borrowers
def
= PID ⇀ Name×Address × Phone

Entity Book has a multivalued attribute (Author) imposing at most 5 authors. The
semantics of such attributes can be also captured by (nested) simple relations:

Books
def
= ISBN ⇀ Title× (5 ⇀ Author) × Publisher (58)

Note the use of number5 to denote the initial segment of the natural numbers (IN) up
to 5, that is, set{1, 2, ..., 5}.

Books can be reserved by borrowers and there is no limit to thenumber of books
the latter can reserve. The outcome of a reservation at a particular date is captured by
relationshipReserved. Simple relations also capture relationship formal semantics, this
time involving the identities of the entities engaged. In this case:

Reserved
def
= ISBN × PID ⇀ Date

Altogether, the diagram specifies datatypeDb
def
= Books×Borrowers ×Reserved

inhabited by triples of simple relations.
In summary, Entity-Relationship diagrams describe data models which are con-

cisely captured by simple binary relations. But we are not done yet: the semantics of the
problem include the fact that onlyexistingbooks can be borrowed byknownborrowers.
So one needs to impose a semantic constraint (invariant) on datatypeDb which, written
pointwise, goes as follows

φ(M,N,R)
def
=

〈∀ i, p, d :: d R (i, p) ⇒ 〈∃ x :: x M i〉 ∧ 〈∃ y :: y M p〉〉 (59)

26 J.N. Oliveira

wherei, p, d range overISBN,PID andDate, respectively.
Constraints of this kind, which are implicitly assumed wheninterpretingrelation-

shipsin these diagrams, are known asintegrity constraints. Being invariants at the se-
mantic level, they bring along with them the problem of ensuring their preservation by
the corresponding CRUD operations. Worse than this, their definition in the predicate
calculus is not agile enough for calculation purposes. Is there an alternative?

Space constraints preclude presenting the calculation which would show (59)equiv-
alent to the following, much more concise PF-definition:

φ(M,N,R)
def
= R · ∈◦ �M ∧ R · ∈◦ � N (60)

cf. diagram

ISBN

M

�

ISBN × PID

R

�

∈=π1oo ∈=π2 // PID

N

�
T itle× (5 ⇀
Author) ×
Publisher

Date
Name×
Address×
Phone

To understand (60) and the diagram above, the reader must recall the definition of the
� ordering (35) — which compares the domains of two relations —and inspect the

types of the two memberships,ISBN ISBN × PID
∈=π1oo in the first instance and

PID ISBN × PID
∈=π2oo in the second. We check the first instance, the second being

similar:

ISBN ISBN × PID
∈oo

= { polynomial decomposition, membership of product (54)}

(∈Id ·π1) ∪ (∈PID ·π2)

= { (52) and (53)}

id · π1 ∪ ⊥ · π2

= { trivia }

π1

Multiplicity labels 0:N in the diagram of figure 5 indicate that there is no limit to the
number of books borrowers can reserve. Now suppose the library decrees the following
rule: borrowers can have at most one reservation active. In this case, label 0:N on the
Book side must be restricted to 0:1. These so-called many-to-onerelationships are once
again captured by simple relations, this time of a differentshape:

Reserved
def
= PID ⇀ ISBN ×Date (61)

Altogether, note how clever use of simple relations dispenses with explicit cardinality
invariants, which would put spurious weight on the data model. However, referential

Transforming Data by Calculation 27

integrity is still to be maintained. The required pattern isonce again nicely built up

around membership,φ(M,N,R)
def
= (∈ ·R)◦ �M ∧ R � N , see diagram:

ISBN

M

�

ISBN ×Date
∈=π1oo PID

Ro

N

�
T itle× (5 ⇀
Author) ×
Publisher

Name×
Address×
Phone

In retrospect, note the similarity in shape between these diagrams and the corre-
sponding Entity-Relationship diagrams. The main advantage of the former resides in
their richer semantics enabling formal reasoning, as we shall see in the sequel.

Name spaces and “heaps”.Relational database referential integrity can be shown to be
an instance of a more general issue which traverses computing from end to end:name
spacereferential integrity (NSRI). There are so many instances of NSRI thatgenericity
is the only effective way to address the topic15. The issue is that, whatever programming
language is adopted, one faces the same (ubiquitous) syntactic ingredients: (a) source
code is made of units; (b) units refer to other units; (c) units need to be named.

For instance, a software package is a (named) collection of modules, each module
being made of (named) collections of data type declarations, of variable declarations,
of function declarations etc. Moreover, the package won’t compile in case name spaces
don’t integrate with each other. Other examples of name spaces requiring NSRI are
XML DTDs, grammars (where nonterminals play the role of names), etc.

In general, one is led to heterogeneous (typed) collectionsof (mutually dependent)
name spaces, nicely modeled as simple relations again

Ni ⇀ Fi(Ti, N1, . . . , Nj, . . . , Nni
)

whereFi is a parametric type describing the particular pattern which expresses how
names of typeNi depend on names of typesNj (j = 1, ni) and whereTi aggregates all
types which don’t participate in NSRI.

Assuming that all suchFi have membership, we can draw diagram

Ni

Si /

∈i,j ·Si

((QQQQQQQQQQQQQQQQQ Fi(Ti, N1, . . . , Nj, . . . , Nni
)

∈i,j

��
Nj

where∈i,j · Si is a name-to-name relation, ordependence graph. Overall NSRI will
hold iff

〈∀ i, j :: (∈i,j · Si)
◦ � Sj〉 (62)

15 For further insight intonamingsee eg. Robin Milner’s interesting essayWhat’s in a name? (in
honour of Roger Needham)available fromhttp://www.cl.cam.ac.uk/˜rm135 .

28 J.N. Oliveira

which, once the definition order� (35) is spelt out, converts to the pointwise:

〈∀ n,m : n ∈ dom Si : m ∈i,j (Si n) ⇒m ∈ dom Sj〉

Of course, (62) includes self referential integrity as a special case (i = j).
NSRI also shows up at low level, where data structures such ascachesandheapscan

also be thought of as name spaces: at such a low level, names arememory addresses. For

instance,IN
H / F (T, IN) models a heap “of shape”F whereT is some datatype

of interest and addresses are natural numbers (IN). A heap satisfies NSRI iff it has no
dangling pointers. We shall be back to this model of heaps when discussing how to deal
with recursive data models (section 9).

Summary.This section addressed data-structuring from a double viewpoint: the one
of programmers wishing to build data models in their chosen programming medium
and the one of the software analyst wishing to bridge betweenmodels in different no-
tations in order to eventually control data impedance mismatch. The latter entailed the
abstraction of disparate data structuring notations into acommon unifying one, that of
binary relations and the PF-transform. This makes it possible to study data impedance
mismatch from a formal perspective.

5 Data impedance mismatch expressed in the PF-style

Now that both the PF-notation has been presented and that itsapplication to describing
the semantics of data structures has been illustrated, we are better positioned to restate
and study diagram (7). This expresses thedata impedance mismatchbetween two data
modelsA andB as witnessed by aconnectedrepresentation/abstraction pair(R,F).
Formally, this means that:







–R is a representation (kerR = id)
–F is an abstraction (imgF = id)
–R andS are connected:R ⊆ F ◦

(63)

The higher the mismatch betweenA andB the more complex(R,F) are. The least
impedance mismatch possible happens between a datatype anditself:

A

id

''
≤ A

id

gg (64)

Another way to read (64) is to say that the≤-ordering on data models isreflexive. It
turns up that≤ is alsotransitive,

A

R

''
≤ B

F

gg ∧ B

S

''
≤ C

G

gg ⇒ A

S·R
''

≤ C

F ·G

gg (65)

Transforming Data by Calculation 29

that is, data impedances compose. The calculation of (65) isimmediate: composition
respects abstractions and representations (recall exercise 6) and(F ·G,S ·R) are con-
nected:

S ·R ⊆ (F ·G)◦

≡ { converses (13)}

S ·R ⊆ G◦ · F ◦

⇐ { monotonicity }

S ⊆ G◦ ∧ R ⊆ F ◦

≡ { sinceS, G andR, F are assumed connected}

TRUE

Right-invertibility. A most beneficial consequence of (63) is theright-invertibility prop-
erty

F ·R = id (66)

which, written in predicate logic, expands to

〈∀ a′, a :: 〈∃ b :: a′ F b ∧ b R a〉 ≡ a′ = a〉 (67)

The PF-calculation of (66) is not difficult:

F · R = id

≡ { equality of relations (14)}

F · R ⊆ id ∧ id ⊆ F ·R

≡ { img F = id andker R = id (63) }

F · R ⊆ F · F ◦ ∧ R◦ · R ⊆ F · R

≡ { converses}

F · R ⊆ F · F ◦ ∧ R◦ · R ⊆ R◦ · F ◦

⇐ { (F ·) and(R◦·) are monotone}

R ⊆ F ◦ ∧ R ⊆ F ◦

≡ { trivia }

R ⊆ F ◦

≡ { R andF are connected (63)}

TRUE

Clearly, thisright-invertibility property matters in data representation:id ⊆ F · R en-
sures theno lossprinciple andF ·R ⊆ id ensures theno confusionprinciple.

30 J.N. Oliveira

While (as we have just seen)F ·R = id is entailed by (63), the converse entailment
does not hold: F · R = id ensuresR a representation andF surjective, but not simple.
It may be also the case thatF · R = id andR ⊆ F ◦ does not hold, as the following
counter-example shows:R = !◦ and⊥ ⊂ F ⊂ !.

Exercise 11.The reader may be interested to compare the calculation justabove with the corre-
sponding proof carried out at pointwise level using quantified logic expressions. This will amount
to showing that (67) is entailed by thepointwisestatement of(R,F) as a connected abstraction/
representation pair.
2

Exercise 12.Consider two data structuring patterns:“pointer to struct” (A × B + 1) and
“pointer in struct” ((A + 1) × B). The question is: which of these data patterns represents
the other? We suggest the reader checks the validity of

A × B + 1

R

++
≤ (A + 1) × B

f

jj (68)

where R
def
= [i1 × id , 〈i2, !

