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“In the beginning there was yeast, and it raised bread, brewed 

beer, and made wine. After many not days but centuries and 

even millennia later, it was named Saccharomyces cerevisiae. 

After more years and centuries there was another yeast, and it 

was named Schizosaccharomyces pombe, now there were two 

stars in the yeast heaven. In only a few more years there were 

other yeasts, and then more, and more. The era of the non-

conventional yeasts had begun.” 

 

Spencer et al. (2002) 
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SUMMARY 

 

Providing an adequate oxygen supply is critical to the growth and maintenance of most aerobic microbial 

cultures used in biotechnological processes. Oxygen mass transfer from gas phase to the culture medium is 

often a major growth limiting factor because of oxygen´s low solubility in an aqueous solution. Thus, 

ensuring adequate oxygen supply to submerged cultures in bioreactors is not trivial. 

The use of increased air pressure as a way of improving oxygen mass transfer from gas phase to liquid 

phase has been developed by some authors. However, the effect of reactor pressurization must be 

considered on cellular growth and metabolism. The increase of oxygen partial pressure could result in 

reactive oxygen species (ROS) formation and lead to an oxidative environment to the cells. As the effect of 

increased air and oxygen pressure is strongly dependent of the cell type, species and strains, due to their 

different abilities of cellular response to possible oxidative stress that can arise, this thesis is focused on the 

study the behavior of non-conventional yeasts under hyperbaric air. In spite of the well-known importance of 

Yarrowia lipolytica and Pichia pastoris in several biotechnological processes, few studies are available on the 

application of air pressure increase for the cultivation of these yeasts.  

This work was started with the study of the oxygen mass transfer phenomenon from gas phase to the 

medium in a lab-scale pressurized bioreactor. The influence of operation parameters (aeration and stirring 

rates and increased air pressure up to 5 bar) on oxygen transfer rate (OTR) was analyzed. An empirical 

correlation for the prediction of the volumetric oxygen mass transfer coefficient (kLa) as a function of air 

pressure, power input and superficial gas velocity was attempted. The results demonstrated that the 

increased air pressure is valuable option for OTR enhancement in bioreactors, competing favorable with 

raising stirring and aeration rates, which can cause cell damage by shear stress.  

Yeast cells exposed to adverse conditions employ a number of defense mechanisms to respond effectively 

to the stress effects of reactive oxygen species. The cellular response of Y. lipolytica W29 and P. pastoris 

CBS 2612 to the exposure to the ROS-inducing agents paraquat (1 mM), hydrogen peroxide (50 mM) and 

increased air pressure (1 bar and 5 bar) was analyzed. For both strains the cellular viability loss and lipid 

peroxidation was lower for the cells exposed to increased air pressure than for those exposed to chemical 

oxidants. Under superoxide stress (paraquat and air pressure), the SOD induction was the main observed 

mechanism, whereas the hydrogen peroxide was the most efficient inducer of catalase. The results 

suggested that Y. lipolytica have a more potent antioxidant system than P. pastoris. 
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Batch cultivations of Y. lipolytica W29 under air pressures up to 6 bar were performed to investigate whether 

increasing air pressure may lead to increasing biomass yields, without giving raise to oxidative stress. The 

levels of antioxidant enzymes induced were also monitored. Cell growth was strongly enhanced by the 

pressure raise, since 5- and 3.4-fold improvement in the biomass production and in specific growth rate, 

respectively, were observed under 6 bar. An increase of the SOD specific activity at 6 bar of 53.4-fold was 

obtained compared with the experiments under 1 bar. Moreover, the influence of a pre-adaptation phase of 

cells to hyperbaric conditions on the lipase production by Y. lipolytica cells was investigated. The 

extracellular lipase activity increased 96% using a 5 bar air pressure instead of air at 1 bar pressure during 

the enzyme production phase. These results demonstrated that air pressure increase in bioreactors is an 

effective way for the enhancement of cell mass and enzyme productivity in bioprocesses involving Y. 

lipolytica cultures. 

P. pastoris CBS 2612 behavior under air pressures of 1 bar, 3 bar and 5 bar in culture media of glycerol 

(pure and crude) and methanol was studied. Generally, an enhancement on cellular growth, for all carbon 

sources, was achieved with the raise of air pressure and for batch and fed-batch processes with different 

feeding rate strategies. In batch cultures, 1.4-, 1.2-, and 1.5-fold improvement in biomass production was 

obtained with the increase of air pressure up to 5 bar, using methanol, pure glycerol, and crude glycerol, 

respectively. The increase of air pressure up to 5 bar using exponential feeding rate led to a 1.4-fold 

improvement in biomass yield per glycerol mass consumed, for pure and crude glycerol. The results show 

the possibility of improving cell mass production of P. pastoris under moderate air pressure, using low cost 

carbon sources.  

P. pastoris GS115/pPICZ/lacZ (Mut+), expressing intracellular β-galactosidase, and P. pastoris 

KM71H/pPICZαA/frutalin (MutS), expressing extracellular frutalin, were used to investigate the effect of 

increased air pressure on yeast growth and heterologous protein expression. The increase of air pressure up 

to 5 bar had a small effect on biomass production, but led to a 9-fold improvement in β-galactosidase 

specific activity compared to 1 bar. The recombinant frutalin secretion was enhanced by the increased air 

pressure up to 5 bar and the protease specific activity reached was 2.4 times lower than that obtained at 

atmospheric pressure in baffled flasks.   
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RESUMO 

 

Um dos pontos críticos de processos biotecnológicos consiste no fornecimento de oxigénio suficiente para o 

crescimento e manutenção das culturas microbianas aeróbias. A velocidade de transferência de oxigénio do 

gás para o meio de cultura é normalmente um fator limitante do crescimento, devido à baixa solubilidade 

do oxigénio em soluções aquosas. Assim, garantir o adequado aprovisionamento de oxigénio a culturas 

submersas num bioreator não é uma tarefa menosprezável.  

São poucos os investigadores que têm recorrido ao aumento da pressão de ar como forma de melhorar a 

transferência de oxigénio da fase gasosa para a fase líquida. Neste caso, o efeito da pressurização do reator 

no crescimento e metabolismo celular deve ser tido em consideração. Além disso, o aumento da pressão 

parcial do oxigénio pode resultar na formação de espécies reativas de oxigénio e originar um ambiente 

oxidativo para as células. Uma vez que o efeito do aumento da pressão de ar e de oxigénio depende das 

espécies e estirpes, devido à diferente capacidade de resposta ao stresse oxidativo, esta tese foca-se no 

estudo da resposta celular de leveduras não-convencionais ao ar hiperbárico. Apesar da reconhecida 

importância das espécies Yarrowia lipolytica e Pichia pastoris em muitos processos biotecnológicos, são 

poucos os estudos sobre a aplicação do aumento da pressão de ar na cultura destas leveduras. 

Este trabalho começou com o estudo da taxa de transferência de oxigénio da fase gasosa para o meio 

líquido num reator pressurizado, à escala laboratorial. Foi analisada a influência de parâmetros 

operacionais (taxa de arejamento e de agitação e aumento da pressão de ar até 5 bar) na taxa de 

transferência de oxigénio (OTR). Obteve-se uma correlação empírica do coeficiente volumétrico de 

transferência de oxigénio (kLa) em função da pressão de ar, da potência de agitação e da velocidade 

superficial do gás. Os resultados demonstraram que o aumento da pressão de ar é uma opção viável para o 

incremento de OTR nos bioreatores, em alternativa ao aumento da taxa de arejamento e de agitação, que 

podem causar stresse hidrodinâmico às células. 

As células de levedura, quando expostas a condições adversas, desenvolvem um sistema de defesa contra 

os efeitos causados pelas espécies reativas de oxigénio. Assim, foi analisada a resposta celular das estirpes 

Y. lipolytica W29 e P. pastoris CBS 2612 à exposição aos agentes indutores de espécies reativas de 

oxigénio paraquat (1 mM), peróxido de hidrogénio (50 mM) e pressão total de ar (1 bar e 5 bar). Em ambas 

as estirpes, a perda de viabilidade e a peroxidação lipídica foram menores nas células expostas ao aumento 

da pressão de ar do que nas expostas aos oxidantes químicos. Em ambiente de stresse provocado pelo ião 

superóxido (paraquat e pressão de ar), o mecanismo de defesa mais observado foi a indução de SOD, 
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enquanto o peróxido de hidrogénio foi o maior indutor da catalase. Os resultados sugerem que a estirpe Y. 

lipolytica tem um sistema antioxidante mais eficaz que a estirpe P. pastoris. 

Com o objectivo de investigar se o aumento da pressão de ar podia conduzir a um incremento no 

rendimento em biomassa, sem originar stresse oxidativo, foram realizados ensaios em modo batch de Y. 

lipolytica W29 a valores de pressão total de ar até 6 bar. Foi igualmente avaliada a capacidade da levedura 

em induzir a expressão de enzimas antioxidantes. O crescimento celular foi consideravelmente beneficiado 

com o aumento da pressão de ar, uma vez que a produção de biomassa e a taxa específica de crescimento 

aumentaram 5 e 3.4 vezes, respectivamente, no ensaio realizado a 6 bar. A atividade específica da enzima 

SOD obtida no ensaio a 6 bar foi 53.4 vezes maior do que a alcançada a 1 bar. Foi também analisada a 

influência de uma fase de pré-adaptação das células às condições hiperbáricas na produção de lipase por 

Y. lipolytica. A atividade da lipase extracelular aumentou 96% com a aplicação de uma pressão de ar igual a 

5 bar, comparativamente ao ensaio realizado a 1 bar, durante a fase de produção da enzima. Estes 

resultados demonstraram que o aumento da pressão total de ar é uma forma eficaz de aumentar a 

produtividade em biomassa e em enzima SOD em bioprocessos que utilizem a levedura Y. lipolytica. 

Foi estudado o comportamento da estirpe P. pastoris CBS 2612 em meios de glicerol (puro e bruto) e 

metanol, com valores de pressão iguais a 1 bar, 3 bar e 5 bar. De uma maneira geral, foi observado um 

incremento do crescimento celular com o aumento da pressão de ar, em todas as fontes de carbono e em 

processos em modo batch e fed-batch com 2 estratégias de alimentação diferentes. Nas culturas em modo 

batch usando metanol, glicerol puro e glicerol bruto, obtiveram-se aumentos de 1.4, 1.2 e 1.5 vezes, 

respectivamente, na produção de biomassa com a pressão de 5 bar. No processo fed-batch com 

alimentação exponencial, o rendimento em biomassa por massa de glicerol consumido (puro e bruto) 

aumentou 1.4 vezes com o uso de pressão de ar igual a 5 bar. Os resultados demonstram a possibilidade 

de aumentar a produção de biomassa de P. pastoris sob pressão de ar moderada, usando fontes de 

carbono de baixo custo. 

A estirpe P. pastoris GS115/pPICZ/lacZ (Mut+), que expressa β-galactosidase intracelular, e a estirpe 

KM71H/pPICZαA/frutalina (MutS), que expressa frutalina extracelular, foram usadas com o intuito de 

estudar o efeito do aumento da pressão de ar no crescimento destas estirpes e na expressão de proteínas 

heterólogas. O aumento da pressão total de ar até 5 bar não teve um efeito significativo no crescimento 

celular destas estirpes, mas conduziu a um incremento de 9 vezes na actividade específica da enzima β-

galactosidase, comparativamente à obtida a 1 bar. A expressão de frutalina também aumentou a 5 bar e a 

actividade específica de protease obtida foi 2.4 vezes inferior à obtida nos ensaios em matraz (pressão 

atmosférica). 
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1 MOTIVATION AND OUTLINE 

 

 

 

 

This chapter introduces the background information about the theme of the work, as well as its 

objectives. 

 

The outline of the thesis is also presented. 
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1.1 CONTEXT AND MOTIVATION 

Laboratory research of microbial processes is usually performed at atmospheric pressure, but in 

industrial bioreactors of several tens of meters high, pressure and consequently gas solubility is a 

function of the local position in the reactor, generally increasing by 1 bar for every 10 m increase in 

depth (Onken and Liefke, 1989). Due to the differences observed in the residence time distribution 

in large reactors, cells are distinctly exposed to high pressures (at the bottom) and to low pressures 

(on top). Many differences in process productivities found between lab-scale and plant-scale can be 

partially explained by these different environmental conditions in each scale system. This is 

particularly important when dissolved oxygen is a determinant factor in the process, as is the case 

in high cell density aerobic cultures.  In such cultures, the cellular oxygen demand far exceeds the 

oxygen transfer capacity of conventional bioreactors such as stirred tanks, meaning that the 

dissolved oxygen becomes limiting for microbial growth. Many efforts have been made to overcome 

the oxygen limitation in the culture medium, being the most commonly used the increase in power 

input. Special aeration systems, e.g. aeration using oxygen enriched air and increased reactor 

pressure are techniques applied to increase oxygen availability (Belo et al., 2003; Knoll et al., 

2005; Lopes et al., 2008). Also, the use of in situ production of oxygen (Sonnleitner and 

Hahnemann, 1994) or the use of a second liquid phase of oxygen-carriers compounds such as 

perfluorodecalin (Amaral et al., 2008) or n-hexadecan (Nielsen et al., 2003) in the culture medium 

can increase the availability of oxygen to the microorganisms. 

Bioreactor pressurization has been proven to be an efficient way of oxygen mass transfer to aerobic 

cultures and could be successfully applied to yeast cultivation (Aguedo et al., 2005; Belo et al., 

2003; Pinheiro et al., 2003). However, above certain limits the increased air pressure and the 

consequent increase in oxygen partial pressure may causes oxidative stress to the cells and have 

detrimental effects on cell physiology and metabolites production. It was proven that oxygen 

toxicity, besides total pressure, is the main cause of cell inhibition (Pinheiro et al., 2002). 

Oxidative stress is caused by exposure to reactive oxygen species (ROS), especially superoxide 

anions (O2
•−), hydrogen peroxide (H2O2), and hydroxyl radicals (HO•), which can damage proteins 

and modify bases and sugars in DNA (Esterbauer et al., 1991). To protect against the damage 

caused by oxidative stress, cells possess a number of biochemical systems, including enzymes 

(superoxide dismutase, catalase and glutathione reductase) as well as the non-enzymatic protective 
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molecules (glutathione and thioredoxin), most of which are expressed at low levels during normal 

growth. In response of elevated concentrations of ROS, the expression of many antioxidant 

defenses is induced. 

Moderate pressure may have delicate effects on the metabolism and the gene expression of cells. 

It is then crucial to study the effects of the air pressure increase on cell growth and proteins 

production. Also, the antioxidant defense induced by the yeasts growing under increased air 

pressure is of great importance. The effects of oxidative stress related to hyperbaric air on 

microbial behavior have been studied for E. coli (Belo and Mota, 1998), Thermus sp. (Belo et al., 

2000), K. marxianus (Pinheiro et al., 2003) and S. cerevisiae (Belo et al., 2005). However, the 

effect of increased air and oxygen pressure is strongly dependent of the species and strains due to 

their different cellular responses. The purpose of this thesis was to investigate whether total air 

pressure could be used within a range of values easily applicable in an industrial environment, in 

order to improve cell cultivation and consequently enzyme productivities in Yarrowia lipolytica W29, 

Pichia pastoris CBS 2612 and in the recombinant strains Pichia pastoris GS115 and KM71H. For 

this purpose, the following main topics were focused:  

 Characterization of oxygen mass transfer rate (OTR) in pressurized lab-scale stirred 

bioreactor. 

 Analysis of the cellular response of Y. lipolytica and P. pastoris to the exposure of ROS-

inducing agents. 

 Study of the effects of increased air pressure on Y. lipolytica batch growth, antioxidant 

defense induction and lipase production. 

 Study of the effects of increased air pressure on P. pastoris growth in batch and fed-batch 

cultures. 

 Evaluation of the effects of bioreactor pressurization on the expression of heterologous 

proteins by recombinant P. pastoris strains. 

 

1.2 OUTLINE OF THE THESIS 

The main goal of this thesis was to answer to the question “how does two different non-

conventional yeast species respond to air pressure?”. The thesis was structured in nine chapters: 
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- The context and motivation of this thesis and the research aims are presented in the current 

chapter (Chapter 1). The structure of the thesis is also outlined. 

- Chapter 2 concerns literature review, where a general overview of previous studies developed with 

microbial cultures under increased air pressure is presented.   

The different sections of Experimental Results are presented from Chapter 3 to Chapter 7. In these 

chapters a brief introduction, materials and methods, results and discussion and conclusions for 

the chapter topics are given.  

- In Chapter 3 the results concerning the oxygen mass transfer rate in a pressurized bioreactor are 

reported. The oxygen volumetric mass transfer coefficient (kLa) as a function of the air pressure is 

also described. 

- In Chapter 4, the strains Y. lipolytica W29 and P. pastoris CBS 2612 were exposed to the ROS-

inducing agents paraquat, hydrogen peroxide and increased air pressure. The cellular response of 

the yeast strains to each agent was assessed by the analysis of antioxidant enzymes and GSH.  

- Batch cultivation of Y. lipolytica W29 under increased air pressure from 1 bar to 6 bar is reported 

in Chapter 5. The effect on cellular growth and the ability of the strain to induce antioxidant 

enzymes such as SOD and catalase was evaluated. Moreover, the influence of a pre-adaptation 

phase of cells to hyperbaric conditions on the lipase production was also reported. 

- Chapter 6 presents the study of P. pastoris CBS 2612 behavior under total air pressure up to 5 

bar in culture media of glycerol (pure and crude) and methanol, which was performed in batch and 

fed-batch cultures.  

- Two recombinant P. pastoris strains (GS115/pPICZ/lacZ and KM71H/pPICZαA/frutalin), 

producing intracellular β-galactosidase and extracellular frutalin respectively, were used to 

investigate the effect of reactor pressurization on heterologous protein expression. The results 

concerning this study are presented in Chapter 7.   

- Chapter 8 presents the overall conclusions as well as suggestions for future work in this field of 

research. 
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- Finally, Chapter 9 gathers all the references used in the elaboration of this work. 

 

 



 

 

 

 

 

 

 

2 LITERATURE REVIEW  

 

 

 

 

In a number of biological systems, life strategies may be significantly influenced by pressure. In 

industrial biotechnology microbial cultures are exposed to different local pressures inside the 

bioreactors. The increased pressure may have detrimental or beneficial effects on cellular growth 

and products formation, depending on the microbial species and strains.  

In this Chapter, the focus will be on the effects of increased air pressure on various microbial 

cultures growing in hyperbaric bioreactors under moderate pressures. Revisiting general principles 

of pressure effects on biological systems, recent data illustrating the diversity of increased air 

pressure effects may have at different levels in microbial cultivation, with particular attention to 

effects on cellular growth, products formation and antioxidant defense mechanisms is present. 
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2.1 INTRODUCTION 

All biological processes of life on Earth experience varying degrees of pressure. Aquatic organisms 

living in the deep-sea, as well as chondrocytic cells of articular cartilage are exposed to hydrostatic 

pressures that raise up to several hundred times that of atmospheric pressure. The effects of 

hydrostatic pressure on physiological or biochemical system basically result from the compression 

of the system and can be related to the changes in the protein structures, lipid bilayers of 

membranes and gene expression.   

In industrial processes, microorganisms are required to have an efficient metabolism, with high 

productivities, in order to achieve an economical production process. During a biotechnological 

process based in microbial cultures differences in operational conditions take place, like pressure 

gradients (in general up to 0.2 or 0.3 MPa, maximum approx. 1 MPa), leading to changes in cell 

metabolism. In a typical industrial cell cultivation system, quite high cell densities are reached and 

oxygen is usually the major growth limiting factor. The use of pressure in bioreactors may be a way 

of improving oxygen transfer rate (OTR) of aerobic cultures avoiding oxygen limitation. 

Some authors have demonstrated that increased air pressure could be applied to microbial 

cultivation, as a way of improving the OTR to aerobic cultures (Belo et al., 2000; Charoenrat et al., 

2006; Knoll et al., 2005; Lopes et al., 2008; Pinheiro et al., 2003). However, the effect of 

increased air pressure is strongly dependent of species and strains due to the different cellular 

responses to oxidative stress. Above certain limits, increased air pressure and the consequent 

increase in oxygen partial pressure may have detrimental effects on microbial cell activity and on 

product formation. In hyperbaric bioreactors, cells are often exposed to O2 partial pressures higher 

than 0.021 MPa (corresponding to air at 0.1 MPa), leading to the formation of reactive oxygen 

species (ROS). To counter oxidative stress, cells constitutively express enzymes that detoxify the 

ROS and repair the damages incurred. 

It is important to recognize the impact of increased air pressure on cellular physiology and 

morphology, product formation and induction of antioxidant defenses. The purpose of this Chapter 

is to review the revelant available knowledge about the effects of increased air pressure on 

microbial cultures. 
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PRESSURE AND LIFE 

The majority of the biosphere is aquatic, mainly oceanic, with an average depth of 3800 m. At this 

depth marine organisms whithstand pressures of 38 MPa, approximately 380-fold greater than 

atmospheric pressure (Abe, 2007). This means that the majority of the biosphere stays in high-

pressure environments. In the marine environment, pressure is a natural parameter, which may 

play a role in adaptation processes. Aquatic environments exhibit a wide range of hydrostatic 

pressure from micro-pressures generated by a few centimeters of water column up to 110 MPa in 

oceanic depths. Consequently, pressure appears to be an important parameter for live on Earth. 

Taking into account that the maximum pressure at the center core of Earth is evaluated to be 400 

GPa and that such a value is higher for the Giant Planets approximately 90% of the Universe is 

submitted to a pressure higher than 10 GPa (Jayaraman, 1984). 

