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Abstract—ARCHERY is an architectural description language
for modelling and reasoning about distributed, heterogeneous
and dynamically reconfigurable systems. This paper proposes a
structural semantics for ARCHERY, and a method for deriving
labelled transition systems (LTS) in which states and transitions
represent configurations and reconfiguration operations, respec-
tively. Architectures are modelled by bigraphs and their dynamics
by parametric reaction rules. The resulting LTSs can be regarded
as Kripke frames, appropriate for verifying reconfiguration
constraints over architectural patterns expressed in a modal logic.
The derivation method proposed here applies the approach in
[1] twice, and combines the results of each application to obtain
a label representing a reconfiguration operation and its actual
parameters. Labels obtained in this way are minimal and yield
LTSs in which bisimulation is a congruence.

I. INTRODUCTION

Complex software systems are built by plugging together
heterogeneous computational entities in very large, often
loosely coupled, highly dynamic configurations. Change being
the norm, rather than the exception, dynamic reconfiguration
emerged as a main theme in architectural design.

Such is the motivation for the ARCHERY language [2],
[3]. Its basic specification concept is that of an architectural
pattern, which comprises a set of architectural elements (con-
nectors and components) specified by their behaviours and
interfaces (set of ports). An architecture describes a particular
configuration of instances of pattern elements through a set
of attachments linking their ports, and a set of renamings
changing the externally visible names of ports. Both patterns
and elements act as types for behaviours which are kept and
referenced through typed variables. The language supports
hierarchical composition and allows attachments between in-
stances located at arbitrary nesting levels.

In this work we describe a few language extensions
intended to specify reconfiguration scripts and constraints.
Scripting operations are devoted to the creation and removal
of instances, attachments, renamings and variables, as well as
for moving instances and variables. Constraints, on the other
hand, can be associated to a pattern or to an element, serving
a number of purposes. For example, constraints can be used
to ensure that the relevant design principles in a pattern are
preserved by the application of reconfiguration scripts. For the
purpose of this work, we limit constraints to be expressed in
a Hennessy-Milner logic [4]. The logic is interpreted over a
Kripke structure where the frame is a labelled transition system

(LTS) in which states represent configurations, and transitions,
represent reconfiguration operations.

ARCHERY was originally introduced in [2] and its ex-
tensions in [3]. The former reference is focused on the
behavioural dimension: the language semantics being given
by a translation to a process algebra. The latter deals with
structural concerns providing an encoding into bigraphical
reaction systems (BRSs) [5]. This work provides structural
semantics by translation to a BRS as well, but allowing for
attachments among variables located at arbitrary nesting levels
in an architecture.

The theory of BRSs has two main objectives. One is to
study systems in which locality and placing varies indepen-
dently, a characteristic which allows for an elegant represen-
tation of ARCHERY’s static and dynamic specifications. The
other is to provide a general unifying theory, precisely defined
within a framework of monoidal categories, that allows for
the study of different calculi for concurrency and mobility.
Moreover, recent results [6] provide further evidence of the ex-
pressiveness of BRSs as a meta-language for domain-specific
modelling languages.

Reference [1] introduces an approach to derive LTSs in
which behavioural equivalence is a congruence. In the sequel,
we refer to such work as Leifer’s approach. An instance of
a BRS comprises a bigraph, which relates a single set of
nodes in two orthogonal ways, represented by a place-graph
and a link-graph, and a set of parametric reaction rules. A
bigraph corresponds to an arrow in a suitable category. Thus,
the composition of bigraphs C and a is defined if the domain
of C matches the image of a. Bigraph a is typically called an
agent if its domain is a distinguished object that does not admit
composition. In contrast, a bigraph C, that can be composed
in its domain, is called a context. Given a reaction rule and an
agent, Leifer’s approach allows for the derivation of a label that
corresponds to the minimal context which enables the reaction
to occur.

However, labels derived in this way do not convey sufficient
information for carrying out analysis and verification of archi-
tectural reconfigurations. For this labels must represent oper-
ations and their actual parameters. Additionally, behavioural
congruence must be preserved as well. This paper describes
a method for deriving such labels and enables, in this way,
the combination of the expressive power of BRSs with modal
logic and its tools, in order to describe the software architecture
domain.



The rest of the paper is organised as follows: section II
describes ARCHERY and its extensions; section III introduces
its structural semantics; section IV presents the method to
derive appropriate labels; and section V draws conclusions and
mentions, future, and on going work. Being essentially a short
technical paper, the interested reader is referred to [2], [3] for
further details and applications of the language.