◦〉] andf = R◦, that is,f satisfying clausesf(i1 a, b) = i1(a, b)

andf(i2 NIL , b) = i2 NIL , where NIL denotes the unique inhabitant of type 1.
2

Right-invertibility happens to beequivalentto (63) wherever both the abstraction
and the representation arefunctions, sayf, r:

A

r

''
≤ C

f

gg ≡ f · r = id (69)

Let us show thatf · r = id is equivalent tor ⊆ f◦ and entailsf surjective andr
injective:

f · r = id

≡ { (28) }

f · r ⊆ id

≡ { shunting (26)}

r ⊆ f◦

⇒ { composition is monotonic}

f · r ⊆ f · f◦ ∧ r◦ · r ⊆ r◦ · f◦

≡ { f · r = id ; converses}

id ⊆ f · f◦ ∧ r◦ · r ⊆ id

≡ { definitions }

f surjective∧ r injective

Transforming Data by Calculation 31

The right invertibility property is a handy way of spotting≤ rules. For instance, the
following cancellation properties of product and sum hold [11]:

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (70)

[g , f] · i1 = g , [g , f] · i2 = f (71)

Suitable instantiations off , g to the identity function in both lines above lead to

π1 · 〈id, g〉 = id , π2 · 〈f, id〉 = id

[id , f] · i1 = id , [g , id] · i2 = id

Thus we get — via (69) — the following≤-rules

A

〈id,g〉
))

≤ A×B

π1

gg B

〈f,id〉
))

≤ A×B

π2

gg (72)

A

i1

))
≤ A+B

[id ,f]

gg B

i2

))
≤ A+B

[g ,id]

gg (73)

which tell the two projections surjective and the two injections injective (as expected).
At programming level, they ensure that adding entries to astruct or (disjoint)union
is a valid representation strategy, provided functionsf, g are supplied by default [17].
Alternatively, they can be replaced by the top relation⊤ (meaning adon’t carerepre-
sentation strategy). In the case of (73), even⊥ will work instead off, g, leading, for
A = 1, to the standard representation of datatypeA by a “pointertoA”:

A

i1

))
≤ A+ 1

i◦1

gg

Exercise 13.Show that[id ,⊥] = i◦1 and that[⊥ , id] = i◦2.
2

Isomorphic data types.As instance of (69) considerf andr such that both

A

r

''
≤ C

f

gg ∧ C

f

''
≤ A

r

gg

hold. This is equivalent to

r ⊆ f◦ ∧ f ⊆ r◦

≡ { converses ; (14)}

r◦ = f (74)

32 J.N. Oliveira

Sor (a function) is the converse of another functionf . This means that both are bijec-
tions (isomorphisms) — recall figure 3 — since

f is an isomorphism≡ f◦ is a function (75)

In a diagram:

A

r=f◦

''∼= C

f=r◦

gg

IsomorphismA ∼= C corresponds tominimal impedance mismatch between types
A andC in the sense that, although the format of data changes, data conversion in both
ways is wholly recoverable. That is, two isomorphic typesA andC are “abstractly” the
same. Here is a trivial example

A×B

swap

**
∼= B ×A

swap

jj (76)

whereswap is the name given to polymorphic function〈π2, π1〉. This isomorphism
establishes thecommutativityof ×, whose translation into practice is obvious: one can
change the order in which the entries in astruct (eg. in C) are listed; swap the order
of two columns in a spreadsheet, etc.

The question arises: how can one becertain thatswap is an isomorphism? A con-
structive, elegant way is to follow the advice of (75), whichappeals to calculating the
converse ofswap,

swap◦

= { (41) }

(π◦
1 · π2 ∩ π

◦
2 · π1)

◦

= { converses}

π◦
2 · π1 ∩ π

◦
1 · π2

= { (41) again}

swap

which isswap again. Soswap is its own converse and therefore an isomorphism.

Exercise 14.The calculation just above was too simple. To recognize the power of (75), prove
the associative property of disjoint union,

A + (B + C)

r

++
∼= (A + B) + C

f=[id+i1 ,i2·i2]

kk
(77)

Transforming Data by Calculation 33

by calculatingthe functionr which is the converse off .
Appreciate the elegance of this strategy when compared to what is conventional in discrete

maths: to provef bijective, one would have to either provef injective and surjective, orinvent
its conversef◦ and prove the two cancellationsf · f◦ = id andf◦ · f = id.
2

Exercise 15.The following are known isomorphisms involving sums and products:

A × (B × C) ∼= (A × B) × C (78)

A ∼= A × 1 (79)

A ∼= 1 × A (80)

A + B ∼= B + A (81)

C × (A + B) ∼= C × A + C × B (82)

Guess the relevant isomorphism pairs.
2

Exercise 16.Show that (75) holds, forf a function (of course).
2

Relation transposes.Once again let us have a look at isomorphism pair(r, f) in (74),
this time to introduce variables in the equality:

r◦ = f

≡ { introduce variables}

〈∀ a, c :: c (r◦) a ≡ c f a〉

≡ { (20) }

〈∀ a, c :: r c = a ≡ c = f a〉

This is a pattern shared by many (pairs of) operators in the relational calculus, as is
the case of eg. (omitting universal quantifiers)

k = ΛR ≡ R = ∈ · k (83)

whereΛ converts a binary relation intothe correspondingset-valued function [11], of

k = tot S ≡ S = i◦1 · k
︸ ︷︷ ︸

untot k

(84)

wheretot totalizesa simple relationS into the corresponding“Maybe-function”16, and
of

k = curry f ≡ f = ap · (k × id)
︸ ︷︷ ︸

uncurry k

(85)

16 See [59]. This corresponds to the view that simple relationsare “possibly undefined” (ie. par-

tial) functions. Also recall thatA A + 1
i◦
1oo is the membership ofMaybe.

34 J.N. Oliveira

wherecurry converts a two-argument functionf into the correspondingunary func-
tion, forap(g, x) = g x.

These properties ofΛ, tot andcurry are normally referred to asuniversal proper-
ties, because of their particular pattern of universal quantification which ensures unique-
ness17. Novice readers will find them less cryptic once further (quantified) variables are
introduced on their right hand sides:

k = ΛR ≡ 〈∀ b, a :: b R a ≡ b ∈ (k a)〉

k = tot S ≡ 〈∀ b, a :: b S a ≡ (i1b) = k a〉

k = curry f ≡ 〈∀ b, a :: f(b, a) = (k b)a〉

In summary,Λ, tot andcurry are all isomorphisms. Here they are expressed by∼=-
diagrams,

(PB)A

(∈·)
**

∼= A→ B

Λ

jj (B + 1)A

untot=(i◦1 ·)
**

∼= A ⇀ B

tot

kk

(BA)
C

uncurry

**
∼= BC×A

curry

jj

(86)

where the exponential notationY X describes the datatype of all functions fromX to
Y .

Exercise 17.(For Haskell programmers) Inspect the type offlip lookup and relate it to
that oftot. (NB: flip is available fromGHC.Base andlookup from GHC.ListA .)
2

Exercise 18.The following is a well-known isomorphism involving exponentials:

(B × C)A

〈(π1·),(π2·)〉

++
∼= BA × CA

〈 , 〉

kk
(87)

Write down theuniversal propertycaptured by (87).
2

Exercise 19.Relate function(p2p p)b
def
= if b then (π1 p) else (π2 p) (readp2p as“pair

to power”) with isomorphism

A × A ∼= A2 (88)

2

Since exponentials are inhabited by functions and these arespecial cases of rela-
tions, there must be combinators which express functions interms of relations and vice
versa. IsomorphismsΛ andtot (83, 84) already establish relationships of this kind. Let
us see two more which will prove useful in calculations to follow.
17 Consider, for instance, the right to left implication of (85): this tells that, givenf , curry f is

the onlyfunction satisfyingf = ap · (k × id).

Transforming Data by Calculation 35

“Relational currying”. Consider isomorphism

(C →A)
B

()◦

++
∼= B × C →A

()

kk
(89)

and associated universal property,

k = R ≡ 〈∀ a, b, c :: a (k b) c ≡ a R (b, c)〉 (90)

where we suggest thatR be read “R transposed”.R is thus a relation-valued function
which expresses a kind ofselection/projectionmechanism: given some particularb0,
R b0 selects the “sub-relation” ofR of all pairs(a, c) related tob0.

This extension ofcurrying to relations is a direct consequence of (83):

B × C →A

∼= { Λ/(∈·) (83, 86) }

(PA)
B×C

∼= { curry/uncurry }

((PA)C)
B

∼= { exponentials preserve isomorphisms}

(C →A)B

The fact that, for simple relations, one could have resortedabove to theMaybe-transpose
(84) instead of the power transpose (83), leads to the conclusion that relational “curry-
ing” preserves simplicity:

(C ⇀ A)
B

()◦

++
∼= B × C ⇀ A

()

kk
(91)

Since all relations are simple in (91), we can use notation convention (33) in the follow-
ing pointwise definition ofM (forM simple):

M b = {c 7→M(b′, c) | (b′, c) ∈ dom M ∧ b′ = b} (92)

This rule will play its role in multiple (foreign) key synthesis, see section 6.

Sets are fragments of “bang”.We have already seen that sets can be modeled by core-
flexive relations, which are simple.Characteristic functionsare another way to repre-
sent sets:

2A

λp.{a∈A|p a}
((

∼= PA

λS.(λa.a∈S)

hh cf. p = (∈ S) ≡ S = {a | p a} (93)

36 J.N. Oliveira

Here we see the correspondence between set comprehension and membership testing
expressed by2-valued functions, ie. predicates. By combining thetot/untot isomor-
phism (86) with (93) we obtain

PA

s2m

))
∼= A ⇀ 1

dom

ii (94)

wheres2m S = ! · ΦS anddom is defined by (32). This shows that every fragment of
bang(!) models a set18.

Exercise 20.Show that “obvious” facts such asS = {a | a ∈ S} andp x ≡ x ∈ {a | p a} stem
from (93). Investigate other properties of set-comprehension which can be drawn from (93).
2

Relators and≤-monotonicity.A lesson learned from (69) is that right-invertible func-

tions (surjections) have a≤-rule of their own. For instance, predicatef n
def
= n 6= 0

over the integers is surjective (onto the Booleans). Thus Booleans can be represented
by integers,2 ≤ ZZ — a fact C programmers know very well. Of course, one expects
this “to scale up”: any data structure involving the Booleans (eg. trees of Booleans) can
be represented by a similar structure involving integers (eg. trees of integers). However,
what does the word “similar” mean in this context? Typically, when building such a
tree of integers, a C programmer looks at it and “sees” the tree with the same geometry
where the integers have been replaced by theirf images.