Three main factors can characterize the pressure effects: energy, densification effect and chemical 

reactivity. The energy developed by high pressure is quite low and, consequently, high pressure will 

only affect weak chemical bonds (Rivalain et al., 2010). Due to compressibility, the difference 

between final and initial volumes under high pressure is always negative. This factor induces 

different phenomena such as the formation of new structural forms (Knorr et al., 2006) and the 

modification of the equilibrium, for example the dissociation of water (Heremans et al., 1996). Due 

to the compressibility of the solutions and the improvement in the solubility, pressure enhances the 

chemical reactivity, inducing an increase of the kinetics (Schettino and Bini, 2007).  

The discovery of piezophiles (or barophiles) microorganisms in the deep marine environments 

contributed to the development of the study of high pressure effects in the microorganisms 

adaptation and in the role of high pressure in the origin of life (Pradillon and Gail, 2007). Pressure 

effects are also of interest in the biomedical science field since they are responsible for a number 

of pathologies. In the human hip joint, pressures of 10–20 MPa have been recorded (Hall et al. 

1993). Cells of articular cartilage are constantly influenced by mechanical stress when forces are 

transmitted across joints (Hodge et al. 1986). In addition to this interest in deep-sea life and 

biomedical science, high pressure treatment of food has been studied as a technique to pasteurize 

food without a heating process, and an increasing number of food products treated under high 

pressure have been commercialized (Hayashi, 2002; Knorr et al., 2006; Smelt et al., 2006). 
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High pressure represents an interesting form of stress and pressure effects on any physiological or 

biochemical system basically results from the compression of the system.  High pressure 

treatment has been repeatedly reported to cause cellular death, cellular arrest and growth 

inhibition. Abe (2004) reported that hydrostatic pressure in the range of 15-25 MPa caused arrest 

of the cell cycle in G1 phase in an exponentially growing culture of a S. cerevisiae tryptophan 

auxotroph. Fernandes (2005) observed that the S. cerevisiae viability during hydrostatic pressure 

treatment decreases with pressures above 100 MPa, while at 220 MPa all wild-type cells are killed. 

Iwahashi et al. (2005) found that a pressure of 30 MPa induced the increase on S. cerevisiae cell 

size and decrease cellular viability. 

Lipid bilayers of biological membranes are one of the most pressure sensitive biological 

components. High pressure orders phospholipid bilayers, causing the fatty acyl chains to pack 

together more tightly, reducing membrane fluidity in 0.1 MPa-adapted organisms (Mentré and Hui 

Bon Hoa, 2001). Membranes of deep-sea organisms exhibit an increase of the unsaturated to 

saturated lipid ratio, allowing the maintenance of fluidity under pressure. 

High hydrostatic pressure affects protein polymerization and also induces protein denaturation, 

thus interfering with enzyme activity (Silva et al., 2001). Balny et al. (2002) attributed these 

pressure-induced effects to the penetration of water into the protein structure, resulting in 

unfolding. However, high pressure can maintain some parts of the molecule unchanged due to the 

fact that only weak bonds are affected, contrary to the heat and chemical denaturation (Rivalain et 

al., 2010).  

Pressure treatment caused induction of genes in the subcategory of “stress response”, including 

genes involved in energy metabolism, such as PAU genes, oxidative stress, such as GRX1 and 

CCT1, and heat shock response, such as HSP12, HSP150, SSE2 and HSP104 (Iwahashi et al., 

2003; Jamieson, 1998; Rachidi et al., 2000). Iwahashi et al. (2005) found that a pressure of 30 

MPa induced the production of certain heat-shock proteins and activated genes controlling 

membrane structure. Fernandes et al. (2004) reported that high hydrostatic pressure treatments 

shown to induce a decrease in mRNA levels of genes involved in cell-cycle progression. 
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2.2 PRESSURE IN BIOTECHNOLOGY 

The effects of high pressures of several hundred MPa are not of relevance to aerobic processes, 

where in industrial bioreactors pressures of the order of up to 10 bar can only be reached locally. 

In fact, due to the differences observed in the residence time distribution in large reactors, cells are 

distinctly exposed to high pressures (at the bottom) and to low pressures (on top). In each local 

position, the total pressure is the sum of operational pressure (pressure at the reactor top) and the 

hydrostatic pressure exerted by the liquid height above this point. As a consequence, equilibrium 

solubilities of gaseous compounds will also be a function of the local position inside the reactor. 

Thus, in an industrial bioreactor containing a liquid medium up to a level of 10 m and with a 

pressure at the top of 0.15 MPa, total pressure at the bottom will amount to 0.25 MPa; this 

means, that gas solubility, e.g. for oxygen or carbon dioxide at the bottom, will be nearly 70% 

higher than at the top of the bioreactor. A few examples of industrial large bioreactors applied in 

aerobic processes are given in Table 2.1. 

 

Table 2.1 Examples of industrial large bioreactors (adapted from Onken and Liefke, 1989). 

Reactor Company Height (m) Process 

BIOHOCH HOECHST 30 Aerobic effluent treatment 

Tower Biology Reactor Bayer 30 Aerobic effluent treatment 

Pressure Cycle Fermenter ICI 60 SCP from methanol 

Deep-Shaft Reactor ICI 100 Aerobic effluent treatment 

 

The effects of these pressure values have to be taken into account on the scale-up, since many 

differences in process productivities found between R&D phase (lab-scale) and production phase 

(industrial scale) can be partially explained by these different environmental conditions.  

Since the total and partial pressures are especially important in the kinetics of aerobic processes, 

the laboratoy simulation of local changes of environmental conditions on microbial cultures in 

industrial bioreactors is of great importance. Investigations of the effects of the increased pressure 

on microbial cultures can be performed with air, varying total pressure inside the bioreactor. Since 
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several years, stirred bioreactors for higher pressures are intensively applied in chemical industry 

and the adaptation of such technology to microbial cultures could be easily performed. 

Published works have reported the use of increased air pressure in several microbial cultures and 

the effects on microorganism behavior are strongly dependent of the species and strains (Coelho et 

al., 2004; Onken and Liefke, 1989; Pinheiro et al., 2000).  

 

2.3 EFFECTS OF INCREASED AIR PRESSURE 

Providing an adequate oxygen supply is critical to the growth and maintenance of most aerobic 

microbial cultures used for biotechnological processes. Oxygen mass transfer from air to the 

growth medium is often a major growth limiting factor because of oxygen’s low solubility in an 

aqueous solution (Bliem and Katinger, 1988). Thus, it is important to ensure an adequate oxygen 

supply to a submerged culture. 

The use of increased air pressure to improve the oxygen mass transfer from the gas phase to the 

liquid has been developed by some authors (Belo et al., 2000; Knoll et al., 2007; Lopes et al., 

2008; Pinheiro et al., 2003). In this case, the effect of increased air pressure on cellular growth 

and morphology must be considered. Moreover, the increase of oxygen partial pressure could 

result in reactive oxygen species formation and lead to an oxidative environment to the cells. 

 

2.3.1 Oxygen mass transfer dynamics 

Availability of oxygen strongly affects the process performance of aerobic bioprocesses. These 

bioprocesses are mostly carried out in aqueous media where the solubility of oxygen is low owing 

to the presence of ionic salts and nutrients, and the rate of oxygen utilization by the 

microorganisms is high (Gogate and Pandit, 1999; Gupta et al., 2003). Hence, oxygen mass 

transfer between phases is an important and rate limiting step in bioprocesses. 

There are several methods to enhance oxygen mass transfer rate to a culture: increasing stirrer 

speed and/or air sparging rate or enriching air inlet with pure oxygen (Pan et al., 1987). Other non-
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conventional methods to enhance the oxygen supply include in situ generation of molecular oxygen 

with hydrogen peroxide and catalase (Ibrahim and Schlegel, 1980; Schlegel, 1977), co-

immobilization or mixed culture with oxygen-producing photosynthetic algae (Adlercreutz and 

Mattiasson, 1982; Khang et al., 1988), and the introduction of an immiscible phase of 

perfluorocarbons (Amaral et al., 2006) with high oxygen solubility. However, these approaches are 

limited by one or more problems: chemical compatibility, toxicity, increased cost of downstream 

processing to remove added chemicals, competition for common nutrients, and complications in 

bioreactor design and operation (Yang and Wang, 1992). 

The mass balance for the dissolved oxygen in the well-mixed liquid phase can be established as: 

  

  
                                                                                                                            

where O is the dissolved oxygen concentration in the medium, t is the time, OTR is the oxygen 

mass transfer rate from the gas phase into the broth, OUR is oxygen uptake rate by the 

microorganisms and D is the dilution rate. 

OUR can be expressed by the product of the specific oxygen consumption rate of the 

microorganism (   
) and the biomass concentration (X): 

       
                                                                                                                                      

OTR is controlled by the oxygen solubility and the volumetric oxygen mass transfer coefficient 

(   ), and can be stated mathematically as: 

          
                                                                                                                            

where C* is the solubility of oxygen in the liquid, and C is the dissolved oxygen concentration in the 

liquid. 

The oxygen solubility in the liquid medium can be raised by increasing the total air pressure in the 

cultivation system. The saturation concentration of oxygen from air in broth, C*, is affected by the 

oxygen partial pressure and, consequently, by the total air pressure. The equilibrium relation 

between these two parameters is given by Henry’s law: 
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where 

   
    

                                                                                                                                        

and where 

   
 is the oxygen partial pressure,    

 is the Henry’s constant,    
 is the oxygen molar fraction in 

the gas, and    is the total air pressure. 

Published works have reported the use of increased air pressure to improve the oxygen transfer 

rate for cell cultivation. Yang and Wang (1992) reported that the bioreactor headspace 

pressurization increased 2.7 times the OTR in the bulk medium for operating pressures up to 0.27 

MPa. Belo et al. (2000) reported a 6-fold improvement in OTR when the total air pressure 

increases from 0.1 MPa to 5.6 MPa. Pinheiro et al. (2003) demonstrated that OTR is clearly 

enhanced by air pressure raise from 0.12 MPa to 0.6 MPa, obtaining values of 316 mg O2/(L h) 

and 1099 mg O2/(L h), respectively. Knoll et al. (2005) showed that the increased air pressure up 

to 1.1 MPa could be a way of improving OTR of microbial cultures with energy cost efficiencies 

acceptable for industrial application. Also, Knoll et al. (2007), during the E. coli fed-batch, achieved 

approximately 2-fold improvement in OTR increasing stepwise the air pressure from 0.1 MPa to 1.1 

MPa. Lopes et al. (2008) observed an increase of oxygen mass transfer from 1248 mg O2/(L h) to 

2924 mg O2/(L h) shifting the total air pressure from 0.2 MPa to 0.8 MPa.  

Cultivation under pressurized conditions also presents positive economic advantages in OTR 

improvement compared to oxygen enriched air strategies. For the same value of OTR, the power 

input for oxygen enriched air cultivation was higher than the one applied under pressurized 

conditions, mainly due to the higher stirring speed that must be used. Lara et al. (2011) found that 

the OTR reached in the pressurized cultures up to 0.8 MPa was around 20% higher than the 

corresponding value of the oxygen enriched air cultivation for the same type of E. coli pCMV-S 

culture conditions. 
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2.3.2 Microbial growth and morphology 

Besides cell age, size and shape of microbial cells depend on several factors, such as growth 

phase, medium composition, operating conditions, among others. Growth rate, mutation and 

environmental conditions affect yeast size and shape distribution but, in general, the influence of 

spatial variations in large-scale bioreactors is not considered. As a consequence, analysis of the 

pressure effects on cell physiology and morphology must be considered. 

Though several works demonstrate that hyperbaric air can be successfully applied to microbial 

cultivation, as a way of improving the oxygen transfer rate to aerobic cultures (Belo et al. 2003; 

Lopes et al., 2008; Pinheiro et al. 2003), above certain limits the increased air pressure and the 

consequent increase in oxygen partial pressure may have detrimental effects on microbial cell 

activity. 

For the range of pressure up to 1.5 MPa few investigations have been published regarding possible 

effects of pressure on microbial growth (Table 2.2). Results from these papers demonstrate that 

the effect of air pressure on microbial cultures is dependent of the microbial strain. 
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Table 2.2 Effects of increased air pressure on microbial growth. 

Microorganism P (MPa) Effect Reference 

Streptomyces rimosus Up to 0.8 
Complete inhibition of cell 

growth 
Liefke et al. (1990) 

S. aureofaciens Up to 0.8 Retardation of cell growth Liefke et al. (1990) 

Pseudomonas fluorescens Up to 0.8 
Complete inhibition of cell 

growth 
Onken (1990) 

E. coli TB1 Up to 0.4 
No effects on cell mass 

production 
Belo and Mota (1998) 

Thermus sp. RQ-1 Up to 0.56 
Improvement of cell 

productivity 
Belo et al. (2000) 

Kluyveromyces marxianus Up to 0.6 
Slight retardation of cell 

growth 
Pinheiro et al. (2003) 

S. cerevisiae Up to 0.6 
52% increase in cell 

growth rate 
Coelho et al. (2004) 

Pseudomonas putida CA-3 Up to 1.1 
Detrimental effects on cell 

growth 
Knoll et al. (2005) 

S. cerevisiae Up to 0.6 
Increase of cell mass 

production 
Belo et al. (2005) 

S. cerevisiae 0.6 – 1.5 
Inhibition of cell mass 

production 
Belo et al. (2005) 

Pichia pastoris Up to 0.19 
12% increase of cell mass 

production 

Charoenrat et al. 

(2006) 

E. coli K-12 6 
Cellular growth stopped 

after 9 h 
Matsui et al. (2006) 

S. cerevisiae Up to 1.5 
Inhibition of cell mass 

production 
Dong et al. (2007) 

Adeninivorans G1211 Up to 0.5 
No effects on cell mass 

production 
Knoll et al. (2007) 

C. glutamicum DM1730 Up to 1.0 
No effects on cell mass 

production 
Knoll et al. (2007) 

Y. lipolytica Up to 0.8 
No effects on cell mass 

production 
Lopes et al. (2008) 

E. coli VH33 Up to 1.1 
No effects on cell mass 

production 
Knabben et al. (2010) 

E. coli pCMV-S Up to 0.8 
No effects on cell mass 

production 
Lara et al. (2011) 
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2.3.2.1 Bacteria 

For E. coli, one of the most popular hosts, it is well known that oxygen availability affects cellular 

yield (Ko et al., 1993). This is particularly important because almost all of the recombinant proteins 

expressed in this microorganism remain inside the cell, in spite of all the efforts made in 

heterologous protein secretion research (Karim et al., 1993). Therefore, one of the goals of 

cultivation conditions optimization is to reach high cell densities and it is crucial to ensure an 

adequate oxygen supply to the media. Belo and Mota (1998) observed that, in batch cultures, 

pressure up to 0.4 MPa led to a slightly decrease on cell growth of E. coli TB1/pUC13. However, 

for fed-batch experiments, the E. coli TB1 cells grew better in the pressurized bioreactor than in the 

fermenter at atmospheric pressure and high stirring rate. Knabben et al. (2010) reported that 

genetically engineered E. coli strain VH33 in batch fermentations under pressurized conditions up 

to 1.1 MPa, fully aerobic conditions could be achieved, acetate accumulation could be prevented 

and a high cell-density culture was reached. Gregory and Fridovich (1973) observed that E. coli 

cells keep their reproduction ability at oxygen partial pressure up to 4.6 MPa. Lara et al. (2011) 

reported that the pressurization of E. coli pCMV-S cultivations up to 0.8 MPa lead to a similar 

biomass concentration than that obtained with the oxygen enriched air strategy. Matsui et al. 

(2006) cultured non-recombinant E. coli K-12 cells with pressurized air up to 6 MPa at a constant 

flow rate of 1 vvm and 3 vvm. The authors observed that the cellular growth stopped at 9 h and 10 

h at 1 vvm and 3 vvm, respectively. However, their results indicate that the cellular growth was 

stopped by the inhibitory effect of increased     
, and the inhibition could be overcome by 

increasing the gas flow rate to release the dissolved CO2 into gas phase.     

In experiments with increased air pressure the growth of wild types of S. rimosus and S. 

aureofaciens were quite different. While the metabolic activities of S. rimosus were completely 

inhibited under 0.8 MPa of air pressure, the growth of S. aureofaciens was only retarded, 

prolonging the lag phase about threefold (Liefke et al., 1990). 

Onken (1990) reported that in batch cultivations of P. fluorescens, bacterial growth was completely 

inhibited with air at 0.8 MPa total pressure. The same effect was observed with aeration by pure 

oxygen at 0.115 MPa. Carbon dioxide partial pressure did not show inhibitory effects. 
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Thermophilic microorganisms are important sources of thermostable enzymes and, despite their 

adaptation to low gas concentrations in natural habitat due to high temperatures, significantly high 

values of specific oxygen up-take rate have been reported for some aerobic strains (Cometta et al., 

1982). Thus, the industrial cultivation of thermophiles in high cell density systems can present 

oxygen limitations. Belo et al. (2000) concluded that the raise of air pressure up to 0.56 MPa led to 

a 2.2-fold improvement in cell productivity on Thermus sp. RQ-1 batch cultivation and a reduction 

of liquid loss (Figure 2.1). 

 

 

Figure 2.1 Time course of cell in batch cultivations of Thermus sp. RQ-1 in the pressurized reactor. The 

operating conditions used were a stirring rate of 200 rpm, an aeration rate of 0.3 L/min (at standard 

conditions) in 300 mL total volume and different air pressures: 0.10 MPa (□), 0.30 MPa (Δ), 0.43 MPa (○) 

and 0.56 MPa (◊) (adapted from Belo et al., 2000). 

 

Puhar et al. (1983) related the effects of high partial pressures of O2 and CO2 on Methylomonas 

clara continuous cultures growing on methanol. Above a    
 of 0.07 MPa and a     

 of 0.033 

MPa the cell mass yield decreased with increasing    
and     

. No cells washout was observed 

even when pure oxygen was used, but the cell mass yield was very low. 
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2.3.2.2 Yeasts 

Over-provision of O2 in the pre-fermentation aeration stage of brewing may have an adverse effect 

on yeast cells. Pinheiro et al. (1997) observed a 2.2-fold reduction in specific growth rate of S. 

cerevisiae in batch cultures at 0.6 MPa compared to the experiment under 0.12 MPa. Also, a 0.8 

MPa pure O2 pressure leads to nearly complete inhibition on yeast growth. However, Belo et al. 

(2003) reported that the gradual pressurization of the bioreactor up to 1.5 MPa increased specific 

cell growth rate and biomass yield of S. cerevisiae compared to the experiment at atmospheric 

pressure. The results obtained for the experiment with air at 1.5 MPa constant pressure 

demonstrated that this high value of air pressure imposed to the cells, without previous periods of 

adaptation, dramatically inhibited cellular activity. Campelo and Belo (2004) reported that the 

rising of air pressure from 0.1 MPa to 0.6 MPa stimulated cell growth but had no effect on 

leavening ability or viability of the cells. 

The effect of pressure on S. cerevisiae cell activity strongly depends on the nature of the gas used 

for pressurization. While nitrogen and air to a maximum of 0.6 MPa of pressure were innocuous to 

yeast, oxygen and carbon dioxide pressure caused cell inactivation, with impact in cellular 

reproduction, as was shown by the reduction of budding cells percentage in the overall cell 

population. Moreover, a decrease in the average cell size was found for cells exposed for 7.5 h to 

0.6 MPa CO2 (Coelho et al., 2004). However, Belo et al. (2005) reported that no differences were 

found between the genealogical age of S. cerevisiae cell population under environments of air at 

0.1 MPa, 0.6 MPa and 1 MPa of the cultures samples collected after 24 h of growth. The majority 

of the cells were young with no bud scars (daughter cells), or with only one bud scare. However, 

changes in the genealogical age profile were obtained for the final cultures exposed to 1.5 MPa of 

air pressure. An increase in the fraction of cells with more than four bud scars was observed, 

which indicates that the old cells are more resistant to pressure than young cells. The raise of air 

pressure from 0.1 MPa to 1.5 MPa led to a decrease of the cell area (Figure 2.2), which can be 

attributed to the cell compression, since cells were not growing and there was an increase on the 

percentage of older cells that under normal conditions are bigger in size. 
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Figure 2.2 Histograms and Gaussian fits for the projected area of the final cells exposed to 0.1 MPa (A) and 

1.5 MPa (B) of air pressure (adapted from Belo et al., 2005). 

 

Coelho et al. (2007) concluded that the cell separation step (when the bud size is about 30% – 

50% of the whole budding cell size) may be considered the limiting step in cell duplication. The 

influence of environmental conditions, specially the oxygen partial pressure, on the constant rate 

related to the beginning of the START event was related to the oxygen availability, giving a decrease 

in bud separation time and lower G1 phase within the pressure raise. Under anaerobic conditions, 

no significant differences were verified, demonstrating that the nature of the gas is crucial for the 

yeast cell cycle development and not the total pressure itself. Dong et al. (2007) observed that the 

S. cerevisiae growth at higher pressure of 0.5 MPa, 1 MPa and 1.5 MPa were much slower than 

that under atmospheric pressure, resulting in a lesser biomass. Under atmospheric pressure, S. 

cerevisiae cells were round and smooth, but when cultured at 0.5 MPa, the cells became more flat 

and wrinkles showed up on the cell membrane. With the pressure increase up to 1.5 MPa, more 

disrupted cell membrane structure and cell deaths were observed (Figure 2.3). 
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Figure 2.3 Scanning electron microscope photographs of yeast cells under different pressure: (A) 0.1 MPa 

and (B) 1.5 MPa (adapted from Dong et al., 2007). 

