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ABSTRACT 12 

In this research, the influence of the fibre distribution and orientation on the post-cracking behaviour of steel fibre 13 

reinforced self-compacting concrete (SFRSCC) panels was studied. To perform this evaluation, SFRSCC panels 14 

were cast from their centre point. For each SFRSCC panel, cylindrical specimens were extracted and notched either 15 

parallel or perpendicular to the concrete flow direction, in order to evaluate the influence of fibre dispersion and 16 

orientation on the tensile performance. The post-cracking behaviour was assessed by both splitting tensile tests and 17 

uniaxial tensile tests. To assess the fibre density and orientation through the panels, an image analysis technique was 18 

employed across cut planes on each tested specimen. It is found that the splitting tensile test overestimates the post-19 

cracking parameters. Specimens with notched plane parallel to the concrete flow direction show considerable higher 20 

post-cracking strength than specimens with notched plane perpendicular to the flow direction. 21 
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1. INTRODUCTION 28 

The addition of fibres to a cementitious matrix contributes mainly to the energy absorption capacity and crack 29 

control of structural elements, as well as to the enhancement of the load bearing capacity, particularly, in structural 30 

configurations with high support redundancy [1-2]. The fibre reinforcement mechanisms are mainly effective after 31 

concrete cracking initiation and, mostly, improve the post-cracking behaviour, due to the stress transfer provided by 32 

fibres bridging cracked sections. Crack opening in steel fibre reinforced concrete (SFRC) is counteracted by the 33 

bond stresses that develop at the fibres / matrix interface during the fibre pull-out. On the other hand, one of the 34 

most important properties of SFRC is its ability to transfer stresses across a cracked section rather uniformly, which 35 

nonetheless is dependent on the fibre reinforcement effectiveness, i.e. fibre properties (their strength, bond, and 36 

stiffness), and fibre orientation and distribution [3]. The stress transfer capability of fibres enhances mainly the 37 

composite’s toughness, which is a parameter related to the energy absorption during monotonic or cyclic loading 38 

[4]. 39 

The dispersion and orientation of fibres in the hardened-state results from a series of stages that SFRC passes from 40 

mixing to hardening state, namely [5]: fresh-state properties after mixing; casting conditions into the formwork; 41 

flowability characteristics; vibration and wall-effect introduced by the formwork. Among these factors, wall-effects 42 

introduced by the moulds, and the properties of SFRC in the fresh state, especially its flowability, are the most 43 

important ones [5-7]. Having in mind that mechanical properties are significantly related to the fibre orientation and 44 

dispersion, which are affected by concrete’s flow in the fresh state, it is important to control both those parameters 45 

(flowability and wall-effect) [8-10]. 46 

Application of steel fibres enhances the mechanical properties of concrete, but since all fibres cannot be aligned in 47 

the direction of the applied stress, the effectiveness of the fibres is dependent of the loading conditions, mainly on 48 

the directions of the principal tensile stresses. Moreover, it is shown that the fibre distribution’s scatter in large scale 49 

elements may result in a significant inconsistency of the mechanical behaviour along the structural element. 50 

Therefore, it is feasible to expect an anisometric material behaviour for this kind of composite. In addition, the fibre 51 

efficiency depends on the orientation of the fibres towards the active crack plane. Some authors agree that in steel 52 

fibre reinforced self-compacting concrete (SFRSCC) the variability in the post-cracking parameters observed in 53 

bending tests, and also in uniaxial direct tensile tests, can be justified by the dispersion and alignment of the fibres 54 

[11-12]. Therefore, a significant research effort has been done to achieve better mechanical performances for SFRC 55 
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by conditioning the distribution and orientation of the fibres [11, 13-15]. However, these effects should be 56 

considered for structural design, especially when fibre distribution and orientation affect significantly the 57 

mechanical properties of SFRC. 58 

The main objective of this study is to connect experimentally the influence of the distribution / orientation of fibres, 59 

which are affected by flowability of concrete, to the post-cracking behaviour of SFRSCC developed and applied on 60 

laminar structures. To perform this evaluation SFRSCC panels were casted from their centre point. For each 61 

SFRSCC panel, cylindrical specimens were extracted and notched either parallel or perpendicular to the concrete 62 

flow direction to evaluate the effects of fibre dispersion and alignment on the tensile performance. The post-cracking 63 

behaviour was assessed by both splitting tensile tests and also uniaxial tensile tests. To characterize fibre density and 64 

orientation throughout the panels, an image analysis technique was employed across the cut plane of each tested 65 

specimen. 66 

 67 

 68 

2. EXPERIMENTAL RESEARCH 69 

2.1 Concrete mixture 70 

The constituent materials used in the composition of the SFRSCC were: Portland cement CEM 42.5 R (C), water 71 

