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Abstract 

With the aim of contributing for the development of design guidelines capable of predicting with high 

accuracy the punching resistance of steel fibre reinforced concrete (SFRC) flat slabs, a proposal is presented 

in the present paper and its predictive performance is assessed by using a database that collects the 

experimental results from 154 punching tests. The theoretical fundaments of this proposal are based on the 

critical shear crack theory proposed by Muttoni and his co-authors. The proposal is capable of predicting the 

load versus rotation of the slab, and attends to the punching failure criterion of the slab. The proposal takes 

into account the recommendations of the most recent CEB-FIP Model Code for modelling the post-cracking 

behaviour of SFRC. By simulating the tests composing the collected database, the good predictive 

performance of the developed proposal is demonstrated. 

 

Keywords: Reinforced concrete, Flat concrete slab, Punching, Steel fibre reinforced concrete, Analytical 
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1. INTRODUCTION  
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In recent years the use of steel fibres to increase of the punching resistance, and mainly, to convert brittle 

punching failure mode into ductile flexural failure mode of reinforced concrete (RC) flat slabs has been 

explored. In fact, available research [1-3] showed that, if proper mix compositions of steel fibre reinforced 

concrete (SFRC) are used, steel fibres can be suitable shear reinforcement for RC flat slabs, by improving the 

load carrying capacity and the energy absorption performance of the column-slab connection. These benefits 

are derived from the fibre reinforcement mechanisms provided by fibres bridging the micro-cracks that arrest 

the crack propagation, favouring the occurrence of large number of cracks of small width. 

The resisting tensile stresses supported by the steel fibres in a cracked concrete have also the favourable 

effect of delaying the yield initiation of longitudinal and transversal conventional steel reinforcement, which 

contributes to increase the ultimate load carrying capacity of RC structures or to a partial suppression of 

conventional reinforcements. 

By testing prototypes of real [4, 5] or smaller scale [6], the use of steel fibres has been investigated as, 

practically, the unique reinforcement of the flat slabs for residential and commercial buildings. This type of 

slabs, generally designated by Elevated Steel Fibre Reinforced Concrete (ESFRC) slabs, is reinforced with a 

steel fibre volume percentage, Vf, of about 1%, and it includes a minimum continuity bars, also referred as 

anti-progressive collapse bars, placed in the bottom of the slab in the alignment of the columns [7]. In spite 

of the promising results obtained in these tests, reliable design models capable of predicting, with high 

accuracy, the load carrying capacity, the deformational response and the failure modes possible to occur in 

ESFRC slabs are not yet available, which is a considerable resistance for a comprehensive acceptation of this 

structural concept that apparently has several technical and economic advantages. Due to the brittle character 

of punching failure mode, the existence of a design model capable of predicting correctly the punching 

resistance and the deformation capacity of SFRC flat slabs is of paramount importance in this context. Some 

analytical models were proposed for the evaluation of the punching resistance of SFRC slabs, some of them 

with an eminent empirical nature, but the predictive performance of these models was, in general, limited to 

the simulation of a relatively small number of tests carried out by the authors [8-11]. In the present work a 

database collecting 154 punching tests with SFRC slabs was developed to appraise the predictive 

performance of these models and the one proposed by the authors of the present work. This model is based 

on the Critical Shear Crack Theory (CSCT) proposed by Muttoni [12], being possible to determine the 
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punching resistance of SFRC slab by intersecting a curve corresponding to the load versus rotation (V-ψ) of 

the column-slab connection, with a curve that defines the failure criterion. This model integrates the 

contribution of fibre reinforcement mechanisms using the recommendations of the most recent CEB-FIP 

Model Code 2010 [13]. The present paper describes the proposed formulation and compares its predictive 

performance using the aforementioned database. 

 

2. LOAD VERSUS ROTATION APPROACH 

2.1. Refined formulation 

The load versus rotation proposed in the present work is based on the recommendations of Muttoni [12] that 

are applied to a column-slab connection assuming axisymmetric conditions for this structural component 

(Figure 1). The crack pattern of the slab at ultimate loading conditions can be assumed as divided into radial 

segments (Figure 1a). Each radial segment is delimited by a tangential crack formed close to the column, by 

two radial cracks, and by the edge considered as a free boarder of the slab. 

According to some authors [14-16], it is admissible to assume that these radial segments rotate as free bodies 

in turn of the point localized at the bottom of the punching failure surface (Figure 1b). Therefore, it is 

accepted that a radial segment has constant rotation ψ between the critical shear crack and its edge. 

According to Muttoni and Schwartz [17], in the column/slab connection the shear force V is transmitted 

through a compression strut formed at the external region to the punching failure surface (Figure 1b). In 

Figure 1b the variables rc, r0, rq and rs represent, respectively, the radius of column’s cross section, the 

distance to the axis of the column of the punching failure surface (r0=r c+d/2, where d is the internal arm of 

the longitudinal reinforcement), the distance of the circumferential loading line and the radius of the slab. 

