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Abstract The low regeneration potential of the central
nervous system (CNS) represents a challenge for the devel-
opment of new therapeutic strategies. Mesenchymal stem
cells (MSCs) have been proposed as a possible therapeutic
tool for CNS disorders. In addition to their differentiation
potential, it is well accepted nowadays that their beneficial
actions can also be mediated by their secretome. Indeed, it
was already demonstrated, both in vitro and in vivo, that
MSC:s are able to secrete a broad range of neuroregulatory
factors that promote an increase in neurogenesis, inhibition
of apoptosis and glial scar formation, immunomodulation,
angiogenesis, neuronal and glial cell survival, as well as rele-
vant neuroprotective actions on different pathophysiological
contexts. Considering their protective action in lesioned
sites, MSCs’ secretome might also improve the integration
of local progenitor cells in neuroregeneration processes,
opening a door for their future use as therapeutical strategies
in human clinical trials. Thus, in this review we analyze the
current understanding of MSCs secretome as a new para-
digm for the treatment of CNS neurodegenerative diseases.
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Introduction

The use of stem cells as a new strategy for cell-based ther-
apies has shown promising results in a variety of health-
related problems, including neurodegenerative diseases [1].
In fact, during the last few years, there has been significant
progress in the development of new protocols and strate-
gies based on stem cells for the treatment of central nervous
system (CNS) disorders [2, 3]. Indeed, studies have shown
that they display some capability to differentiate into several
cells types and also to exert trophic and protective actions
[4-6]. Mesenchymal stem cells (MSCs) are a stem cell
population that has emerged in the last few years as a prom-
ise in regenerative medicine of different tissues [7, 8]. This
great potential has been associated with their widespread
availability throughout the human body, along with the fact
that, when isolated, they display great proliferative potential
with minimal senescence through multiple passages [9, 10].
According to the definition introduced by the International
Society for Cellular Therapy (ISCT), there are some minimal
criteria for the identification of MSCs populations, such
as the adherence to plastic in standard culture conditions;
positive expression of specific markers like CD73, CD90,
CD105, and negative expression of hematopoietic markers
like CD34, CD45, HLA-DR, CD14, or CD11B, CD79a or
CD19; and in vitro differentiation into at least osteoblasts,
adipocytes, and chondroblasts [11]. Friedenstein and col-
leagues [12] were the first to isolate and describe MSCs in
rodent bone matrow as fibroblastoid cells with clonogenic
potential and plastic culture adherence. Following these
early studies, several reports have confirmed that MSCs are
not only present within the bone marrow but also in other
tissues like adipose tissue [13, 14], dental pulp [15, 16], pla-
centa [17, 18], umbilical cord blood [19], Wharton’s jelly
[20, 21], and brain [22]. Although all these populations

Journal : Large 18
Article No : 1290
MS Code : 1290

-
™

@ Springer
Dispatch : 15-2-2013 Pages : 12
O LE O TYPESET
M CP M DISK

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63



Author Proof

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110

m
12
13

F. G. Teixeira et al.

are within the definition of MSCs, they do present subtle
differences, specifically in their membrane antigen markers.
Studies have shown that such differences can be the result of
different cell culture protocols in their isolation and expan-
sion or, alternatively, be related with the tissue source from
where they are isolated [23, 24]. Indeed, besides the mem-
brane antigens proposed by ISCT for the characterization
of MSCs—CD73, CD90, and CD105—other membrane
antigens including CD29, CD44, CD51, CD71, CDI106,
and Stro-1 have also been associated with a MSCs identity
[23, 25, 26]. In addition to these findings, further studies
demonstrated that all these MSCs populations could be
sub-passaged and differentiated in vitro into different cell
lineages such as osteoblasts, chondrocytes, adipocytes, and
myoblasts [26, 27]. Curiously, several reports also showed
that MSCs could also differentiate into neuronal and epithe-
lial populations [26, 28-31]. While the differentiation into
epithelial cells seems to occur, the differentiation of MSCs
into functional neuronal lineages is still matter of intense
debate [26, 32].