 

In typical Kluyveromyces cultivation, quite high cell densities are reached and oxygen is usually the 

major growth limiting factor (Onken and Liefke, 1989). The use of increased air pressure up to 0.6 

MPa has positive effect on the growth behavior of both Kluyveromyces marxianus strains, 

ATCC10022 (“Kluyver-negative”) and CBS 7894 (“Kluyver-positive”) and air pressure may be a 

way of eliminating oxygen limitation, leading to high biomass productivities. For the “Kluyver-

negative” strain, with a lactose concentration of 20 g/L and an air pressure of 0.6 MPa, a 3-fold 

improvement in biomass yield was achieved compared with a micro-aerated culture. In turn, as 

pressure increased, ethanol production decreased 71%. With cultures of “Kluyver-positive” strain a 

4-fold improvement in biomass productivity was observed in experiment under 0.6 MPa 

comparatively to the micro-aerated culture (Pinheiro et al., 2000). 

The methylotrophic yeast Pichia pastoris is a common host for the production of recombinant 

proteins. Fermentation process usually occurs at very high cell density cultures, on the one hand 

and the use of the reduced energy source methanol demands high oxygen transfer rates. 

Charoenrat et al. (2006) investigated the effect of increased air pressure from 0.12 MPa to 0.19 

MPa on P. pastoris Y-11430 cultivation and concluded that a 12% higher final cell mass was 

obtained under 0.19 MPa of air pressure. However, a 1.3-fold decrease on biomass yield was 

achieved in experiment with 0.19 MPa of air pressure comparatively to the trial under 0.12 MPa.  

A B 
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The raise of air pressure up to 0.8 MPa did not improve the cellular growth (Lopes et al., 2008). 

The cell exposure to increased air pressure did not induce hyphae formation. Cells remained oval 

under pressures up to 0.8 MPa with elongation factors below 2.0 for the majority of cells (> 85% of 

cells). A cell size decrease was found for the 0.8 MPa culture, since a decrease of the percentage 

of cells with a projected area higher than 100 µm2 was obtained at 0.8 MPa (7%) compared with 

the 25% of cells with this size obtained at 0.4 MPa and at atmospheric pressure. 

 

2.3.3 Products formation 

The oxygen demand in high cell density cultivation exceeds by far the maximum oxygen transfer 

capacity of conventional bioreactors such as stirred tanks or bubble columns. Thus, the dissolved 

oxygen concentration in the culture medium limits the microbial growth and activity. In some 

processes, the reduction of growth and production rates was observed, thus affecting the 

productivity. There are also processes where oxygen limitation has a much stronger impact. For 

example, if the microorganisms are able to use anaerobic metabolism, the metabolic pathway can 

be shifted to an unfavorable outcome (Doelle et al., 1982; Futatsugi et al., 1993). This can result 

in the formation of by-products, thereby declining the product yield.  

E. coli is capable of producing acetic acid from glucose, especially during periods of oxygen 

starvation. Yang and Wang (1992) observed that the incipient acetic acid production closely 

coincided with DO limitation, and clearly more acetic acid was produced at low pressures (0.106 

and 0.136 MPa). Moreover, pressurization (up to 0.27 MPa) facilitated cells utilization of acetic 

acid as a secondary substrate after the exhaustion of the glucose.  Knabben et al. (2010) also 

reported that by combining the genetically engineered E. coli strain VH33 with batch fermentations 

under pressurized conditions, acetate accumulation can be prevented without using additional 

control schemes or expensive supplementary equipment. Belo and Mota (1998) found that no 

differences on cytochrome b5 yield were found between experiments conducted at atmospheric 

pressure and 0.2 MPa. However, the raise of air pressure up to 0.4 MPa had a negative effect on 

the protein production. For E. coli TB1/pUC13 cells, a 4-fold increase in the cyt. b5 final 

productivity was achieved by an air pressure increase to 0.48 MPa as compared with an increase 

in the stirring rate to 500 rpm. 
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The plasmid DNA (pDNA) is produced by aerobic cultivation of E. coli, and to achieve high 

productivities, the typical strategy is to obtain high cell densities. However, the amount of 

obtainable biomass is often limited by the maximum oxygen mass transfer of the bioreactor. Lara 

et al. (2011) reported that the amount of pDNA vaccine produced with pressurization of E. coli 

pCMV-S culture up to 0.8 MPa was practically the same than the one obtained with oxygen 

enriched air strategy. Also, the final product yield and global productivities were similar for both 

strategies.  

In the wild strain of S. aureofaciens the raise of air pressure up to 0.8 MPa increases the specific 

product formation and total yield, whereas in S. rimosus the specific product formation was 

negatively affected (Liefke et al., 1990).  

β-galactosidase is used as an industrial enzyme in the dairy industry as it allows for the 

modification or the use of products containing lactose (Dickson and Martin, 1980). According to 

some authors (Barberis and Gentina, 1998; Garcia-Garbay et al., 1987) the expression of this 

enzyme is associated with the oxygen transfer rate in bioreactors, so it is important to establish 

well-defined and optimized conditions to culture medium oxygenation for yeast growth and β-

galactosidase production. Pinheiro et al. (2003) concluded that it is possible to use air pressure up 

to 0.6 MPa, as an optimization parameter of this enzyme production in high-density cell cultures 

where oxygen is a limiting factor. The maximum specific activity was attained for the highest air 

pressure studied (0.6 MPa) and the highest rate of activity loss was observed at 0.12 MPa air 

pressure (Figure 2.4).  
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Figure 2.4 Effect of OTR on the specific β-galactosidase specific productivity in cultures of Kluyveromyces 

marxianus during batch growth. The sequential values of OTR corresponded to atmospheric pressure, 0.12 

MPa, 0.4 MPa and 0.6 MPa (adapted from Pinheiro et al., 2003).  

 

Charoenrat et al. (2006) concluded that the recombinant Thai Rosewood β-galactosidase yield 

reached the highest value with the pressure process (0.19 MPa), comparatively to reference 

process (0.12 MPa of air pressure). A 1.4-fold improvement on β-galactosidase activity was 

reached by increasing the total air pressure from 0.12 to 0.19 MPa. 

The air pressure raise had different effects on protease and lipase secretion by the Y. lipolytica 

W29, which indicates that pressure can be an important factor of enzymes expression regulation 

and can be used as a control parameter for lipase production optimization. Lopes et al. (2008) 

observed that in the assay under 0.8 MPa a delay in the peak of lipase activity was observed, 

which indicates that the increase of pressure induces a phase of cellular adaptation and retards the 

enzyme expression; however, after this phase, the cells were able to produce more lipase. Results 

also show that 0.8 MPa of air pressure retards the production of protease, with a strong inhibiting 

effect on enzyme production, what could explain the increase in lipase productivity obtained for this 

pressure.  

γ-Decalactone (4-hydroxydecanoate) is an aroma compound of industrial interest that can be 

produced biotechnologically by the strictly aerobic yeast Y. lipolytica. Cultures that were grown 
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under moderate pressure, i.e., under increased O2 solubility, lead to a decrease on γ-decalactone 

production. However, by applying 0.5 MPa during growth and biotransformation yielded increased 

concentrations of other compounds such as dec-2-en-4-olide and dec-3-en-4-olide (Aguedo et al., 

2005).  

A survey of published data on effects of increased air pressure on aerobic cultures with product 

formation is given in Table 2.3. From these findings it is evident that elevated total air pressure 

may have distinct effects, depending on microorganism strain and biotechnological process. 

 

Table 2.3 Influence of total air pressure on product formation. 

Microorganism Product P (MPa) Effect Reference 

E. coli Cytochrome b5 Up to 0.4 
Decrease on protein 

production 

Belo et al. 

(1998) 

E. coli Acetate 1.1 
Acetate accumulation can 

be prevented 

Knabben et al. 

(2010) 

E. coli pDNA vaccine Up to 0.8 
No changes on pDNA 

topology and production 

Lara et al. 

(2011) 

S. aureofaciens Antibiotics Up to 0.8 
Increase on specific 

product formation 

Liefke et al. 

(1990) 

S. rimosus Antibiotics Up to 0.8 
Decrease on specific 

product formation 

Liefke et al. 

(1990) 

K. marxianus β-galactosidase Up to 0.6 
Increase on enzyme 

specific activity 

Pinheiro et al. 

(2003) 

P. pastoris β-galactosidase Up to 0.19 
Increase on enzyme 

specific activity 

Charoenrat et 

al. (2006) 

Y. lipolytica γ-decalactone Up to 0.5 
Decrease on lactone 

production 

Aguedo et al. 

(2005) 

Y. lipolytica Lipase Up to 0.8 
Increase on enzyme 

specific activity 

Lopes et al. 

(2008) 

Y. lipolytica Protease Up to 0.8 
Decrease on enzyme 

specific activity 

Lopes et al. 

(2008) 
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2.3.4 Antioxidant response 

In industrial bioreactors, levels and gradients of total and partial pressures are considerably higher 

than in the laboratory scale. Thus, cells in bioreactors are often exposed to O2 partial pressures 

higher than 0.21 MPa (corresponding to air at 0.1 MPa). In many cases, increased O2 partial 

pressure (higher than approximately 0.1 MPa) is toxic to aerobic cultures and inhibits microbial 

growth and product formation (Onken and Liefke, 1989). During the reduction of molecular oxygen 

to water through acceptance of four electrons, reactive oxygen species are generated. 

Oxidative stress is caused by exposure to ROS, especially superoxide anions, hydrogen peroxide, 

and hydroxyl radicals, which can damage proteins by causing modifications of amino acid side 

chains, formation of crosslinks between proteins, and fragmentation of the polypeptide backbone. 

In addition, ROS can modify bases and sugars in DNA, leading to DNA chain breaks and causing 

lipid peroxidation in cell membranes. To protect against the damage caused by oxidative stress, 

cells possess a number of biochemical systems, including enzymes (superoxide dismutase, 

catalase, glutathione reductase and glutathione peroxidase) as well as the non-enzymatic protective 

molecules (glutathione and thioredoxin), most of which are expressed at low levels during normal 

growth. In response to elevated concentrations of ROS, the expression of many antioxidant 

defenses is induced.  

Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) acts as a radical scavenger with the redox-active 

sulphydryl group reacting with oxidants to produce reduced glutathione (GSSG) (Marchler et al., 

1993). Thioredoxin is a small sulphydryl-rich protein which can be used as a reductant for 

thioredoxin peroxidase and for ribonucleotide reductase (Muller, 1996). 

Superoxide dismutase (SOD) is a metalloenzyme that detoxify superoxide radicals by conversion to 

hydrogen peroxide and oxygen.  

Catalases are ubiquitous enzymes, which protect aerobic organisms from the toxic effects of H2O2 

by catalyzing the conversion of H2O2 to molecular O2 and H2O (Angelova et al., 2005). 

 The enzyme glutathione reductase is primarily responsible for the reduction of oxidized glutathione 

and maintenance of the GSH/GSSG ratio in cells (Grant et al., 1996) and glutathione peroxidase 

catalyzes the reduction of hydroperoxides, using GSH as a reductant (Galiazzo et al., 1987). 
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For E. coli it was reported that cells overproducing SOD were more sensitive to generators of 

superoxide anions (Schellhorn and Hassan, 1988). Belo and Mota (1998) observed that the 

antioxidant enzyme SOD was slightly induced at the end of fed-batch culture under 0.48 MPa of air 

pressure. Induction of SOD by pressurized oxygen was also reported by Taniguchi et al. (1992) for 

Streptococcus lactis cells. However, it was reported that catalase is not very important in defending 

the E. coli cells against oxidative stress, but a raise in oxygen tension particularly induced the 

manganese form of SOD (Gregory and Fridovich, 1973).  

During the cultivation of Thermus sp. RQ-1 in the pressurized reactor, an induction of the 

antioxidant enzymes SOD and catalase were observed, mainly at the beginning of the exponential 

growth phase. A pressure raise of 0.4 MPa led to a 4-fold increase of SOD activity. Despite the 

observed induction of catalase by pressure, the activity values of this enzyme were very low for 

Thermus sp. RQ-1 cells. This probably indicates that there are other peroxidases more important to 

this strain for the elimination of H2O2 (Belo et al., 2000). 

During fed-batch of S. cerevisiae, Belo et al. (2005) observed that catalase and MnSOD were 

induced by hyperbaric air to a maximum of 1.0 MPa and 0.13 MPa of pure O2 pressure, but no 

statistically significant changes were observed for CuZnSOD activity. Similar results have been 

obtained by Pinheiro et al. (1997). The authors reported that above 0.3 MPa activities of 

mitochondrial superoxide dismutase and glutathione reductase increased with air pressure, but 

cytosolic superoxide dismutase and catalase increased activity only in pure oxygen. Dong et al. 

(2007) reported that incubation of S. cerevisiae cells under air pressure of 0.5, 1.0 and 1.5 MPa 

for 2 h caused obvious increase in the contents of GSH. At 1.0 MPa, the intracellular concentration 

of GSH reached the maximum value and it showed a 27% increases comparatively to the obtained 

under atmospheric pressure. Also, the use of air pressure up to 1.0 MPa stimulated S. cerevisiae 

cells to improve the trehalose synthase activity and increased intracellular concentrations of 

trehalose (Figure 2.5). Lee and Hassan (1987) studied the influence of increased oxygen partial 

pressure on chemostat cultures and observed that the exposure of the cells to 100% O2 induced 

superoxide dismutase and repressed formation of catalase. 
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Figure 2.5 Changes of trehalose and GSH contents with pressure: (▲) trehalose; (■) GSH (adapted from 

Dong et al., 2007).  

 The ability of the strain K. marxianus to respond to the increase of ROS formation because of 

hyperoxygenation was demonstrated by Pinheiro et al. (2003). The total SOD activity had a slight 

increase from 36.6 to 65.1 U/mg protein, after 24 h of cell exposure to 0.12 and 0.6 MPa air 

pressure respectively. Also Pinheiro et al. (2000) observed that superoxide dismutase, catalase and 

glutathione reductase were at high activity levels for an air pressure of 0.4 MPa, suggesting that K. 

marxianus could tolerate the increased in oxygen partial pressure. The authors also reported that 

when MnSOD was at a low activity level, catalase and glutathione reductase were at high activity 

levels. On the contrary, when CuZnSOD was induced at a high level, the other enzymatic activities 

decreased. 

 

2.4 CONCLUSIONS 

Pressure has a wide range of effects on biological systems, and as an environmental parameter, 

may influence the cellular physiology and intracellular structures. 

In biotechnology, the increased air pressure has been applied in microbial cultures, as a way of 

OTR improvement. Depending on microbial strain the increased air pressure can cause several 

effects including inhibition of growth, decrease in product formation and lower cell yield. In some 
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cases, however, increased pressure may improve process efficiency, i.e. enhancement of biomass 

and product yields, particularly in strictly aerobic strains. 

The ability of the microorganisms to respond to the increase of ROS formation by induction of 

antioxidant defense, because of hyperoxygenation, was demonstrated herein. Thus, the bioreactor 

pressurization may also be used as a way of inducing high activity levels of antioxidant enzymes, 

which might have potential applications on dairy and pharmaceutical industry. 



 

 

 

 

 

 

 

3 OXYGEN MASS TRANSFER RATE IN PRESSURIZED 

LAB-SCALE STIRRED BIOREACTOR 

 

 

 

 

Oxygen mass transfer from air to the liquid phase in bioreactors with aerobic cultures has long 

been a serious impairment to the productivity of various bioprocesses. Increase of oxygen mass 

transfer rate (OTR) can be the key to overcome oxygen limitation. In this work, the influence of 

increased air pressure up to 5 bar on OTR was measured and correlated. A 7.1-fold OTR 

improvement was obtained by the total air pressure increase from 1 bar to 5 bar. The oxygen 

volumetric mass transfer coefficient (kLa) was described by a function of the air pressure in a 

stirred lab-scale pressurized bioreactor. The correlation obtained showed that kLa slightly decreased 

with the raising in air pressure, following a power function.  
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bioreactor (January 2013). 



CHAPTER 3  57 
 

LOPES M. | 2013 

3.1 INTRODUCTION 

In aerobic bioprocesses, oxygen is a key substrate; due to its low solubility in aqueous solutions, it 

is important to ensure an adequate delivery of oxygen from a gas stream to the culture broths. The 

oxygen mass transfer rate (OTR) and volumetric oxygen mass transfer coefficient (kLa) must be 

known, and if possible predicted to achieve an optimum design operation and scale-up of 

bioreactors. OTR and kLa are influenced by a high number of parameters (physical properties of gas 

and liquid, operating conditions, geometrical parameters of the bioreactor) and also by the 

presence of biomass, that is, the consumption of oxygen by the cells (Garcia-Ochoa and Gomez, 

2009; Suresh et al., 2009). Both parameters can be related and stated mathematically as: 

          
                                                                                                                            

where C* is the solubility of oxygen in the liquid, C is the dissolved oxygen concentration in the 

liquid and kLa is made up of the mass transfer coefficient (kL) and the interfacial area (a). In this 

equation the term        is considered to be the driving force which causes oxygen to transfer 

from the gas phase to the liquid phase (Sinclair, 1984). 

Several empirical correlations have been proposed to estimate the kLa in mechanical agitated 

bioreactors (STR), being the most well-known the following function: 

     (
  

 
)
 

    
                                                                                                                          

where Pg represents the power input to the aerated bioreactor, V is the bioreactor working volume 

and υs is the superficial gas velocity. The parameters α, δ and γ are dimensionless constants. 

To calculate the power input to the aerated system (Pg), the Reynolds number (NRe) is determined 

by equation 3.3 and power number (Np) by equation 3.4. 
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where ρ represents the liquid density, N the agitation rate, υ the liquid viscosity and Di the impeller 

diameter. 

According to Cheremisinoff and Gupta (1983), if the flow regime inside the system is turbulent 

(19070 < NRe < 38141), Np is not a function of NRe when the vessel is fully baffled. Consequently, Pg 

without aeration (  
 ) can be determined by equation 3.5. 

  
       

                                                                                                                         

where KT is a constant dependent on the impeller used. 

Finally, to determine Pg in an aerated system, equation 3.6 can be used. 

     (
  

      
 

  
    )

    

                                                                                                          

where c is a constant dependent on the impeller and Fg is the volumetric gas flow rate. 

In order to overcome the oxygen limitation in aerobic microbial cultures, selection of adequate, 

normally high, OTR values is crucial. Special aeration systems, e.g. aeration using oxygen enriched 

air and increased reactor pressure are techniques applied to increase oxygen availability (Belo et 

al., 2003; Knoll et al., 2005; Maier et al., 2004). Also, the use of in situ production of oxygen 

(Sonnleitner and Hahnemann, 1994) or the use of a second liquid phase of various organic 

compounds such as perfluorodecalin (Amaral et al., 2008) or n-hexadecan (Nielsen et al., 2003) in 

the culture medium can increase the availability of oxygen to the microorganisms. 

A number of methods have been developed to determine the oxygen transfer rate in bioreactors. 

The techniques vary according to the accuracy required and have advantages and disadvantages 

depending on the availability of the necessary analytical instruments and material and labor costs 

(Novak and Klekner, 1988). In the absence of microbial cells the OTR can be estimated by the 

oxygen absorption rate of a sodium sulfite solution (Cooper et al., 1944). This technique is based 

on the reaction of sodium sulfite, a reducing agent, with the dissolved oxygen to produce sodium 

sulfate, in the presence of a catalyst (usually a divalent cation of Cu2+ or Co2+); the reaction can be 

expressed as: 
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→                                                                                                              

The reaction rate is much faster than the oxygen transfer rate and there is a concentration range of 

sodium sulfite (from 0.04 M to 1 M) for which the oxygen concentration can be assumed as zero. 

According to the stoichiometry (equation 3.7), the OTR is half of the variation in time of the molar 

concentration of aqueous sulfite. Therefore, the oxidation rate is controlled by the rate of mass 

transfer, and measures the overall rate. Thus, knowing OTR and oxygen solubility, the volumetric 

oxygen mass transfer can be determined by the equation 3.8: 

         
                                                                                                                                     

Some authors have demonstrated the applicability of pressurized bioreactors in microbial cultures, 

with enhancements in biomass and product yields (Knoll et al., 2007; Pinheiro et al., 2003). Since 

these improvements could be related with enhancement in oxygen mass transfer due to the 

increase of oxygen solubility with pressure, it seems important to describe OTR and kLa in such 

bioreactors. Thus, experimental values of OTR were obtained in a laboratory-scale pressurized 

bioreactor, by varying the air pressure, the aeration and the stirring rates. Based on equation 3.2, 

data fitting to an empirical correlation for the prediction of the kLa as a function of air pressure, 

power input of the aerated bioreactor and superficial gas velocity was attempted.  

 

3.2 MATERIALS AND METHODS 

A 600 mL stainless stirred tank bioreactor (PARR 4563, Parr Instruments, USA) with 400 mL of 

operating volume was used (Figure 3.1). The bioreactor vessel is a cylinder of 0.063 m diameter 

and with a ratio of 3 between height and diameter. The bioreactor is equipped with an impeller with 

two turbines of four pitched blades (0.035 m of diameter), a temperature probe and a sparger tube 

for aeration. The gas flow rate was measured with calibrated mass flow controller (Alicat scientific, 

Model MC-5SLPM-D).The parameters studied were stirring rate (200 rpm, 400 rpm and 600 rpm), 

aeration rate (0.5 vvm, 1 vvm and 2 vvm, measured under standard temperature and pressure 

conditions) and total air pressure inside the bioreactor (from 1 bar to 5 bar). The operating 

pressure was set by the manipulation of the pressure of the inlet compressed air and the 
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regulatory valve position in the exit gas line. The reactor was equipped with a pressure transducer 

(PARR 4842, PARR Instruments, USA) to monitor the total internal pressure. 

 

 

Figure 3.1 Stainless stirred bioreactor (PARR 4563, Parr Instruments, USA). 