The stresses and the corresponding internal forces formed in the radial segment are indicated in Figure 2, 

where Fcr and Fsr represent the resultant force in the concrete in compression and in the reinforcement in 

tension, both in the radial direction, while Fct and Fst are the resultant force in the concrete in compression 

and in the reinforcement in tension, both in the tangential direction. The stress components σf,r and σf,t 

represent the post cracking tensile strength of SFRC in radial and tangential direction, respectively. Finally, 

V and VR represent the acting and the resisting shear force, respectively. The force components Fcr and Fsr, 

and the stresses σf,r generate the radial bending moment mr, while force components Fct and Fst, and the 
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stresses σf,t produce the tangential bending moment mt (Figures 2a and 2b). For the evaluation of the mr, the 

vertical component of the resisting force due to dowel effect provided by the longitudinal reinforcement was 

neglected, as well as the vertical component of the resultant stresses due to fibre reinforcement mechanisms. 

The representation shown in Figure 2c corresponds to a column/slab connection assumed in an axisymmetric 

conditions. When the slab has square geometry (Figure 3a), it can be converted into an equivalent circular 

slab (Figure 3b) by adopting the following transformations [18]:  
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where e is the edge of the cross section of the column, and L is the edge of the slab, both assumed of square 

geometry.  

According to Guandalini [19] and Muttoni [12], the load versus rotation of a slab in axisymmetric structural 

conditions can be directly obtained from the quadrilinear (4L) or bilinear (2L) moment-curvature diagram 

(m-χ) represented in Figure 4a. In this figure, the mcr and mR represents, respectively, the bending moment at 

crack initiation and the resisting bending moment (plastic bending moment) of the slab’s cross section. The 

E·I0 and E·I1 represent the flexural stiffness of the slab’s cross section before and after crack initiation, 

respectively. The rcr, r1 and ry is the distance from the axis of the column of the cross section where the 

curvature χcr, χ1 and χy is installed, respectively. In these variables, the subscripts, cr, 1, and y represent the 

crack initiation, the stabilization of the cracking process and the yield initiation of the longitudinal tensile 

reinforcement, respectively. 

The equilibrium of bending moments in O’ (Figure 2c) yields: 
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where mt is dependent of the distance r, which has justified the transformation of the 4L m-χ diagram (Figure 

4a) into the m-r diagram depicted in Figure 4b. Adopting the following assumption: 

( )
r

ψψχ =  (6) 

 

the transformation of m(ψ) into m(r) is executed by performing a simple procedure of changing the variable: 
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Adopting the diagram of Figure 4b and considering Eq. (8), the integral of Eq. (5) can be decomposed into: 
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Introducing Eq. (9) into (5) and solving the integrals yields: 
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which is the equation that establishes the relationship between the rotation and the load carrying capacity of 

the slab. In this equation mr(ψ) is the radial bending moment for the rotation ψ, evaluated at r=r0, and the 

mathematical operator ‹x›=x if x≥0 and ‹x›=0 if x<0. To evaluate the plastic bending moment, mR, the 

recommendations of CEB-FIP Model Code 2010 [13] for the simulation of the contribution of fibre 

reinforcement are adopted in the present work (Figure 5). A detailed description on the evaluation of mR is 

available elsewhere [18]. The bending moment at crack initiation, mcr, is obtained from the following 

equation: 
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where fct is the concrete tensile strength that can be estimated according to the recommendations of CEB-FIP 

Model Code 2010. 

The rcr(ψ), r1(ψ) and ry(ψ) in Eq. (10) is the position, from the axis of the column, of the section of the slab 

that develops the curvature χcr(ψ), χ1(ψ) and χy(ψ), respectively. These curvatures can be determined from the 

following relationships: 
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For the evaluation of the uncracked flexural stiffness, E·I0, the contribution of the reinforcement is neglected: 
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The evaluation of the flexural stiffness of SFRC cracked cross section, E·I1, was executed following the 

procedures adopted for RC members [18], and assuming a stabilized cracking phase: 
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The contribution of fibre reinforcement for the E·I1 is only indirectly taken in the evaluation of the neutral 

axis, x, Figure 5 (η and λ parameters are evaluated according to [13], and fFtu is introduced in next section). 

In Eq. (16) β is a factor intending to take into account the arrangement of the reinforcement, since the 

deduction of Eq. (10) was supported on the principle of axisymmetric structural conditions, but the majority 

of the built and tested RC flat slabs have orthogonal arrangement of the reinforcement [19]. According to 

Muttoni [12], β=0.6 yields to satisfactory results. The evaluation of the position of the neutral axis, x, was 

made according to the recommendations of CEB-FIP Model Code 2010 [13], see Figure 5. 
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The χts factor in Eq. (8) simulates the post-cracking tensile strength of cracked concrete (tension stiffening 

effect) that according to Muttoni [12] it can be determined from the following equation: 
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This means that the fibre reinforcement was not taken into account for the evaluation of χts. Enhancements in 

this respect can be adopted by using the closed form solution proposed by Taheri et al. [20] for determining 

the moment-curvature relationship of FRC of strain softening or strain hardening character, but this approach 

increases significantly the complexity of the model aimed to be proposed in the present work. 