In this sense, in addition to the need of clarifying the
phenotypic identity of MSCs and the best culture parameters
for their handling, it also becomes important to characterize
MSCs’ secretome in order to understand if in fact the
factors secreted by these cells may be the main effectors
of their therapeutic actions. For that, on the scope of this
review, we will discuss the current understanding of MSCs’
secretome in particular the ones isolated from bone marrow
(BM-MSCs), adipose tissue (ASCs) and Wharton Jelly of
the umbilical cord (WJSCs/HUCPVCs). Moreover, we will
also review recent experimental data addressing the thera-
peutical potential of all these different MSC populations in
CNS lesion models specifically in spinal cord injury (SCI),
ischemic stroke (IS), and Parkinson’s disease (PD).

Secretome

In recent years, it is becoming increasingly accepted that
the regenerative effects promoted by MSCs are mainly
associated with the secretion of bioactive molecules, that
is, with their secretome [33]. The concept of the secretome
has been defined as the proteins which are released by a
cell, tissue, or organism being afterwards crucial on the
regulation of different cell processes [34]. Therefore,
today it is believed and accepted that in response to injury,
MSCs have the capacity to migrate to the damage site and
promote the repair process through the secretion of growth
factors, cytokines, as well as antioxidants [35, 36]. More-
over, according to Wagner and colleagues [37], the secretion
of all these factors may be dependent on the type and stage
of injury. Nevertheless, despite this notion of growth factors
and cytokines being associated with the cellular secretome,
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nowadays, it has been also suggested that MSCs seem to be
able to secrete large amounts of micro or nano-vesicles such
as exosomes [38]. Although its potential has not been clari-
fied so far, some authors have attributed important features
to this kind of structures such as the transference of proteins
and genetic material (e.g., RNA) to other cells [39—42].
For these reasons, several authors believe that beyond cell—
cell interaction, the secretome of MSCs could be the main
reason of their immunomodulation and regenerative capac-
ity in the lesion site [43, 44]. Although studies suggest that
MSC:s transcriptome/secretome can be modulated with dif-
ferent environment conditions, it also becomes important to
analyze how far these changes can be relevant according to
the normal or pathological conditions in which they are being
applied [32, 45]. Therefore, it has been suggested that these
protective actions promoted by MSCs secreted molecules
may explain their remarkable therapeutic plasticity in the
CNS [9, 46]. As a consequence of this, Caplan and Dennis
[47] have recently classified MSCs as important trophic
mediators. Concerning BM-MSCs, these authors consid-
ered that in addition to their potential to differentiate into
different cell lineages, these cells are also able to secrete
a panel of growth factors and cytokines with direct effects
into a variety of mechanisms such as immune system sup-
pression, inhibition of apoptosis, increase of angiogenesis,
and stimulation of tissue adjacent cells [47].

Crigler and coworkers [48] were the first to demonstrate
that BM—MSCs were able to promote neuronal survival and
neuritogenesis through the secretion of neurotrophic factors
such as BDNF and beta-NGF in vitro. Recently, from a
characterization study of the conditioned media (CM) of
BM-MSCs, Nakano and coworkers [49] demonstrated that
these cells were able to secrete IGF-1, HGF, VEGF, and
TGF-p, which were related with higher levels of neuronal
survival and neurite outgrowth in vitro. In line with this, fur-
ther studies also showed that the CM of BM-MSCs was also
able to promote neuronal and glial survival in vitro [50, 51].
In addition to these findings, when applied into animal
models of Parkinson’s disease and spinal cord injury, BM—
MSCs were also able to release a panel of different trophic
factors, such as BDNF, FGF-2, GDNF, and IGF-1, a fact
that could explain not only the increase of neuronal survival
after lesion but also the improvement of animal behavior
upon cell transplantation [52, 53].