In general, letA andB be such thatA ≤ B and letGX denote a type parametric
onX . We want to be able topromotetheA-into-B representation to structures of type
G :

A

R

''
≤ B

F

gg ⇒ GA

G R

((
≤ GB

G F

hh

The questions arise: does this hold forany parametric typeG we can think of? and
what do relationsGR andGF actually mean? Let us check. First of all, we investigate
conditions for(GF,GR) to be connected to each other:

GR ⊆ (GF)◦

⇐ { assumeG(X◦) ⊆ (G X)◦, for all X }

GR ⊆ G(F ◦)

⇐ { assume monotonicity ofG }

R ⊆ F ◦

≡ { R is assumed connected toF }

TRUE

18 Relations at mostbang(!) are referred to asright-conditionsin [32].

Transforming Data by Calculation 37

Next,GR must be injective:

(GR)◦ · GR ⊆ id

⇐ { assume(GX)◦ ⊆ G(X◦) }

(GR◦) · GR ⊆ id

⇐ { assume(GR) · (G T) ⊆ G(R · T) }

G(R◦ ·R) ⊆ id

⇐ { assumeG id ⊆ id and monotonicity ofG }

R◦ · R ⊆ id

≡ { R is injective }

TRUE

The reader eager to pursue checking the other requirements (R entire,F surjective, etc)
will find out that the wish list concerningG will end up being as follows:

G id = id (95)

G (R · S) = (GR) · (GS) (96)

G (R◦) = (GR)◦ (97)

R ⊆ S ⇒ GR ⊆ GS (98)

These turn up to be the properties of arelator [6], a concept which extends that of a
functor to relations: a parametric datatypeG is said to be a relator wherever, given a
relationR fromA toB, GR extendsR to G-structures. In other words, it is a relation
from GA to GB, cf.

A

R

��

GA

G R

��
B GB

(99)

which obeys the properties above (it commutes with the identity, with composition and
with converse, and it is monotonic). OnceR,S above are restricted to functions, the
behaviour ofG in (95, 96) is that of a functor, and (97) and (98) become trivial —
the former establishing thatG preserves isomorphisms and the latter thatG preserves
equality (Leibniz).

It is easy to show that relators preserve all basic properties of relations as in figure 3.
Two trivial relators are theidentity relator Id, which is such thatId R = R and the
constantrelatorK (for a given data typeK) which is such thatK R = idK . Relators
can also be multi-parametric and we have already seen two of these: productR×S (42)
and sumR+ S (48).

38 J.N. Oliveira

The prominence of parametric typeGX = K ⇀ X , for K a given datatypeK of
keys, leads us to the investigation of its properties as a relator,

B

R

��

K ⇀ B

K⇀R

��
C K ⇀ C

where we define relationK ⇀ R as follows:

N(K ⇀ R)M
def
= δM = δ N ∧ N ·M◦ ⊆ R (100)

So, wherever simpleN andM are(K ⇀ R)-related, they are equally defined and their
outputs areR-related. WhereverR is a functionf ,K ⇀ f is a function too defined by
projection

(K ⇀ f)M = f ·M (101)

This can be extended to a bi-relator,

(g ⇀ f)M = f ·M · g◦ (102)

providedg is injective — recall (33).

Exercise 21.Show that instantiationR := f in (100) leads toN ⊆ f · M andf · M ⊆ N in
the body of (100), and therefore to (101).
2

Exercise 22.Show that(K ⇀) is a relator.
2

Indirection and dereferencing.Indirection is a representation technique whereby data
of interest stored in some data structure are replaced by references (pointers) to some
global (dynamic) store — recall (57) — where the data areactuallykept. The represen-
tation implicit in this technique involves allocating fresh cells in the global store; the
abstraction consists in retrieving data by pointer dereferencing.

The motivation for this kind of representation is well-known: the referent is more
expensive to move around than the reference. Despite being well understood and very
widely used, dereferencing is a permanent source of errors in programming: it is im-
possible to retrieve data from a non-allocated reference.

IN

S

�

G IN

G S

�
B GB

To see how this strategy arises, considerB in (99) the datatype
of interest (archived in some parametric container of typeG, eg.
binary trees ofBs). LetA be the natural numbers andS be sim-
ple. Since relators preserve simplicity,GS will be simple too, as
depicted aside. The meaning of this diagram is that of declaring a
generic function (sayrmap) which, givingS simple, yieldsGS
also simple. Sormap has type

(IN ⇀ B) → (G IN ⇀ GB) (103)

in the same way thefmapfunction of Haskell classFunctor has type

Transforming Data by Calculation 39

fmap :: (a -> b) -> (g a -> g b)

(Recall that, once restricted to functions, relators coincide with functors.)
From (91) we infer thatrmap can be “uncurried” into a simple relation of type

((IN ⇀ B) × G IN) ⇀ GB which is surjective, for finite structures. Of course we
can replaceIN above by any data domain, sayK (suggestive ofkey), with the same
cardinality, that is, such thatK ∼= IN . Then

GB

R
++

≤ (K ⇀ B) × GK

Dref

jj (104)

holds for abstraction relationDref such thatDref = rmap, that is, such that (recalling
(90))

y Dref (S, x) ≡ y(GS)x

for S a storeandx a data structure of pointers (inhabitant ofGK).
Consider as example the indirect representation of finite lists ofBs, in which fact

l′ Dref (S, l) instantiates tol′(S⋆)l, itself meaning

l′(S⋆)l ≡ length l′ = length l ∧

〈∀ i : 1 ≤ i ≤ length l : l i ∈ dom S ∧ (l′ i) = S(l i)〉

So, whereverl′S⋆l holds, no referencek in list l can live outside the domain of storeS,

k ∈ l ⇒ 〈∃ b :: b S k〉 (105)

where∈ denotes finite list membership.

Exercise 23.Check that (105) PF-transforms to(∈ · l)◦ � S, an instance of NSRI (62) where
l denotes the “everywherel” constant function.
2

Exercise 24.Define a representation functionr ⊆ Dref ◦ (104) forG X = X⋆.
2

SummaryThis section presented the essence of this paper’s approachto data calcula-
tion: a preorder (≤) on data types which formalizes data impedance mismatch in terms
of representation/abstraction pairs. This preorder is compatible with the data type con-
structors introduced in section 4 and leads to a data structuring calculus whose laws
enable systematic calculation of data implementations from abstract models. This is
shown in the sections which follow.

6 Calculating database schemes from abstract models

Relational schema modeling is central to the “open-ended list of mapping issues” iden-
tified in [42]. In this section we develop a number of≤-rules intended for cross-cutting

40 J.N. Oliveira

impedance mismatch with respect to relational modeling. Inother words, we intend
to provide a practical method for inferring the schema of a database which (correctly)
implements a given abstract model, including the stepwise synthesis of the associated
abstraction and representation data mappings and concreteinvariants. This method will
be shown to extend to recursive structures in section 9.

Relational schemes “relationally”.Broadly speaking, a relational database is an-tuple
of tables, where each table is a relation involving value-level tuples. The latter are vec-
tors of values which inhabit “atomic” data types, that is, which hold data with no further
structure. Since many such relations (tables) exhibitkeys, they can be thought of assim-
ple relations. In this context, let

RDBT
def
=

n∏

i=1

(

ni∏

j=1

Kj ⇀

mi∏

k=1

Dk) (106)

denote thegeneric typeof a relational database [2]. EveryRDBT -compliant tupledb
is a collection ofn relational tables (indexi = 1, n) each of which is a mapping from
a tuple ofkeys(indexj) to a tuple ofdata of interest(indexk). Wherevermi = 0 we
have

∏0
k=1Dk

∼= 1, meaning — via (94) — afinite setof tuples of type
∏ni

j=1Kj.
(These are calledrelationshipsin the standard terminology.) Whereverni = 1 we are
in presence of a singleton relational table. Last but not least, allKj andDk are “atomic”
types, otherwisedb would fail first normal form (1NF) compliance [45].

Compared to what we have seen so far, typeRDBT (106) is “flat”: there are no
sums, no exponentials, no room for a single recursive datatype. Thus the mismatch
identified in [42]: how does one map structured data (eg. encoded in XML) or a text gen-
erated according to some grammar, or even a collection of object types, intoRDBT?

We devote the remainder of this section to a number of≤-rules which can be used
to transform arbitrary data models into instances of “flat”RDBT . Such rules share the
generic patternA ≤ B (of which A ∼= B is a special case) whereB only contains
products and simple relations. So, by successive application of such rules, one is lead
— eventually — to an instance ofRDBT . Note that (89) and (94) are already rules of
this kind (from left to right), the latter enabling one to getrid of powersets and the other
of (some forms of) exponentials. Below we present a few more rules of this kind.

Getting rid of sums.It can be shown (see eg. [11]) that theeither combinator[R ,S]
as defined by (47) is an isomorphism. This happens because onecan always (uniquely)

project a relation(B + C)
T //A into two componentsB R //A andC S //A ,

such thatT = [R ,S]. Thus we have

(B + C) → A

[,]◦

,,
∼= (B→A) × (C → A)

[,]

ll
(107)

which establishes universal property

T = [R ,S] ≡ T · i1 = R ∧ T · i2 = S (108)

Transforming Data by Calculation 41

When applied from left to right, rule (107) can be of help in removing sums from
data models: relations whose input types involve sums can always be decomposed into
pairs of relations whose types don’t involve (such) sums.

Sums are a main ingredient in describing theabstract syntaxof data. For instance,
in the grammar approach to data modeling, alternative branches of a production in ex-
tended BNF notation map to polynomial sums, recall (49). Theapplication of rule (107)
removes such sums with no loss of information (it is an isomorphism), thus reducing
the mismatch between abstract syntax and relational database models.

The calculation of (107), which is easily performed via the power-transpose [11],
can alternatively be performed via theMaybe-transpose [59] — in the case of simple
relations — meaning that relationaleitherpreserves simplicity:

(B + C) ⇀ A

[,]◦

,,
∼= (B ⇀ A) × (C ⇀ A)

[,]

ll
(109)

What about the other (very common) circumstance in which sums occur at the output
rather than at the input type of a relation? Another sum-elimination rule is applicable to
such situations,

A→ (B + C)

△+

,,
∼= (A→B) × (A→ C)

+

1

ll
(110)

where

M
+
1 N

def
= i1 ·M ∪ i2 ·N (111)

△+ M
def
= (i◦1 ·M, i◦2 ·M) (112)

However, (110) does not hold as it stands for simple relations, because
+
1 does not

preserve simplicity: the union of two simple relations is not always simple. The weakest
pre-condition for simplicity to be maintained is calculated as follows:

M
+
1 N is simple

≡ { definition (111) }

(i1 ·M ∪ i2 ·N) is simple

≡ { simplicity of union of simple relations (34)}

(i1 ·M) · (i2 ·N)◦ ⊆ id

≡ { converses ; shunting (26, 27)}

M ·N◦ ⊆ i◦1 · i2

≡ { i◦1 · i2 = ⊥ ; (29,30) }

42 J.N. Oliveira

δM · δ N ⊆ ⊥

≡ { coreflexives (15)}

δM ∩ δ N = ⊥ (113)

Thus,M
+
1 N is simple iffM andN are domain-disjoint.