 

3.2.1 Oxygen transfer rate (OTR) 

OTR in bioreactors operating under different conditions was estimated in blank assays using the 

sulfite oxidation method (Cooper et al., 1944) at 30 ºC.  A sodium sulfite solution (0.2 M) is 

oxidized to sodium sulfate in the presence of a catalyst (CuCl2 0.001 M). At regular times samples 

of known volumes were collected and mixed with an excess of iodine solution (0.05 M). The 

amount of iodine that not reacted with sulfite ion was determined by measuring absorbance at 595 

nm and converted to molar concentration using a previous calibration. The amount of residual 

sulfite can be estimated by: 
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               ⌈  ⌉

  
                                                                                                  

where Vs is the sample volume, VI is the iodine solution volume and [I2] is the molar concentration 

of iodine solution.  

As this method measures the rate of O2 absorption by a Na2SO3 solution, it enables to predict the 

effect of pressure increase on the oxygen mass transfer capacity of the system. 

 

3.2.2 kLa modelling 

A correction of equation 3.2 was made, in order to predict the effect of absolute pressure, P, in kLa:  

     (
  

 
)
 

    
                                                                                                                      

 

kLa values were obtained dividing the experimental OTR data by the oxygen solubility at 30 ºC. 

Pg and vs in equation 3.10 were calculated with the help of the equations shown in the introduction, 

converting aeration rate to real Fg. Air flow rate inside the reactor was corrected from the measured 

at standard conditions to the values of temperature and pressure of the assay using the ideal state 

gas equation. 

In order to predict the effect of air pressure in the oxygen solubility, it was used the Krichevsky-

Kasarnovsky equation (Prausnitz et al., 1986). The result proved that the Henry´s law was still 

valid for the air pressure range used in this work (up to 5 bar). 

The dimensionless parameters α, δ, β and γ were estimated by minimizing the sum of least 

squares of the difference between the experimental and modeled value of kLa, using the Solver tool 

of Microsoft Excel 2010 software. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 OTR measurement 

To evaluate the effect of total air pressure on OTR values, several experiments were carried out, 

changing stirring and aeration rates under increased air pressure up to 5 bar (Figure 3.2). From 

the analysis of each factor separately it was observed that the increment of aeration and stirring 

rates and total air pressure inside the bioreactor led to an enhancement in OTR value. At higher 

gas flow rates, gas holdup in the bioreactor increases, leading to higher surface area of bubbles, 

which in turn increases the kLa values. It may be said that the change in gas flow rate affects the 

fractional gas holdup, and hence, affects a and consequently kLa values (Belo et al., 2011). Thus, 

according to the equation 3.8, OTR value also increases. OTR improvement was more pronounced 

with the increment of the stirring rate or the raise of air pressure than with the increase of aeration 

rate. At 1 bar of air pressure, a 4.3-fold improvement was achieved with the increase of air flow 

rate up to 2 vvm. In turn, varying the stirring rate from 200 rpm to 600 rpm, at 0.5 vvm of aeration 

rate, the OTR value augments 10 times. This lower improvement in OTR with increment of aeration 

rate as compared to the agitation rate was similar for all values of pressure. For all the conditions 

studied the increase in agitation proved to be more efficient in the OTR enhancement than the 

increase in aeration. This behavior is in agreement with the results of Amaral et al. (2008), Chen et 

al. (1999), Gomes et al. (2007), Gómez-Díaz and Navaza (2003) and Juárez and Orejas (2001) 

that showed that kLa depends more strongly on agitation than on aeration rates for STR under 

atmospheric pressure conditions.   

Impeller speed is the major factor that affects kLa values of a stirred-tank bioreactor as it 

determines the overall power dissipation for any specific impeller design. This effect was attributed 

to the rapid breakage of the gas bubbles into smaller sizes with an increase in the impeller speed, 

and thus, enhancement in the gas–liquid interfacial area for mass transfer (Suresh et al., 2009). 

Raising the stirring rate from 200 rpm to 600 rpm led to an improvement in OTR value more 

significant at 1 bar of air pressure and 0.5 vvm of aeration. A 10-fold improvement in OTR was 

observed by changing the stirring rate from 200 rpm to 600 rpm, at 1 bar and 0.5 vvm. 

Comparatively, only 4- and 3-fold improvement were found at 1 bar and 2 vvm and with 5 bar and 

2 vvm, respectively. It seems that the stirring rate effect is more significant at low kLa values.  
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Figure 3.2 Experimental OTR values at various experimental conditions and aeration rate of (A) 0.5 vvm, (B) 

1 vvm and (C) 2 vvm. 

 

Independently of the stirring and aeration rates tested, the increased air pressure from 1 bar to 5 

bar led to an improvement in OTR values. This enhancement was even more pronounced at lower 

stirring and aeration rates. A 7.1-fold improvement in OTR value at 0.5 vvm and 200 rpm was 

achieved when air pressure varied from 1 bar to 5 bar, whereas at 2 vvm and 600 rpm the OTR at 

5 bar was 4 times higher than at 1 bar. In the experiment conducted at 2 vvm of aeration rate, the 

same improvement in oxygen mass transfer (4.3-fold) was achieved with the raise of air pressure 

from 1 bar to 5 bar and with the increase of stirring rate from 200 rpm to 600 rpm. This result 

proves that the increased air pressure is an alternative to stirring rate increase which is particularly 

important for high cell density cultures and when the cells are sensitive to shear stress that limits 

the increase of stirring. Belo and Mota (1998) observed that the E. coli TB1 cells showed to be 

more sensitive to high shear stress caused by stirring than to air total pressure up to 4 bar. 

The oxygen transfer rate raise promoted by the increased air pressure inside the bioreactor is 

based on the fact that the equilibrium oxygen solubility in the nutrient broth increases linearly with 

200
400

600

0

1000

2000

3000

4000

5000

1
2

3
4

5

Stirring rate (rpm)

O
TR

 (
m

g 
O

2
/L

.h
)

P (bar)

A

200
400

600

0

1000

2000

3000

4000

5000

1
2

3
4

5
Stirring rate (rpm)

O
TR

 (
m

g 
O

2
/L

.h
)

P (bar)

200
400

600

0

1000

2000

3000

4000

5000

1
2

3
4

5

Stirring rate (rpm)

O
TR

 (
m

g 
O

2
/L

.h
)

P (bar)

B

C



  64 OXYGEN MASS TRANSFER RATE IN PRESSURIZED LAB-SCALE STIRRED BIOREACTOR 

 

LOPES M. | 2013 

the total air pressure according to Henry’s law. Although oxygen-enriched air can achieve the same 

result, it is costly and requires special handling (Yang and Wang, 1992).   

Other authors have reported the enhancement in OTR values due to the increased air pressure 

inside the bioreactor, using different bioreactors and conditions. Yang and Wang (1992) found a 

2.5-fold increase in OTR by the use of air pressure from 1.06 bar to 2.72 bar. Knoll et al. (2005) 

observed that the oxygen transfer capacity, the energy efficiency, and the cost efficiency of oxygen 

transfer can be greatly enhanced by employing elevated reactor pressures up to 11 bar. 

 

3.3.2 kLa modelling 

The determination of kLa in bioreactors is essential to establish aeration efficiency and to quantify 

the effects of the operating variables on the provision of oxygen. In order to predict bioreactor 

performance when using models that account for the effect of the increased air pressure, an 

empirical correlation (equation 3.10) for the kLa in a pressurized bioreactor was proposed. Using 

the experimental data obtained in experiments with increased air pressure up to 5 bar, ranging 

aeration rate from 0.5 vvm to 2 vvm and stirring rates from 200 rpm to 600 rpm, the values of α, 

δ, β and γ coefficients from equation 3.10 were estimated as shown on equation 3.11: 

       (
  

 
)
    

    
                                                                                                         

From equation 3.11 it can be observed that the measured kLa increases according to the specific 

power input, (
  

 
), to the power of 0.70, to the superficial gas velocity, υs, to the power of 0.48 and 

decreases with the air pressure, P, to the power of (- 0.13). The values of coefficients show that the 

kLa dependence was higher on specific power input than superficial gas velocity, once the 

coefficient of υs was lower than the coefficient of (
  

 
). The raise of total air pressure had a small 

negative effect on kLa, as demonstrated by the coefficient of P. This means that the increase of air 

pressure slightly decreases the volumetric mass transfer coefficient. Belo et al. (2000) also 

reported that raising oxygen solubility through the increase in total air pressure enhanced OTR in 

the pressurized bioreactor and decreased kLa, this effect was attributed by the use of constant gas 
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flow rate (at standard conditions) that in fact led to a decrease of true gas flow rate inside de 

bioreactor with pressure. The global effect of pressure in kLa is a balance between the positive 

effect of the air bubble compression, thus the increase of interfacial specific area for mass transfer, 

and the negative effect on gas hold-up decrease. Knoll et al. (2005) found similar values for 

coefficients of (
  

 
) and υs, respectively 0.74 and 0.42. However, the authors did not take into 

account the air pressure in kLa mathematical correlation. 

Baldwin et al. (2000) reported that kLa appears to increase with superficial gas velocity at low gas 

sparging rates and decrease at higher values. Yang and Wang (1992) observed that the bioreactor 

pressurization up to 2.72 bar had little effect on kLa. Maier et al. (2001) have shown that the kLa 

values in a stirred tank reactor remain constant irrespective of the reactor pressure if the 

superficial gas velocity is kept constant. 

In Figure 3.3, predicted versus experimental kLa values are shown with a deviation of 4% of the 

unitary slope, e.g., kLa predicted = 0.96 kLa experimental which indicates a good approximation between real kLa 

values and the values calculated by the correlation, despite the dispersion of the values (R2 = 

0.911) particularly for low kLa values, as was obtained in the experiments conducted at 200 rpm of 

stirring rate. 
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Figure 3.3 Correlation between the experimental and predicted kLa values using equation 3.11 with 

estimated parameters for increased air pressure up to 5 bar, stirring rates from 200 rpm to 600 rpm and 

aeration rates from 0.5 vvm to 2 vvm. 

 

3.4 CONCLUSIONS 

Mass transfer between gas and liquid phases in stirred-tank reactors is a very important process in 

the chemical and biochemical industry. Thus, the optimization of the bioreactor performance in 

what concerns the oxygen mass transfer requirement is a crucial task in industrial bioprocesses. In 

this work, the effects of increased air pressure on the oxygen transfer rate were investigated.  The 

use of increased air pressure up to 5 bar proved to be a successful means to improve OTR. This 

means that pressure can be applied as an alternative to avoid the shear stress caused by the 

increased stirring rates that might be harmful to cells.An empirical correlation to predict kLa value 

as a function of pressure, power input and superficial gas velocity was established. It was 

demonstrated that the kLa increase was higher with the raise of specific power input than with the 

superficial gas velocity and that the increase total air pressure had a small negative effect on kLa. 

The correlation for kLa prediction, herein proposed, could be very useful for further work on the 

development of strategies for the optimization and scale-up of the processes where oxygen transfer 

is a limiting factor and air pressure increase could be used to prevent it. 
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4 COMPARISON OF YARROWIA LIPOLYTICA AND 

PICHIA PASTORIS CELLULAR RESPONSE TO AGENTS OF 

OXIDATIVE STRESS 

 

 

 

 

Yeast cells exposed to adverse conditions employ a number of defense mechanisms in order to 

respond effectively to the stress effects of reactive oxygen species. In this work, the cellular 

response of Yarrowia lipolytica and Pichia pastoris to the exposure to the ROS-inducing agents 

paraquat (PQ), hydrogen peroxide (H2O2) and increased air pressure was analyzed. Yeast cells at 

exponential phase were exposed for 3 h to 1 mM paraquat, to 50 mM H2O2, or to increased air 

pressure of 3 bar or 5 bar. For both strains the cellular viability loss and lipid peroxidation was 

lower for the cells exposed to increased air pressure than for those exposed to chemical oxidants. 

The glutathione induction occurred only in Y. lipolytica strain and reached the highest level as a 

response to PQ exposure. In general, antioxidant enzymes where more expressed in Y. lipolytica 

than in P. pastoris. The enzyme superoxide dismutase was induced in both strains under all the 

oxidant conditions but was depend of the cellular growth phase, being undetectable in non-growing 

cells, whereas glutathione reductase was more induced in those conditions. Hydrogen peroxide 

was the most efficient inducer of catalase.  Both yeast cultures underwent no cellular growth 

inhibition with increased air pressure, indicating that these yeast species were able to adapt to the 

oxidative stressful environment. 
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to different agents of oxidative stress (November 2012). 
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4.1 INTRODUCTION 

All aerobic organisms use molecular oxygen for respiration and oxidation of nutrients to obtain 

energy efficiently. During the reduction of molecular oxygen to water through acceptance of four 

electrons, aerobic microorganisms have to face the toxic effects of oxygen, once active oxygen 

species such as superoxide anion radical (O2
•−.), hydrogen peroxide (H2O2) and hydroxyl radicals 

(HO•) are generated. These reactive oxygen species (ROS) are highly noxious to all biological 

molecules, including DNA, proteins and lipids (Esterbauer et al., 1991).  

The raise of total air pressure leads to an increase of oxygen partial pressure, which generates ROS 

(Giller and Sigler, 1995). Pro-oxidants compounds in the culture medium, such as paraquat and 

hydrogen peroxide have also the capacity to generate intracellular ROS. 

Paraquat (1,1’-dimethyl-4,4’-bipyridylium dichloride) is a quaternary nitrogen herbicide and in the 

presence of a sufficient supply of reducing equivalents, repeated cycles of herbicide reduction and 

re-oxidation can occur, producing large amounts of reactive oxygen species, oxidative stress, and 

lipid peroxidation (Joaquim et al., 2001). 

The addition of exogenous hydrogen peroxide to microbial cultures may result in oxidative stress. 

The adaptation to this radical requires protein synthesis and the expression of at least 21 proteins 

increased following H2O2 adaptation (Davies et al., 1995). 

The inadequate mixing and mass transfer that cells might face in an industrial submerged culture 

process may expose yeast cells to variations in dissolved oxygen, including transient exposure to 

regions of high dissolved oxygen (DO), leading to oxidative stress. Despite the industrial 

significance, few studies were performed to simulate the impact on microbial cells of oxidative 

stress caused by the exposure to increased oxygen partial pressure and high dissolved oxygen 

concentration (Belo et al., 2005; Pinheiro et al., 2003).  

Cells possess several defensive enzymatic (such as superoxide dismutase, catalase and glutathione 

reductase) and non-enzymatic (such as glutathione) mechanisms to protect their cellular 

constituents and maintain cellular redox state. 

Y. lipolytica, a non-conventional yeast, is most used in studies of the biodegradative pathways for a 

variety of hydrophobic compounds (Coelho et al., 2010) and the methylotrophic P. pastoris can 
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grow to high cell density and has the potential for high level expression of recombinant proteins 

(Wei et al., 2008). To learn more about the response of these yeast strains to oxidative stress, the 

effect of different ROS-generating agents on cell viability and on the induction of antioxidant 

enzymes were studied. The content of MDA and GSH and the induction of antioxidant enzymes 

(SOD, catalase, GR) in response to H2O2, PQ and increased air pressure were investigated. To our 

knowledge this is the first study concerning the interaction between these yeast strains and the pro-

oxidant agents. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Strains and media 

Y. lipolytica W29 (ATCC 20460) and P. pastoris CBS 2612 were grown in YPD (10 g/L yeast 

extract, 10 g/L peptone, 20 g/L glucose) medium. The yeast strains were maintained in YPD agar 

plates and stored at 4 ºC to a maximum of 1 month.    

 

4.2.2 Oxidants treatment 

Yeasts cells were pre-cultured in 250 mL Erlenmeyer flasks filled with 100 mL of YPD medium till 

the beginning of exponential phase. Cells were then harvested by centrifugation, washed with PBS 

buffer and ressuspended in 400 mL of PBS buffer or YPD medium. In the experiments with 

chemical oxidants, PQ and H2O2 were added at non-lethal final concentration of 1 mM and 50 mM, 

respectively. The exposure to increased air pressure was performed in a 600 mL pressurized 

bioreactor (PARR 4563, Parr Instruments, USA) under 3 bar or 5 bar of air pressure at 400 rpm 

and 1 vvm of aeration. 

 

4.2.3 Batch growth 

Yeasts cells were pre-grown overnight in 250 mL Erlenmeyer flasks with 100 mL of YPD at 140 

rpm and at 27 ºC (Y. lipolytica) or 30 ºC (P. pastoris). Batch cultivations were carried out in the 
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pressurized bioreactor, with 400 mL of each culture, at 27 ºC or 30 ºC and 400 rpm. Compressed 

air was continuously sparged into the culture at an aeration rate of 1 vvm. The values of air 

absolute pressure studied were 1 bar, 3 bar, and 5 bar.  

 

4.2.4 Analytical methods 

Yeasts samples were collected after 3 h of exposure to oxidants for analysis of cell viability, MDA 

and GSH content and antioxidant enzymes activity. Cell viability was estimated by the Methylene 

Blue staining method (Jones, 1987). Antioxidant enzymes were measured after cell disruption and 

dialysis of cell extracts. Cells were disrupted by mechanical treatment with 0.5-mm glass beads 

during 6 min of vortex mixing (1 min bursts with 1 min cooling intervals). Whole cells and debris 

were removed by centrifugation at 5000 g for 15 min at 4°C. The clear supernatant was dialyzed 

overnight (Pinheiro et al., 2000). Catalase was assayed using the method described by Beers and 

Sizer (1952), SOD was quantified by the method of Marklund and Marklund (1974) and glutathione 

reductase was analyzed according to the procedure described by Smith et al. (1988). MDA was 

measured by the method of TBARS (thiobarbituric acid reactive species) as described by Espindola 

et al. (2003). GSH was quantified in the neutralized extracts using DTNB (5,5’-dithiobis(2-

nitrobenzoic acid)) reagent according to the procedure described by Jamnik and Raspor (2003). 

Samples from the batch cultures in the pressurized bioreactor were collected for analysis of cell 

concentration (optical density at 600 nm and converted to dry cell weight per liter) and glucose 

consumption. Glucose was quantified by HPLC with a Metacarb 67H column (Varian, Palo Alto, CA) 

and a RI detector (Knauer K-2300, Germany). The eluent was H2SO4 0.005 M at 0.5 mL/min and 

the column (Chrompack, Brasil) temperature was 60 ºC. 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Cell viability 

The effect of three different oxidative stress inductors, PQ, H2O2 and hyperbaric air, on yeast cell 

viability was tested. The experiments were conducted with cells at the exponential phase since 
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these cells are metabolically more active than stationary phase cells and were likely to be more 

susceptible to the possible lethality of aerobic stressors (Hassan and Fridovich, 1978). 

The presence of a carbon source allowed the cells to grow during the oxidant exposure, and led to 

more active and viable cells. In the experiments with YPD medium there was no significant 

difference on the cellular viability between strains, independently of the stressors (Table 4.1). 

However, the exposure to oxidants agents in PBS buffer demonstrated that the P. pastoris cells 

were more susceptible than the Y. lipolytica. Hassan and Fridovich (1978) also observed that the 

E. coli cells were strikingly less sensitive to PQ in complex medium than in minimal medium. 

 

Table 4.1 Cell viability (%), defined as the ratio of final and initial viable cells number, of two yeasts strains in 

exponential phase of growth, ressuspended in PBS buffer and YPD medium, exposed to different oxidants 

for 3 h. Values are average ± standard deviation of three independent experiments. 

 PBS buffer YPD medium 

 H2O2 PQ 3 bar 6 bar H2O2 PQ 3 bar 6 bar 

Y. lipolytica 

W29 
87±11 90±10 95±12 95±13 92±15 94±13 97±14 96±15 

P. pastoris 

CBS 2612 
58±8 64±10 78±12 77±12 90±14 93±15 97±14 96±14 

 

When cells of Y. lipolytica were exposed to H2O2 and PQ in PBS buffer respectively 87% and 90% of 

the cells survived, which shows that the strain is quite resistant to these oxidant agents. The 

exposure to hyperbaric air leads to a minor decrease in cell viability, indicating that the oxidative 

stress imposed by the partial oxygen pressure is less deleterious than the other stressors. The P. 

pastoris cells were more susceptible to the oxidative stress than the other strain, mainly in PBS 

buffer. When Pichia cells were subjected to the PQ and H2O2 treatment about 36% and 42% were 

killed, respectively. In turn, there was 78% and 77% of viable cells in treatments under 3 bar and 6 

bar of air, respectively. Pinheiro et al. (2002) reported that K. marxianus cells respond better to the 

PQ than to the H2O2 exposure during 24 h of growth. Also, cell viability was higher for the cells 

growing under increase air pressure up to 6 bar than for those cells exposed to chemical oxidants. 
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Data suggest that different organisms respond differently to ROS and that they use different 

defense mechanisms against those substances. 

 

4.3.2 Antioxidant markers 

Lipid peroxides are unstable indicators of oxidative stress in cells that decompose to form more 

complex and reactive compounds such as malondialdehyde (MDA), a natural by-product of lipid 

peroxidation.  

Regardless of the yeast strain, the exposure to oxidant agents leads to a MDA production. This 

production was more pronounced with the PQ treatment (Figure 4.1).  

The MDA content in cells ressuspended in PBS buffer and exposed to PQ was 3- and 10-fold higher 

than in the experiments under 5 bar for Y. lipolytica and P. pastoris cells, respectively. The 

exposure of cells in YPD medium to H2O2 led to a 6- and 2-fold enhancement in MDA production 

compared to 5 bar of air pressure for Y. lipolytica and P. pastoris cells, respectively. Interestingly, it 

seems that lipid peroxidation with hydrogen peroxide is minimized, being P. pastoris less sensitive 

to the stress caused by H2O2. Thus, it is reasonable to conclude that the stress caused by an 

increase of partial oxygen pressure did not lead to membrane destructive processes.   
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Figure 4.1 MDA content of (A) Y. lipolytica W29 and (B) P. pastoris CBS 2612 cells in exponential phase of 

growth, ressuspended in PBS buffer (black bars) and YPD medium (white bars) and exposed to different 

oxidants. Values are average ± standard deviation of three independent experiments. 