(W), superplasticizer Sika® 3005 (SP), limestone filler, crushed granite aggregate, fine and coarse sand, and hooked-72 

end steel fibres (length, l f, of 33 mm; diameter, df, of 0.55 mm; aspect ratio, l f /df , of 60 and a yield stress of 1100 73 

MPa). The adopted mix proportions are shown in Table 1, where W/C is the water/cement ratio. To evaluate the 74 

properties of SFRSCC in the fresh state, the inverted Abrams cone slump test was performed according to EFNARC 75 

recommendations [16]. An average spread of 670 mm was achieved without sign of segregation of the constituents. 76 

The compressive strength and Young’s modulus were determined using cylinders of 150 mm diameter and 300 mm 77 

height after 28 days of moist curing in a climate chamber (3 cylinders for each test). The average compressive 78 

strength (fcm) and the average value of the Young’s modulus (Ecm) were 47.77 MPa (7.45 %) and 34.15 GPa (0.21 79 

%), respectively, where the values in parentheses represent the coefficient of variation. 80 

 81 
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2.2 Specimens 82 

According to [17], casting a slab from its centre assures better mechanical behaviour compared to the other casting 83 

methods. Therefore this direction of casting was selected for the production of two SFRSCC panels. The dimensions 84 

of the panels are 1600× 1000 mm2 in plan, with 60 mm of thickness. The fresh concrete was poured directly from 85 

the mixing-truck by using a U-shape channel at the centre of the mould from a height of 60 cm. The influence of 86 

fibre dispersion and orientation within the panel on the post-cracking behaviour was assessed by means of splitting 87 

(Brazilian type) and direct tensile tests. Twenty-three specimens were extracted from each panel along the concrete 88 

flow directions, according to the scheme represented in Fig. 1. In this figure the pale dash lines with arrows 89 

represent the supposed concrete flow directions. When the driling operations were performed, the panels were 90 

already in their harden-mature phase. The hatched cores were used for executing splitting tensile tests, while the rest 91 

were used for uniaxial tensile tests. In the splitting tensile test, to localize the specimen’s fracture, two notches with 92 

a 5 mm depth were executed on cores’ opposite sides. The influence of the crack orientation towards the concrete 93 

flow was assessed in two distinct directions. By assuming θ as the angle between the notched plane and the direction 94 

of the concrete flow, the notch plane is designated parallel for θ = 0° or perpendicular for θ = 90°. Since the core 95 

scheme was maintained for both panels, for each core location there are two cores with perpendicular notch 96 

direction. This will enable to evaluate the influence of fibre orientation at a certain distance from the casting position 97 

on the stress-crack width (σ-w) relationship. For instance, θ of A1 specimen is 90° and 0° in panels A and B, 98 

respectively.  99 

The remaining cores extracted from the cast panels were sawn out from cylinders of 150 mm diameter and 60 mm 100 

thickness according to the schematic representation shown in Fig. 2. Twenty two prismatic specimens with 101 

dimensions of 110×102×60 mm3 were produced for the uniaxial tensile test program. Following the same notching 102 

procedure for the splitting test specimens, the prismatic specimens were notched according to parallel (θ = 0°) and 103 

perpendicular (θ = 90°) directions to the expected concrete flow. The notch was executed in the four lateral faces of 104 

the specimen, at its mid-height, with a thickness of 2 mm and a depth of 5 mm. Special care was given to this 105 

operation to produce a notch with precise and uniform dimensions, and also to ensure the notch plane becomes 106 

perpendicular to the direction of the applied stress.  107 
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2.3 Test setup 108 

2.3.1 Splitting tensile test 109 

To determine the σ-w relationship representative of the SFRSCC panel, splitting tensile tests based on the ASTM C-110 

496 [18] were executed. The tests were carried out in displacement-control using an universal testing rig with a 111 

bearing capacity of 150 kN. The tests were performed with a relatively low displacement rate of 0.001 mm/s 112 

enabling to obtain a stable response once the crack process is initiated. This low displacement rate was kept constant 113 

throughout the test execution. An external displacement transducer positioned on the actuator that measured the 114 

vertical deformation of the specimen was used to control the test. 115 

Each specimen was positioned between two rigid supports and subjected to a diametral compressive line load 116 

applied along the thickness of the specimen. It is assumed that this applied load induces a constant tensile stress in 117 

the central part of the notched plane; therefore the results are expected to be close to the uniaxial tensile test results 118 