Similar to what has been reported for BM-MSCs growth
factors such VEGF, HGF, bFGF, IGF1, TGF-p1, and others
have also been found in the ASCs secretome [54, 55]. In
vitro, Lu and coworkers [56] revealed that ASCs secretome
was able to exert an active protection in a PC12 cell line
model against the induction of glutamate excitotoxicity. This
result was partially correlated with the presence of different
levels of VEGF, HGF, and BDNF [56]. Similarly, another
study using the same cell line revealed that ASCs-CM was
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able to induce neuritogenesis, relating this effect with the
presence of secreted NGF [57]. Wei and coworkers [58]
demonstrated that after incubation of cerebellar granule
neurons with ASCs-CM, a significant increase in protection
against apoptosis was observed through the action of IGF-1
present in ASCs-CM. Recently, our group has also revealed,
in vitro, that ASCs-CM was able to increase the viability
of neuronal and glial populations through the presence of
NGF, SCE HGF, and VEGF in their secretory profile [59].
In vivo, several reports have already demonstrated a trophic
benefit promoted by ASCs [60, 61]. For instance, Lopatina
et al. [62] showed that ASCs were able to stimulate the
regeneration of peripheral nerves through the secretion of
BDNEF, promoting de novo axon growth. Finally, concerning
WIJ-MSCs and HUCPVC s, studies already showed that
they are also able to contain neurotrophic factors in their
secretome [59, 63, 64]. Recently, Salgado and coworkers
[64] verified that the CM of HUCPVCs was able to increase
the proliferation and the survival of primary cultures of
hippocampal neurons and glial populations. In line with
this, Ribeiro et al. [59] also showed similar results, demon-
strating that HUCPVCs CM was able to secrete NGF and
VEGE. Koh and coworkers [63], performing an objective
analysis of WJ-MSCs secretome, revealed that the secretion
of G-CSE, VEGF, GDNF, and BDNF could be correlated
with their neuroprotective effect when transplanted in vivo.
Similar observations were also found by Ding and col-
leagues [65], which revealed that after transplantation in a
model of stroke, WJ-MSCs were able to promote functional
recovery, reduction of lesion size, as well as to express high

(A)Normal Brain

Fig. 1 Mesenchymal stem cell-based therapy for PD. PD is charac-
terized by a progressive neuronal death of dopaminergic neurons in
multiple dopaminergic networks, most intensively in the nigrostriatal
pathway leading to motor complications (a, b). The transplantation of
MSCs has emerged as possible therapeutic tool due to their prolifera-

(B) Parkinson’s disease

levels of SDF-1, BDNF, and GDNF. Recently, our group
further demonstrated that the secretome of HUCPVCs was
able to increase the secretion levels of neurotrophic fac-
tors such as BDNF, NFG, and FGF-2 in the dentate gyrus
of the hippocampus, contributing for the increase of neural
proliferation, survival, and differentiation. Altogether, these
facts, strongly suggest that the soluble factors secreted by
MSCs populations may explain their apparently therapeutic
effect both in vitro and in vivo. Nonetheless, a deep analysis
of the factors existing in their secretome in the context of
different pathophysiological conditions is still lacking.
In fact, despite the inexistence of a full characterization of
MSCs secretome, studies have already shown that the use
of MSCs as well as their trophic action could be a poten-
tial therapeutic tool in the regenerative processes of some
neurodegenerative disorders such as Parkinson’s disease,
stroke, and spinal cord injury [52, 66, 67].

Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disorder
that is characterized by the progressive degeneration of
dopaminergic neurons (DA) in several dopaminergic net-
works, most intensively in the mesostriatal pathway at the
level of the substantia nigra pars compacta (SNc) [68, 69]
(Fig. 1). As a result, patients develop several motor com-
plications including rigidity, bradykinesia, and postural
instability [70]. The application of Levodopa (L-dopa)
or DA agonists has been considered the gold standard

(C)MSCs transplantation

tion and differentiation capacity (c). The ability to release growth and
trophic factors seems to be one of the reasons for their contribution
to the protection/survival of the preexisting dopaminergic neurons in
lesioned areas, leading to functional amelioration and improvement
of motor function. (SN substantia nigra)
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treatment for PD as well as for the easement of its major
symptoms [71]. However, despite its improving action on
behavior performance, most of these treatments have shown
some limitations such as undesirable side effects, non-total
recovery of PD symptomatology, long-term inefficiency, as
well as an inability to recover lost DA neurons or to protect
the remaining ones [72-74]. Due to these limitations, and
based on the rationale that cell transplantation approaches
could be beneficial in restoring degenerated DA pathways
and ameliorate the behavioral outcome, some clinical tri-
als were conducted in the 1990s [75-78]. These were based
on the transplantation of human fetal mesencephalic tissue
and the results were quite promising, with patients display-
ing an increased DA synthesis, improved motor function,
and reduction of required doses of L-dopa [71]. These stud-
ies confirmed the relevance and feasibility of cell-based
transplantation techniques to treat PD, but because of
methodological and ethical related with manipulation of
human fetal tissue other cell sources needed to be found
[79]. MSCs cell-based applications have thus emerged as
a potential therapy for PD [80-82] (Fig. 1). Although the
literature continues to look carefully on its application as a
tool for the treatment of PD in humans, several studies in PD
animal models have shown that transplantation of BM-
MSCs, ASCs, or WJ-MSCs, seem to contribute to neuro-
protection and/or neural recovery [83-85]. Indeed, it was
already demonstrated that after transplantation, these cells
were able to increase the levels of tyrosine hydroxylase (TH)
and dopamine levels when compared with untransplanted
animals [86, 87]. For instance, with ASCs, McCoy and col-
leagues [84] demonstrated that after autologous transplan-
tation, these cells were able to attenuate 6-OHDA-induced
nigrostriatal pathway degeneration and behavioral deficits
even without dopaminergic differentiation. Despite this,
Thomas and colleagues [88] reported that, ideally, MSCs
should only be considered an alternative and credible source
of replacement DA cells when their ability to transdifferen-
tiate into neuronal lineages is clarified both morphologically
and functionally. Thus, while some studies propose the dif-
ferentiation capacity of MSCs into DA neurons or neural
lineages as the principal effector of PD recovery, it has also
been suggested that this functional improvement can be
caused by the release of trophic factors in vivo [33, 52]. For
instance, Cova and colleagues [52], using a 6-OHDA model
of PD, demonstrated that BMSCs have the capacity to inter-
act with the surroundings of the lesion site, which indicates
their ability to maintain their phenotype even under non-
physiological conditions. In addition to this finding, these
authors also observed an active secretion of trophic factors
like EGF, VEGF, NT3, FGF-2, HGF, and BDNF for a long
period of time in vivo, demonstrating that BM-MSCs did
not require the acquisition of neuronal phenotype to exert
a neuroprotective action in dopaminergic populations [52].
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Moreover, Wang et al. [89] demonstrated that BM-MSCs
could exert neuroprotection against 6-OHDA-exposed
dopaminergic neurons both in vitro and in vivo through anti-
apoptotic mechanisms promoted by the expression of SDF-1.
Likewise, using the same model, Weiss and colleagues dem-
onstrated that WJ-MSC:s are also able to secrete trophic fac-
tors in vivo [90]. Contrary to the observed in the previous
study, these authors associate the recovery of TH-positive
cells and behavioral amelioration to the significant secretion
of GDNF and FGF-20 [90]. In line with this, the protection
and survival of dopaminergic neurons through the secre-
tion of GDNF, BDNF, and NGF was also achieved with
ASCs [84]. Moreover, other studies even proposed intras-
triatal transplantation of hMSCs as a good method for the
functional rescue of nigrostriatal dopaminergic networks
and improvement of behavioral impairments in PD models,
mainly due to their secretion capacity in vivo [91, 92]. For
this reason, it is strongly suggested that hMSCs may in fact
represent a valid tool for the neuroprotection and survival of
the dopaminergic neurons through the release of a panel of
multiple trophic factors [93]. Nowadays, studies have sug-
gested the genetic modification of hMSCs as a new strategy
to secrete specific trophic factors such as GDNF into the
striatum and SNc, having in view the long-term ameliora-
tion of PD pathophysiology [94, 95].