 

2.2. Simplified formulation 

Instead of using the quadrilinear (4L) m-χ diagram to derive the load versus rotation relationship, in the 

present section the simpler bilinear (2L) m-χ diagram (or m-r) is adopted, since it provides a formulation 

more suitable for design purposes. To derive the load versus rotation relationship supported on the 2L m-r 

diagram, it is necessary to assume the slab decomposed in two regions: elastic (ry<r 0) and elasto-plastic 

(r0<r y<r s), as represented in Figure 6b. 

Establishing the bending moment equilibrium in O’ point, and considering the elastic hypothesis (ry<r 0), it is 

obtained Eq. (5). In this equation: 
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Replacing Eqs. (18) and (19) into Eq. (5) it is obtained: 
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Analogously, for the elasto-plastic case, r0<r y ≤ rs, the following equilibrium equation is derived: 
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Replacing Eq. (22) into Eq. (21) it is obtained: 
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Based on experimental results [3, 21, 22], it was verified that the slab’s rotation is proportional to (V/Vflex)3/2, 

where V and Vflex is, respectively, the actuating shear force and the load corresponding to the flexural failure 

of the slab: 
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To obtain Vflex the equilibrium Eq. (21) is considered with:  
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and assuming ry=r s, see Figure 6b, results: 
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Combining Eqs. (23) and (26), and assuming ry=0.35·rs that was determined from experimental evidence 

[18], the following relationship between load and rotation was derived [18]: 
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Eq. (24) can get the following configuration 
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where ∆  is the constant relating ψ and (V/Vflex)3/2, whose value was determined by dimensional analysis [18]. 

In this analysis the same parameters of Eq. (27) were considered, mR, rs, E·I1, having resulted the following 

equation [18]: 
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where ∆ =0.65 for regular concrete and ∆ =1.625 for concrete of lightweight aggregates. For slabs in 

axisymmetric structural conditions, Vflex is obtained from Eq. (26), while for square slabs the yield line theory 

leads to: Vflex=8·mR. Eq. (29) is the simplified expression for the load versus rotation that is recommended to 

be used in the design practice. 

If the contribution of the reinforcement in compression is neglected, and concrete crushing is assumed to 

occur simultaneously with the yield of the longitudinal reinforcement, Eq. (29) gets the following 

configuration, whose deduction is described in detail elsewhere [18]: 
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In Eq. (30) ∆ =0.358 for regular concrete and ∆ =0.894 for concrete of lightweight aggregates, and ρ, fsy and 

Es represents, respectively, the reinforcement ratio, the yield stress and the modulus of elasticity of the 
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flexural reinforcement. The parameter c’ in Eq. (30) is the distance of the flexural reinforcement to the 

concrete tensile surface (∆·d in Figure 5). 

In Eqs. (30) and (31), fFtu(wu) is the post-cracking residual strength of SFRC at ultimate limit conditions, 

where wu is the maximum acceptable crack width imposed by design conditions. According to the CEB-FIP 

Model Code 2010 [13], fFtu(wu) should be evaluated for wu=1.5 mm. In Eq. (31) fR1 and fR3 are the residual 

flexural tensile strength parameters, whose evaluation is carried out according to the recommendations of 

CEB-FIP Model Code 2010, by performing three point notched beam bending tests [13]. In Eqs. (32) and 

(33) Vf and l f/df and the fibre volume percentage and fibre aspect ratio (quotient between fibre length, l f, and 

fibre diameter, df). 

 

2.3. Prediction of the residual flexural tensile strength parameters of SFRC by using a database 

As already mentioned, the predictive performance of the proposed models will be assessed by comparing the 

estimated results with those available in a database (DB) that collects 154 punching tests. In these models, 

the contribution of fibre reinforcement is simulated by using the concept of residual flexural tensile strength 

parameters, fRi, whose values, in the majority of the works composing the DB, are not available. Therefore, to 

apply the proposed models to the tests composing the DB, another database was built by collecting results 

(fRi) of the characterization of the post-cracking flexural behaviour of SFRC according to the 

recommendations of CEB-FIP Model Code 2010. Since the fibre volume percentage, Vf, and fibre aspect 

ratio, l f/df, are practically the unique common information available in the works forming the DB of the 

punching tests, the statistical analysis performed with the collected data for the characterization of the post-

cracking behaviour of SFRC was governed by the criterion of deriving equations for the fRi dependent on the 

Vf and l f/df. The authors are aware that this is a quite simple approach to simulate the fibre reinforcement 

mechanisms, since other variables like the fibre-matrix bond strength, fibre inclination and fibre embedment 

length influence the values of fRi, but this information is not available in those works. Therefore, a relatively 

large scatter of results is naturally expected for the relationships fRi –(Vf, l f/df), but actually this is the unique 

possibility of considering the fibre reinforcement mechanisms according to the CEB-FIP Model Code 2010 

for the prediction of the punching failure load of the slabs collected in the DB by applying the proposed 
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models. The authors are doing an effort to increase this database and, therefore, deriving more reliable fRi –

(Vf, l f/df) relationships. Eqs. (32) and (33) were obtained according to the described methodology [18]. 