[19]. The test setup is depicted in Fig. 3. In each specimen five linear variable diferential transducers (LVDTs) were 119 

applied according to the configuration schematically represented in Fig. 3a and 3b to record crack opening along the 120 

notched plane. The support aluminium plates of each LVDT guaranttee the register of the opening of the two 121 

opposed faces of the notch, Fig. 3c. To assess if unsymmetric crack oppening occurs, due to fibre segregation during 122 

the casting procedure, two LVDTs were located at the specimen’s bottom surface, while the others were fixed on the 123 

top surface of the specimen. 124 

2.3.2 Uniaxial tensile test 125 

After sawing and notching operations, each specimen was carefully cleaned with pressurized air and acetone. Then, 126 

two loading steel plates were glued with epoxy to the top and bottom surfaces of the specimen and subjected to a 127 

uniform pressure during three days enabling the perfect alignment of the loading plates. Sikadur®-30 Normal epoxy 128 

adhesive was used for this purpose. 129 

A high stiff universal testing rig with a bearing capacity of 1000kN was used to execute the uniaxial tensile tests, 130 

Fig. 4a. This test was carried out in close-loop displacement control by averaging the signals of four displacement 131 

transducers installed on the two opposite faces of the specimen (top and bottom of the panel), Fig. 4b. Distinct 132 

displacement rates were applied during the test according to the following procedure: 0.005 mm/min up to a 133 

displacement of 0.05 mm, 0.02 mm/min up to a displacement of 0.1 mm, 0.08 mm/min up to a displacement of 0.5 134 
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mm/min and finally, 0.1 mm/min until the completion of the test. The adopted displacement rates comply with the 135 

recommendations of RILEM TDF-162 [20]. 136 

2.3.3 Assessment of fibre distribution and orientation 137 

To find out correlations between fibre distribution parameters and mechanical properties, such as, residual stresses 138 

and absorption energy, it is quite important to determine fibre dispersion and fibre orientation parameters. There are 139 

several methods for assessing the fibre distribution and orientation in fibre reinforced composites, namely: 140 

tomography (CT-scan) [21], image analysis [22], x-ray method [17], electrical resistivity [17], ultrasound and 141 

quantitative acoustic emission technique [23], and magnetic approach [24]. Among these methods, image analysis 142 

technique was chosen due to its simplicity and relatively low cost of the necessary equipment. 143 

The adopted procedure for fibre detection comprised four main steps. Firstly, the fracture surface of the specimen 144 

was grinded. To enhance the reflective properties of the steel fibres, the surface was polished and cleaned with 145 

acetone. Secondly, a colored image of this surface was taken using a high resolution digital photograph camera. 146 

Afterwards, the obtained image was processed using ImageJ [25] software to recognize steel fibres. These steps are 147 

depicted in Fig. 5. This method was also adopted by other researchers [13, 26, 27]. After analyzing the images, the 148 

acquired data was processed, and the total number of fibres intersecting the plane (
f

TN ), number of effective fibres 149 

(
f

effN ), orientation of each fibre (θ), and segregation factor (segξ ) were obtained. Each parameter will be defined 150 

subsequently. 151 

The number of fibres per unit area,fN , is the ratio between the total number of fibres counted in an image, f
TN , 152 

and the total area of the image,  A: 153 

                                                                             
f f

TN N A=                                                                         (1) 154 

The effective fibres, 
f

effN , per unit area are those that had the hooked end deformed, and those that have fractured. 155 

The number of effective fibres was determined by visual inspection of the fracture surfaces. 156 

The assessment of the fibre orientation degree at a certain plane can be given by a fibre orientation factor, ηθ, Eq.(2). 157 

Based on an image analysis procedure of cut planes, the ellipses’ axis of an intersecting fibre can be easily 158 

determined. Therefore, in this method, the orientation factor ηθ can be regarded as an average orientation towards a 159 

certain plane surface. 160 
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                                                                        1

1
. cos

f
TN

if
iTNθη θ
=

= ∑                                                                   (2) 161 

In Eq. (2) 
f

TN is the total number of fibres that can be determined by counting all the visible ellipses and circles at 162 

the cross section, θ is the out-plane angle that is defined as the angle between the fibre’s longitudinal axis and a 163 

vector orthogonal to the plane.  164 

The last analysed parameter was the fibre segregation along the gravity direction, determined from: 165 

                                                                           1

1
.