Spinal cord injury (SCI)

SCI is characterized by long-term functional deficits in
ascending and descending motor and sensitive neuronal
pathways as a result of accidental injury, in most of the cases
leading to a complex cascade of reactions that result in loss
of neurons and glial cells, inflammation, demyelination, and
pain [96, 97] (Fig. 2). The occurrence of this kind of lesion
creates a non-permissive inflammatory and chemical envi-
ronment along with abnormal secretion and accumulation
of neurotransmitters, generating high excitotoxicity levels
with destructive actions for neuronal function and regenera-
tion [67, 96]. The application of pharmacological treatments
has been, according with the literature, the best approach
for SCI neuroprotection [98]. However, despite the multi-
ple treatments that were developed and those that are being
developed and applied, most of these trials have failed to
show significant efficacy in the recovery of sensory-motor
function, leaving many patients facing significant neutro-
logic dysfunction and disability [98].

Cell-based therapies through the use of MSCs have
grown in the last few years as a potential promise for SCI
applications [60, 99]. Despite the complexity of SCI lesions,
transplantation with BM-MSCs has already shown that
these cells were able to promote remyelination, axonal spar-
ing, and functional recovery in different SCI stages [100,
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(A)Normal Spinal Cord

Fig. 2 Mesenchymal stem cell-based therapy for SCI. SCI leads to
immediate neuronal and glial cell death with interruption of ascend-
ing and descending pathways, followed by intense inflammatory reac-
tion and glial scar formation (a, b). The transplantation of MSCs has
been described to contribute for the recruitment of new neural stem
cells, neuronal and glial cells, promoted by cell-cell interaction or

101]. Moreover, it has been hypothesized that MSCs have
the capacity to migrate to the lesion site, survive for a long
period of time and improve animal behavior [102, 103]
(Fig. 2). Although studies suggest that MSCs promote func-
tional recovery after transplantation in SCI, the precise
mechanism of action remains still unclear [104]. Besides
the fact that MSCs are immunosuppressive, studies have
shown that they can modify the SCI milieu directly through
the release of trophic factors such as BDNF, NGF, and
VEGE, promoting axonal regeneration, neurite outgrowth,
and glial scar reduction [48, 105] (Fig. 2). Lu and cowork-
ers [106] showed that after transplantation of BM-MSCs,
they were able to secrete NGF, NT-3, and high levels of
BDNEF, contributing to the extent of host axonal growth, and
enhancing the growth of host serotonergic, coerulospinal,
and dorsal column sensory axons after SCI. Similar findings
were also reported by Neuhuber et al. [107], which dem-
onstrated that the CM of BM-MSCs was able to promote
axon growth and functional recovery due to the presence
of BDNF, VEGEF, IL-6, MCP-1, SCF, and SDF-1« in its
composition. Recently, Gu et al. and Park et al. [108, 109]
showed that these cells were able to secrete neurotrophic
factors such as HGF, VEGF, BDNF, and GDNF, suggest-
ing that this secretory activity could be the main reason
to promote axonal regeneration of spinal neurons both in
vitro and in vivo. Concerning ASCs, it was also shown that
these could be similar to Schwann cells, secreting neuro-
trophic factors such as BDNF and improving re-myelination
[62]. Moreover, predifferentiated ASCs can be yet another
promising approach for axonal regeneration that has been
associated with their paracrine action [60]. With WJSCs, so
far only two studies have examined their use in SCI. None-
theless, the outcome of these studies indicates that WJSCs