In a design context of a SFRSC slab, three point notched SFRSC beam bending tests should be executed 

according to the recommendations of CEB-FIP Model Code 2010 in order to obtain the fRi of the SFRSC, and 

these values should be directly used in the proposed model for the evaluation of the punching failure load of 

a SFRSC slab supported on columns. 

 

 

3. FAILURE CRITERION 

3.1. Fundamental formulation 

In the present approach it is assumed that the punching resistance of a RC slab can be estimated according to 

the critical section concept, e.g., the nominal shear stress, νR, is defined as the ratio between the punching 

failure load (Vu) and an area considered as representative of the punching failure surface (b0·d): 
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ν  (34) 

 

where b0 represents the punching critical perimeter at a distance α·d from the external surface of the column 

(Figure 7). It is also assumed that the contribution of fibre reinforcement can be integrated in Eq. (34) by 

using a kf factor: 
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where this factor simulates the influence of the most important steel fibre reinforcement mechanism, namely: 

fibre volume percentage (Vf), fibre aspect ratio (l f/df) and fibre-matrix bond strength (τb). The a1 factor aims 

to simulate the degree of influence of these fibre characteristics on the punching resistance of SFRC slab. In 

order to integrate these new aspects in the Critical Shear Crack Theory (CSCT) proposed by Muttoni [12], 

the 1a
fk  was included in the equation of the CSCT, resulting: 

( )0
0

1
d,wf

kdb

V
ca

f

u ⋅=
⋅⋅

ν  (36) 

 



 12

where f(w,d0) is a function dependent on crack width, w, and on the roughness of the punching failure surface 

that was assumed correlated to the diameter of the aggregates, d0. If the proposal of Muttoni and Schwartz 

[17] for the determination of w from the rotation of the slab (ψ·d) is now considered, yields: 

daakdb

V c
a

f

u

⋅⋅+
=

⋅⋅ ψ
ν

320
1

 (37) 

 

According to Muttoni [12], and in agreement with the results from Walraven [24], and Vecchio and Collins 

[25], the contribution of the aggregate interlock for the concrete shear resistance can be estimated by 

multiplying ψ·d by kdg, where kdg=1/(dg0+dg), being dg0=16 mm the reference diameter, and dg the maximum 

diameter of the aggregates. In concrete of lightweight aggregates it is assumed dg=0, since the fracture 

progresses through the aggregates resulting a relatively smooth surface. Therefore, the following equation 

governs the punching failure criterion of SFRC slabs: 

dg
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being νc the concrete nominal shear strength [26], which will be determined in the next section, as well as the 

ai (i=1 to 3) and kf parameters.  

 

3.2. Proposal 

The values of ai parameters that define Eq. (38) were determined by fitting as much as possible the Vu-ψ 

response recorded in experimental punching tests with RC slabs. According to ACI 318 [26], the parameter 

b0, which defines the perimeter of the punching failure surface, is localized at a distance d/2 from the 

external surface of the column. This parameter and νc are obtained from the following equations: 

deb ⋅+⋅= π40  (for column of square cross section) (39) 

cc f. ⋅= 330ν  (40) 

 

being e the edge of the column’s cross section. For the reasons indicated at the end of the previous chapter, 

the kf factor was assumed dependent on the Vf and l f/df fibre parameters: 
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To determine the ai parameters, the value of a1 was varied between 0 and 1 with small increments of a1, and 

for each a1, the values of a2 and a3 that best fit the experimental results (smallest R2) were obtained. A 

preliminary parametric study in this context has indicated that values of a1 outside of the aforementioned 

interval conduct to worst predictions of the experimental results. The following optimized ai parameters were 

those corresponding to the smallest R2 of the performed analysis: a1=1/3, a2=1.33, a3=1.82. Replacing these 

values in Eq. (38) results: 
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(42) 

 

3.3. Assessment of the predictive performance of the proposal 

In this section the predictive performance of equation (42), as representative of the punching failure criterion 

of SFRC flat slabs, is assessed. For this purpose, the λ=νexp/νthe parameter, comparing the experimental (νexp) 

and the theoretical (νthe) values, is determined. The values of λ are evaluated according to a modified version 

of the Demerit Points Classification (DPC) proposed by Collins [27], where a penalty (PEN) is assigned to 

each range of λ parameter according to Table 1, and the total of penalties determines the performance of the 

proposal. The theoretical results were obtained from the following equation: 

dg
the kd ⋅⋅⋅+

=
ψ

υ
82.133.1

1
   (43) 