Exercise 25.Show that
+
1 ·△+ = id holds. (NB: propertyid + id = id can be of help in the

calculation.)
2

Exercise 26.Do better than in exercise 25 and show that
+
1 is the converse of△+, of course

finding inspiration in (75). Universal property (108) will soften calculations if meanwhile you

show that(M
+
1 N)◦ = [M◦ , N◦] holds.

2

Getting rid of multivalued types.Recall theBooks type (58) defined earlier on. It
deviates fromRDBT in the second factor of its range type,5 ⇀ Author, whereby
book entries are bound to record up to 5 authors. How do we copewith this situation?
Books is an instance of the generic relational typeA ⇀ (D × (B ⇀ C)) for arbitrary
A,B,C andD, where entryB ⇀ C generalizes the notion of a multivalued attribute.
Our aim in the calculations which follow is to split this relation type in two, so as to
combine the two keys of typesA andB:

A ⇀ (D × (B ⇀ C))

∼= { Maybe transpose (86)}

(D × (B ⇀ C) + 1)A

≤ { (68) }

((D + 1) × (B ⇀ C))A

∼= { splitting (87) }

(D + 1)A × (B ⇀ C)A

∼= { Maybe transpose (86, 89)}

(A ⇀ D) × (A×B ⇀ C)

Altogether, we can rely on≤-rule

A ⇀ (D × (B ⇀ C))

△n

,,
≤ (A ⇀ D) × (A×B ⇀ C)

1n

ll
(114)

where the “nested join” operator1n is defined by

M 1n N = 〈M,N〉 (115)

Transforming Data by Calculation 43

— recall (91) — and△n is

△n M = (π1 ·M,usc(π2 ·M)) (116)

whereusc (=“undo simple currying”) is defined in comprehension notation as follows,

usc M
def
= {(a, b) 7→ (M a)b | a ∈ dom M, b ∈ dom(Ma)} (117)

sinceM is simple. (Details about the calculation of this abstraction / representation pair
can be found in [63].)

Example.Let us see the application of≤-rule (114) to theBooks data model (58). We
document each step by pointing out the involved abstraction/representation pair:

Books = ISBN ⇀ (T itle× (5 ⇀ Author) × Publisher)

∼=1 { r1 = id ⇀ 〈〈π1, π3〉, π2〉 , f1 = id ⇀ 〈π1 · π1, π2, π2 · π1〉 }

ISBN ⇀ (T itle× Publisher) × (5 ⇀ Author)

≤2 { r2 = △n , f2 = 1n, cf. (114) }

(ISBN ⇀ Title× Publisher)× (ISBN × 5 ⇀ Author)

= Books2

SinceBooks2 belongs to theRDBT class of types (assumingISBN ,T itle,Publisher
andAuthor atomic) it is directly implementable as a relational database schema.

Altogether, we have been able to calculate atype-levelmapping between a source
data model (Books) and a target data model (Books2). To carry on with themapping
scenarioset up in [42], we need to be able to synthesize the two data maps (“map
forward” and “map backward”) betweenBooks andBooks2. We do this below as an
exercise of PF-reasoning followed by pointwise translation.

Following rule (65), which enables composition of representations and abstractions,
we synthesizer = △n ·(id ⇀ 〈〈π1, π3〉, π2〉) as overall “map forward” representation,
andf = (id ⇀ 〈π1 · π1, π2, π2 · π1〉) ·1n as overall “map backward” abstraction. Let
us transcriber to pointwise notation:

r M = △n((id ⇀ 〈〈π1, π3〉, π2〉)M)

= { (102) }

△n(〈〈π1, π3〉, π2〉 ·M)

= { (116) }

(π1 · 〈〈π1, π3〉, π2〉 ·M,usc(π2 · 〈〈π1, π3〉, π2〉 ·M))

= { exercise 8 ; projections}

(〈π1, π3〉 ·M,usc(π2 ·M))

Thanks to (33), the first component in this pair transforms topointwise

{isbn 7→ (π1(M isbn), π3(M isbn)) | isbn ∈ dom M}

44 J.N. Oliveira

and the second to

{(isbn, a) 7→ ((π2 ·M) isbn)a | isbn ∈ dom M, a ∈ dom((π2 ·M)isbn)}

using definition (117).
The same kind of reasoning will lead us to overall abstraction (“map backward”)f :

f(M,N) = (id ⇀ 〈π1 · π1, π2, π2 · π1〉)(M 1n N)

= { (102) and (115)}

〈π1 · π1, π2, π2 · π1〉 · 〈M,N〉

= { exercise 8 ; projections}

〈π1 · π1 · 〈M,N〉, π2 · 〈M,N〉, π2 · π1 · 〈M,N〉〉

= { exercise 9;N is a function }

〈π1 ·M,N · δM, π2 ·M〉

= { (92) }

{isbn 7→ (π1(M isbn), N ′, π2(M isbn)) | isbn ∈ dom M}

whereN ′ abbreviates{n 7→ N(i, n) | (i, n) ∈ dom N ∧ i = isbn}.
The fact thatN is preconditioned byδM in the abstraction is a clear indication

that any addition toN of authors of books whoseISBN don’t participate inM is
doomed to be ignored when ‘backward mapping” the data. This explains why a foreign
key constraint must be added to any SQL encoding ofBooks2, eg.:

CREATE TABLE BOOKS (
ISBN VARCHAR (...) NOT NULL,
Publisher VARCHAR (...) NOT NULL,
Title VARCHAR (...) NOT NULL,
CONSTRAINT BOOKS PRIMARY KEY(ISBN)

);

CREATE TABLE AUTHORS (
ISBN VARCHAR (...) NOT NULL,
Count NUMBER (...) NOT NULL,
Author VARCHAR (...) NOT NULL,
CONSTRAINT AUTHORS_pk PRIMARY KEY (ISBN,Count)

);

ALTER TABLE AUTHORS ADD CONSTRAINT AUTHORS_FK
FOREIGN KEY (ISBN) REFERENCES BOOKS (ISBN);

It can be observed that this constraint is ensured by representation r (otherwise
right-invertibility wouldn’t take place). Constraints ofthis kind are known asconcrete
invariants. We discuss this important notion in the section which follows.

Transforming Data by Calculation 45

Summary.This section described the application of the calculus introduced in section
5 to the transformation of abstract data models targeted at relational database imple-
mentations. It also showed how more elaborate laws can be derived from simpler ones
and how to synthesize composite “forward” and “backward” data mappings using the
underlying relational calculus. We proceed to showing how to take further advantage of
relational reasoning in synthesizing data type invariantsentailed by the representation
process.

7 Concrete invariants

The fact thatR andF are connected (63) in every≤-rule (7) forces the range ofR to
be at most the domain ofF , ρR ⊆ δ F . This means that the representation space (B)
can be divided in three parts:

– insideρR — data insideρR are referred to ascanonical representatives; the pred-
icate associated toρR, which is the strongest property ensured by the representa-
tion, is referred to as the inducedconcrete invariant, or representation invariant.

– outsideδ F — data outsideδ F are illegal data: there is no way in which they
can be retrieved; we say that the target model iscorrupted (using the database
terminology) once its CRUD drives data into this zone.

– insideδ F and outsideρR — this part contains data values whichR never gen-
erates but which are retrievable and therefore regarded aslegal representatives;
however, if the CRUD of the target model lets data go into thiszone, the range of
the representation cannot be assumed as concrete invariant.

The following properties of domain and range

δ R = kerR ∩ id (118)

ρR = imgR ∩ id (119)

ρ (R · S) = ρ (R · ρ S) (120)

δ (R · S) = δ (δ R · S) (121)

help in inferringconcrete invariants, in particular those induced by≤-chaining (65).
Concrete invariant calculation, which is in general nontrivial, is softened wherever

≤-rules are expressed by GCs19. In this case, the range of the representation (concrete
invariant) can be computed as coreflexiver · f ∩ id, that is, predicate20

φ x
def
= r(f x) = x (122)

As illustration of this process, consider law

A→ B × C

〈(π1·),(π2·)〉
,,

≤ (A→ B) × (A→ C)

〈 , 〉

kk (123)

19 Of course, these have to beperfect(64) on the source (abstract) side.
20 See Theorem 5.20 in [1].

46 J.N. Oliveira

which expresses the universal property of thesplit operator, a perfect GC:

X ⊆ 〈R,S〉 ≡ π1 ·X ⊆ R ∧ π2 ·X ⊆ S (124)

Calculation of the concrete invariant induced by (123) follows:

φ(R,S)

≡ { (122, 123)}

(R,S) = (π1 · 〈R,S〉, π2 · 〈R,S〉)

≡ { (46) }

R = R · δ S ∧ S = S · δ R

≡ { δ X ⊆ Φ ≡ X ⊆ X · Φ }

δ R ⊆ δ S ∧ δ S ⊆ δ R

≡ { (14) }

δ R = δ S

In other words: if equally definedR andS are joined and then decomposed again, this
will be a lossless decomposition [58].

Similarly, the following concrete invariant can be shown tohold for rule (114)21:

φ(M,N)
def
= N · ∈◦ �M (125)

Finally note the very important fact that, in the case of≤-rules supported by perfect
GCs, the source datatype is actuallyisomorphicto the subset of the target datatype
determined by theconcrete invariant(as range of the representation function22).

Exercise 27.Infer (124) from (41) and universal property

X ⊆ (R ∩ S) ≡ (X ⊆ R) ∧ (X ⊆ S) (126)

Moreover, show that (40) instantiates (124).2

Exercise 28.Show that (113) is the concrete invariant induced by rule (110), from left-
to-right, in case all relations are simple.
2

Concrete invariants play an important role in data refinement. For instance, Morgan
[49] takes them into account in buildingfunctional abstractionsof the formaf · Φdti

where (entire) abstraction functionaf is explicitly constrained by concrete invariant
dti. In the section which follows we show how such invariants help in calculating model
transformations. The reader is also referred to [8] for a PF-theory of invariants in gen-
eral.
21 See [63] for details.
22 See theUnity of oppositestheorem of [5].