 

It seems that there was no direct relation between the medium composition and the induction of 

lipid peroxidation. Although the Y. lipolytica strain exposed to PQ showed a 2.4-fold increase in 

MDA content when the cells were in PBS buffer compared to YPD medium, the addition of the H2O2 

led to a 3-fold enhancement of MDA in PBS buffer.  

The involvement of oxidative mechanisms to mediate the damaging effects of oxidant agents tested 

has been first shown by the analysis of GSH. According to our results, only the Y. lipolytica strain 

has shown the capacity to induce GSH production in the experimental conditions (Figure 4.2). It is 

likely that P. pastoris possesses other defense mechanisms more important than GSH in 

antioxidant response to stressors. Also, this low GSH production in Pichia might be responsible for 

the lower cell viability in PBS medium observed for this yeast as compared to Y. lipolytica. 
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Figure 4.2 GSH content of Y. lipolytica W29 cells in exponential phase of growth, ressuspended in PBS 

buffer (black bars) and YPD medium (white bars) and exposed to different oxidants. Values are average ± 

standard deviation of three independent experiments. 

 

The exposure of Y. lipolytica cells to PQ led to a 30-fold enhancement on GSH induction 

comparatively to the experiments conducted with hydrogen peroxide. Also, GSH was more induced 

with air pressure than with H2O2. The cells exposed to hydrogen peroxide showed a minor GSH 

induction. The GSH content in experiments with H2O2 was 30- and 9-fold smaller than the value 

obtained with PQ and 5 bar of air pressure. Among the oxidative stress agents, PQ is a thiol-

oxidizing agent resulting in fast oxidation of reduced glutathione (GSH) to oxidized glutathione 

(GSSG). The comparison of GSH in cells treated with PQ and increased air pressure indicates that 

the thiol oxidation should be small up to 5 bar of air pressure. 

Glutathione is an essential reductant during normal metabolic processes in yeasts. Grant et al. 

(1996) demonstrated that a S. cerevisiae strain which lacks a functional copy of the GSH 1 gene is 

hypersensitive to the peroxides and the oxidative stress conditions induced by the H2O2. Izawa et al. 

(1995) demonstrated that intracellular GSH played an important role in the stress response to H2O2 

in S. cerevisiae using glutathione depleting agents and a glutathione-deficient mutant. This could 

explain the major decrease of yeast cells viability exposed to H2O2 comparatively to the others 

stressors agents, as reported above. 
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One of the principal antioxidant enzymes is superoxide dismutase that is involved in the 

dismutation of superoxide anions to dioxygen and hydrogen peroxide. In the experiments with yeast 

cells ressuspended in PBS buffer, both strains were unable to induce the SOD enzyme. This result 

may suggest that only in the presence of a respiratory carbon source the yeast strains used on this 

work have the capacity to induce this enzyme. The general inactivation of SOD observed after 

oxidant agents treatment in PBS buffer could also be the result of oxidative damage of this enzyme, 

because it is known to be inactivated by various peroxides. This probably reflects the decreased 

ability of the cells to adapt efficiently to the oxidative stress. Whereas SOD is considered to be an 

essential antioxidant enzyme, at the same time it can have pro-oxidant effects in vivo (Pigeolet et 

al., 1990), and thus SOD inactivation can also be the result of a cellular defense mechanism. 

Hassan and Fridovich (1978) found that E. coli cells responded to PQ by increasing their content of 

SOD in the presence of yeast extract, but not in its absence, leading to the assumption that yeast 

extract might have exerted its effect by eliciting the SOD biosynthesis. 

Although there were differences in the other defensive mechanisms between the two yeasts tested 

(e.g. GSH and catalase), SOD induction was quite similar for both strains, with each oxidant 

treatment (Figure 4.3). This may be due to the fact that this enzyme is one of the primarily induced 

antioxidant mechanism involved in stress defense.    

The experiments under air pressure up to 5 bar produced a clear increase in SOD activity 

compared to the exposure to H2O2 (69% higher for Y. lipolytica and 65% higher for P. pastoris) and 

PQ (57% higher for Y. lipolytica and 65% higher for P. pastoris). This higher SOD activity in the 

experiments under 3 bar and 5 bar of air pressure may explain the higher cell viability of the both 

strains. The importance of yeasts superoxide dismutase enzyme on triggering ROS generation by 

oxygen was also proved by Lushchak et al. (2005), who observed that S. cerevisiae strains carrying 

mutations in SOD 1 and SOD 2 genes were hypersensitive to oxygen, causing slow aerobic growth.  
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Figure 4.3 Superoxide dismutase specific activity of Y. lipolytica W29 (black bars) and P. pastoris CBS 2612 

(white bars) cells in exponential phase of growth ressuspended in YPD medium and exposed to different 

oxidants. Values are average ± standard deviation of three independent experiments. 

 

The lower SOD activity in yeast cells incubated with 50 mM H2O2 suggests that this enzyme does 

not participate in the cellular acclimatization to drastic oxidative H2O2-induced challenges. Abbeg et 

al. (2010) observed only a slight induction of SOD with the addition of H2O2 to the various Candida 

strains medium and Biryukova et al. (2006) found a slight induction of SOD with the pretreatment 

of Y. lipolytica cells with 0.3 mM H2O2.  

The activation of catalase, observed following each oxidant stressors treatment, is one of the most 

common cellular responses to redox alterations, because this enzyme is easily induced by a wide 

range of stimuli often related to the energy status of the cell (Braconi et al., 2008). 

In general, the oxidant treatments with cells ressuspended in PBS buffer showed a higher catalase 

activity compared to those with YPD medium (Figure 4.4). A 1.7-, 2.9-, 5- and 3.8-fold 

enhancement in enzyme activity was obtained when Y. lipolytica cells ressuspended in PBS buffer 

were exposed to H2O2, PQ, 3 bar and 5 bar of air pressure, respectively, compared to the activities 

with YPD medium. The glucose concentration can exert a negative pressure on the catalase activity 

of Y. lipolytica W29. The differences found in the experiments with P. pastoris were not so 

significant. On the other hand, as the yeast cells ressuspended in PBS buffer were not capable to 
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induce SOD, it can be concluded that both SOD and catalase operate in concert to protect cells 

from oxidative stress, acting in different ways. 

 

 

Figure 4.4 Catalase specific activity of (A) Y. lipolytica W29 and (B) P. pastoris CBS 2612 cells in 

exponential phase of growth, ressuspended in PBS buffer (black bars) and YPD medium (white bars) and 

exposed to different oxidants. Values are average ± standard deviation of three independent experiments. 

 

When comparing the two yeasts, it was observed that Yarrowia showed a higher capacity to induce 

catalase after exposure to oxidant agents. A 4-, 16- and 23-fold enhancement was obtained in Y. 

lipolytica with H2O2 and PQ, 3 bar and 5 bar of air pressure, respectively, compared to the activities 

obtained with P. pastoris. 

Particular attention should be paid to H2O2, the stress treatment that leads to a higher catalase 

synthesis in both yeast strains. The exposure of Y. lipolytica cells to H2O2 led to a 1.2-, 2.5- and 1.6-

fold increase in catalase activity as compared to PQ, 3 bar and 5 bar of air pressure treatments. 

The enzyme activity of P. pastoris cells treated with H2O2 was 1.3, 9.9 and 8.9 times higher than 

that obtained in exposures to PQ, 3 bar and 5 bar of air pressure, respectively. Other authors have 

demonstrated that the treatment with H2O2 increased levels of catalase activity in P. pastoris (Smith 

et al., 1988), C. albicans (González-Párraga et al., 2003), various Candida strains (Abbeg et al., 
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2010), A. niger (Kreiner et al., 2002), Y. lipolytica (Biryukova et al., 2006) and S. cerevisiae 

(Bayliak et al., 2006). 

The enzyme glutathione reductase is involved in the glutathione recycling system. This enzyme 

enables the cell to sustain adequate levels of cellular GSH, once it is primarily responsible for the 

reduction of oxidized glutathione (GSSG) to reduced glutathione at the expense of NADPH. 

Both yeast strains were able to induce glutathione reductase (Figure 4.5). However, the GR activity 

was considerably smaller than the SOD and catalase activities, suggesting that glutathione 

reductase plays a minor role on antioxidant defense against the agents tested. On the other hand, 

as the process of redox-cycling depletes intracellular NADPH (cofactor for glutathione reductase), 

the enzyme activity was likely to be affected by oxidative stress. It seems that there is a relation 

between the medium composition and the glutathione reductase induction, once the cells 

ressuspended in PBS buffer showed higher activity whatever the oxidant agent tested and yeast 

strain.  

 

 

Figure 4.5 Glutathione reductase specific activity of (A) Y. lipolytica W29 and (B) P. pastoris CBS 2612 cells 

in exponential phase of growth, ressuspended in PBS buffer (black bars) and YPD medium (white bars) and 

exposed to different oxidants. Values are average ± standard deviation of three independent experiments. 
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In all the experiments with P. pastoris cells there was no significant difference in GR enzyme 

activity with any of the pro-oxidant agents. However, with the Y. lipolytica, cells treated with H2O2 

showed less glutathione reductase activity. A 3.3-fold enhancement in enzyme activity was 

observed in the treatment with PQ compared to H2O2 exposure. It was not surprising that the higher 

activity of this enzyme was found for the agents that also lead to a more pronounced induction of 

GSH (PQ and increased air pressure), once this enzyme participates in the reduction of GSSG to 

GSH in the presence of NADPH. 

 

4.3.3 Growth under increased air pressure 

Since Y. lipolytica and P. pastoris showed to be able to adapt to pressures of 3 bar and 5 bar and it 

was showed that antioxidant defense mechanisms are induced under these conditions, batch 

cultures of the yeast strains under increased air pressure were performed to validate the resistance 

of the yeasts under this stress condition. Typical batch growth and glucose consumption profiles 

are shown in Figure 4.6. Both strains were able to grow for 24 h under air pressure values 5-fold 

higher than the atmospheric pressure.  

 

 

Figure 4.6 Batch growth (close symbols) and glucose consumption (open symbols) of (A) Y. lipolytica and 

(B) P. pastoris under pressures of 1 bar (♦), 3 bar (■) and 5 bar (▲). 
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Regardless of the yeast strain, the raise of total air pressure from 1 bar to 3 bar and 5 bar led to an 

increase in the final cell dry weight. 3.3- fold and 1.9-fold improvement in biomass production was 

obtained with the increase of air pressure up to 5 bar compared to 1 bar, for Y. lipolytica and P. 

pastoris, respectively. Among the yeast strains studied, the highest biomass yield was obtained 

with 5 bar of air pressure. An improvement in biomass yield of Y. lipolytica and P. pastoris cultures 

from 0.3 to 1.1 mass of cells per mass of glucose and from 0.3 to 0.6 mass of cells per mass of 

glucose, respectively, was achieved with increased air pressure up to 5 bar. The specific growth 

rate of Y. lipolytica was enhanced by the raise of air pressure. The values of specific growth rate 

obtained for Y. lipolytica at 5 bar was 36% higher than in the experiment at 1 bar. However, no 

significant differences were obtained on growth rates of P. pastoris when the pressure varies from 

1 bar to 5 bar (0.27 h-1 – 0.29 h-1). It is important to stress out that no inhibitory effects were 

observed in the cellular growth under high air pressures of 3 bar and 5 bar. These results 

confirmed the ability of the yeast to cope with oxidative stress conditions that can arise from the air 

pressure increase, since air pressure at to 5 bar is less leterious than other oxidant agents and 

cells were able to induce their antioxidant defenses. 

 

4.4 CONCLUSIONS 

Under normal physiological conditions, the toxic effects of ROS are minimized by enzymatic and 

non-enzymatic antioxidants. However, under stressful conditions, oxidant levels may increase to 

overwhelm the antioxidants, resulting in cell damage. 

Our results suggest that Y. lipolytica have a more potent antioxidant system than P. pastoris, which 

was proved by the higher cell viability and enzymatic mechanisms induction.  

Cells responses against both superoxide and peroxide stresses include enhanced expression of 

SOD and catalase, which are key enzymes for directly ROS scavenging. Under superoxide stress 

(PQ and air pressure), the SOD induction was the main observed mechanism. In contrast, and as 

expected, the effect of H2O2 treatment on antioxidant enzyme synthesis was much more 

pronounced for catalase than for SOD. 
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For the experimental conditions used in this work, an air pressure raise of up to 5 bar proved to be 

applicable to the batch cultivation of both Y. lipolytica and P. pastoris. The positive effects of air 

pressure on the growth behavior of strains, combined with the induction of antioxidant defenses 

against the superoxide anion, offers an opportunity to perform industrial bioprocesses based in 

these yeast strains, under increased air pressure, with increased biomass yields.  



 

 

 

 

 

 

 

5 YARROWIA LIPOLYTICA GROWTH UNDER INCREASED 

AIR PRESSURE: INFLUENCE ON ENZYME PRODUCTION 

 

 

 

 

Improvement of microbial cell cultures oxygenation can be achieved by the increase of total air 

pressure, which increases oxygen solubility in the medium. In this work, a pressurized bioreactor 

was used for Yarrowia lipolytica batch cultivation under increased air pressure from 1 bar to 6 bar. 

Cell growth was strongly enhanced by the pressure raise. Fivefold and 3.4-fold increases in the 

biomass production and in specific growth rate, respectively, were observed under 6 bar. The 

increase of oxygen availability caused the induction of the antioxidant enzyme superoxide 

dismutase, which indicates that the defensive mechanisms of the cells against oxidative stress 

were effective and cells could cope with increased pressure. The pregrowth of Y. lipolytica under 

increased pressure conditions did not affect the lipase production ability of the cells. Moreover, the 

extracellular lipase activity increased 96% using a 5-bar air pressure instead of air at 1 bar during 

the enzyme production phase. Thus, air pressure increase in bioreactors is an effective mean of 

cell mass and extracellular homologous enzyme productivity enhancement in Y. lipolytica cultures. 
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5.1 INTRODUCTION 

Yarrowia lipolytica is a non-conventional yeast, nontoxic, that can grow to very high densities (Barth 

and Gaillardin, 1997). It is most used in studies of the biodegradative pathways for a variety of 

hydrophobic compounds including alkanes, oils, and fatty acids (Zvyagilskaya et al., 2004) and 

thus for its capacity to produce lipid-degrading enzymes, such as lipases.  

The amount of oxygen available in culture media with Y. lipolytica is an important parameter since 

this organism is strictly aerobic. Previous work demonstrated that hyperbaric air could be 

successfully applied to yeast cultivation, as a way of improving the oxygen transfer rate to aerobic 

cultures (Aguedo et al., 2005; Charoenrat et al., 2006; Knoll et al., 2007). Moreover, the energy 

and cost efficiencies of high-pressure fermentation for industrial application have already been 

demonstrated (Knoll et al., 2005).  

In industrial bioreactors, levels and gradients of total and partial pressures are considerably higher 

than on the laboratory scale. Thus, cells in bioreactors are often exposed to O2 partial pressures 

higher than 210 mbar (corresponding to air at 1 bar). In many cases, increased O2 partial pressure 

(higher than approximately 1 bar) is toxic to aerobic cultures and inhibits microbial growth and 

product formation (Onken and Liefke, 1989). During the reduction of molecular oxygen to water 

through acceptance of four electrons, reactive oxygen species such as superoxide anion radical, 

hydrogen peroxide, and hydroxyl radical are generated. The ROS may give raise to damage of 

enzymes, nucleic acids, or lipids (Izawa et al., 2005). To counter oxidative stress, cells 

constitutively express enzymes that detoxify the ROS and repair the damage caused by them. 

Antioxidant enzymes, such as catalase and superoxide dismutase, constitute the primary defenses 

of the cells because they are responsible for transforming these reactive oxygen species into non-

reactive ones (Moradas-Ferreira et al., 1996).  

The aim of this work is to investigate whether increasing air pressures, may be applied for the 

production of extracellular enzymes by Y. lipolytica W29, in a range of air pressure values that cells 

could grow without the effects of oxidative stress. Thus, the ability of the strain to induce 

antioxidant enzymes as a response to increased oxygen partial pressure was again monitored. 

Moreover, this paper reports an investigation into the influence of a pre-adaptation phase of cells to 

hyperbaric conditions on the lipase production by Y. lipolytica cells. 
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5.2 MATERIALS AND METHODS 

5.2.1 Strain and media 

Y. lipolytica W29 (ATCC 20460) was grown in yeast extract peptone dextrose (YPD) medium. The 

lipase production medium was composed of 6.7 g/L yeast nitrogen base (Pronadisa, 1545.1), 7 

g/L olive oil, 5 g/L arabic gum, and 400 mM Tris–HCl buffer, pH 7.2. 

 

5.2.2 Operating conditions 

Yeast cells were pre-grown in 250-mL Erlenmeyer flasks filled with 100 mL of the YPD medium at 

140 rpm, at 27°C of temperature, for 24 h. Batch cultivations were carried out using a 600-mL 

stainless steel stirred tank bioreactor (PARR 4563, Parr Instruments, USA), with 400 mL of YPD 

medium, at 27°C, and 400 rpm in order to assess the effect of air and oxygen pressure in cellular 

growth and on antioxidant enzyme induction. Compressed air was continuously sparged into the 

culture at an aeration rate of 1 vvm. The values of air pressure studied were from 1 to 6 bar. The 

operating pressure was set by the manipulation of the pressure of the inlet air and the regulatory 

valve position in the exit gas line. The reactor was equipped with a pressure transducer (PARR 

4842, PARR Instruments, USA) to monitor total internal pressure. An experiment in an Erlenmeyer 

flask (500 mL) with 200 mL of YPD medium, under atmospheric pressure (1 bar), and an agitation 

rate of 140 rpm was used as a control. With the aim of investigating the influence of a pre-

adaptation phase of cells to hyperbaric conditions on the lipase production by Y. lipolytica cells, 

experiments were conducted in the pressurized bioreactor in which the lipase production phase 

was preceded by a 24 h growth in YPD medium at 1 bar or 5 bar of total air pressure. 

 

5.2.3 Analytical methods 

Culture samples were collected for analysis of cell concentration (optical density at 600 nm and 

cell number and converted to g cell dry per liter), total soluble protein, glucose consumption, and 

enzymatic assays. Total soluble protein was obtained by Bradford’s method (Bradford, 1976). 

Glucose was determined using the 3,5-dinitrosalycilic acid method (Gonçalves et al., 2010). 
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Extracellular lipase was measured in the sample supernatant using p-nitrophenyl-butyrate in 

sodium acetate buffer 50 mM at pH 5.6 as a substrate, at 37°C for 15 min. One unit of activity 

was defined as the amount of enzyme that produces 1 μmol of p-nitrophenol per minute under 

assay conditions. Protease in cell-free samples was quantified using 0.5% (w/v) azocasein in 

acetate buffer as substrate at pH 5.0, at 37°C for 40 min. One unit of activity was defined as the 

amount of enzyme that causes an increase of 0.01 of absorbance relative to the blank per minute 

under assay conditions. The antioxidant enzymes were measured after cell disruption and dialysis 

of cell extracts as described in section 4.2.4. Catalase was assayed using the method described by 

Beers and Sizer (1952) and SOD was quantified by the method of Marklund and Marklund (1974). 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Air effects on cell growth 

Typical batch growth curves and glucose consumption profiles for the experiments under increased 

air pressure and atmospheric pressure are shown in Figure 5.1. The application of 6 bar air 

pressure stimulated cell growth compared to the atmospheric conditions. 

The oxygen availability increase imposed by pressure raise had a clear positive effect on this yeast 

metabolism since the biomass production was enhanced and reached its maximal value for an air 

pressure of 6 bar. An increase of the cell dry weight at 6 bar of 3.5- and 5-fold was obtained 

compared with the experiments under atmospheric pressure in the control assay and in the 

bioreactor at 1 bar, respectively. 
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Figure 5.1 Batch growth (A) and glucose consumption (B) of Y. lipolytica W29 at atmospheric pressure (♦) 

and in hyperbaric reactor under pressures of 1 bar (■), 2 bar (▲), 3 bar (x), 4 bar (□), 5 bar (◊), and 6 bar 

(Δ). 

 

The results described above are in accordance with the previous work of Lopes et al. (2008), in 

which no cellular activity inhibition by air pressure increase was detected in batch cultures of Y. 

lipolytica, albeit a different culture medium without glucose and a different bioreactor were used. In 

control experiment and 1 bar of air pressure in the bioreactor, glucose was not totally consumed. 

On the other hand, the raise of air pressure up to 6 bar led to a complete consumption of glucose.  

Thus, the use of increased air pressure in Y. lipolytica W29 cultures might be exploited up to 6 bar 

to improve the biomass yield and productivity (Table 5.1). With 6 bar of air pressure, biomass 

yields increased 67.8% and 86.4% compared with the experiments under atmospheric pressure 

(control) and 1 bar, respectively. Also, a 4.1-fold improvement in biomass productivity was 

obtained with the increase of air pressure up to 6 bar compared to the control. Other non-

conventional yeasts such as Pichia pastoris (as shown in previous chapter) and Kluyveromyces 

marxianus (Pinheiro et al., 2000) were successfully cultivated under increased air pressure with 

significant improvements on biomass productivity.  
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Table 5.1 Changes in biomass yield, specific growth rate and productivity with air pressure in batch 

experiments. 