 

while the experimental results were determined from the following equation: 
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Figure 8a shows the predictive performance of the proposal, while Figures 8b and 8c present the safe (λ≥1) 

and unsafe (λ<1) results (in percentage) and a “box and whiskers” plot of the λ parameter, respectively. The 

box plot diagram graphically depicts the statistical five-number summary, consisting of the minimum and 
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maximum values, and the lower (Q1), median (Q2) and upper (Q3) quartiles. The obtained results are 

included in Table 2, where the number of samples, the penalty for each range of λ parameter, and the total of 

penalties (Total PEN) are indicated, as well as the average (AVG), the standard deviation (STD) and the 

coefficient of variation (COV). The number of samples was limited to 40 because, in the majority of the 

slabs composing the DB the ultimate deflection was not provided, whose value if fundamental for the 

evaluation of the ultimate rotation of the slab to be introduced in Eq. (42). Figure 8 shows that R2 of the νexp-

νthe is quite small. However, Table 2 reveals that the average of λ is close to the unit value, and its COV is 

relatively low. Therefore, the assumptions subjacent to this proposal for representing the punching failure 

criterion of SFRC flat slabs are acceptable:  
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 (45) 

 

This equation, in spite of describing satisfactorily the punching failure criterion for SFRC flat slabs, has the 

inconvenient of do not being generalized for the cases of plain concrete (Vf=0). To overcome this deficiency, 

the parameters λf and µf are introduced into Eq. (45) resulting: 
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where 
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When Vf=0, Eq. (46) becomes the one proposed by Muttoni [12] for RC slabs: 
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Taking experimental results found in the bibliography, Figure 9 evidences that Eq. (46) assures a satisfactory 

predictive performance for the punching failure criterion. In this figure the ν symbol of the ordinate axis 

represents the left term of Eq. (46). 

 

 

4. APPRAISAL OF THE PREDICTIVE PERFORMANCE OF THE PROPOSALS 

4.1. Database (DB) 

A database (DB) composed by 154 slabs submitted to punching test configuration was built, 137 of them 

were reinforced with longitudinal steel bars/grids in order to avoid the occurrence of flexural failure mode. 

None of these slabs has conventional shear/punching reinforcement. However, 105 slabs composing the DB 

were made by SFRC. In terms of concrete average compressive strength, fcm, the DB is composed of slabs 

with fcm in the range of 14 to 93 MPa, so a quite high interval exists for a parameter that has a relevant impact 

on the punching resistance of concrete slabs. For the slabs that were flexurally reinforced with steel bars, the 

internal arm of this reinforcement (d, Figure 1) has varied from 13 mm to 180 mm, while the reinforcement 

ratio (ρ) is in the interval 0.4 to 2.75%. In the SFRC slabs, “hooked”, “ twisted”, “ crimped”, “ corrugated”, 

“paddle” and “Japanese” type of fibres were used, with an aspect-ratio that varied from 20 to 100, and in a 

volume percentage ≤2%. In some of the SFRC slabs (6 specimens), the SFRC was only applied in a region 

around the loaded area (that represents the position of the column), considered the region where punching 

failure could occur. In terms of loading conditions, all the slabs of the DB were submitted to a load 

distributed in a certain area of the slab without transferring any bending moments from the loading device to 

the slab. In the tests of the DB, the columns were simulated by a RC element monolithically connected to the 

slab, or applying steel plates, or even introducing a semi-spherical device in between the piston of the 

actuator and the tested slab. The cross section of the columns and steel plates was square or circular. To 

avoid results that can compromise the reliability of this statistical analysis, the slabs with a thickness lower 

than 80 mm were discarded, since an eventual influence of size effect can have a detrimental consequence on 

this study. Furthermore, the slabs where the concrete compressive strength has decreased more than 15% in 

consequence of the addition of fibres were also neglected, since this decrease reveals that the SFRC mix 

composition was not properly designed. 
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4.2. General statistical analysis procedures 

The performance of the proposals for the prediction of the punching resistance of SFRC slabs is appraised 

using the collected data registered in the DB. For each proposal, the obtained values of Vthe are compared 

with Vexp, and a λ factor corresponding to the Vexp/Vthe ratio is evaluated. The values of λ were classified 

according to the modified version of the DPC (Table 1). 

 

4.3. Results 

The performance of the proposals corresponding to Eqs. (10), (29) and (30) for the prediction of the load 

versus rotation, with Eq. (46) that represents the failure criterion, is presented in Figure 10, where 

experimental and theoretical results are compared. In this figure and in the following analyses, the proposal 

corresponding to Eq. (10), (29) and (30) is designated as Refined, Simple and Balanced, respectively. The ν 

symbol of the ordinate axis represents the left term of Eq. (46). Figure 10 shows that the three approaches 

have satisfactory predictive performance in terms of load versus rotation, and when conjugated with the 

proposed failure criteria can estimate with good accuracy the punching failure load. The performance of the 

three proposals for the prediction of the punching failure load of the slabs composing the DB is assessed in 

Figures 11a, 11b and 11c, by comparing Vexp and Vthe. Figure 11d shows the minimum and maximum values, 

and the lower (Q1), median (Q2) and upper (Q3) quartiles of the λ=Vexp/Vthe values predicted by the three 

proposals. Table 3 includes the analysis of λ according to the modified version of DPC (see also Table 1). 