.

f
TN

seg f
iT

y
h N

ξ
=

= ∑                                                                  (3) 166 

wherey  is the coordinate in the Y axis of the fibre’s gravity centre, and h is the height (or depth) of the analysed 167 

cross-section. To calculate the location of the steel fibres gravity centre, an average value of the coordinates in the Y 168 

axis of entire fibres should be determined in the analysed cross-section. The segξ  parameter can assume values 169 

between 0 (segregation at the top of the cross-section) and 1(segregation at the bottom of the cross-section). In a 170 

SFRC with ideal fibre distribution, segξ is 0.5. 171 

 172 

 173 

3. ANALYSIS OF RESULTS AND DISCUSSION 174 

Table 2 includes the residual stresses and toughness parameters for different average crack widths. In this table, σpeak 175 

is the stress at peak load that represents the maximum tensile stress; σ0.3, σ1 and σ2 are the residual stresses at a crack 176 

opening width of 0.3, 1 and 2 mm, respectively; GF1 and GF2 are the dissipated energy up to a crack width of, 177 

respectively, 1 and 2 mm. Additionally, the coefficient of variation, CoV, and the characteristic values for a 178 

confidence interval of 95%, k95%, are also included. From the results it is noticed that the influence of the notch 179 

orientation towards the concrete’s flow on the post-peak behaviour of the material is quite high. The series with a 180 

notch inclination of θ = 0º shows higher residual tensile stresses and also larger dissipated energy than the specimens 181 

with θ = 90º. This variation in the post-cracking parameters could be ascribed to a preferential orientation of the 182 

fibres at the fracture surface. As it will be discussed in more detail further ahead, during the casting stage, fibres 183 

have the tendency to be aligned perpendicular to the direction of concrete flow, maybe due to a uniform radial 184 
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velocity profile as also observed by [14, 17]. Therefore, for the specimens with the notched plane parallel to the flow 185 

direction, more fibres are almost perpendicular to the crack plane and, consequently, a higher number of fibres 186 

intersect more effectively the fracture surface. Previous research on the fibre pullout behaviour has revealed that 187 

fibre reinforcement effectiveness is almost the same for a fibre orientation towards the normal to the crack plane 188 

lower than 30 degrees [28]. 189 

 190 

3.1 Splitting tensile test 191 

Fig. 6 depictsthe nominal stress – crack opening mouth displacement relationship, σ – w, for specimens extracted 192 

from distinct panels’ locations. The envelope and the correspondent average curves are presented in this figure. The 193 

crack width was determined by averaging the recorded displacements of the 5 LVDTs installed on the faces of each 194 

specimen, see Fig. 3. The nominal tensile stress at the centre of the specimen was obtained from the following 195 

equation [29]: 196 

                                                                             

2
SP

F

DL
σ σ

π
= =

                                                                 
(4) 197 

where F is the applied line load, D is the diameter of the cylinder (150 mm) and L is the thickness of the net area in 198 

the notched plane (50 mm). Although the applicability of Eq. (4) is arguable in the softening phase of SFRSCC, 199 

since it is based on the theory of elasticity, it will be used to estimate the tensile stress at the cracked surface, as 200 

adopted by other researchers [19, 26, 30]. 201 

The σ - w responses are almost linear up to the stress at crack initiation. Up to this stress level, the displacements 202 

recorded by the LVDTs represent the transversal elastic deformation of the SFRSCC volume between the supports 203 

of the LVDTs (Fig. 3c). Therefore, the deformability during this first phase should have been removed from the σ - 204 

w response, but due to its negligible value this was not executed. After crack initiation, the σ - w response is 205 

nonlinear up to peak load. Once the peak load was attained, the load has smoothly decreased being visible a 206 

softening response. Note that, for the specimens with the notch perpendicular to the flow direction (θ = 90º), the 207 

peak stress was equal to the stress at crack initiation. 208 

Generally, the σ – w responses exhibited a relatively high scatter. In SFRSCC, this type of scatter is generally high, 209 

even in specimens from the same casting and with the same testing conditions, due to the high dependence of the 210 

post-cracking behaviour on the fibre distribution and orientation. Since the specimens were extracted from distinct 211 
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slab locations, at different distances from the casting point, a high scatter was expected. In fact, the viscous nature of 212 

SFRSCC affects the distribution of the concrete constituents along the flow process. 213 

Fig. 7 shows the σ – w relationships at the two sides of the specimens, representative of the top and bottom surfaces 214 

of the panels. Additionally the average curve is also included. The crack width was determined by averaging the 215 

LVDTs readouts installed on each surface. As it is shown from the results, the LVDTs on the bottom surface 216 

registered a lower value of the crack opening than the ones at the top surface for the same load level. This means 217 

that the crack opened asymmetrically, which is justified by the fibre tendency to segregate along the depth of the 218 

element [31]. The effect of fibre segregation was slightly higher in the θ = 90º series. This aspect will be 219 

corroborated and discussed in a subsequent section with the determination of a fibre segregation factor. 220 

 221 

3.2 Uniaxial tensile test 222 

Fig. 8 depicts the average and envelope stress-crack width (σ-w) curves regarding to each series. For both series (θ = 223 