Pressure (bar) Yx/s (g cells/g glucose) µ (h-1) Px (g cells/L·h) 

Control 0.53 0.09 0.25 

1 0.35 0.18 0.17 

2 0.70 0.19 0.45 

3 0.97 0.23 0.62 

4 1.04 0.26 0.71 

5 1.18 0.28 0.77 

6 1.21 0.31 1.02 

 

However, for yeasts with respiro-fermentative metabolic pathways, like S. cerevisiae, the increase 

of air pressure led to a decrease on biomass productivity for a batch mode of operation (Pinheiro et 

al., 1997). In fact, for this yeast, air pressure increase showed to be useful for fed-batch mode of 

operation at operating conditions that allow fully respiratory metabolism and with a pressure 

increase program that enabled cellular adaptation to hyperbaric conditions (Belo et al., 2003). This 

shows that microorganisms react differently to the air pressure raise, depending also on other 

culture conditions (Hang and Zhong, 2003; L’italien et al., 1989; Knoll et al., 2007; Matsui et al., 

2006; Onken and Liefke, 1989). 

The specific growth rate of Y. lipolytica was clearly enhanced by the increase of air pressure. An 

increase of 6 bar led to a 3.4- and 1.7-fold increase in specific growth rate under atmospheric 

pressure and 1 bar, respectively. Due to the high oxygen mass transfer rate, the cells had more 

oxygen in the medium giving higher growth rates, and less time is necessary to obtain maximum 

cell concentration. The improvement of specific cellular growth of Y. lipolytica by OTR enhancement 

through other means than pressure was previously observed, as is the case of oxygen carrier use, 

like perfluorocarbons (Amaral et al., 2007). 

It is clear from these results that pressure had no inhibitory effects on the growth of this yeast 

strain. An increase of air pressure up to 6 bar might successfully be applied to the improvement of 

the biomass production of Y. lipolytica W29. 
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Through the optical microscopic observation of the cells, it was found that the cells displayed a 

typical oval form in all assays up to 6 bar (Figure 5.2). The results demonstrated that cell exposure 

to increased air pressure did not induce hyphae formation as reported by other authors as a result 

of oxidative stress due to chemical agents (Kawasse et al., 2003). 

 

 

Figure 5.2 Microscopic observations (magnification 400x) of Y. lipolytica W29 grown at (A) 1 bar and (B) 6 

bar. 

 

5.3.2 Pressure effects on antioxidant enzyme activities 

Intracellular antioxidant enzyme activities such as SOD and catalase under different air pressures 

were monitored since these were the antioxidant enzymes that present higher activities as a 

response to pressure in Y. lipolytica (Chapter 4). Figure 5.3 presents the data of the catalase and 

SOD-specific activities, measured at the end of the cell cultivation under hyperbaric conditions.  
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Figure 5.3 Effect of air pressure on (A) superoxide dismutase and (B) catalase specific activities, in the final 

batch cell cultures (approximately 30 h of growth). 

 

Superoxide dismutase specific activity was induced by air pressure increase to a maximum at 6 

bar. An increase of the SOD-specific activity at 6 bar (1.26 bar of oxygen partial pressure) of 53.4-

fold was obtained compared with the experiments under 1 bar. This confirms the ability of Y. 

lipolytica cells to respond to the increase of reactive oxygen species formation caused by 

hyperoxygenation. The adaptive response of the yeast Y. lipolytica to the oxidative stress induced by 

the oxidants like hydrogen peroxide, menadione, and juglone has been shown to be associated with 

an increase in the activity of cellular superoxide dismutase and other main enzymes involved in cell 

defense against oxidative stress (Biryukova et al., 2006). In the herein presented work, the SOD 

induction showed the cell sensitivity to high dissolved oxygen concentrations. However, as no cell 

growth inhibition was observed under pressurized conditions, it is quite safe to state that the cells 

of the strain used can cope with such high air pressure values up to 6 bar that corresponds to a 6-

fold increase in oxygen solubility in the medium.  

The influence of total air and oxygen pressure increase on the catalase activity is not clear; thus, it 

seems that this enzyme plays a minor role in the defensive mechanisms against the oxidative 

stress caused by oxygen partial pressure increase, for Y. lipolytica W29. This is to our knowledge 

the first report on the response of SOD and catalase response to increased air–oxygen pressure in 
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Y. lipolytica strains. These results demonstrate that the raise of air pressure could be also applied 

to SOD production, once it is most induced. 

5.3.3 Pressure effect on lipase production and pre-adaptation 

In order to investigate the influence of a pre-adaptation phase of cells to hyperbaric conditions on 

the lipase production by Y. lipolytica cells under increased pressure, assays were conducted in the 

pressurized bioreactor in which cells were pre-grown on the bioreactor at normal and increased 

pressure followed by a lipase production phase at normal and increased pressure.  

This work shows that the increase of total air pressure influences enzymatic activity. As can be 

seen in Figure 5.4, an increase of the lipase activity and lipase productivity at 5 bar of 1.8-fold and 

3.7-fold, respectively, was obtained compared with the experiments under 1 bar.  

 

 

Figure 5.4 Extracellular lipase activity profiles by Y. lipolytica W29 during batch experiments with pre-

adaptation to hyperbaric conditions: growth at 1 bar and production at 1 bar (♦), growth at 1 bar and 

production at 5 bar (■), growth at 5 bar and production at 1 bar (▲) and growth at 5 bar and production at 

5 bar (●). 
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For the range of air pressure values applied, the pre-adaptation phase of cells to hyperbaric 

conditions did not improve the lipase production. The lipase production at 5 bar with cells pre-

grown at the same air pressure was similar to that obtained with cells grown under 1 bar. This 

indicates that responses of the cells, in what lipase production is concerned, occur irrespective of 

the pre-culture pressure conditions. Therefore, it can be concluded that the Y. lipolytica cells can 

quickly respond and adapt to hyperbaric conditions and no need of long phases of hyperbaric 

stress adaptation is needed. Contrary to this result, it was previously observed that pregrowth of Y. 

lipolytica W29 under 1 bar or 5 bar of air pressure had a strong influence in the activities of 

enzymes of the β-oxidation pathway of the methyl ricinoleate biotransformation to decalactones 

leading to considerable differences in metabolites production at 1 bar or 5 bar of total air pressure 

(Aguedo et al., 2005).  

Besides lipase production, the production of other enzymes, such as proteases, by Y. lipolytica 

strains has been reported (Puthli et al., 2006). In spite of the fact that the culture medium 

conditions used favor lipase production, protease activity was detected in the medium. Figure 5.5 

shows the results of monitoring protease secretion along time. During the first hours of culture, the 

protease activity was low, increasing gradually until the end of the cultivation time, suggesting that 

the decrease of the medium pH (data not shown) favors the production of an acid protease by 

yeast.  

The highest value of protease production was found for the 5-bar assays, whereas in the 

experiments carried out under 1 bar its concentration in the medium was lower. The presence of 

protease in culture medium can influence the production kinetics of lipases since the prolonged 

time of fermentation can lead to the loss of enzyme due to its decomposition. In this work, highest 

value of protease production was reached at the same air pressure (5 bar) that the maximum 

lipase productivity was obtained but the pre-exposition of cells to increased air pressure reduced 

40% the protease activity, leading to a decrease of the ratio between lipase and protease activities 

from 0.12 to 0.08, that may have important impact in subsequent downstream and purification 

processes. 
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Figure 5.5 Extracellular protease activity profiles by Y. lipolytica W29 during batch experiments with pre-

adaptation to hyperbaric conditions: growth at 1 bar and production at 1 bar (♦),growth at 1 bar and 

production at 5 bar (■),growth at 5 bar and production at 1 bar (▲) and growth at 5 bar and production at 

5 bar (●). 

 

5.4 CONCLUSIONS 

For the experimental conditions used in this work, air pressure raise up to 6 bar proved to be 

applicable to the batch cultivation of Y. lipolytica W29. It has been demonstrated that the use of air 

pressure has positive effects on the growth behavior of the yeast and that air pressure may be a 

way of improving oxygenation and consequently increase the specific growth rate, leading to high 

biomass productivity. For Y. lipolytica, an increase of air pressure up to 6 bar led to a 4.1-fold 

improvement in biomass productivity compared to atmospheric pressure.  

To protect against the damage caused by oxidative stress, cells possess a number of antioxidant 

enzymes and repair activities, most of which are expressed at low levels during normal growth. Air 

pressure increase can be used for SOD induction, in the values of air pressure used in this work. Y. 

lipolytica W29 adapts rapidly to hyperbaric conditions; thus, these conditions can be imposed to 

cultures of this strain as a way of preventing oxygen limitation to cell growth and as a mean of 

enzyme production improvement such as lipases and SOD. Air pressure can be seen as an 

important operating parameter such as medium composition (Amaral et al., 2007) and strain 

selection (Destain et al., 2005) for lipase production optimization. 
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6 BATCH AND FED-BATCH GROWTH OF PICHIA 

PASTORIS UNDER INCREASED AIR PRESSURE 

 

 

 

 

Pichia pastoris CBS 2612 behavior under air pressures of 1 bar, 3 bar and 5 bar in culture media 

of glycerol (pure and crude) and methanol was studied. Generally, the increase in oxygen transfer 

rate due to the increase of total pressure improved cellular growth for all carbon sources and for 

batch and fed-batch processes with different feeding rate strategies. In batch cultures, 1.4-, 1.2-, 

and 1.5-fold improvement in biomass production was obtained with the increase of air pressure up 

to 5 bar, using methanol, pure glycerol, and crude glycerol, respectively. The increase of air 

pressure to 5 bar using exponential feeding rate led to 1.4-fold improvement in biomass yield per 

glycerol mass consumed, for crude and pure glycerol. The current low cost of crude glycerol from 

the biodiesel production together with the present results shows the possibility of improving cell 

mass production of P. pastoris using increased air pressure. 
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6.1 INTRODUCTION 

Pichia pastoris has many biotechnological applications and, in particular, two aspects of the 

species have contributed to its application: (1) the strong preference of P. pastoris for respiratory 

growth, a key physiological trait that greatly facilitates its culturing at high cell densities relative to 

fermentative yeasts (Cregg et al., 2000); and (2) since P. pastoris assimilates methanol, the 

expression system is linked with alcohol oxidase, which is abundantly produced in presence of 

methanol (Cos et al., 2006).  

Glycerol is regularly used as the main initial carbon source in P. pastoris fermentations to increase 

cell concentration. As the main by-product of biodiesel production, crude glycerol can now be found 

in abundance and at prices lower than glucose, which makes possible to use crude glycerol as 

carbon source for bioprocesses with the methylotrophic P. pastoris (Çelik et al., 2008). The rapidly 

expanding market for biodiesel has decreased glycerol’s cost and increased its availability, as 

typical biodiesel production processes generate around 10 % (wt) glycerol of the total amount of 

biodiesel produced. 

Fed-batch is the dominating mode of operation in high cell density cultures of P. pastoris in 

processes where the high oxygen demand of these cultures makes its supply an important and 

difficult task. In unicellular organisms such as yeasts, oxygen, for carrying out any oxidative 

reaction within the cell, is generally incorporated through the intermediate state of the dissolved 

oxygen molecule. Thus, the organism responds to the liquid phase oxygen concentration or partial 

pressure in regulating its overall metabolic activities. 

Published works have reported the use of increased air pressure as a way of improving the oxygen 

transfer rate that can be applied for cell cultivation with energy and capital cost efficiencies 

acceptable for industrial application (Knoll et al., 2005). In fact, the authors proved that the use of 

increased pressure can reduce the running costs when high oxygen transfer rates are needed, 

since the air pressurization up to 5 bar can improve the energy efficiency of a STR bioreactor. 

Moreover, high pressure bioreactors and technology are intensively applied in chemical industry, 

thus it could be adapted to microbial cultures technology. Some results have demonstrated that 

increased air pressure could be successfully applied to the cultivation of yeast species such as 

Yarrowia lipolytica (Lopes et al., 2008) and Kluyveromyces marxianus (Pinheiro et al., 2003).  

However, the effect of increased air and oxygen pressure is strongly dependent of the species and 
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strains (Coelho et al., 2004; Onken and Liefke, 1989; Pinheiro et al., 2000) due to different 

abilities of cellular response to possible oxidative stress that can arise. In spite of the well-known 

importance of P. pastoris as a cell-factory, mainly for biopharmaceuticals production, few studies 

are available on the application of air pressure increase for the cultivation of this yeast, and only 

slight pressure increase was applied, elevating the air pressure from 1.2 to 1.9 bar (Charoenrat et 

al., 2006). In Chapter 4, the enhancement of P. pastoris growth in glucose medium by air pressure 

increase was demonstrated. 

In this study, it was intentended to extend the application of increasing air pressure (up to 5-fold 

above atmospheric pressure) as an alternative way of OTR improvement for P. pastoris cultures 

growing different carbon sources, such as methanol or glycerol (pure and crude), and in different 

modes of operation, like batch and fed-batch cultures.  

 

6.2 MATERIALS AND METHODS 

6.2.1 Oxygen transfer rate (OTR) 

OTR in bioreactors was estimated in blank assays using the sulfite oxidation method (Cooper et al., 

1944), as described on Chapter 3.2.1. 

 

6.2.2 Batch operation 

Pichia pastoris CBS 2612 was grown in YP (10 g/L yeast extract and 20 g/L peptone) medium 

with 10 g/L of pure or crude (byproduct of biodiesel production from waste vegetable oils obtained 

at the CVR-Centre for Waste Valorization, University of Minho, Portugal) glycerol and methanol, 

prepared in a potassium phosphate buffer 100 mM, pH 6. The glycerol media were sterilized by 

autoclaving at 115 ºC for 30 min and the methanol medium was sterilized by filtration through 0.2 

µm filter.  

The crude glycerol used had a dark brown color and pH 8.60, containing 58% and 25% (mass) 

glycerol and methanol, respectively, and a total protein content of approximately 8.8 mg/L. The 
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crude glycerol used in this work did not suffer any pre-treatment, but most of the suspended solids 

were separated by sedimentation.  

Yeasts cells were pre-grown overnight in 250 mL Erlenmeyer flasks filled with 100 mL of YP, with 

each carbon source at 140 rpm and at 30 ºC. Batch cultivations were carried out using a 600 mL 

stainless steel stirred tank bioreactor (PARR 4563, Parr Instruments, USA), with 400 mL of each 

carbon source medium, at 30 ºC and 400 rpm. Compressed air was continuously sparged into the 

culture at an aeration rate of 1 vvm. The values of air absolute pressure studied were 1 bar, 3 bar, 

and 5 bar. The operating pressure was set by the manipulation of the pressure of the inlet 

compressed air and the regulatory valve position in the exit gas line. The reactor was equipped with 

a pressure transducer (PARR 4842, PARR Instruments, USA) to monitor total internal pressure.  

Batch cultures in a 2-L fermenter (BIOLAB, B. Braun, Germany) with 1.6 L working volume were 

also performed with each carbon source. The operating conditions were 30 ºC, 400 rpm, and 1 

vvm of aeration rate. This bioreactor is equipped with a polarographic oxygen probe (12/220 T-

type, Metler Toledo, USA) and the respective meter (type 170) that allowed monitoring of dissolved 

oxygen tension during cell cultivation (Figure 6.1). The short interruption of aeration allowed the 

determination of the specific oxygen uptake (qO2) rate at exponential phase for each carbon source. 

 

 

Figure 6.1 A 2-L bioreactor (BIOLAB, B. BRAUN, Germany) with P. pastoris culture growing in glycerol 

medium. 



  100 BATCH AND FED-BATCH GROWTH OF PICHIA PASTORIS UNDER INCREASED AIR PRESSURE 

 

LOPES M. | 2013 

6.2.3 Fed-batch operation 

Yeasts cells were pre-grown overnight in 250 mL Erlenmeyer flasks filled with 100 mL of YP 

medium, with pure or crude glycerol at 140 rpm and 30 ºC. 

The fed-batch fermentation was carried out in the pressurized reactor (PARR 4563, Parr 

Instruments, USA) as illustrated in Figure 6.2. The values of absolute air pressure studied were 1 

bar and 5 bar. The operating conditions were 30 ºC, 400 rpm, and 1 vvm of aeration. 

A three-stage fermentation protocol was used in this part of the study: the first stage was a glycerol 

(pure or crude) batch fermentation; then, 24 h after inoculation, the process was switched to 

glycerol fed-batch with a glycerol feed (pure or crude glycerol 50 g/L, yeast extract 10 g/L and 

peptone 20 g/L) added to the bioreactor using two strategies: (1) a constant feeding flow rate (F) of 

0.05 mL/min, where the dilution rate (D) ranged from 0.02 h -1 to 0.007 h-1, or (2) an exponential 

feeding rate in order to keep dilution rate of 0.01 h-1, with the feed flow rate varying from 0.02 

mL/min to 0.06 mL/min, according with the equation: 

      
                                                                                                                                           

where F is the feed rate, D is the dilution rate, V0 is the culture volume when the medium feed 

started and t is the time. 

The medium was pumped into the reactor using a high-pressure pump (Jasco 880-PU). In the third 

stage, about 105 h or 120 h of the fed-batch phase, the process was switched to batch mode 

during 24 h.    
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Figure 6.2 Pressurized bioreactor operating in fed-batch mode and high-pressure pump, drawing the feed 

medium into the reactor. 

 

6.2.4 Analytical methods 

Culture samples were collected (every 2 hours in batch operation and twice per day in fed-batch 

mode) for analysis of cell concentration (optical density at 600 nm and converted to dry cell weight 

per liter), pH and carbon source consumption. A blank assay at 600 nm without cells was 

performed and showed that the influence of crude glycerol color was insignificant due to its 

dilution. Glycerol and methanol were quantified by HPLC with a Metacarb 67H column (Varian, 

Palo Alto, CA) and a RI detector (Knauer K-2300, Germany). The eluent was H2SO4 0.005 M at 0.5 

mL/min and the column temperature was 60 ºC, maintained with a column thermostat 

(Chrompack, Brasil). Total protein of crude glycerol was obtained by Bradford’s method (Bradford, 

1976). 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Air pressure effect on batch cultures 

Glycerol and methanol were used as carbon sources for Pichia pastoris growth. These substrates 

were chosen because: (1) glycerol is traditionally used as the main initial carbon source in P. 
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pastoris fermentations to increase the cell concentration, and the low price of crude glycerol offers 

new opportunities to this substrate; and (2) methanol, another low-cost carbon source, is an 

inducer of the foreign gene expression and a substrate with high oxygen demand.  

Firstly, batch cultures in BIOLAB bioreactor coupled with an oxygen probe were performed to 

assess the oxygen needs of the cells in each carbon source. Typical batch growth and substrate 

curves profiles for the experiments at atmospheric pressure in BIOLAB bioreactor are shown in 

Figure 6.3.  

 

 

Figure 6.3 Batch growth of P. pastoris CBS 2612 (A) and substrate consumption (B) in 2L-Biolab bioreactor 

with (▲) methanol, (■) pure glycerol and (□) crude glycerol medium. 

 

At atmospheric pressure in a BIOLAB bioreactor, no significant differences were found for cellular 

growth in pure and crude glycerol and higher final cell mass concentration was found in glycerol 

than in methanol. In this last substrate, the cells presented longer lag phase than in the other 

carbon sources.  

All carbon sources used in this study, with exception of methanol, were completely consumed in 

about 24 h. The highest biomass yield was obtained with glycerol (0.79 and 0.72 mass of cells per 
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mass of substrate, respectively with crude glycerol and pure glycerol). The lowest value was 

obtained with methanol (0.29 mass of cells per mass of substrate).   

Each culture of P. pastoris, growing on three carbon sources, had different oxygen demands 

(Figure 6.4). The literature reports the high oxygen demand of methanol metabolism and presumes 

that the oxygen limitation generally has a detrimental effect on the expression of foreign genes 

(Cereghino and Cregg, 2000).  

 

 

Figure 6.4 Time course of dissolved oxygen concentration at methanol (grey line), pure glycerol (black line) 

and crude glycerol (dotted line) medium. 

 

In this study, the oxygen demand of the cultures were determined during the first hours of growth, 

and specific oxygen uptake rate (qO2) values of (53 ± 4) mg O2/(g h), (70 ± 6) mg O2/(g h), and 

(163 ± 15) mg O2/(g h) were observed for methanol, pure glycerol, and crude glycerol medium, 

respectively. Chen et al. (2007) observed a qO2 value of 57 mg O2/(g h) for recombinant P. pastoris 

in fed-batch with methanol. Solà et al. (2007), in P. pastoris chemostat cultures with a 60% 

glycerol/40% methanol mixture as carbon source, found a qO2 value of 125 mg O2/(g h). To our 

knowledge, this is the first report of qO2 on crude glycerol. Using the ratio of the specific cellular 

growth and the qO2 values, the cell mass yield per oxygen mass consumed (Yx/O) can be obtained. 
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Accordingly, the yields of dry cell mass per oxygen mass of 1.5, 1.7, and 0.8 g/g were obtained for 

methanol, pure and crude glycerol, respectively. These results show that cultures of P. pastoris 

have high oxygen demand needs, particularly in crude glycerol, probably due to the metabolization 

of other components present in this biodiesel sub-product. In fact, in crude glycerol, oxygen 

depletion from the medium was observed for a longer period of time (Figure 6.4) than in the other 

carbon sources which indicates the need of improving oxygen transfer rate in bioreactors for P. 

pastoris growth in this low-cost carbon source. In the BIOLAB bioreactor (atmospheric pressure) 

the OTR value was 288 mg O2/(L h), which is insufficient for the oxygen demand of the culture 

growing in crude glycerol. In fact, a 4 g/L cell culture, with the qO2 found in crude glycerol, will 

need a OTR higher than 656 mg O2/(L h). OTR, in PARR bioreactor, increased from 384 mg O2/(L 

h) at 1 bar, to 672 mg O2/(L h) at 3 bar, and to 1152 mg O2/(L h) to 5 bar (Chapter 3.3.1).  

Batch cultures under increased air pressure up to 5 bar were performed in order to prevent oxygen 

limitation observed during the exponential growth phase. Typical batch biomass profiles for the 

experiments under increased air pressure, for the carbon sources tested, are shown in Figure 6.5.  