Figure 11 and Table 3 reveal that the proposals corresponding to Eqs. (10), (29) and (30) with the failure 

criteria represented by Eq. (46) predict with good accuracy the results registered experimentally, with a 

relatively small dispersion of results (the COV varied between 12% and 13%), being the Refined model the 

one that conducts to the higher R2, smallest number of total penalties, and largest number of samples with 

proper safety margin. 

 

 

5. COMPARISON TO THE PREDICTIVE PERFORMANCE OF OTHER MODELS 
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In this section the predictive performance of the developed model is compared to the one of the formulations 

proposed by: Narayanan and Darwish [8], Shaaban and Gesund [29], Harajli et al. [9], Holanda [22], Choi et 

al. [30], Muttoni and Ruiz [10] and Higashiyama et al. [31]. A detailed description of these formulations can 

be found elsewhere [32], but a resume is in the appendix. Like in the previous sections, the predictive 

performance is appraised in terms of the λ=Vexp/Vthe factor and considering the modified version of DPC 

(Table 1). The obtained results are indicated in Table 4 and represented in Figure 12. Each of the models in 

comparison is designated by MODi (i=1 to 7) and its corresponding reference is indicated in the footnote of 

Table 4 and in the caption of Figure 12. From the obtained results it can be concluded that the model 

proposed in the present work, regardless of the three levels sophistication, together with the model of 

Muttoni and Ruiz [10], are those that assure the highest performance for the prediction of the punching 

failure load of SFRC flat slabs. In terms of the modified version of DPC, Table 4 shows that the proposed 

Refined model provides the lowest total penalties, with the highest number of predictions of λ in the intervals 

[0.85-1.15[ and [1.15-2.0] (37+11), to which correspond the lowest penalty values, being consequently the 

more reliable model. 

 

 

6. CONCLUSIONS 

In the present work three proposals were described for the prediction of the punching failure of steel fibre 

reinforced concrete (SFRC) flat slabs submitted to centrically loading conditions. The proposals are based on 

the critical shear crack theory, and only diverge on the level of sophistication adopted to define the load 

versus rotation for the slabs. The punching failure criterion adopted in these proposals is based on the 

experimental results collected in a database and on the recommendations of ACI 318. The database is 

composed of 154 experimental punching tests with flat slabs. This database was also used to appraise the 

predictive performance of developed proposals, by performing a statistical analysis of the λ=Vexp/Vthe, where 

Vexp and Vthe is the punching failure load registered experimentally and predicted analytically, respectively. 

The predictive performance of the model was also assessed by applying a modified version of the Demerit 

Points Classification. All the three versions of the proposal predict satisfactorily the load versus rotation of 

the slabs of the database, and estimates λ values in the interval 1.0 to 1.04 with a coefficient of variation less 
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than 13%, which is relatively small considering the complexity of the punching phenomenon. By comparing 

the performance of the developed proposal to the another seven models for the prediction of the Vexp, it was 

also verified that the more refined version of the proposed model assured the highest predictive performance 

with the largest number of predictions in the intervals considered proper for safety design. 
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NOTATION 

A’s Area of compression reinforcement 

As Area of tension reinforcement 

b Width of a isolated slab element  

b0 Critical perimeter for punching shear 

bq,c Loaded line for square slabs in circular edge conditions 

bq,q Loaded line for square slabs in rectangular edge conditions 

c’ Distance of the flexural reinforcement to the concrete tensile surface 

d Internal arm of the slab 

d0 Diameter of the aggregates 

df Diameter of fibre 

dg Maximum diameter of the  

dg0 Reference diameter of the aggregates 

e Edge of the column’s cross section 

E Modulus of elasticity of concrete 

Es Modulus of elasticity of reinforcement 

F’ s Internal compressive force of compressive reinforcement  

fc Average compressive strength of concrete in cylinder specimens 

Fcr Internal compressive force of concrete in radial direction 

Fct Internal compressive force of concrete in tangential direction 

fct Average tensile strength of concrete (Brazilian test) 

fFts Post-cracking strength for serviceability crack opening 

fFtu Post-cracking strength for ultimate crack opening  

fRi Residual flexural tensile strength of fibre reinforced concrete corresponding to CMODi 