0° and 90°), the σ-w curve is almost linear up to the load at crack initiation. The concrete tensile strength was 224 

approximately 2.7 MPa. Once the tensile strength is attained, the stress suddenly decreases up to a crack width about 225 

0.07 mm. Beyond this crack width, θ = 0° and 90° series behave in a completely distinct way. A semi-hardening and 226 

a plateau responses are observed for the θ = 0° and 90°series, respectively. Regarding the θ = 0° series, Cunha et 227 

al.[28] have analyzed the micromechanical behaviour of hooked end fibres by performing fibre pull-out tests, and 228 

have verified that after a fibre sliding of nearby 0.1 mm, the fibre reinforcement mechanism is mainly governed by 229 

the hook plastification during the fibre pull-out process. Therefore, in this series, fibres start to be pulled-out slowly 230 

being observed a semi-hardening response. Afterwards, in θ = 0° specimens, up to the crack width of about 0.6 mm, 231 

a plateau response is observed, which is then followed by a smooth drop in the residual stress. From experimental 232 

and analytical analysis, it was verified [32-33] that the average orientation angle value of the active fibres bridging a 233 

leading crack is about 35°. According to fibre pull-out tests performed by Cunha et al. [34], in the case of the 234 

inclination angle of 30° with the load direction, fibre rupture is the most predominant failure mode between the slip 235 

range of 0.6-1.0 mm. In fact, during the uniaxial tensile test execution, after peak load is attained the sound of the 236 

fibre rupturing was clearly noticeable that caused a rapid drop in the value of the load. This was confirmed after 237 

analysing the fracture surface by visual inspection. 238 
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In the case of θ = 90°, some specimens shown a pseudo-hardening behaviour, especially those located nearby the 239 

centre of the panel. After this pseudo-hardening behaviour, it is observed a small plateau followed by a reduction of 240 

the residual stress beyond a crack width of about 0.9 mm, which corresponded to the rupture of the fibres. 241 

The pre-peak branch shows very low scattering, while in the post-cracking phase the scatter of the response was 242 

considerably higher. In the elastic phase the contribution of fibres is rather negligible. After crack initiation, the role 243 

of the fibres becomes more important in bridging the stresses across the crack surfaces. This process depends 244 

significantly on how fibres are distributed and oriented through the matrix, which means the scattering observed in 245 

the post-cracking phase is highly influenced by the variation of the fibre dispersion and orientation amongst 246 

different specimens. Hence, for the latter series it is more logical to categorize the σ-w relationships based on 247 

distinct fibre orientation factor and distribution, which will be discussed in the next section. 248 

 249 

3.3 Comparison of the results 250 

Fig. 9 shows the relationship between the ratio of the splitting tensile post-cracking parameters, σSPLT, GF SPLT and the 251 

uniaxial tensile post-cracking parameters, σUTT, GF UTT for the crack width corresponding to σpeak that is known as 252 

wpeak, and at crack width values of 0.3, 1.0 and 2.0 mm. In Fig. 9(a) for θ = 0° series, wpeak does not represent the 253 

same value for splitting tensile test (0.44 mm) and uniaxial tensile test (0.34 mm), therefore this interval is 254 

represented as a hatched vertical strip. For the θ = 90° series this problem is not crucial since σpeak coincides with the 255 

stress at crack initiation, which happened for a negligible crack opening (wpeak). The data plotted in Fig. 9(a) clearly 256 

shows that σSPLT is larger than σUTT for almost all w (CMOD) values considered except at w = wpeak for the θ=90° 257 

series. Therefore, splitting tensile test overestimates the tensile residual strength. The average tensile stress at peak 258 

load for the splitting and uniaxial tensile test was 4.39 and 3.30 MPa for θ = 0° specimens, and 2.47 and 2.72 MPa 259 

for θ=90°series. With the increase of the crack opening, the σSPLT / σUTT ratio became higher, since in the softening 260 

phase fibres started being mobilized as they bridge the stresses across the crack surfaces. 261 

Fig. 9(b) depicts the relationship between the energy absorbed during the fracture process in both test setups, up to a 262 

crack width of 0.3, 1 and 2 mm. Both series presented a similar tendency, an increase of Gf  with the crack width was 263 

observed. On the other hand, in the average term, for 0.3 mm crack width, the  264 

GF SPLT / GF UTT ratio is 1.33 and 1.94 for θ = 0° and θ = 90° series, respectively. This ratio has increased up to 1.62 265 

and 2.05 for 2 mm crack width, respectively, for θ = 0° and θ = 90° series. 266 
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3.4 Fibre distribution and orientation 267 