(B) Spinal Cord Injury

Myelin sheat

(C)MSCs Transplantation

Spinal cord injury

by the release of cytokines, and trophic factors (¢). The secretion of
these cytokines and trophic factors seems to be the main effector of
neuroprotective processes and for reduction of the glial scar, modula-
tion of inflammation, and stimulation of the remyelination (adapted
from Lindvall and Kokaia [2])

transplantation into SCI was able to potentiate repair and
recovery due to the release of trophic factors such as NT-3,
VEGE, bFGF, and BDNF [102, 110].

Clinical approaches using the transplantation of MSCs,
namely BM-MSCs, indicate that they may have an applica-
tion for clinical SCI [111-113]. In a pilot study, Saito and
colleagues [114] demonstrated that the autologous trans-
plantation of BM-MSCs by lumbar puncture seems to be
safe and relevant for the patients, leading to motor improve-
ment. Similar results were also obtained by Karamouzian
and colleagues [112] in subacute SCI stages. In this study,
after the transplantation of the BM-MSCs, the authors
observed that 45.5 % of the patients presented improve-
ments in their neurological and motor function [112]. How-
ever, the precise mechanism that could explain this recovery
after transplantation is still unclear. As discussed in the ani-
mal model experiments, some authors considered that the
transdifferentiation of MSCs into neural lineages or their
secretome through the release of growth and trophic factors
seems to be the main reason for the improvement of the con-
dition of the patients [111, 115]. Although the application
of these cells is still highly experimental, evidence suggests
that MSCs-based therapies could in fact be a new approach
for the regeneration of SCI tissue damage, providing neu-
roprotection and trophic support for the prevention of cell
death and axonal degeneration [116, 117].

Ischemic stroke (IS)

Cerebrovascular diseases, such as stroke, represent a kind of
lesion that results from blood vessel occlusion or damage,
leading to focal tissue loss and death of endothelial cells
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(A)Normal Brain (B)Stroke

Fig. 3 Mesenchymal stem cell-based therapy for stroke. This pathol-
ogy is caused by occlusion of a cerebral artery, leading to focal tissue
loss with death of different neural cells, including neurons and glial
cells as well as endothelial cells (a, b). MSCs transplantation has
been shown to have a beneficial role in the reduction of lesion size

and multiple neural populations [2, 118] (Fig. 3). Addition-
ally, other events are associated with it, including acido-
sis caused by anaerobic glucose metabolism, intracellular
calcium accumulation and excitotoxicity, which leads to
high levels of glutamate release, and excessive production
of free radicals and inflammatory mediators [119, 120]. It
has been proposed that the transplantation of MSCs could
also be a feasible therapeutic option for IS [66, 121].
Indeed, studies have shown that after intravenous admin-
istration of BM—-MSCs, these have the capacity to migrate
to lesion site promoting tissue regeneration and behavioral
improvement [122]. Moreover, studies have suggested that
these cells were not only able to promote the recovery of
animal behavior but also to increase the levels of neuro-
genesis, providing the survival of neuroblasts and to reduce
the volume of lesion after IS [123, 124]. In addition to this
finding, previous studies also showed that the possible
mechanism that could be associated with this phenomenon
resides in their capacity to migrate selectively to ischemic
lesion through the action of SDF-1, and in their trophic
and differentiation capacity into neural/glial cells [125,
126]. Indeed, it has been reported in animal models that
MSCs are indeed involved in the production and increase
in the levels of trophic factors such as IGF-1, VEGF, EGF,
BNDF, and bFGF which, according to Wakabayashi and
colleagues [127], seem to be the responsible mechanisms in
the reduction of lesion size and in the modulation of inflam-
matory environment for host cells. In a recent report, Leu
and colleagues [128] proposed that much like BM-MSCs,
ASCs therapy also enhances angiogenic and neurogenic