Fs Internal compressive force of tensile reinforcement 

Fsr Internal tensile force of reinforcement in radial direction 

Fst Internal tensile force of reinforcement in tangential direction 

fsy Yield strength of reinforcement 

h Slab thickness 

I0 Second moment of area of uncracked concrete cross-section  

I1 Second moment of area of cracked concrete cross-section 

L Span of slab 

l f Length of fibre 

mcr Bending moment at crack initiation 

mr Radial moment per unit width 

mR Resisting bending moment (plastic bending moment) 

mt Tangential moment per unit width 

r Radial orientation 

r0 Radius of the critical shear crack 

r1 Radius of the zone in which cracking is stabilized 

rc Radius of a circular column  

rc,eq Radius of a circular column in an equivalent slab of circular geometry 

rcr Radius of cracked zone 

rq Radius of the load introduction at the perimeter 

rq,eq Radius of the load introduction at the perimeter in an equivalent slab of circular geometry 

rs Radius of circular isolated slab element 

rs,eq Radius of circular isolated slab element in an equivalent slab of circular geometry 

ry Radius of yielded zone 

t Tangential orientation 
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V Shear force 

Vexp Experimental punching shear strength 

Vf Fibre volume percentage 

Vflex Shear force associated with flexural capacity of the slab 

VR Nominal punching shear strength 

VR,cd Design concrete contribution to punching shear strength 

VR,d Design punching shear strength  

VR,fd Design fibre contribution to punching shear strength 

VR,sd Design shear reinforcement contribution to punching shear strength 

Vthe Theoretical punching shear strength 

Vu Punching failure load 

w Shear crack opening  

wu Maximum acceptable crack width imposed by design conditions 

x Neutral axis of slab 

z Axis orthogonal to the slab with origin at the bottom surface of the slab 

β Efficiency factor of the bending reinforcement for stiffness calculation 

∆φ Angle of a cracked radial segment of slab 

ε’ s Compressive steel reinforcement strain 

εc Concrete strain 

εcu Ultimate strain of concrete in compression zone 

εfu Ultimate strain of fibre in tensile zone 

εs Strain of steel reinforcement in tensile zone 

εsu Ultimate strain of steel reinforcement in tensile zone 

εt,bot Concrete tensile strain at the bottom surface of the slab 

νR, Nominal shear stress 

νc Concrete nominal shear strength 

ρ Tensile reinforcement ratio 

ρ' Compressive reinforcement ratio 

σf,r Post cracking tensile strength of SFRC in radial direction 

σf,t Post cracking tensile strength of SFRC in tangential direction 

τb Average interracial bond strength of fibre matrix 

χ1 Curvature in stabilized cracking 

χcr Curvature at cracking 

χts Tension stiffening parameter 

χy Yielding curvature 

ψ Rotation of slab 

 

 

 

 

 



 24

 APPENDIX: Theoretical Models 

 

1. Narayanan and Darwish [8]: 
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where fsp is the indirect cylinder tensile strength of fibre reinforced concrete (FRC), τb=4.15 MPa is the average fibre-

matrix interfacial bond stress, af is a factor depending of the fibre geometry, ( )h..s ⋅−= 002061ξ  is an empirical factor 

depending of the slab’s thickness, h, and ub is the critical perimeter. 

 

 

2. Shaaban and Gesund [29]: 
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where Wf is the weight fibre percentage, and wc is the specific weight of plain concrete. 

 

 

3. Harajli et al. [9]: 
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4. Holanda [22]: 
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5. Choi et al. [30]: 
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where f’ cf is the compressive strength of FRC, fc is the compressive strength of an equivalent concrete without fibres, β 

accounts for the effect of fibre shape, φ=30o is the average value of the angle formed by the punching failure crack with 

the slab’s plan, α·εcof is the compressive strain at the extreme compression fiber of the cross section, and εcof is the 

compressive strain corresponding to the compressive strength of FRC, cu is the neutral axis position, e1 and e2 are the 

edges of the column’s cross section and AT and AC are, respectively, the failure surfaces of tension and compression 

zones. 

 

 

6. Muttoni and Ruiz [10]: 
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where VR,c is the concrete contribution to the punching shear resistance, σtf is the post-cracking tensile strength of FRC 

for a crack width w, and Ap is the horizontal projection of failure surface.  
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7. Higashiyama et al. [31]: 

 

( ) dufV pbpcdrpdR ⋅⋅+⋅⋅⋅= νβββ  (20) 
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where u is the perimeter of the loaded area, up is the perimeter of the critical section located at a distance of d/2 from the 

contour of the loaded area. 
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Table 1. Modified version of the Demerit Points Classification (DPC) [27] 

λ=νexp /νthe Classification Penalty (PEN) 

< 0.50 Extremely Dangerous 10 

[0.50-0.85[ Dangerous 5 

[0.85-1.15[ Appropriate Safety 0 

[1.15-2.00[ Conservative 1 

≥ 2.00 Extremely Conservative 2 
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Table 2. Prediction of νexp: classification of the proposals according to the modified version of the DPC  

λ=νexp /νthe N° samples PEN 

< 0.50 0 0 

[0.50-0.85[ 3 15 

[0.85-1.15[ 28 0 

[1.15-2.00[ 9 9 

≥ 2.00 0 0 

Total PEN 40 24 

Statistical resume 

Average (AVG) 1.04 

STD 0.17 

COV (%) 15.97 
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Table 3. Prediction of Vexp: classification of the proposals according to the modified version of the DPC 
Proposals Refined Simple Balanced 