Table 3 includes the fibre distribution parameters obtained by image analysis on the plane surface (see Fig. 10) of 268 

the specimens subjected to uniaxial tension test. Within each panel, by assuming the casting point as origin, 269 

specimens with the same distance from casting origin are presented in the same row. For each studied distance, the 270 

number of fibres was assessed in two perpendicular planes (θ = 0° and 90°, Fig. 1). From the analysed results, fN271 

and
f

effN  were significantly higher at the specimens with θ = 0º, approximately 80% and 254 %, respectively, when 272 

comparing to specimens with θ = 90º. This high variation of the fibre distribution in two perpendicular directions 273 

could be ascribed to a preferential fibre alignment influenced by the concrete’s flowability. Moreover, the 274 

probability that a random section plane crossing a single fibre is a function of the fibre’s length (L), diameter (D), 275 

and also the angle that the it makes with the section plane (fibre orientation factor) [35]. Since all the fibres have the 276 

same aspect ratio, the value of D and L are constant, therefore the probability function depends on the fibre 277 

orientation factor. On the other hand, the higher orientation factor leads to a higher probability of a single fibre 278 

intersecting a section plane. Concerning the fibre segregation factor, the obtained average values of segξ for the 279 

studied cross sectional planes were slightly higher than 0.5, approximately 7.6 to 14.6%. The obtained values are 280 

coherent with the σ - w curves depicted in Fig. 7, since it justifies why the value of the crack opening determined in 281 

the bottom surface of the cores in θ = 90° specimens is lower than the other series. Thus, for the studied self-282 

compacting concrete composition, slightly fibre segregation towards the bottom of the specimen due to the gravity 283 

action was observed. In terms of the fibre orientation factor, ηθ, specimens from series θ = 0° had higher values than 284 

the θ = 90° series, which means that the fibres are more aligned perpendicular to the fracture plane in the θ = 0° 285 

series. 286 

Fig. 11 depicts orientation profiles obtained for the average orientation factor of each series separately. In this 287 

figure, the distribution of the orientation angle through the cut plane was studied for each specimen separately and 288 

the experimental results were compared to Gaussian distribution. According to this study, the distribution of the 289 

orientation angle follows closely a Gaussian distribution. Laranjeiraet al. [36] had already obtained similar 290 

conclusion. Based on this method, an Excel spreadsheet was developed in order to determine the probability density 291 

distribution of fibre orientation. As it is expected, θ = 0° specimens show a distribution shifted to the left side, which 292 

means fibres have a tendency to be oriented more perpendicular to the cut plane (crack plane). On the other hand, 293 
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the θ = 90° distribution is slightly transferred to the right side and more fibres tend to be aligned parallel to the cut 294 

plane (crack plane). Regarding to the comparison with theoretical orientation values for a two-dimensional 295 

distribution, 2/π, [37] and a three-dimensional isotropic uniform random fibre distribution, 0.5, [38] θ = 0° 296 

specimens had a very different distribution profile, whereas orientation profile in θ = 90° series has matched with 2D 297 

fibre random distribution perfectly. Consequently, in the case of casting panels from the centre, for θ = 0° series the 298 

assumption of a 2D or 3D uniform random fibre distribution is far apart from the reality. In the present case, the 299 

distribution is prominently influenced by the placing conditions and concrete flowability. 300 

Based on the obtained results, since in the casting process of the panels, particularly from the centre, the wall effects 301 

are negligible, the flow velocity is uniform and diffuses outwards radially from the casting point, see Fig. 12. 302 

Therefore, fibres have a tendency to orient perpendicular to the concrete flow direction. As a consequence, in the θ = 303 

0° series the SFRSCC presented a semi-hardening response due to the high number of effective fibres with 304 

favourable orientation, while in the θ = 90° series, since fibres were rotated due to the concrete flow velocity, the 305 

number of the effective fibres is reduced and lower residual strengths are observed. 306 

Fig. 13 depicts the relationship between the fibre density measured at the notched fracture surfaces after performing 307 

direct tensile test and the distance from the casting point. In this figure fN
�
and fN

⊥
 are, respectively, the fibre 308 

density at a crack plane parallel and perpendicular to the concrete flow. As it is expected, due to the proper viscosity 309 

of the concrete, a good homogeneity and dispersion of the fibres were achieved all over the panels, and a higher 310 

fibre density was obtained in the fracture surfaces in the alignment of the concrete flow. 311 