Transforming Data by Calculation 47

8 Calculating model transformations

References [30] and [43] postulate a number of model transformation rules (concerning
GERs in the first case and UML class diagrams in the second) which we are in position
to calculate. We illustrate this process with rule 12.2 of [30], the rule which converts a
(multivalued) attribute into an entity type:

A
A1
A2
A3[0:N]
id: A1

⇔

A’
A1
A2
id: A1

rA0:N

EA3
K3
A3
id: K3

1:N

The PF-semantics of entityA are captured by simple relations from identityA1 to
attributesA2 andA3, this one represented by a powerset due to being [0:N]:

A1 ⇀ A2 × PA3

The main step in the calculation is the creation of the new entity EA3 by indirection —
recall (104) — whereafter we proceed as before:

A1 ⇀ A2 × PA3

≤1 { (104)}

(K3 ⇀ A3) × (A1 ⇀ A2 × PK3)

∼=2 { (94) }

(K3 ⇀ A3) × (A1 ⇀ A2 × (K3 ⇀ 1))

≤3 { (114) }

(K3 ⇀ A3) × ((A1 ⇀ A2) × (A1 ×K3 ⇀ 1))

∼=4 { introduce ternary product}

(A1 ⇀ A2)
︸ ︷︷ ︸

A′

× (A1 ×K3 ⇀ 1)
︸ ︷︷ ︸

rA

× (K3 ⇀ A3)
︸ ︷︷ ︸

EA3

The overall concrete invariant is

φ(M,R,N) = R · ∈◦ �M ∧ R · ∈◦ � N

— recall eg. (125) — which can be further transformed into:

φ(M,R,N) = R · ∈◦ �M ∧ R · ∈◦ � N

≡ { (54, 53) }

R · π◦
1 �M ∧ R · π◦

2 � N

≡ { (36) }

R �M · π1 ∧ R � N · π2

48 J.N. Oliveira

In words, this means that relationshipR (rA in the diagram) must integrate referentially
with M (A’ in the diagram) on the first attribute of its compound key and with N (EA3
in the diagram) wrt. the second attribute.

The reader eager to calculate the overall representation and abstraction relations will
realize that the former is a relation, due to the fact that there are many ways in which
the keys of the newly created entity can be associated to values of theA3 attribute.
This association cannot be recovered once such keys are abstracted from. So, even re-
stricted by the concrete invariant, the calculated model issurely a valid implementation
of the original, but not isomorphic to it. Therefore, the rule should not be regarded as
bidirectional.

9 On the impedance of recursive data models

Recursive data structuring is a source of data impedance mismatch because it is not
directly supported in every programming environment. While functional programmers
regard recursion asthe natural wayto programming, for instance, database program-
mers don’t think in that way: somehow trees have to give room to flat data. Somewhere
in between is (pointer-based) imperative programming and object oriented program-
ming: direct support for recursive data structures doesn’texist, but dynamic memory
management makes it possible to implement them as heap structures involving pointers
or object identities.

In this section we address recursive data structure representation in terms of non-
recursive ones. In a sense, we want to show how to “get away with recursion” [56]
in data modeling. It is a standard result (and every a programmer’s experience) that
recursive types using products and sums can be implemented using pointers[69]. Our
challenge is to generalize this result and present it in a calculational style.

As we have seen already, recursive (finite) data structures are least solutions to equa-
tions of the formX ∼= GX , whereG is a relator. The standard notation for such a
solution isµG. (This always exists whenG is regular [11], a class which embodies all
polynomialG.)

Programming languages which implement datatypeµG always do so bywrapping
it inside some syntax. For instance, the Haskell declaration of datatypePTree (38)
involves constructorNode and selectorsname, birth , mother andfather , which
cannot be found in equation (51). But this is precisely why the equation expresses
isomorphism and not equality: constructor and selectors participate in two bijections
which witness the isomorphism and enable one to construct orinspect inhabitants of
the datatype being declared.

µG

out

))
∼= GµG

in

hh

The general case is depicted in the diagram aside,
wherein embodies the chosen syntax for constructing
inhabitants ofµG andout = in◦ embodies the syntax for
destructing (inspecting) such inhabitants. For instance,
thein bijection associated withPTree (38) interpreted
as solution to equation (51) is

in((n, b),m, f)
def
= Node n b m f (127)

Transforming Data by Calculation 49

Programs handlingµG can be of essentially two kinds: either they read (parse, in-
spect)µG-structures (trees) or they actually build such structures. The former kind is
known asfolding and the latter asunfolding, and both can be pictured as diagrams
exhibiting their recursive (inductive) nature:

µG
out //

fold R

��

GµG

G(fold R)

��
A GA

R
oo

µG GµG
inoo

A

unfold R

OO

R
// GA

G(unfold R)

OO

Both fold andunfold are instances of a more general, binary combinator known as
hylomorphism[11], which is normally expressed using the bracketed notation [[,]] of
(129) below to save parentheses:

unfold R = [[in,R]] (128)

fold S = [[R, out]]

As fixed points (129), hylomorphisms enjoy a number of so-called fusionproperties,
two of which are listed below for their relevance in calculations to follow23:

C G C
Too

B

V

OO

G B

G V

OO

Soo

K

[[S,H]]

OO

H // G K

G [[S,H]]

OO

A

R

OO

U

// G A

G R

OO

[[S,H]] = 〈µ X :: S · (GX) ·H〉 (129)

V · [[S,H]] ⊆ [[T,H]] ⇐ V · S ⊆ T · (GV) (130)

[[S,H]] · R = [[S,U]] ⇐ H ·R = (GR) · U (131)

In (liberal) Haskell syntax we might write the type of theunfold combinator as
something like

unfold :: (a -> g a) -> a -> mu g

assuming only functions involved. If we generalize these tosimple relations, we obtain
the following type for functionunfold

(A ⇀ µG)(A⇀G A)

which, thanks to (89), “uncurries” into((A ⇀ GA) ×A) ⇀ µG.
Let us temporarily assume that there exists a datatypeK such that simple relation

Unf , of type((K ⇀ GK) × K) ⇀ µG and such thatUnf = unfold , is surjective.

23 These and other properties of hylomorphisms arise from the powerful µ-fusion theorem [5]
once the relational operators involved are identified as lower adjoints in GCs, recall table 1.

50 J.N. Oliveira

Then we are in condition to establish the≤-equation which follows,

µG

R --

≤
(K ⇀ GK)
︸ ︷︷ ︸

“heap”

×K

Unf

ii (132)

whereK can be regarded as a data type of“heap addresses”, or “pointers” , andK ⇀

GK a datatype ofG-structuredheaps24. So, assertiont Unf (H, k) means that, if
pair (H, k) is in the domain ofUnf , then the abstract valuet = (unfold H)k will
be retrieved — recall (90). This corresponds to dereferencingk in H and carrying on
doing so (structurally) while building (viain) the tree which corresponds to such a walk
through the heap.

Termination of this process requiresH to be free of dangling references — ie. sat-
isfy the NSRI property (62) — and to be referentially acyclic. This second require-
ment can also be expressed via the membership relation associated with G: relation

K K
∈G·Hoo on references must be well-founded [23].
Jourdan [39] developed a pointwise proof of the surjectiveness ofUnf (132) forK

isomorphic to the natural numbers andG polynomial (see more about this in section 13).
The representation relationR, which should be chosen among the entire sub-relations
of Unf ◦, is an injectivefold (since converses of unfolds are folds [11]). Appendix A
illustrates a strategy for encoding such folds, in the case of G polynomial andK the
natural numbers.

“De-recursivation” law (132) generalizes, in the generic PF-style, the main result
of [69] and bears some resemblance (at least in spirit) with “defunctionalization” [35],
a technique which is used in program transformation and compilation. The genericity of
this result and the ubiquity of its translation into practice — cf. name spaces, dynamic
memory management, pointers and heaps, database files, object run-time systems, etc
— turns it into a useful device for cross-paradigm transformations. For instance, [56]
shows how to use it in calculating a universal SQL representation for XML data.

The sections which follow will illustrate this potential, while stressing on genericity
[37]. Operations of thealgebra of heapssuch as eg.defragment(cf. garbage-collection)
will be stated generically and be shown to be correct with respect to the abstraction
relation.

10 Cross-paradigm impedance handled by calculation

Let us resume work on the case study started in section 2 and finally show how to map
the recursive datatypePTree (38) down to a relational model (SQL) via an intermedi-
ate heap/pointer representation.

Note that we shall be crossing over three paradigms — functional, imperative and
database relational — in a single calculation, using the same notation:

PTree

24 Technically, this view corresponds to regarding heaps as (finite) relationalG-coalgebras.

Transforming Data by Calculation 51

∼=1 { r1 = out , f1 = in, for G K
def
= Ind × (K + 1) × (K + 1) — cf. (51, 127) }

µG

≤2 { R2 = Unf ◦, F2 = Unf — cf. (132) }

(K ⇀ Ind× (K + 1) × (K + 1)) ×K

∼=3 { r3 = (id ⇀ flatr◦) × id , f3 = (id ⇀ flatr) × id — cf. (43) }

(K ⇀ Ind× ((K + 1) × (K + 1))) ×K

∼=4 { r4 = (id ⇀ id × p2p) × id , f4 = (id ⇀ id × p2p◦) × id — cf. (88) }

(K ⇀ Ind× (K + 1)2) ×K

∼=5 { r5 = (id ⇀ id × tot◦) × id , f5 = (id ⇀ id × tot) × id — cf. (84) }

(K ⇀ Ind× (2 ⇀K)) ×K

≤6 { r6 = △n , f6 = 1n — cf. (114) }

((K ⇀ Ind) × (K × 2 ⇀K)) ×K

∼=7 { r7 = flatl , f7 = flatl◦ — cf. (44) }

(K ⇀ Ind) × (K × 2 ⇀K) ×K

=8 { sinceInd = Name × Birth (51) }

(K ⇀ Name×Birth) × (K × 2 ⇀K) ×K (133)

In summary:

– Step 2 moves from the functional (inductive) to the pointer-based representation. In
our example, this corresponds to mapping inductive tree (9)to the heap of figure 2a.

– Step 5 starts the move from pointer-based to relational-based representation. Iso-
morphism (84) betweenMaybe-functions and simple relations (which is the main
theme of [59]) provides the relevant data-link between the two paradigms: pointers
“become” primary/foreign keys.

– Steps 7 and 8 deliver an RDBT structure (illustrated in figure2b) made up of two
tables, one telling the details of each individual, and the other recording its im-
mediate ancestors. The 2-valued attribute in the second table indicates whether the
mother or the father of each individual is to be reached. The third factor in (133) is
the key which gives access to the root of the original tree.