λ=Vexp/Vthe N° samples PEN N° samples PEN N° samples PEN 

< 0.50 0 0 0 0 0 0 

[0.50-0.85[ 2 10 5 25 4 20 

[0.85-1.15[ 37 0 38 0 39 0 

[1.15-2.00[ 11 11 7 7 7 7 

≥ 2.00 0 0 0 0 0 0 

Total PEN 50 21 50 32 50 27 

Statistical resume 

Proposal Refined Simple Balanced 

Average (AVG) 1.04 1.00 1.01 

STD 0.13 0.13 0.13 

COV (%) 12.72 13.22 12.74 
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Table 4. Performance of several models to predict Vexp: classification of the models according to the modified version of 
the DPC 

λ=Vexp/Vthe < 0.50 
[0.50-
0.85[ 

[0.85-
1.15[ 

[1.15-
2.00[ 

≥ 2.00 
Total 
PEN 

Average 
(AVG) 

STD 
COV 
(%) 

MOD1 
N° samples 0 21 21 8 0 50 

0.92 0.23 25.29 
PEN 0 105 0 8 0 113 

MOD2 
N° samples 0 2 18 29 1 50 

1.24 0.26 20.89 
PEN 0 10 0 29 2 41 

MOD3 
N° samples 0 5 18 20 7 50 

1.42 0.62 43.38 
PEN 0 25 0 20 14 59 

MOD4 
N° samples 0 0 8 42 0 50 

1.32 0.20 15.47 
PEN 0 0 0 42 0 42 

MOD5 
N° samples 0 6 17 27 0 50 

1.20 0.29 24.03 
PEN 0 30 0 27 0 57 

MOD6 
N° samples 0 6 37 7 0 50 

0.99 0.13 13.26 
PEN 0 30 0 7 0 37 

MOD7 
N° samples 0 20 24 6 0 50 

0.92 0.18 19.45 
PEN 0 100 0 6 0 106 

Refined 
N° samples 0 2 37 11 0 50 

1.04 0.13 12.72 
PEN 0 10 0 11 0 21 

Simple 
N° samples 0 5 38 7 0 50 

1.00 0.13 13.22 
PEN 0 25 0 7 0 32 

Balanced 
N° samples 0 4 39 7 0 50 

1.01 0.13 12.74 
PEN 0 20 0 7 0 27 

MOD1= Narayanan and Darwish [8]; MOD2= Shaaban and Gesund [29]; MOD3= Harajli et al. [9]; MOD4= Holanda [22]; MOD5= Choi et al. [30]; 
MOD6= Muttoni and Ruiz [10]; MOD7= Higashiyama et al. [31]. 
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Figure 1. Column-slab connection: (a) Assumed crack pattern and reinforcement arrangement, (b) Slab configuration at 
ultimate condition. 
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(a) (b) (c) 
Figure 2. Internal forces acting in a radial segment: (a) Stresses and resultant forces, (b) Bending moments (c) Free 
body diagram. 
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Figure 3. Transformation of a square slab (a) into an equivalent slab of circular geometry (b). 
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Figure 4. (a) 2L and 4L moment curvature (m-χ) diagrams, (b) m-r diagram corresponding to 4L m-χ diagram. 
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Figure 5. Adopted approach to evaluate the ultimate bending moment, mR (adapted from the CEB-FIP Model Code 
2010 [13]). 
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Figure 6. Hypotheses adopted to derive the simplified load-rotation formulation: (a) Free body diagram of a radial 
segment, (b) bilinear (2L) m-r relationship. 
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Figure 7. Punching critical perimeter adopted for the evaluation of the punching resistance in column of: (a) circular, (b) 
square cross section. 
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Figure 8. Analysis of the results: (a) Predictive performance, (b) Safe (λ≥1) and unsafe (λ<1) percentage of slabs, and 
(c) Dispersion of the results. 
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Figure 9. Assessment of the predictive performance of the proposed punching failure criterion (Eq. (46)).  
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Figure 10. Experimental versus theoretical results in terms of the relationship between normalized load and slab’s 
rotation for slab: (a) L6 [22], (b) A1 [3] and (c) P11F31 [28]. 
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Figure 11. Performance in terms of predicting the punching failure load of the proposals: (a) Refined, (b) Simple, (c) 
Balanced; (d) Dispersion of the predictions. 
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Figure 12. Performance of several models to predict Vexp: MOD1= Narayanan and Darwish [8]; MOD2= Shaaban and 
Gesund [29]; MOD3= Harajli et al. [9]; MOD4= Holanda [22]; MOD5= Choi et al. [30]; MOD6= Muttoni and Ruiz 
[10]; MOD7= Higashiyama et al. [31]; Refined; Simple; Balanced. 

 

 

 