At 1 bar of total air pressure, the cells grew better in glycerol (pure and crude), reaching higher 

final cell mass concentration than in methanol. In this last substrate, the cells presented longer lag 

phase than in the other carbon sources, as occurred in the BIOLAB reactor operating at 

atmospheric pressure.  
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Figure 6.5 Batch growth of P. pastoris CBS 2612 in hyperbaric reactor under pressures of 1 bar (■), 3 bar 

(▲) and 5 bar (□), in (A) methanol, (B) pure glycerol and (C) crude glycerol medium. 

 

Regardless of the carbon source, the raise of total air pressure from 1 bar to 5 bar led to an 

increase in the final cell dry weight. Compared to 1 bar, a 1.4-fold, 1.2-fold, and 1.5-fold 

improvement in biomass production was obtained with the increase of air pressure up to 5 bar, for 

the trials with methanol, pure glycerol, and crude glycerol, respectively. That was due to the 

improvement of oxygen transfer rate from the air to the liquid phase, thus allowing the unlimited 

cellular growth. Similarly, Knabben et al. (2010) used increased pressure pilot-plant bioreactors to 

minimize overflow metabolism in E. coli fed-batch cultures.  
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All carbon sources used in this study were completely consumed. Typical substrate consumption 

curves profiles for the experiments under increased air pressure, are shown in Figure 6.6. The 

raise of total air pressure led to an earlier consumption of carbon sources. 

 

 

Figure 6.6 Methanol (A), pure glycerol (B) and crude glycerol (C) consumption of P. pastoris CBS 2612 in 

hyperbaric reactor under pressures of 1 bar (■), 3 bar (▲) and 5 bar (□). 

 

Among the substrates studied, the highest biomass yield was obtained with glycerol (crude and 

pure), followed by methanol (Table 6.1). The raise of total air pressure to 5 bar caused a 1.6-fold 

and 1.4-fold improvement in biomass yield for crude glycerol and for methanol, respectively. 

However, in the pure glycerol medium no significant effect on yield was obtained by the increase of 
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total air pressure. The biomass yield obtained with crude glycerol in experiments under 1 bar was 

similar to that achieved with pure glycerol. Surprisingly, a 1.3-fold improvement in biomass yield 

with crude glycerol was attained at 5 bar, compared to the yield obtained with pure glycerol at 5 

bar. 

 

Table 6.1 Changes in biomass yield and maximum specific growth rate in batch experiments under 

increased air pressure. Values are average ± standard deviation of three experiment replicates. 

  1 bar 3 bar 5 bar 

Yx/s (g cell/g substrate) 

Pure glycerol 0.67 ± 0.06 0.71 ± 0.09 0.73 ± 0.08 

Crude glycerol 0.60 ± 0.06 0.97 ± 0.09 0.97 ± 0.11 

Methanol 0.25 ± 0.02 0.27 ± 0.03 0.36 ± 0.04 

µ (h-1) 

Pure glycerol 0.15 ± 0.02 0.22 ± 0.02 0.23 ± 0.02 

Crude glycerol 0.18 ± 0.02 0.21 ± 0.01 0.20 ± 0.01 

Methanol 0.07 ± 0.002 0.08 ± 0.01 0.08 ± 0.01 

 

It is reasonable to speculate that the increase of total air pressure resulted in complete 

consumption of all glycerol and by-products present in crude glycerol. This may be due to the 

presence of fatty acids, vitamins A, E and K (Gao and Ackman, 1995; Heinonen et al., 1997), and 

trace elements (Cindric et al., 2007) in the vegetable oils diffusing the glycerol phase during the 

biodiesel formation reactions, thus enriching the glycerol-based production medium, and pressure 

increase improves its utilization by the yeast . These compounds have positive effects on the yeast 

physiology and metabolism such as improved membrane integrity (Walker, 1998) and increase in 

intracellular NAD level (Chen et al., 2007). Moreover, the yeast P. pastoris has the ability to use 

fatty acids as sole carbon and energy source (Wriessnegger et al., 2007).This additional carbon 

source present on crude glycerol could explain the higher biomass yield obtained with this 

medium, since methanol is mostly evaporated during sterilization. The values of biomass yields of 

P. pastoris growing on glycerol range from 0.32 mass of cells per mass of substrate (Koleva et al., 

2008) and 0.51 mass of cells per mass of substrate (Guo et al., 2007) and even 0.86 mass of 

cells per mass of substrate (Chiruvolu et al., 1999), depending of the strain and the experimental 

conditions. The relatively high cell mass yields at 5 bar with crude glycerol, when compared to the 
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medium with pure glycerol, point out the remarkable influence of the additional nutrients present in 

crude glycerol. Çelik et al (2008) also reported an improvement in biomass yield of P. pastoris E17 

from 0.44 mass of cells per mass of substrate to 0.57 mass of cells per mass of substrate when 

the growth medium was switched from pure glycerol to crude glycerol. On the other hand, the cell 

mass yield obtained at 5 bar with crude glycerol (0.97 mass of cells per mass of glycerol) indicate 

that the carbon source is mostly used for biomass formation, instead of energy formation and 

maintenance. The low maintenance demand of P. pastoris is a requirement for the very high cell 

density that is achieved with this organism. Jahic et al. (2002) observed that P. pastoris SMD 1168 

had a maintenance demand of 0.013 g/(g h) for growth on pure glycerol (low value compared to E. 

coli, with 0.04 g/(g h) for growth on glucose (Xu et al., 1999)). 

The specific cellular growth rate of P. pastoris was slightly enhanced by the increase of total air 

pressure for all carbon sources used (Table 6.1). The most significant difference was found for 

pure glycerol. At 5 bar, the specific cellular growth rate was 1.5-fold higher than at 1 bar, but no 

significant improvement in the growth rate was observed in experiments with methanol medium. 

According with the values of qO2 obtained for this substrate, the increase in OTR by the values of 

pressure used, overcame the oxygen demand of the culture.  

Although the pH was not controlled during batch cultures, the buffered medium was effective in 

maintaining the pH value between 5.5 and 6 in glycerol (crude and pure) and methanol media.  

These results demonstrate that pressure had no inhibitory effects on the batch growth of the Pichia 

pastoris strain CBS 2612 in different carbon sources. Thus, an increase of air pressure up to 5 bar 

may successfully be applied to the improvement of biomass production. Charoenrat et al. (2006) 

also showed that the cell mass productivity of P. pastoris cultures can be improved by the oxygen 

transfer rate enhancement through increased air pressure from 1.2 to 1.9 bar. However, the 

results reported here demonstrate that, for the methylotrophic yeast P. pastoris CBS 2612, values 

of total air pressure up to 5 bar can be applied. 

Although the cell productivity of P. pastoris processes can be improved by increasing the oxygen 

transfer rate by application of moderate air pressure, the impact of pressure applied in protein 

expression and its activity could conduct to the same or to different results. Charoenrat et al. 

(2006) reported that the total activity of recombinant β-glucosidase of P. pastoris was enhanced by 
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increasing air pressure to 1.9 bar. Pinheiro et al. (2003) also demonstrated that the specific β-

galactosidase production by K. marxianus increased 3 times using a 6-bar air pressure instead of 

air at atmospheric pressure. However, Belo et al. (1998) reported that the increase of air pressure 

from 2 bar to 4 bar showed a negative effect on cytochrome b5 heterologous expression by E. coli 

TB1 cells. 

 

6.3.2 Air pressure effect on fed-batch cultures 

As the results above demonstrated, the raise of air pressure up to 5 bar could be successfully 

applied for P. pastoris batch growth, improving the final cell mass productivity. However, because 

the mode of operation can influence the effect of moderate pressure on final cell productivity, fed-

batch operation at increased air pressure was performed in order to study the cellular behavior and 

compare it to batch cultures. Pure and crude glycerol were used as carbon sources and two 

strategies were applied: (a) constant feeding rate, and (b) exponential feeding rate, as described in 

the Materials and Methods section. 

The raise of air pressure up to 5 bar led to an increase in final cell mass for both carbon sources 

and feeding strategies. The application of 5 bar pressure resulted in a complete glycerol 

consumption, avoiding its accumulation in the medium, as occurred at 1 bar. 

For the constant feeding rate strategy (Figure 6.7), a 1.6- and 2.2-fold improvement in cell dry 

weight was obtained at 5 bar compared to 1 bar, for pure and crude glycerol, respectively. The fed-

batch growth with pure glycerol resulted in higher biomass concentration compared to crude 

glycerol. A 1.9- and 1.4-fold improvement of final cell mass concentration at 1 bar and 5 bar was 

attained with this carbon source, compared to the other one.  

With the exponential feeding rate strategy (Figure 6.8), when air pressure varied from 1 bar to 5 

bar, the biomass concentration increased 2.4 and 2-fold for pure and crude glycerol, respectively. 

Similarly to constant feeding rate, with this strategy the pure glycerol medium led to a higher final 

biomass. 
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Figure 6.7 Fed-batch growth of P. pastoris CBS 2612 (■ 1 bar; ▲ 5 bar) and glycerol concentration (□ 1 

bar; Δ 5 bar) in (A) pure glycerol and (B) crude glycerol with constant feeding rate strategy. The glycerol 

concentration in the medium feed was 50 g/L. 

 

 

Figure 6.8 Fed-batch growth of P. pastoris  CBS 2612 (■ 1 bar; ▲ 5 bar) and glycerol concentration (□ 1 

bar; Δ 5 bar) in (A) pure glycerol and (B) crude glycerol with exponential feeding rate strategy. The glycerol 

concentration in the medium feed was 50 g/L. 
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Among the feed strategies studied, the highest biomass yield was obtained with exponential feeding 

rate for pure glycerol and with constant feeding rate for crude glycerol (Table 6.2). With exponential 

feeding rate, the raise of air pressure to 5 bar caused 1.3-fold and 1.4-fold improvement in 

biomass yield per crude and pure glycerol, respectively. For the constant feeding rate, a 1.2-and 

1.6-fold improvement in biomass yield was obtained at 5 bar compared to 1 bar, for crude and 

pure glycerol, respectively.  

 

Table 6.2 Changes in biomass yield (mass of cells per mass of substrate) with air pressure in fed-batch 

experiments for constant and exponential feeding rate strategies. Values are average ± standard deviation of 

three experiment replicates. 

 Constant feeding rate Exponential feeding rate 

 1 bar 5 bar 1 bar 5 bar 

Pure glycerol 0.57 ± 0.07 0.93 ± 0.11 0.74 ± 0.09 1.06 ± 0.14 

Crude glycerol 0.55 ± 0.06 0.66 ± 0.07 0.41 ± 0.05 0.55 ± 0.05 

 

Jahic et al. (2002) found a yield of 0.7 mass of cells per mass of substrate when P. pastoris cells 

growth on glycerol medium. The results reported here proved that the increase of total air pressure 

up to 5 bar led to an improvement of cell yields obtained by others researchers. 

The differences on biomass yield between the two fed-batch strategies were more pronounced at 1 

bar. Probably, at this pressure, the effects of dilution and substrate feeding flow rates had more 

influence than at 5 bar, where the increase of oxygen transfer capacity assumes an important role 

on yeast metabolism. 

The final cell biomass obtained in fed-batch cultures was higher for pure glycerol. Also, the 

biomass yields obtained in fed-batch cultures with crude glycerol were lower than those obtained in 

batch cultures. Although it has been shown that crude glycerol from the biodiesel industry can 

support the batch and fed-batch growth of P. pastoris, the higher glycerol and by-products 

concentration in fed-batch mode could explain the results. In general, the composition of crude 

glycerol varies from plant to plant; it contains methanol and various elements such as calcium, 

potassium, phosphorus, magnesium, sulfur, and sodium. Crude glycerol also contains soaps, 
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which are formed from a side reaction of biodiesel production, and it has been reported in a wide 

range from 23% to 25% (Pyle et al., 2008). The complex interaction between the cell membrane 

and these surfactant type compounds can cause this biomass yield reduction in fed-batch process 

comparatively to batch cultures. Also, the ions of sodium, calcium and potassium presents could 

interfere with the ionic balance and affect the yeast metabolism. 

 

6.4 CONCLUSIONS 

For the experimental conditions used in this work, an air pressure raise of up to 5 bar proved to be 

applicable to the batch and fed-batch cultivation of P. pastoris. The use of air pressure had positive 

effects on the growth behavior of this yeast, whatever the carbon source used, even when crude 

glycerol was used as substrate. This significant increase in cell mass productivity using moderate 

pressure, combined with the availability and low cost of crude glycerol from biodiesel production, 

offers an opportunity for cheaper biotechnological processes using glycerol as substrate. 

 



 

 

 

 

 

 

 

7 HETEROLOGOUS PROTEIN EXPRESSION IN P. 

PASTORIS UNDER INCREASED AIR PRESSURE 

 

 

 

 

Pichia pastoris is a widely used host for the production of heterologous proteins. However, the 

oxygen limitation generally has a detrimental effect on the expression of foreign genes. The 

increased air pressure could be used to improve the oxygen solubility in the medium and to reach 

the high oxygen demand of methanol metabolism. 

In this study, two recombinant P. pastoris strains (GS115/pPICZ/lacZ and KM71H/ 

pPICZαA/frutalin) producing β-galactosidase and frutalin, respectively, were used to investigate the 

effect of increased air pressure on yeast growth and heterologous protein expression.  Several 

experiments were carried out in a steel stainless bioreactor under total air pressure of 1 bar and 5 

bar. The increase of air pressure up to 5 bar has a small effect on biomass production, but led to a 

9-fold improvement in β-galactosidase specific activity compared to1 bar. Also, the recombinant 

frutalin secretion was enhanced by the increased air pressure up to 5 bar. 

The protease specific activity reached at 5 bar was 2.4 times lower than that obtained at 

atmospheric pressure in baffled flasks. This result revealed that the use of increased air pressure 

up to 5 bar provided optimal conditions for reduction of the proteolysis that occurred on frutalin 

secretion in baffled flasks. 
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Lopes M., Oliveira C., Domingues L., Mota M., Belo I. Enhanced heterologous protein expression in 

Pichia pastoris under increased air pressure (January 2013). 
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7.1 INTRODUCTION 

The methylotrophic yeast Pichia pastoris is currently one of the most effective and versatile 

systems for the expression of heterologous proteins. The increasing popularity of P. pastoris is 

attributed to: (1) its powerful and tightly regulated methanol-inducible alcohol oxidase 1 promoter 

(pAOX1) that is used to drive the expression of the foreign gene; (2) it can be easily manipulated at 

the molecular genetic level (e.g. gene targeting, high-frequency DNA transformation, cloning by 

functional complementation); (3) its ability to produce foreign proteins at high levels, intracellularly 

or extracellularly; (4) its capability of performing many eukaryotic post-translational modifications, 

such as glycosylation, disulfide bond formation, and proteolytic processing; (5) the ability to grow 

on defined media at high cell densities; (6) its strong preference for respiratory rather than 

fermentative mode of growth (fermentation products include ethanol and acetic acid, which quickly 

reach toxic levels in the high cell density environment of a fermenter with strongly fermentative 

organisms); and (7) its ready availability as a commercialized expression kits (Cereghino et al., 

2002; Cregg et al., 2000; Potvin et al., 2012). As a result of these characteristics, to date, more 

than 400 recombinant proteins have been cloned and expressed in P. pastoris systems (Plantz et 

al., 2006).  

During the induction phase, Pichia cells utilize methanol through the oxidative pathway only when 

oxygen is non-limiting. The oxidation of methanol with molecular oxygen is the first step of both 

energy production and carbon assimilation (Baumann et al., 2008). The literature reports the high 

oxygen demand of methanol metabolism and presumes that the oxygen limitation generally has a 

detrimental effect on the expression of foreign genes (Cereghino and Cregg, 2000). The dissolved 

oxygen levels are maintained at certain set points, typically between 15% and 20% of saturation, 

through agitation feedback control and by varying the oxygen content in the inlet air stream (Potvin 

et al., 2012). However, another strategy could be used to reach the large oxygen transfer rates 

(OTR) required at the high cell densities normally achieved in P. pastoris cultivation, such as the 

use of increased air pressure. This is particularly important for heterologous protein expression 

where high cell densities are reached. 

Oliveira et al. (2008) reported the production of recombinant biologically active frutalin in the 

methylotrophic P. pastoris KM71H yeast strain. The recombinant frutalin was recognized by native 

frutalin antibody, its ability to bind galactose was maintained and may be used as histochemical 
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biomarkers for the prostate cancer (Oliveira et al., 2009). Due to the success of such assays, it 

would be interesting to study new strategies to improve the frutalin production. 

Although P. pastoris has become a popular host for the expression and mass production of 

industrial proteins, few studies are available on the application of air pressure increase for the 

cultivation of this yeast and for the production of heterologous proteins, and only slight pressure 

increase has been applied, namely 1.2 bar (Woo et al., 2005), 1.5 bar (Cunha et al., 2004) and 

1.9 bar (Charoenrat et al., 2006). To our knowledge, this is the first report on the study of 

production of recombinant proteins under increased air pressure up to 5 bar. Therefore, it was 

important to first understand the effect of increased air pressure on the growth of the two 

recombinant P. pastoris strains (Mut+ and MutS) and then to address the effect on the expression 

level of two recombinant proteins (intracellular β-galactosidase and extracellular frutalin). 

 

7.2 MATERIALS AND METHODS 

7.2.1 Strains 

The recombinant strains P. pastoris GS115/pPICZ/lacZ (His-/Mut+) (Invitrogen), expressing β-

galactosidase intracellularly, and P. pastoris KM71H/pPICZαA/frutalin (Arg+/MutS) (Oliveira et al., 

2008), expressing frutalin extracellularly, were used. The expression of both proteins was under the 

control of alcohol oxidase 1 gene promoter by methanol induction. The construction of the P. 

pastoris strain KM71H secreting recombinant frutalin is described elsewhere (Oliveira et al., 2008). 

 

7.2.2 Batch growth assays 

P. pastoris GS115/pPICZ/lacZ and P. pastoris KM71H/pPICZαA/frutalin strains were pre-grown 

overnight in 250 mL Erlenmeyer flasks filled with 100 mL of BMGH (1.34% YNB, 1% glycerol, 4×10-

5% histidine, 400 mM potassium phosphate buffer pH 6.0) and BMG (1.34% YNB, 1% glycerol, 

4×10-5% biotin, 400 mM potassium phosphate buffer pH 6.0), respectively, at 30 ºC and 200 rpm. 

Batch cultivations of each yeast strain were carried out using a 600 mL stainless steel stirred tank 

bioreactor (PARR 4563, Parr Instruments, USA), with 300 mL of BMGH or BMG medium, at 30 ºC 
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and 400 rpm. The values of air absolute pressure studied were 1 bar and 5 bar and the 

compressed air was continuously sparged into the culture at an aeration rate of 1 vvm. An 

experiment in a baffled flask (500 mL) with 150 mL of each yeast culture, under atmospheric 

pressure and an agitation rate of 200 rpm was used as a control. 

 

7.2.3 Induction assays 

The recombinant yeasts were cultivated overnight in BMGH (P. pastoris GS115/pPICZ/lacZ) and 

BMG (P. pastoris KM71H/pPICZαA/frutalin), harvested and ressuspended in fresh BMMH (same 

composition as BMGH but glycerol is replaced with 0.5% (w/v) or 1% (w/v) methanol) and BMM 

(same composition as BMG but glycerol is replaced with 0.5% (v/v) methanol) medium, 

respectively. The induction assays were performed in the same stirred tank bioreactor used for 

batch growth assays, at 400 rpm, filled with 300 mL of medium, and 30 ºC for β-galactosidase 

and 15 ºC for frutalin. Fresh methanol (100%) was added to the medium every 12 h in order to 

keep the methanol concentration around 0.5% or 1% for β-galactosidase and 0.5% for frutalin. The 

values of air absolute pressure studied were 1 bar and 5 bar and the compressed air was 

continuously sparged into the culture at an aeration rate of 2 vvm. As a control, an induction 

experiment in a baffled flask filled with 150 mL of medium, under atmospheric pressure and an 

agitation rate of 200 rpm was carried out for P. pastoris KM71H recombinant strain.  

 

7.2.4 Analytical methods 

Culture samples were collected for analysis of cell concentration (optical density at 600 nm and 

converted to dry cell weight per liter), carbon source concentration and recombinant proteins 

production. 

Glycerol and methanol were quantified by HPLC with a Metacarb 67H column (Varian, Palo Alto, 

CA) and a RI detector (Knauer K-2300, Germany). The eluent was H2SO4 0.005 mol/L at 0.5 

mL/min and the column temperature was 60 ºC, maintained with a column thermostat 

(Chrompack, Brasil). 
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β-galactosidase intracellular enzyme activity was measured after cell disruption and dialysis of cell 

extracts, as described on Chapter 3.2.1. The β-galactosidase activity was determined using 8.3 

mM oNPG (ortho-nitrophenyl-β-D-galactoside) in Z buffer (100 mM potassium phosphate buffer pH 

7.0 and 0.04 M β-mercaptoethanol) as the substrate. The release of o-NP (o-nitrophenol) was 

measured by following the increase in the absorbance at 405 nm for 16 min at 37 ºC. One unit of 

enzyme activity was defined as the amount of enzyme that release 1 μmol of o-NP per minute 

under the conditions described.  Total protein was obtained by Bradford’s method (Bradford, 

1976). 

Protease in cell-free samples was quantified using 0.5% azocasein in acetate buffer as substrate at 

pH 5.0, at 37°C for 40 min. One unit of activity was defined as the amount of enzyme that causes 

an increase of 0.01 of absorbance relative to the blank per minute under assay conditions. 