In practice, a final step is required, translating the relational data into the syntax
of the target relational engine (eg. a script of SQLINSERT commands for each rela-
tion), bringing symmetry to the exercise: in either way (forwards or backwards), data
mappings start byremovingsyntax and close byintroducingsyntax.

Exercise 29.Let f4:7 denote the composition of abstraction functionsf4 · (· · ·) · f7. Show that
(id ⇀ π1) · π1 · f4:7 is the same asπ1.
2

52 J.N. Oliveira

11 On the transcription level

Our final calculations have to do with what the authors of [42]identify as thetranscrip-
tion level, the third ingredient of amapping scenario. This has to do with diagram (10):
once two pairs of data maps (“map forward” and “map backward”) F,R andF ′, R′

have been calculated so as to represent two source datatypesA andB, they can be used

to transcribe a given source operationB A
Ooo into some target operationD C

Poo .
How do we establish thatP correctly implementsO? Intuitively,P must be such

that the performance ofO and that ofP (the latterwrappedwithin the relevant abstrac-
tion and representation relations) cannot be distinguished:

O = F ′ · P · R (134)

Equality is, however, much too strong a requirement. In fact, there is no disadvantage
in letting the target side of (134) be more defined than the source operationO, provided
both are simple25:

O ⊆ F ′ · P · R (135)

Judicious use of (29, 30) will render (135) equivalent to

O · F ⊆ F ′ · P (136)

providedR is chosen maximal (R = F ◦) andF � P . This last requirement is obvious:
P must be prepared to cope with all possible representations delivered byR = F ◦.

In particular, wherever the source operationO is aquery, ie.F ′ = id in (136), this
shrinks toO · F ⊆ P . In words: wherever the source queryO delivers a resultb for
some inputa, then the target queryP must deliver the sameb for any target value which
representsa.

Suppose that, in the context of our running example (pedigree trees), one wishes to
transcribe into SQL the query which fetches the name of the person whose pedigree tree
is given. In the Haskell data modelPTree , this is simply the (selector) functionname.
We want to investigate how this function gets mapped to lowerlevels of abstraction.

The interesting step is≤2, whereby trees are represented by pointers to heaps. The
abstraction relationUnf associated to this step is inductive. Does this entail inductive
reasoning? Let us see. Focusing on this step alone, we want tosolve equationname ·
Unf ⊆ Hname for unknownHname — a query of type((K ⇀ GK) × K) ⇀
Name.

Simple relation currying (91) makes this equivalent to findingHname such that,
for every heapH , name · (Unf H) ⊆ Hname H holds, that is,name · (unfold H) ⊆
Hname H . Since bothunfold H andHname H are hylomorphisms, we write them
as such,name · [[in,H]] ⊆ [[T,H]], so thatT becomes the unknown. Then we

25 Staying within this class of operations is still quite general: it encompasses all deterministic,
possibly partial computations. Within this class, inclusion coincides with the standard defini-
tion of operation refinement[60].

Transforming Data by Calculation 53

calculate:

name · [[in,H]] ⊆ [[T,H]]

⇐ { fusion (130) }

name · in ⊆ T · G(name)

≡ { name · Node = π1 · π1 (127) ; expansion ofG(name) }

π1 · π1 ⊆ T · (id× (name+ id) × (name+ id))

⇐ { π1 · (f × g) = f · π1 }

T = π1 · π1

Thus

Hname H = [[π1 · π1, H]]

= { (129) }

〈µ X :: π1 · π1 · (id× (X + id) × (X + id)) ·H〉

= { π1 · (f × g) = f · π1 }

〈µ X :: π1 · π1 ·H〉

= { trivia }

π1 · π1 ·H

Back to uncurried format and introducing variables, we get (the post-condition of)
Hname

n Hname(H, k) ≡ k ∈ dom H ∧ n = π1(π1(H k))

which means what one would expect: should pointerk be successfully dereferenced
in H , selection of theInd field will take place, wherefrom the name field is finally
selected (recall thatInd = Name×Birth).

The exercise of mappingHname down to the SQL level (133) is similar but less
interesting. It will lead us to

n Rname (M,N, k) = k ∈ dom M ∧ n = π1(M k)

whereM andN are the two relational tables which originated fromH after step 2.
Rname can be encoded into SQL as something like

SELECT Name FROM M WHERE PID = k

under some obvious assumptions concerning the case in whichk cannot be found in
M . So we are done as far as transcribingname is concerned.

The main ingredient of the exercise just completed is the useof fusion property
(130). But perhaps it all wasmuch ado for little: queries aren’t very difficult to tran-
scribe in general. The example we give below is far more eloquent and has to do with

54 J.N. Oliveira

heap housekeeping. Suppose one wants to defragment the heapat level 2 via some real-

location of heap cells. LetK K
foo be the function chosen torenamecell addresses.

Recalling (33), defragmentation is easy to model as a projection:

defragment : (K −→ K) −→ (K ⇀ GK) −→ (K ⇀ GK)

defragment f H
def
= (G f) ·H · f◦ (137)

The correctness ofdefragment has two facets. First,H · f◦ should remain simple;
second, the information stored inH should be preserved:the pedigree tree recorded in
the heap (and pointer) shouldn’t change in consequence of adefragment operation. In
symbols:

t Unf (defragment f H, f k) ≡ t Unf (H, k) (138)

Let us check (138):

t Unf (defragment f H, f k) ≡ t Unf (H, k)

≡ { (132) ; (128) }

t [[in, defragment fH]] (f k) ≡ t [[in,H]] k

≡ { go pointfree (20); definition (137)}

[[in, (G f) ·H · f◦]] · f = [[in,H]]

⇐ { fusion property (131)}

(G f) ·H · f◦ · f = (G f) ·H

⇐ { Leibniz}

H · f◦ · f = H

≡ { sinceH ⊆ H · f◦ · f always holds}

H · f◦ · f ⊆ H

So, conditionH · f◦ · f ⊆ H (with points:

k ∈ dom H ∧ f k = f k′ ⇒ k′ ∈ dom H ∧ H k = H k′

for all heap addressesk, k′) is sufficient fordefragment to preserve the information
stored in the heapand its simplicity 26. Of course, any injectivef will qualify for safe
defragmentation, foreveryheap.

Some comments are in order. First of all, and unlike what is common in data refine-
ment involving recursive data structures (see eg. [24] for acomprehensive case study),
our calculations above have dispensed with any kind of inductive or coinductive argu-
ment. (This fact alone should convince the reader of the advantages of the PF-transform
in program reasoning.)

26 In fact,H · f◦ · f ⊆ H ensuresH · f◦ simple, via (30) and monotonicity.

Transforming Data by Calculation 55

Secondly, thedefragment operation we’ve just reasoned about is a so-calledrep-
resentation changer[34]. These operations (which include garbage collection,etc) are
important because they add to efficiency without disturbingthe service delivered to the
client. In themapping scenarioterminology of [42], these correspond to operations
which transcribe backwards to the identity function, at source level.

Finally, a comment on CRUD operation transcription. Although CRUD operations
in general can be arbitrarily complex, in the process of transcription they split into sim-
pler and simpler middleware and dataware operations which,at the target (eg. database)
level end up involving standard protocols for data access [42].

The ubiquity ofsimplicityin data modeling, as shown throughout this paper, invites
one to pay special attention to the CRUD of this kind of relation. Reference [57] identi-
fies some “design patterns” for simple relations. The one dealt with in this paper is the
identity pattern. For this pattern, a succinct specification of the four CRUD operations
on simpleM is as follows:

– Create(N): M 7→ N †M , where (simple) argumentN embodies the new entries
to add toM . The use of the override operator† [38, 59] instead of union (∪) ensures
simplicity and prevents from writing over existing entries.

– Read(a): deliverb such thatb M a, if any.
– Update(f, Φ):M 7→ M †f ·M ·Φ. This is a selective update: the contents of every

entry whose key is selected byΦ get updated byf ; all the other remain unchanged.
– Delete(Φ):M 7→M · (id−Φ), whereR−S means relational difference (cf. table

1). All entries whose keys are selected byΦ are removed.

Space constraints preclude going further on this topic in this paper. The interested
reader will find in reference [57] the application of the PF-transform in speeding-up
reasoning about CRUD preservation of datatype invariants on simple relations, as a
particular case of the general theory [8]. Similar gains areexpected from the same
approach applied to CRUD transcription.

Exercise 30.Investigate the transcription of selector functionmother (38) to the heap-and-
pointer level, that is, solvemother ·Unf ⊆ P for P . You should obtain a simple relation which,
should it succeed in dereferencing the input pointer, it will follow on to the second position in
the heap-cell so as to unfold (if this is the case) and show thetree accessible from that point. The
so-calledhylo-computation rule— [[R, S]] = R · (F [[R, S]]) · S — is what matters this time.
2

Summary.The transcription level is the third component of a mapping scenario whereby
abstract operations are “mapped forward” to the target level and give room to concrete
implementations (running code). In the approach put forward in this paper, this is per-
formed by solving an equation (134) where the unknown is the concrete implementation
P one is aiming at. This section gave an example of how to carry out this task in pres-
ence of recursive data structures represented by heaps and pointers. The topic of CRUD
operation transcription was also (briefly) addressed.

12 Related work

This section addresses two areas of research which are intimately related to the data
transformation discipline put forward in the current paper. One isbidirectional pro-

56 J.N. Oliveira

grammingused to synchronize heterogeneous data formats [13]. The other is the design
of term rewriting systems for type-safe data transformation [17].

Lenses.The proximity is obvious between abstraction/representation pairs implicit in
≤-rules and bidirectional transformations known aslensesand developed in the context
of the classicalview-update problem[33, 14, 27, 13]. Each lens connects a concrete data

typeC with an abstract viewA on it by means of two functionsA× C
put //C and

A C
getoo . (Note the similarity with(R,F) pairs, except forput’s additional argument

of typeC.)
A lens is said to bewell-behavedif two conditions hold,

get(put(v, s)) = v and put(get s, s) = s

known asacceptabilityandstability, respectively. For total lenses, these are easily PF-
transformed into

put · π◦
1 ⊆ get◦ (139)

〈get, id〉 ⊆ put◦ (140)

which can be immediately recognized as stating the connectivity requirements of≤-
diagrams

A× C put

��
A

π◦

1 11

≤ C

get

gg and C

〈get,id〉
''

≤ A× C

put

ff

(141)

respectively.
Proving that these diagrams hold in fact is easy to check in the PF-calculus: stability

(140) enforcesput surjective (of course〈get, id〉 is injective even in caseget is not).
Acceptability (139) enforcesget surjective since it is larger than the converse of entire
put · π◦

1 (recall rules of thumb of exercise 2). Conversely, being at most the converse of
a function,put · π◦

1 is injective, meaning that

π1 · put
◦ · put · π◦

1 ⊆ id

≡ { shunting (26, 27) and adding variables}

put(a, c) = put(a′, c′) ⇒ a = a′

holds. This fact is known in the literature as thesemi-injectivityof put [27].