@ Springer

(C)MSCs transplantation

Blood vessel aclusion

Middle Cercbral Artery Middle Cerebral Artery

and in the protection of surviving cells (¢). The secretion of growth
and trophic factors has been associated with motor and functional
recovery, having a key role on neuroprotection and modulation of
inflammation

processes. Additionally, these authors also saw that ASCs
application was able to increase the number of small vessels
in the lesion site, and a possible reason explaining recov-
ery of neurological function observed. Although the exact
mechanism of these cells still remains unclear, other studies
have suggested that homing properties, cytokines (SDF-1ca,
IL-1, IL-8) effects, and paracrine mediators (HGF, BDNF,
IGF-1, VEGF) could pinpoint ASCs effects, contributing
to tissue regeneration and functional behavior [129-131].
This way, the secretion of growth factors and cytokines by
ASCs could be a potential tool not only to promote repair
through the induction of progenitor cells to differentiate
and replace lost tissues but also to activate of survival and
anti-inflammatory pathways [58]. Wei and colleagues [58]
were the first to show that application of ASC-CM in brain
damage was able to exert neuroprotection blocking the neu-
ronal damage and tissue loss through the factors present in
their composition particularly IGF-1 and BDNF. Regarding
WI-MSCs, Ding and coworkers [65] demonstrated that they
can also be beneficial for the treatment of brain ischemia.
A high expression of SDF-1, BDNF, and GDNF was found
after WJ-MSCs implantation, suggesting that these cells
have the ability to activate molecular pathways involved in
neuroprotection processes. In line with this, Koh and col-
leagues [63] also demonstrated that WJ-MSCs can indeed
be seen as a therapeutical alternative to use in stroke, given
that they proved this cells to be able to secrete more trophic
factors than BM-MSCs after transplantation, namely
G-CSF, VEGF, GDNF, and BDNF. However, despite the
fact that WJ-MSCs do not differentiate into functional
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neurons and remain undifferentiated after transplantation, it
was shown that they exhibit an exciting migratory tropism
to the lesion site which, combined with the production of
trophic factors, might foster the creation of new networks
between the host neural and transplanted stem cells [63].
Concerning the clinical application of MSCs, few stud-
ies have been performed. For instance, in 2005, Bang and
colleagues [132] demonstrated that transplantation of
BM-MSCs had no adverse cell response and improved the
neurological function of patients. Recently, Lee and col-
leagues [133] also showed that after long-term application
of the same cell population, there was a safe improvement in
the neurological and in the motor function of the patients. As
in the case of SCI patients, the precise mechanism that could
explain the recovery of stroke patients remains still unclear;
however, evidences have associated the clinical improve-
ment with the increase of serum levels of SDF-1c as well as
with the increase of neurogenesis in the subventricular zone
of the lateral ventricle [133]. Although some studies suggest
that the secretion of neurotrophic factors could be the most
likely reason for the improvement of stroke impairments,
more studies are needed in order to clarify the precise action
and interaction of MSCs and their factors with the resident
cells where they are being implemented [134, 135].

Conclusions and perspectives

Neurodegenerative diseases are indeed chronic and acute
insults against the homeostasis of the CNS, capable of
promoting a large amount of cell death in neural popula-
tions in the brain and spinal cord. Thus, as a result of the
limited capacity of the CNS to self-repair, the design of
new therapeutical strategies represents a major challenge
for CNS regenerative approaches. Due to their capacity of
self-renew and multilineage differentiation potential, MSCs
have been suggested as possible therapeutic tools for regen-
erative medicine, representing a promising cell source for
the creation of new cell-based therapies [7, 79, 136, 137].
When compared to other sources they do not imply the ethi-
cal and moral issues raised by embryonic stem cells (ESCs)
or the technical issues regarding the isolation and further in
vitro expansion of neural stem cells (NSCs). Throughout the
years it has become evident that MSCs might have a role in
future stem cell-based therapeutic strategies for CNS regen-
eration [138]. Initially, these effects were attributed to a pos-
sible neural differentiation of MSC-like cells (Fig. 4) [139];
however, this apparently ability of neuronal differentiation,
both in vitro and in vivo conditions, remains still under dis-
cussion (e.g., some authors have suggested that cell fusion