The σ - w relationships previously obtained (see Fig. 8) have shown a high scatter due to the distinct fibre 312 

distributions. In order to reduce the scatter of the results and also study the influence of ηθ and
f

effN , the σ - w 313 

relationships were separated in three different categories, see Fig.14. From this figure, it is concluded that the post-314 

cracking parameters depend not only in ηθ but also in
f

effN . Fig. 15 clearly shows that by increasing the orientation 315 

factor, the number of the effective fibres tends to rise exponentially. 316 

 317 

 318 
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4. CONCLUSION 319 

In the present work, the influence of fibre distribution / orientation on the tensile performance of steel fibre 320 

reinforced self-compacting concrete (SFRSCC) was characterized by performing splitting and uniaxial tensile tests 321 

on cored specimens extracted from different panel locations.  322 

Fibre distribution and orientation have a strong impact on the tensile behaviour of specimens drilled from the panels. 323 

In the case of the series with crack plane parallel to the concrete flow direction (θ = 0°), specimens shown 324 

significantly higher post-cracking parameters than the other studied case with a perpendicular crack plane to the 325 

flow direction (θ = 90°). When a panel is cast from the centre, fibres have a tendency to line up perpendicularly to 326 

the radial flow, mainly due to the uniform flow profile velocity that diffuses outwards radially from the centre of the 327 

panel. Hence, the total number of the effective fibres intersecting the parallel crack plane (θ = 0°) was higher than 328 

the one registered in the orthogonal crack plane (θ = 90°). 329 

The probabilistic distribution of the orientation angle through a cut plane follows closely a Gaussian distribution. By 330 

determining the probability density function of fibre orientation for each series separately, it is found that for θ=0° 331 

specimens the assumption of 2D and 3D uniform random fibre distribution is completely far apart from the reality, 332 

while θ = 90° series follows a pattern very close to the theoretical 2D random fibre distribution. 333 

Splitting tensile tests tend to overestimate the post-cracking parameters, but clearly capture all phases of post-334 

cracking response. Moreover, the splitting tests have presented a lower scattering of the results when compared to 335 

the uniaxial tensile test. The load at crack initiation step was not influenced by fibres; both tests estimated similar 336 

tensile strengths. The post-peak stresses and energy absorption parameters obtained from the splitting tensile tests, 337 

especially, the energy absorption parameters have shown a reasonable correlation with the ones obtained from the 338 

uniaxial tensile tests.  339 

 340 
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          493 

                                      (a)                                                                                         (b) 494 

Fig. 1 - Core extracting plan: (a) panel A, (b) panel B. 495 
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                                                              515 

Fig. 2 - Schematic representation of the prismatic specimen production from an extracted core (dimensions are in 516 

mm). 517 
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                         535 

                                   (a)                                            (b)                                                     (c) 536 

Fig. 3 - Geometry of the specimen and setup of the splitting tensile test (dimensions are in mm): (a) specimen front 537 

view (top of the panel), (b) specimen lateral view and (c) LVDT connection detail. 538 
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                                                             553 

                              (a)                                                            (b)                                                     (c) 554 

Fig. 4 - Uniaxial tensile test setup: (a) specimen front view, (b) specimen lateral view, (c) LVDT connection detail. 555 
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                                                575 

                                             (a)                                                                                  (b) 576 

                                                 577 

                                             (c)                                                                                   (d) 578 

Fig. 5 - Image processing steps: (a) converting a colored image to greyscale image (b) adjusting a threshold, (c) 579 

defining mask, noise (remove small noises) and watershed (separated fibres that are stuck together) functions, (d) 580 

fitting the best ellipse to each fibre. 581 
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           590 

                                                (a)                                                                                   (b) 591 

Fig. 6 - Nominal tensile stress – crack opening width relationship, σ – w, obtained from splitting tensile test for: (a) 592 

θ=0° and (b) θ = 90°. 593 
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                       612 

                                                   (a)                                                                                    (b) 613 

Fig. 7 - Nominal tensile stress – crack opening width relationship, σ – w, obtained from splitting tensile test for the 614 

two sides (top and bottom) of the specimens: (a) θ = 0° and (b) θ = 90°. 615 
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                        634 

                                                  (a)                                                                                        (b) 635 

Fig. 8 - Uniaxial tensile stress – crack width relationship, σ - w: (a) θ = 0° and (b) θ = 90°. 636 
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        652 

                                                  (a)                                                                                        (b) 653 

Fig. 9 - Uniaxial tensile post-cracking parameters versus splitting tensile post cracking parameters: (a) Residual 654 

stress and (b) Fracture energy. 655 
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 674 

Fig. 10 - Localization of the plane surface considered in the fibre distribution assessment (units in mm). 675 
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                        698 

                                                   (a)                                                                                  (b) 699 

Fig. 11 - Predicted orientation profile: (a) θ = 0° and (b) θ = 90°. 700 
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 721 