Exercise 31.A (total, well-behaved) lens is said to beoblivious[27] if put is of the formf ·π1,
for somef . Use the PF-calculus to show that in this caseget andf are bijections, that is,A and
C in (141) are isomorphic27. Suggestion: show thatget = f◦ and recall (75).
2

27 This is Lemma 3.9 in [27], restricted to functions.

Transforming Data by Calculation 57

Put side by side, the two≤-diagrams displayed in (141) express the bidirectional
nature of lenses in a neat way28. They also suggest that lenses could somehow be
“programmed by calculation” in the same manner as the structural transformations in-
vestigated in the main body of this paper. See section 13 for future research directions
in this respect.

2LT — a library for two-level data transformation.The 2LT package of the U.Minho
Haskell libraries [17, 10, 18] applies the theory presentedin the current paper to data
refinement via (typed) strategic term re-writing using GADTs. The refinement process
is modeled by a type-changing rewrite system, each rewrite step of which animates
a ≤-rule of the calculus: it takes the formA 7→ (C, to, from) whereC, the target
type, is packaged with the conversion functions (to andfrom) between the old (A) and
new type (C). By repeatedly applying such rewrite steps, complex conversion functions
(data mappings) are calculated incrementally while a new type is being derived. (So,
2LT representation mappings are restricted to functions.)

Data mappings obtained after type-rewriting can be subjectto subsequent simpli-
fication using laws of PF program calculation. Such simplifications include migration
of queries on the source data type to queries on a target data type by fusion with the
relevant data mappings (a particular case of transcription, as we have seen). Further to
PF functional simplification, 2LT implements rewrite techniques for transformation of
structure-shy functions (XPath expressions and strategicfunctions), see eg. [18].

In practice, 2LT can be used to scale-up the data transformation/mapping tech-
niques presented in this paper to real-size case-studies, mainly by mechanizing repeti-
tive tasks and discharging housekeeping duties. More information can be gathered from
the project’s website:http://code.google.com/p/2lt .

13 Conclusions and future work

This paper presented a mathematical approach to data transformation. As main advan-
tages of the approach we point out: (a) a unified and powerful notation to describe
data-structures across various programming paradigms, and its (b) associated calculus
based on elegant rules which are reminiscent of school algebra; (c) the fact that data
impedance mismatch is easily expressed by rules of the calculus which, by construc-
tion, offer type-level transformationstogether withwell-typed data mappings; (d) the
properties enjoyed by such rules, which enable their application in a stepwise, struc-
tured way.

The novelty of this approach when compared to previous attempts to lay down the
same theory is the use of binary relation pointfree notationto expressbothalgorithms
and data, in a way which dispenses with inductive proofs and cumbersome reasoning. In
fact, most work on the pointfree relation calculus has so farbeen focused on reasoning
about programs (ie. algorithms). Advantages of our proposal to uniformlyPF-transform
both programsand dataare already apparent at practical level, see eg. the work reported
in [50].

28 Note however that, in general, lenses are not entire [27].

58 J.N. Oliveira

Thanks to the PF-transform, opportunities for creativity steps are easier to spot and
carry out with less symbol trading. This style of calculation has been offered to Minho
students for several years (in the context of the local tradition on formal modeling) as
alternative to standard database design techniques29. It is the foundation of the “2LT
bundle” of tools available from the UMinho Haskell libraries. However, there is still
much work to be done. The items listed below are proposed as prompt topics for re-
search.

Lenses. The pointwise treatment of lenses as partial functions in [27] is cpo-based,
entailing the need for continuity arguments. In this paper we have seen that partial
functions aresimplerelations easily accommodated in the binary relation calculus. At
first sight, generalizingput andget of section 12 from functions to simple relations
doesn’t seem to be particularly hard, even in the presence ofrecursion, thanks to the PF
hylomorphism calculus (recall section 9).

How much the data mapping formalism presented in the currentpaper can offer to
the theory of bidirectional programming is the subject of on-going research.

Heaps and pointers at target.We believe that Jourdan’s long, inductive pointwise argu-
ment [39] for≤-law (132) can be supplanted by succinct pointfree calculation if results
developed meanwhile by Gibbons [29] are taken into account.Moreover, the same law
should be put in parallel with other related work on calculating with pointers (read eg.
[12] and follow the references).

Separation logic.Law (132) has a clear connection to shared-mutable data represen-
tation and thus withseparation logic[62]. There is work on a PF-relational model for
this logic [64] which is believed to be useful in better studying and further generalizing
law (132) and to extend the overall approach to in-place data-structure updating.

Concrete invariants.Taking concrete invariants into account is useful because these
ensure (for free) properties at target-data level which canbe advantageous in the tran-
scription of source operations. The techniques presented in section 7 and detailed in
[63] are the subject of current research taking into accountthe PF-calculus of invari-
ants of [8]. Moreover,≤-rules should be able to take invariants into account (a topic
suggested but little developed in [55]).

Mapping scenarios for the UML.Following the exercise of section 8, a calculational
theory of UML mapping scenarios could be developed startingfrom eg. K. Lano’s cat-
alogue [43]. This should also take theCalculating with Concepts[22] semantics for
UML class diagrams into account. For preliminary work on this subject see eg. [9].

29 The≤-rules of the calculus are used in practical classes and lab assignments in the derivation
of database schemas from abstract models, including the synthesis of data mappings. The
proofs of such rules (as given in the current paper) are addressed in the theory classes.

Transforming Data by Calculation 59

PF-transform. Last but not least, we think that further research on the PF-transform
should go along with applying it in practice. In particular,going further and formalizing
the analogy with the Laplace transform (which so far has onlybeen hinted at) would be
a fascinating piece of research in mathematics and computerscience in itself, and one
which wouldput the vast storehouse in order, to use the words of Lawvere and Schanuel
[44]. In these times of widespread pre-scientific software technology, putting the PF-
transform under the same umbrella as other mathematical transforms would contribute
to better framing the software sciences within engineeringmathematics as a whole.

Acknowledgments

The author wishes to thank his colleagues at Minho University and his (current and
former) students for the warm reception to his (ever evolving) ideas on data calculation.
Special thanks go to L.S. Barbosa, to C.J. Rodrigues, to J.C.Ramalho and to the 2LT
teamcore: Alcino Cunha, Joost Visser, Tiago Alves and Hugo Pacheco. Jeremy Gibbons
comments on the proceedings version of this paper are gratefully acknowledged.

The author is also indebted to the anonymous referees for detailed and helpful com-
ments which improved the paper’s presentation and technical contents.

Part of this research was carried out in the context of the PURE Project(Program
Understanding and Re-engineering: Calculi and Applications)funded by FCT contract
POSI/ICHS/44304/2002 .

References

1. C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans, andJ. van der Woude. A relational
theory of datatypes, December 1992. Available fromwww.cs.nott.ac.uk/˜rcb .

2. T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira. Strategic term rewriting and its application
to a VDM-SL to SQL conversion. InFM 2005, volume 3582 ofLNCS, pages 399–414.
Springer-Verlag, 2005.

3. S.W. Ambler. The object-relational impedance mismatch,2006. Update of Feb.15, 2006 of
http://www.agiledata.org/essays/impedanceMismatch.h tml .

4. K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free, via logical
relations and Galois connections.SCP, 15(1–2):153–196, 2004.

5. R.C. Backhouse.Mathematics of Program Construction. Univ. of Nottingham, 2004. Draft
of book in preparation. 608 pages.

6. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and J. van der
Woude. Polynomial relators. InAMAST’91, pages 303–362. Springer, 1992.

7. J. Backus. Can programming be liberated from the von Neumann style? a functional style
and its algebra of programs.CACM, 21(8):613–639, August 1978.

8. L.S. Barbosa, J.N. Oliveira, and A.M. Silva. Calculatinginvariants as coreflexive bisimula-
tions. In AMAST’08, volume 5140 ofLNCS, pages 83–99. Springer-Verlag, 2008.

9. P. Berdaguer. Algebraic representation of UML class-diagrams, May 2007. Dept. Informat-
ics, U.Minho. Technical note.

10. P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled Schema Transformation and
Data Conversion For XML and SQL. InPADL 2007, volume 4354 ofLNCS, pages 290–304.
Springer-Verlag, 2007.

60 J.N. Oliveira

11. R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-
Hall International, 1997. C.A.R. Hoare, series editor.

12. R.S. Bird. Unfolding pointer algorithms.J. Funct. Program., 11(3):347–358, 2001.
13. A. Bohannon, J.N. Foster, B.C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang: Resource-

ful lenses for string data. InACM SIGPLAN–SIGACT POPL Symposium, pages 407–419,
January 2008.

14. A. Bohannon, J.A. Vaughan, and B.C. Pierce. Relational lenses: A language for updateable
views. InPrinciples of Database Systems (PODS), 2006.

15. G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison Wesley Longman, Inc., 1999. ISBN 0-201-57168-4.

16. R.M. Burstall and J. Darlington. A transformation system for developing recursive programs.
JACM, 24(1):44–67, January 1977.

17. A. Cunha, J.N. Oliveira, and J. Visser. Type-safe two-level data transformation. In FM’06 ,
volume 4085 ofLNCS, pages 284–289. Springer-Verlag, Aug. 2006.

18. A. Cunha and J. Visser. Transformation of structure-shyprograms: applied to XPath queries
and strategic functions. InPEPM’07, pages 11–20. ACM, 2007.

19. J. Darlington. A synthesis of several sorting algorithms. Acta Informatica, 11:1–30, 1978.
20. W.-P. de Roever, K. Engelhardt with the assistance of J. Coenen, K.-H. Buth, P. Gardiner,

Y. Lakhnech, and F. Stomp.Data Refinement Model-Oriented Proof methods and their Com-
parison. Cambridge University Press, 1999. ISBN 0521641705.

21. M. Deutsch, M. Henson, and S. Reeves. Modular reasoning in Z: scrutinising monotonicity
and refinement, 2006. (To appear).

22. R.M. Dijkman, L.F. Pires, and S. Joosten. Calculating with concepts: a technique for the
development of business process support. InpUML, volume 7 ofLNI, pages 87–98. GI,
2001.