Fig. 4 Mechanisms of action of MSCs in the CNS. a The trans-
differentiation capacity of MSCs into neuronal and glial lineages
both in vitro and in vivo was described over the years as the prob-
able explanation by their beneficial outcomes after transplantation in
the CNS, although this concept remains still unclear. b The trophic
action of MSCs has been increasingly accepted nowadays as a new

concept to the regeneration of the CNS. The secretion of growth and
neurotrophic factors by these cells has been described as an assistant
in the nervous tissue regeneration through the activation/modulation
of some endogenous processes like the promotion of neurogenesis,
angiogenesis, and immunomodulation, contributing in this way to the
neuroprotection and regeneration of the CNS
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Table 1 Examples of clinical

. Kind of injury Outcomes Reference
approaches using mesenchymal
stem cells for stroke and SCI Stroke No adverse cell response; reduction of infarct size; neurological [132]
repair/regeneration function improvement
Safe application of MSCs after long period; no zoonoses after [133]

treatment; increase of functionality and survival; clinical
improvement correlated with the increase of SDF-1a plasma levels

Spinal cord injury

No adverse reaction to the transplantation in the CSF; the release

[113]

of some trophic factors was associated with neuronal/glial
neuroprotection

Patients followed up for 1-4 years did not present any kind of

[114]

adverse response; BM—MSCs were highly effective, promoting
a remarkable recovery in the patients; intrathecal administration
of MSC:s is a safe method

No adverse reaction to the transplantation such as fever or headache;

[112]

most of the patients showed amelioration in their neurological
function after transplantation

is a phenomenon to be considered that could lead to a false
immunopositive characterization of MSCs as neural cells)
[32, 140]. Nowadays, there is ample evidence strongly sug-
gesting that most of the effects promoted by MSCs might
reside in their secretome (Fig. 4) [51, 58, 64, 141]. Indeed,
it has already been shown, both in vitro and in vivo, that
MSCs secrete a variety of neurotrophic factors such as
IGF-1, BDNF, VEGF, GM-CSF, FGF2, and TGF-B, hav-
ing a prominent role in the inhibition of scarring, apoptosis,
immune response modulation, neurogenesis, and angiogen-
esis [9, 47, 79, 137]. Concerning the clinical application
of MSCs, few studies were done so far and only in stroke
and SCI (Table 1). However, there are still many variables
regarding its application as a new therapy for neurological
disorders, which need to be further addressed. Despite the
promising results already described, the source of MSCs,
culture conditions, transplantation parameters (e.g., cell
numbers and site), timing of treatment, as well as the route
of delivery represent some of the issues that need to be clari-
fied in order to create a safe therapy [142]. Although the
neural differentiation of MSCs is still considered a possible
explanation to some authors, their secretome seems to be
nowadays the main reason of their therapeutic effect after
transplantation [32, 52, 115, 133]. Studies have shown that
the molecules secreted by MSCs seem to assist the nerv-
ous tissue regeneration through the activation/modulation
of endogenous neuro-restorative processes [115, 143—145].
In this sense, a thorough characterization of these MSCs’
secretome becomes necessary not only to identify the full
scope of factors released but also to clarify if in fact the mol-
ecules released are able to modulate not only the immune
response but also different cell processes such as cell pro-
liferation, differentiation, and survival in different physi-
ological conditions [92, 146, 147]. At the same time, new
protocols must be developed in order to examine the MSCs
secretome in vivo, as well as strategies to modulate it [141].

@ Springer

By doing this, it will be possible to understand if in fact the
secretome of these cells may be used as a new therapeutic
strategy in CNS regenerative medicine.
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