For the evaluation of the recombinant frutalin expression, supernatants from methanol-induced 

cultures were separated from yeast cells by centrifugation (10 min at 4000 g and 4 °C). The pH of 

the supernatants was increased to 7.5 by adding 10 M NaOH to precipitate salts, which were 

removed by centrifuging twice for 10 min at 4000 g and 4 °C. Treated supernatants were analyzed 

by SDS–PAGE with 12% gels, as described by Laemmli (1970). Bands were visualized by staining 

with Coomassie Brilliant Blue R250. 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 Effect of air pressure on cellular growth 

Two recombinant P. pastoris strains were chosen for this work: a P. pastoris GS115 strain, 

expressing intracellular Escherichia coli β-galactosidase, and a P. pastoris KM71H strain, secreting 

the plant lectin frutalin. 

In order to understand the effect of increased air pressure on cellular growth of each yeast strain, 

several experiments were carried out in pressurized bioreactor under total pressure of 1 bar 

(equivalent to atmospheric pressure) and 5 bar. Also, an assay at atmospheric pressure in baffled 

flask was performed. 
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Typical batch growth curves and glycerol consumption profiles for the experiments under increased 

air pressure and atmospheric pressure are shown in Figure 7.1. The main difference between the 

two yeast strains was that recombinant P. pastoris KM71H grew better in glycerol medium than the 

recombinant P. pastoris GS115, since the final biomass concentration was higher for the first one. 

Also, glycerol consumption was complete for the KM71H strain, unlike for GS115 strain culture 

where after 24 h at least 4 g/L of glycerol still remained in the medium.      

 

 

Figure 7.1 Batch growth (close symbols) and glycerol consumption (open symbols) of (A) P. pastoris 

GS115/pPICZ/lacZ and (B) P. pastoris KM71H/pPICZαA/frutalin in baffled flask (▲, Δ), and in pressurized 

bioreactor under 1 bar (■, □) and 5 bar (●, ○) of air pressure. Values are average ± standard deviation of 

two experiment replicates. 

  

Regardless of the yeast strain, the increase of air pressure has a small effect on biomass 

production. Thus, no inhibitory effects were observed in the cellular growth under air pressure of 5 

bar as compared to the control (baffled flasks). In fact, for all the pressure conditions used, similar 

values of specific cellular growth rates were obtained for both strains, 0.16 h-1 for P. pastoris 

KM71H and from 0.12 h-1 to 0.14 h-1 for P. pastoris GS115 cultures. 

The biomass yield per glycerol consumed obtained for the strain KM71H was higher than that 

achieved for the GS115 strain. For each Pichia strain, no significant differences (P < 0.05) on the 

biomass yield were observed with the raise of air pressure up to 5 bar compared to 1 bar. 
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The effect of increased air pressure on cellular growth of different microbial cultures has been 

reported by various authors and is dependent on the strain. Charoenrat et al. (2006) reported a 

12% enhancement on P. pastoris Y-11430 biomass under 1.9 bar of air pressure. Other non-

recombinant microbial strains, such as S. cerevisiae (Coelho et al., 2004) and Thermus sp. RQ-1 

(Belo et al., 2000) were successfully cultivated with hyperbaric air, improving the final biomass. 

However, above certain limits (11 bar) the increased air pressure had detrimental effects on 

microbial cell growth of E. coli K-12 (Matsui et al., 2006), S. cerevisiae (Belo et al., 2005) or 

Pseudomonas putida (Knoll et al., 2005). 

The recombinant yeasts P. pastoris GS115 and P. pastoris KM71H were able to grown on 

methanol as a sole carbon and energy source. As occurred in glycerol medium, the increase of 

total air pressure inside the bioreactor did not led to an improvement in final biomass 

concentration (Figure 7.2). Nevertheless no inhibitory effects were observed in the cellular growth 

under air pressure of 5 bar as compared to the control, and the final biomass concentration was 

similar in baffled flask (operating at atmospheric pressure) and in pressurized bioreactor (operating 

at 1 bar and 5 bar). 

Sufficient levels of methanol are required during the induction phase to ensure maximal protein 

production. Excessive methanol concentrations, typically ranging from 3.7 g/L to 20 g/L, are, 

however, cytotoxic and lead to growth inhibition. Concentrations between 2 g/L and 3.5 g/L are 

optimal for recombinant protein production (Cunha et al., 2004; Surribas et al., 2003; Zhang et al., 

2000). The experiments in the bioreactor at both values of total air pressure led to a less 

accumulation of methanol in the medium than the observed in flasks, which indicates higher 

methanol utilization by the bioreactor cultures, since in these cases lower losses by evaporation 

were found. In the P. pastoris GS115 culture with addition of 0.5% methanol every 12 h, the 

accumulation of this carbon source in the baffled flask reached approximately 15 g/L. However, in 

the assay under 5 bar, even with addition of 1% methanol every 12 h, the methanol concentration 

in the medium remains lower than 3 g/L. Similar result was obtained for P. pastoris KM71H 

cultures.  
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Figure 7.2 Fed-batch growth (close symbols) and methanol concentration (open symbols) of (A) P. pastoris 

GS115/pPICZ/lacZ with 0.5% methanol and (B) 1% methanol and (C) P. pastoris KM71H/pPICZαA/frutalin 

with 0.5% methanol in baffled flask (▲, Δ), and in pressurized bioreactor under 1 bar (■, □) and 5 bar (●, 

○) of air pressure. Values are average ± standard deviation of two experiment replicates. 

 

7.3.2 Effect of air pressure on recombinant protein production 

Foreign proteins expressed in P. pastoris are affected by a variety of factors, such as temperature, 

pH, methanol feed strategy and, particularly, the dissolved oxygen in the medium. The optimization 

of increased air pressure as a way to improve oxygen mass transfer in Pichia cultures can 

represent an advantage in industrial recombinant protein production.  
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In order to study the effect of increased air pressure on intracellular (using β-galactosidase as a 

model) and extracellular (using frutalin as a model) recombinant protein expression, several assays 

were carried out in baffled flask (atmospheric pressure) and in pressurized bioreactor at 1 bar and 

5 bar.   

As the addition of 0.5% methanol to the baffled flask medium of GS115 strain resulted in a large 

accumulation of carbon source (Figure 7.2A), the induction experiment in this system was not 

carried out.   

Firstly, the assays were performed with the addition of 0.5% (w/v) methanol every 12 h. As the 

accumulation of methanol in the medium remained lower than 5 g/L and 3 g/L in assays 

conducted at 1 bar and 5 bar, respectively, experiments with the addition of 1% (w/v) methanol 

every 12 h were also performed. Figure 7.3 shows the β-galactosidase specific activity profiles 

during the induction phase with methanol. 

 

 

Figure 7.3 β-galactosidase specific activity profiles by P. pastoris GS115/pPICZ/lacZ inducted with (A) 0.5% 

methanol and (B) 1% methanol in the pressurized bioreactor at 1 bar (■) and 5 bar (●). Values are average 

± standard deviation of two experiment replicates. 

 

Even though the biomass production did not increased when the air pressure varied from 1 bar to 

5 bar, an improvement of enzyme specific activity was observed with the increase of oxygen 
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availability in the bioreactor. Raising the total air pressure from 1 bar to 5 bar, a 9- and 5.8-fold 

improvement in β-galactosidase specific activity was reached, respectively in experiments with 0.5% 

and 1% methanol.  

The methanol feed rate in pAOX1-regulated systems is one of the most important factors to control, 

as the residual methanol concentration directly influences the rates of production and oxygen 

transfer (Potvin et al., 2012). The increase of methanol addition from 0.5% to 1% to P. pastoris 

GS115 cultures led to an increment of β-galactosidase specific activity (Figure 7.3B). A 1.9- and 

1.2-fold improvement in enzyme activity was achieved in the 1% methanol experiments at 1 bar 

and 5 bar, respectively, compared to the assays with 0.5% methanol. The higher enhancement 

observed at 1 bar can be due to the fact that the foreign genes can only be expressed in methanol 

limiting conditions.  

As expected, recombinant frutalin was successfully expressed in P. pastoris as a secreted protein 

and could be observed in SDS-PAGE as a single band, having a molecular weight of about 17 kDa 

(Figure 7.4).  

The recombinant frutalin was not detected in the first sample collected (0 h of induction; i.e., 

before induction) and the protein concentration increased gradually until the end of the cultivation 

time, reaching the maximal expression level after 96 h of methanol induction. The raise of air 

pressure up to 5 bar led to an improvement in frutalin secretion to the medium as show by the 

higher intensity of frutalin bands in SDS-PAGE analysis. For the experimental conditions used, the 

increased air pressure up to 5 bar proved to be applicable as a way to enhance the recombinant 

frutalin expression in pressurized bioreactor.  
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Figure 7.4 SDS-PAGE analysis of supernatants from the P. pastoris KM71H strain expressing recombinant 

frutalin in (A) baffled flask and in pressurized bioreactor under (B) 1 bar and (C) 5 bar of air pressure. 

Legend: 1, 0 h; 2, 24 h; 3, 48 h; 4, 72 h; 5, 96 h; MW, molecular weight standards. 

 

Methanol metabolism utilizes oxygen at a high rate (Cregg et al., 2000) and it is well known the 

influence of oxygen supply on the heterologous expression by P. pastoris. Lee et al. (2003) 

indicated that in induction phase, maintaining a higher DO set point could significantly enhance 

elastase inhibiting peptide (EIP) expression. Jin et al. (2010) stated that with oxygen-enriched air 

(50% O2), the effective pIFN-α expression period by recombinant P. pastoris KM71H (IFNα-

pPICZαA) could be prolonged, resulting in a further enhancement in pIFN-α antiviral activity, 

comparatively to the strategy without DO control. However, Baummann et al. (2008) reported that 
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hypoxic fed-batch of recombinant P. pastoris led to 2-fold increased volumetric productivity of 3H6 

Fab, human trypsinogen and porcine trypsinogen. 

The results obtained in this work are in line with what has been previously reported in the literature 

for heterologous protein production under increased air pressure. Charoenrat et al. (2006) 

observed that for P. pastoris Y-11430, the recombinant β-glucosidase yield increased 50% in the 

moderate pressure process (1.9 bar). Belo and Mota (1998) reported that for E. coli TB1/pUC13 

cells a 4-fold increase in the cyt.b5 final productivity was achieved by an air pressure increase to 

4.8 bar. Matsui et al. (2006) reported that the production of tryptophan synthase by 

E.coli/pBR322trpAB increased in the air-pressurized culture, compared to the oxygen gas-enriched 

culture. The increased air pressure has been also successfully applied in homologous proteins 

production of other microbial strains. Lopes et al. (2008) reported that an increase of the lipase 

productivity at 5 bar of 3.7-fold was obtained compared with the experiments under 1 bar. Pinheiro 

et al. (2003) showed that it is possible to use the air pressure raise up to 6 bar as an optimization 

parameter of β-galactosidase production by K. marxianus CBS 7894.  

One of the major drawbacks of P. pastoris expression systems is the post-secretory proteolytic 

degradation of recombinant products (Idiris et al., 2010). Some secreted proteins are unstable in 

the P. pastoris culture medium because they are rapidly degraded by proteases, which are over-

expressed to the medium as a response of stress caused by methanol itself or by the transition 

from a given carbon source to methanol during the induction phase of pAOX-regulated cultures 

(Yamashita et al., 2009). Protease activity profiles over the course of P. pastoris KM71H strain 

induction are shown in Figure 7.5. In spite of the fact that the culture medium conditions used 

favors frutalin secretion, protease activity was detected in the medium. The total protease activity 

increased with time throughout the entire induction process. The same result was reported by Wu 

et al. (2008) in a recombinant P. pastoris expressing a human consensus interferon-α. 

The highest value of protease production was found for the baffled flask assay, whereas in the 

experiment carried out in pressurized bioreactor under 5 bar its concentration in the medium was 

lower. In this work, highest value of protease production was reached in the same experiment 

(baffled flask) that the minimum frutalin expression was obtained. The presence of protease in 

culture medium can influence the stability of secreted frutalin and contributed to their higher 

degradation at atmospheric pressure.  
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Figure 7.5 Protease specific activity profiles by P. pastoris KM71H/pPICZα/frutalin in baffled flask (▲) and 

in the pressurized bioreactor at different air pressures: 1 bar (■) and 5 bar (●). Values are average ± 

standard deviation of two experiment replicates. 

 

There are reports in literature about strategies that have proven to be effective in minimizing the 

proteolytic degradation of recombinant proteins, namely: addition of amino acid rich supplements, 

such as peptone or casamino acids (Cereghino et al., 2001); adjust the pH of the culture medium 

to one that is not optimal for the problem protease and reduction of induction temperature (Jahic 

et al., 2003); and the use of a protease-deficient P. pastoris host strain (e.g. SMD1163, SMD1156 

and SMD1168) (Cregg et al., 2000). The results reported herein revealed that the use of increased 

air pressure up to 5 bar provided optimal conditions for reduction of the proteolysis that occurred 

on frutalin secretion in baffled flasks.  

 

7.4 CONCLUSIONS 

The P. pastoris expression system has gained acceptance as an important host organism for the 

production of foreign proteins, as illustrated by the large number of proteins synthesized in P. 

pastoris. Several strategies were developed in order to overcome the lower protein secretion and 

the high oxygen demand in methanol-induced cultures. 
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For the first time, air pressure up to 5 bar was applied for recombinant protein production 

improvement in P. pastoris. The production of intracellular (β-galactosidase) and extracellular 

(frutalin) heterologous proteins were tested in two different Pichia strains (Mut+ and Muts). The air 

pressure raise had similar positive effects on the production of both recombinant proteins, which 

indicates that pressure can be an important factor of recombinant protein expression and can be 

used as a control parameter for heterologous protein production optimization.  

The expression of intracellular and extracellular recombinant proteins  was enhanced by increased 

air pressure up to 5 bar, contrarily to what happened with cellular growth, which is an indirect 

evidence that oxygen demand played a greater role for recombinant protein production than for 

cellular growth. Furthermore, the results reported herein showed that recombinant frutalin, a lectin 

with a high diagnostic/therapeutic potential application, can be produced under increased air 

pressure in the heterologous P. pastoris system in higher amounts than that obtained using 

standard culture conditions. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

8 GENERAL CONCLUSIONS AND FINAL REMARKS 

 

 

 

 

This chapter presents the concluding remarks and the main outcomes of this thesis.  

 

Regarding the results obtained in this thesis, the suggestions for future work are also presented. 
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8.1 GENERAL CONCLUSIONS 

In industrial biomass production, yeasts are required to have an efficient metabolism, with high 

productivities, in order to achieve an economical production process. During a biotechnological 

process differences in operational conditions take place, like pressure gradients, leading to 

changes in cell metabolism. In a typical industrial cell cultivation system, quite high cell densities 

are reached and oxygen is usually the major growth limiting factor. The use of increased pressure 

in bioreactors may be a way of improving oxygen transfer rate of aerobic cultures avoiding oxygen 

limitation. Although there are published works describing the use of increased air pressure on 

microbial cultures, their effects are strongly dependent of the species and strains. Thus, the study 

of other microbial strains, with relevance to industrial bioprocesses, is of great importance. 

This work started with a study about the influence of increased air pressure on oxygen mass 

transfer rate (OTR). The use of increased air pressure up to 5 bar proved to be a successful way to 

improve OTR, that can be applied to avoid the shear stress to the cells caused by the increased 

stirring rates. An empirical correlation to predict the oxygen volumetric mass transfer coefficient 

(kLa) value as a function of pressure, power input and superficial gas velocity was established. It 

was demonstrated that the kLa increase was higher with the raise of absolute pressure than with 

the superficial gas velocity and specific power input. The proposed correlation for kLa prediction 

could be very useful for further work on the development of strategies for the optimization and 

scale-up of the processes where oxygen transfer is a limiting factor. 

The cellular response of Y. lipolytica W29 and P. pastoris CBS 2612 (at exponential phase of 

growth) to the exposure (3 h) to the ROS-inducing agents paraquat (1 mM), hydrogen peroxide (50 

mM) and increased air pressure (3 bar and 5 bar) was analyzed in Chapter 4. For both strains the 

cellular viability loss and lipid peroxidation was lower for the cells exposed to increased air pressure 

than for those exposed to chemical oxidants. Under superoxide stress (paraquat and air pressure), 

the superoxide dismutase (SOD) induction was the main observed mechanism. In contrast, and as 

expected, the effect of H2O2 treatment on antioxidant enzyme synthesis was much more 

pronounced for catalase than for SOD. The results suggest that Y. lipolytica have a more powerful 

antioxidant system than P. pastoris, which was proved by the higher cell viability and enzymatic 

mechanisms induction. 
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As the results obtained in Chapter 4 proved that Y. lipolytica culture underwent no cellular growth 

inhibition with increased air pressure, a pressurized bioreactor was used for yeast batch cultivation 

under air pressure up to 6 bar. The pressure raise up to 6 bar led to a 5-fold and 3.4-fold 

improvement in the biomass production and in specific growth rate, respectively, comparatively to 

atmospheric pressure. The increase of oxygen partial pressure caused the induction of the 

antioxidant enzyme SOD, which indicates that the defensive mechanisms of the cells against 

oxidative stress were effective and validate the results obtained in previous chapter. 

In order to investigate the influence of a pre-adaptation phase of cells to hyperbaric conditions on 

the lipase production by Y. lipolytica cells under increased pressure, assays were conducted in the 

pressurized bioreactor in which cells were pre-grown on the bioreactor at normal and increased 

pressure (5 bar) following by a lipase production phase at normal and increased pressure. The 

extracellular lipase activity increased 96% using a 5-bar air pressure instead of air at 1 bar pressure 

during the enzyme production phase, regardless of the pre-culture pressure conditions. However, 

the pre-exposition of cells to increased air pressure seems to slight reduce the protease activity. 

The results obtained in this study proved that air pressure increase in bioreactors is an effective 

way of cell mass and enzymes productivities enhancement in bioprocess based in Y. lipolytica 

cultures. 

In Chapter 6, it was investigated whether increasing air pressures (5-fold above atmospheric 

pressure) may be applied as an alternative way of OTR improvement in P. pastoris CBS 2612 

cultures growing in  methanol or glycerol (pure and crude) as carbon sources, in batch and fed-

batch cultures. In batch cultures, 1.4-fold, 1.2-fold, and 1.5-fold improvement in biomass 

production was obtained with the increase of air pressure up to 5 bar, using methanol, pure 

glycerol, and crude glycerol, respectively. The raise of air pressure to 5 bar using exponential 

feeding rate leaded to 1.4-fold improvement in biomass yield per glycerol mass consumed, for 

crude and pure glycerol. The significant increase in cell mass productivity using moderate 

pressure, combined with the availability and low cost of crude glycerol from biodiesel production, 

offers an opportunity for cheaper biotechnological processes using glycerol as substrate. 

The P. pastoris expression system has gained acceptance as an important host organism for the 

production of foreign proteins and several strategies were developed to overcome the lower protein 

secretion and the high oxygen demand in the methanol induction medium. For the first time, air 

pressure up to 5 bar was applied for recombinant protein production improvement in P. pastoris. 
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The production of intracellular (β-galactosidase) and extracellular (frutalin) heterologous proteins 

were tested in two different Pichia strains (Mut+ and Muts). The expression of intracellular and 

extracellular recombinant proteins  was enhanced by increased air pressure up to 5 bar, contrarily 

to what happened with cellular growth, which is an indirect evidence that oxygen demand played 

an greater role for recombinant protein production than for cellular growth. Moreover, the results 

revealed that the use of increased air pressure up to 5 bar provided optimal conditions for 

reduction of the proteolysis that occurred on frutalin secretion in baffled flasks. 

 

8.2 SUGGESTIONS FOR FUTURE WORK 

Although the present work brings new insights on the effects of increased air pressure on non-

conventional yeasts growth, enzymes production and induction of antioxidant defenses, new tips for 

further research arose. Firstly it is necessary to extend the range of air pressure used in this work 

and perform experiments with other gases, namely oxygen—enriched air and pure oxygen. 

It would be interesting to extend the study of the effects of increased air pressure to other 

biotechnological processes with industrial relevance, such as production of single cell oil or citric 

acid by Y. lipolytica (since this yeast is strictly aerobic) or to other microbial species, namely, 

filamentous fungi. 

In Chapter 7 was reported a preliminary study of the effect of increased air pressure on production 

of heterologous proteins by P. pastoris. This production must be optimized by fed-batch mode for 

the glycerol phase (in order to attempt a high density culture) and a different strategy for methanol 

feeding. 

Since the reactive oxygen species are known to mediate the damage of cellular constituents, their 

measurement is useful to understand the mechanisms of cellular alterations under increased air 

pressure. The formation of peroxides can be assayed by monitoring the oxidation of non-fluorescent 

dihydrorhodamine 123 (DHR 123) to fluorescent rhodamine 123 (Rh 123). The formation of 

superoxide radical can assessed by dihydroethidium (DHE) oxidation to fluorescent ethidium (ET). 

Oxidative stress is known to introduce carbonyl groups into the amino acid side chains of proteins. 

Thus, the analysis of protein oxidative damage in cells growing in hyperbaric conditions could be 
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carried out spectrophotometrically as protein carbonyl content using the 2,4-dinitrophenylhydrazine 

(DNPH) binding assay. 

As pressure may have delicate effects on the metabolism and on gene expression of cells, it would 

be interesting to study the proteomic profile of the cells and the identification of genes involved in 

oxidative stress caused by hyperbaric air. 

Several modifications on bioreactor could be performed in order to overcome some limitations 

found along this work, namely: 

 Insert an oxygen probe and a pH control system (which in the case of PARR bioreactor is 

only possible with a separate vessel); 

 Change the “in and out” valves in order to operate in continuous mode, allowing the study 

of microbial physiology under hyperbaric conditions at defined dilution rates. 

 Introduction of a system to measure and analyse the gases out (CO2 and O2), allowing the 

evaluation of respiratory coefficient of the cells and thus to better conclude on the 

metabolism. 
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