23. H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to mathematical
induction.Theoretical Computer Science, 179(1–2):103–135, 1997.

24. E. Fielding. The specification of abstract mappings and their implementation as B+-trees.
Technical Report PRG-18, Oxford University, September 1980.

25. J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques for Soft-
ware Development . Cambridge University Press, 1st edition, 1998.

26. R.W. Floyd. Assigning meanings to programs. In J.T. Schwartz, editor,Mathematical As-
pects of Computer Science, volume 19, pages 19–32. American Mathematical Society, 1967.
Proc. Symposia in Applied Mathematics.

27. J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem.ACM
Trans. Program. Lang. Syst., 29(3):17, 2007.

28. M.F. Frias. Fork algebras in algebra, logic and computerscience, 2002. Logic and Computer
Science. World Scientific Publishing Co.

29. J. Gibbons. When is a function a fold or an unfold?, 2003. Working document 833 FAV-12
available from the website of IFIP WG 2.1, 57th meeting, New York City, USA.

30. J.-L. Hainaut. The transformational approach to database engineering. InGTTSE’05. Revised
Papers, volume 4143 ofLNCS, pages 95–143. Springer, 2006.

31. Jifeng He, C.A.R. Hoare, and J.W. Sanders. Data refinement refined. In B. Robinet and
R. Wilhelm, editors,ESOP’86, volume 213 ofLNCS, pages 187–196, 1986.

32. P. Hoogendijk.A Generic Theory of Data Types. PhD thesis, University of Eindhoven, The
Netherlands, 1997.

33. Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured docu-
ments based on bidirectional transformations. InProc. ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages 178–189. ACM Press, 2004.

Transforming Data by Calculation 61

34. G. Hutton and E. Meijer. Back to basics: Deriving representation changers functionally.
Journal of Functional Programming, 1993. (Functional Pearl).

35. G. Hutton and J. Wright. Compiling exceptions correctly. In MPC 2004, volume 3125 of
LNCS, pages 211–227. Springer, 2004.

36. D. Jackson.Software abstractions: logic, language, and analysis. The MIT Press, Cambridge
Mass., 2006. ISBN 0-262-10114-9.

37. J. Jeuring and P. Jansson. Polytypic programming. InAdvanced Functional Programming,
number 1129 in LNCS. Springer, 1996.

38. C.B. Jones.Systematic Software Development Using VDM. Series in Computer Science.
Prentice-Hall Int., 1990. 1st edition (1986).

39. I.S. Jourdan. Reificação de tipos abstractos de dados:Uma abordagem matemática. Master’s
thesis, University of Coimbra, 1992. (In Portuguese).

40. W. Kahl. Refinement and development of programs from relational specifications.ENTCS,
44(3):4.1–4.43, 2003.

41. E. Kreyszig.Advanced Engineering Mathematics. J. Wiley & Sons, 6th edition, 1988.
42. R. Lämmel and E. Meijer. Mappings make data processing go ’round. InGTTSE’05. Revised

Papers, volume 4143 ofLNCS, pages 169–218. Springer, 2006.
43. K. Lano. Catalogue of model transformations. No date. Available from

http://www.dcs.kcl.ac.uk/staff/kcl/ .
44. B. Lawvere and S. Schanuel.Conceptual Mathematics: a First Introduction to Categories.

Cambridge University Press, 1997.
45. D. Maier.The Theory of Relational Databases. Computer Science Press, 1983.
46. J. McCarthy. Towards a mathematical science of computation. In C.M. Popplewell, editor,

Proc. of IFIP 62, pages 21–28, Amsterdam-London, 1963. North-Holland Pub.Company.
47. C. McLarty. Elementary Categories, Elementary Toposes. Oxford Logic Guides nr. 21.

Calendron Press, Oxford, 1st edition, 1995.
48. Sun Meng and L.S. Barbosa. On refinement of generic state-based software components.

In AMAST’04, volume 3116 ofLNCS, pages 506–520. Springer-Verlag, 2004. Best student
co-authored paper award.

49. C. Morgan. Programming from Specification. Series in Computer Science. Prentice-Hall
International, 1990. C.A.R. Hoare, series editor.

50. C. Necco, J.N. Oliveira, and J. Visser. Extended static checking by strategic rewriting of
pointfree relational expressions. Technical Report FAST:07.01, CCTC Research Centre,
University of Minho, 2007.

51. J.N. Oliveira. Refinamento transformacional de especificações (terminais). InProc. of XII
Jornadas Luso-Espanholas de Matemática, volume II, pages412–417, May 1987.

52. J.N. Oliveira. A Reification Calculus for Model-Oriented Software Specification. Formal
Aspects of Computing, 2(1):1–23, April 1990.

53. J.N. Oliveira. Invited paper:Software Reification using the SETS Calculus. In Tim Denvir,
Cliff B. Jones, and Roger C. Shaw, editors,Proc. of the BCS FACS 5th Refinement Work-
shop, Theory and Practice of Formal Software Development, London, UK, pages 140–171.
Springer-Verlag, 8–10 January 1992.

54. J.N. Oliveira. Data processing by calculation, 2001. Lecture notes (108 pages).6th Estonian
Winter School in Computer Science, 4-9 March 2001, Palmse, Estonia.

55. J.N. Oliveira. Constrained datatypes, invariants and business rules: a relational approach,
2004. PUReCafé, DI-UM, 2004.5.20 [talk], PURE PROJECT(POSI/CHS/44304/2002).

56. J.N. Oliveira. Calculate databases with ‘simplicity’, September 2004. Presentation at the
IFIP WG 2.1 #59 Meeting, Nottingham, UK. (Slides available from the author’s website.).

57. J.N. Oliveira.Reinvigorating pen-and-paper proofs in VDM: the pointfreeapproach, 2006.
Presented at the Third OVERTUREWorkshop: Newcastle, UK, 27-28 November 2006.

62 J.N. Oliveira

58. J.N. Oliveira. Pointfree foundations for (generic) lossless decomposition, 2007. (Submitted).
59. J.N. Oliveira and C.J. Rodrigues. Transposing relations: fromMaybefunctions to hash tables.

In MPC’04, volume 3125 ofLNCS, pages 334–356. Springer, 2004.
60. J.N. Oliveira and C.J. Rodrigues. Pointfree factorization of operation refinement. In FM’06,

volume 4085 ofLNCS, pages 236–251. Springer-Verlag, 2006.
61. V. Pratt. Origins of the calculus of binary relations. InProc. of the 7th Annual IEEE Symp.

on Logic in Computer Science, pages 248–254, Santa Cruz, CA, 1992. IEEE Comp. Soc.
62. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. InLICS, pages

55–74, 2002.
63. C.J. Rodrigues.Software Refinement by Calculation. PhD thesis, Departamento de In-

formática, Universidade do Minho, 2007. Submitted.
64. Wang S., L.S. Barbosa, and J.N. Oliveira. A relational model for confined separation logic.

In TASE’08, LNCS. Springer-Verlag, 2008. To be presented atthe 2nd IEEE International
Symposium on Theoretical Aspects of Software Engineering,June 17 - 19, 2008.

65. P. Sestoft. Deriving a lazy abstract machine.J. Funct. Program., 7(3):231–264, 1997.
66. T. Sheard and E. Pasalic. Two-level types and parameterized modules.Journal of Functional

Programming, 14(5):547–587, September 2004.
67. D. Thomas. The impedance imperative tuples + objects + infosets =too much stuff!Journal

of Object Technology, 2(5), Sep./Oct.5 2003.
68. J. Visser.Generic Traversal over Typed Source Code Representations. Ph. D. dissertation,

University of Amsterdam, Amsterdam, The Netherlands, 2003.
69. E.G. Wagner. All recursive types defined using products and sums can be implemented

using pointers. In C. Bergman, R.D. Maddux, and D. Pigozzi, editors,Algebraic Logic and
Universal Algebra in Computer Science, volume 425 ofLNCS. Springer, 1990.

70. J. Woodcock and J. Davies.Using Z: Specification, Refinement, and Proof. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1996.

A PTree example in Haskell

This annex presents the exercise, in Haskell, of representing inductive typePTree (38) by point-
ers and heaps. For simplicity, the datatype ofPTree -shaped heaps is modeled by finite lists of
pairs, together with a pointer telling where to start from:

data Heap a k = Heap [(k,(a,Maybe k, Maybe k))] k

It is convenient to regard this datatype as a bifunctor30:

instance BiFunctor Heap
where bmap g f

(Heap h k’) =
Heap [(f k) |-> (g a, fmap f p, fmap f p’)

| (k,(a,p,p’)) <- h]
(f k’)

The chosen (functional) representation is afold overPTree ,

30 Note the sugaring of pairing in terms of the infix combinatorx |-> y = (x,y) , as sug-
gested by (33). ClassBiFunctor is the binary extension to standard classFunctor offer-
ing bmap :: (a -> b) -> (c -> d) -> (f a c -> f b d) , the binary coun-
terpart offmap .

Transforming Data by Calculation 63

r (Node n b m f) = let x = fmap r m
y = fmap r f

in merge (n,b) x y

wheremerge is the interesting function:

merge a (Just x) (Just y) =
Heap ([1 |-> (a, Just k1, Just k2)] ++ h1 ++ h2) 1

where (Heap h1 k1) = bmap id even_ x
(Heap h2 k2) = bmap id odd_ y

merge a Nothing Nothing =
Heap ([1 |-> (a, Nothing, Nothing)]) 1

merge a Nothing (Just x) =
Heap ([1 |-> (a, Nothing, Just k2)] ++ h2) 1

where (Heap h2 k2) = bmap id odd_ x
merge a (Just x) Nothing =

Heap ([1 |-> (a, Just k1, Nothing)] ++ h1) 1
where (Heap h1 k1) = bmap id even_ x

Note the use of two functions

even_ k = 2 * k
odd_ k = 2 * k+1

which generate thekth even and odd numbers. Functorial renaming of heap addresses via these
functions (whose ranges are disjoint) ensure that the heapsone is joining (via list concatena-
tion) areseparate[62, 64]. This representation technique is reminiscent of that of storing “binary
heaps” (which are not quite the same as in this paper) as arrays without pointers31. It can be

generalized to any polynomial type of degreen by buildingn-functionsfi k
def
= nk + i, for

0 ≤ i < n.
Finally, the abstraction relation is encoded as a partial function in Haskell as follows:

f (Heap h k) = let Just (a,x,y) = lookup k h
in Node (fst a)(snd a)

(fmap (f . Heap h) x)
(fmap (f . Heap h) y)

31 See eg. entryBinary heap in the Wikipedia.