Fig. 12 - Explanation for fibre alignment in flowing concrete of a panel casting from the centre. 722 
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 745 

Fig. 13 - Relationship between the number of fibres in the fracture surfaces and the distance from the centre. 746 
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                 767 

                                                (a)                                                                                      (b) 768 

 769 

       (c) 770 

Fig. 14 - Categories of uniaxial tensile stress – crack width relationships, σ - w, : (a) ηθ  ≥ 0.80 and f

eff
N ≥ 1.20, (b) 771 

0.68 < ηθ <0.80 and 0.41 < f

eff
N <1.20, (c) ηθ ≤ 0.68 and f

eff
N ≤ 0.41. 772 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

 781 

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
 Envelope
 Average

S
tr

es
s 

[M
P

a]

w [mm]

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
 Envelope
 Average

S
tr

es
s 

[M
P

a]

w [mm]

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
 Envelope
 Average

S
tr

es
s 

[M
P

a]

w [mm]



34 
 

 782 

Fig. 15 - Orientation factor, ηθ, versus number of the effective fibres,f
eff

N . 783 
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Table 1- Mix proportions of steel fibre reinforced self-compacting concrete per m3. 803 

Cement 

[kg] 

Water 

[kg] 

W/C 

[–] 

SP 

[kg] 

Filler 

[kg] 

Fine sand 

[kg] 

Coarse sand 

[kg] 

Coarse aggregate 

[kg] 

Fibre 

[kg] 

413 140 0.34 7.83 353 237 710 590 60 
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Table 2 - Residual stress and toughness parameters obtained from splitting and direct tensile tests. 828 

 
Series Parameter 

σpeak 

[MPa] 

σ0.3 

[MPa] 

σ1 

[MPa] 

σ2 

[MPa] 

GF1 

[N/mm] 

GF2 

[N/mm] 

S
pl

itt
in

g 
te

ns
ile

 t
es

t 

θ = 0º 

(σ‖)* 

Average 4.39 4.23 3.82 2.79 4.07 7.32 

CoV(%) 25.6 29.7 24.3 30.2 27.2 25.2 

K95% 3.52 3.16 2.09 1.95 3.36 6.08 

θ = 90º 

(σ⊥)* 

Average 2.47 2.13 1.96 1.50 2.08 3.82 

CoV(%) 33.1 48.6 37.9 35.3 35.9 33.2 

K95% 2.07 1.74 1.46 1.09 1.49 2.83 

U
ni

a
xi

al
 te

ns
ile

 t
e

st
 θ = 0º 

(σ‖)* 

Average 3.33 3.24 2.30 1.14 2.94 4.47 

CoV(%) 19.0 21.4 27.4 39.8 24.2 23.7 

K95% 3.10 2.73 1.83 0.80 2.42 3.72 

θ = 90º 

(σ⊥)* 

Average 2.72 1.05 1.02 0.56 1.09 1.86 

CoV(%) 19.1 64.5 65.4 57.1 59.6 59.9 

K95% 2.34 0.51 0.48 0.30 0.57 0.96 

*‖ and ⊥- notch direction parallel (θ = 0º) and perpendicular (θ = 90º) to the concrete flowdirection, respectively. 829 
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Table 3- Fibre distribution parameters. 842 

 θ = 0° θ = 90° 

Specimen 
Distance 

[cm] 

f
N  

[fibres/cm2] 

f

eff
N  

[fibres/cm2] 

ηθ 

[-] 

segξ  

[-] 

f
N  

[fibres/cm2]  

f

eff
N  

[fibres/cm2]  

ηθ 

[-] 

segξ  

[-] 

B3 20.0 2.071 1.291 0.827 0.580 1.557 0.405 0.688 0.476 

A4 23.5 1.889 1.356 0.855 0.518 1.430 0.506 0.737 0.510 

C4 32.0 2.036 1.430 0.851 0.555 0.665 0.133 0.630 0.597 

D3 32.0 1.913 0.853 0.775 0.491 1.436 0.415 0.666 0.586 

B4 40.0 1.956 0.851 0.773 0.530 0.506 0.074 0.561 0.643 

A5 46.5 2.220 1.212 0.814 0.479 1.097 0.311 0.672 0.725 

A6 69.5 2.304 1.803 0.866 0.557 0.967 0.132 0.604 0.539 

C6 77.5 2.142 1.303 0.818 0.600 1.232 0.541 0.756 0.485 

D1 77.5 1.921 1.089 0.795 0.532 1.355 0.631 0.760 0.594 

Average  2.050 1.24 0.820 0.538 1.138 0.35 0.675 0.573 

CoV (%)  7.16 23.74 4.15 7.33 31.98 57.11 10.20 14.00 
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