II. (RE)CONFIGURATION OF ARCHITECTURAL PATTERNS

ARCHERY is structured as a core language and two ex-
tensions, referred to as ARCHERY-CORE, ARCHERY-SCRIPT,
and ARCHERY-CONSTRAINT, respectively. We describe and
illustrate the language using a refinement of the Pipes & Filters
architectural pattern. The pattern prescribes architectures built
up of two elements, a connector and a component type,
respectively named Pipe and Filter, that can be arranged
to transform a stream of data. The main underlying design
principle is that filters can only be connected through pipes.

An ARCHERY-CORE model comprises one or more pat-
terns and a main architecture referenced by a variable. Listing
1 shows the specification of the Pipes & Filters pattern and
the declaration of an instance.

1 pattern PipeFilter()
2 element Pipe()
3 act acc, fwd;
4 proc Pipe() = acc.fwd.Pipe();
5 interface in acc; out fwd;
6 element Filter()
7 act rec, trf, snd;
8 proc Filter() = rec.trf.snd.Filter();
9 interface in rec; out snd;

10 end
11 pf:PipeFilter=architecture PipeFilter()
12 instances
13 f1:Filter=Filter(); f2:Filter=Filter();
14 p1:Pipe = Pipe();
15 attachments
16 from f1.snd to p1.acc; from p1.fwd to f2.rec;
17 interface
18 f1.rec as r1; f2.send as s1;
19 end

Listing 1. ARCHERY example pattern and architecture.

A pattern has a unique identifier, and includes, an optional
list of formal parameters, and one or more architectural ele-
ments. Each architectural element in a pattern is described by
an identifier, an optional list of formal parameters, a description
of its behaviour, and an interface. Its behaviour consists of
a list of actions and a list of process expressions. The head
of the latter constitutes the element’s initial behaviour which
must have all parameters bound to an actual value. Process
expressions are specified in a slightly modified subset of
mCRL2 [7], yielding sequential processes. The behaviour of
instances of element Filter, is shown in lines 7 and 8, and
consists of a loop: receive data (rec), transform it (trf),
and submit the result (snd). The interface, on the other hand,
contains one or more ports. Each port is defined by a polarity,
either in or out, and a token that must match an action name
in the list of action definitions. For instance, the interface of
Filter defines two ports in line 9. ARCHERY adopts a water
flow metaphor for ports: an in port receives input from any
port connected to it, and an out port sends output to all ports

connected to it. Ports are synchronous: if needed, a suitable
process algebra expression can be used to emulate any other
kind of port behaviour.

An architecture defines a set of variables and describes the
configuration adopted by their instances. It contains a token
that must match a pattern name, an optional list of actual
arguments, a set of variables, an optional set of attachments,
and an optional interface. The actual arguments must match
in type and order those of the pattern acting as its type.
A variable has an identifier and a type that must match an
element or pattern name. Allowed values are instances of a
type (element or pattern) that does not necessarily need to
match the variable’s type. Variables in an architecture must
have as type an element defined in the pattern that such
architecture is an instance of. Each attachment includes port
references to an output and an input port (see line 16 for
examples). A port reference is an ordered pair of identifiers: the
first one matching a variable identifier, and the second a port
of the variable’s instance. The architecture interface is a set of
one or more port renamings. Each port renaming contains a
port reference and a token with the external name of the port.
An example interface is shown in line 18.

Reconfigurations are specified using ARCHERY-SCRIPT.
We assume a configuration manager is associated to an ar-
chitecture to monitor conditions, stopping, reconfiguring and
restarting instances. Reconfiguration operations are shown in
the first and second columns of Table I. Listing 2 shows an
example script that creates a variable and an instance, both of
type Filter, moves the variable to the architecture in pf,
and attaches it to two other instances. Note that the second
attachment (line 4) violates the main design principle of the
pattern by connecting two filters together.

TABLE I. RECONFIGURATION OPERATIONS

Name Operation Modality
Create variable v:type vnew[(a)]
Destroy variable destroy(v) destroy[(a)]
Create instance v=type() inew[(a,t)]
Destroy instance clear(v) clear[(a)]
Attach attach(vf,po,vt,pi) attach[(af,no,at,ni)]
Detach detach(vf,po,vt,pi) detach[(af,no,at,ni)]
Add renaming show(v,pi,pe) show[(av,ni,ne)]
Remove renaming hide(v,pe) hide[(av,ne)]
Move instance imove(vs,vt) imove[(as,at)]

Move variable vmove(vt,vd) vmove[(at,ad)]
vmove(v) vmove[(a)]

1 f3:Filter = Filter();
2 vmove(f3, pf);
3 attach(p1, fwd, f3, rec);
4 attach(f1, snd, f3, rec);

Listing 2. ARCHERY example script

ARCHERY-CONSTRAINT aims at the specification and
verification of reconfiguration constraints. In the context of
this work an Hennessy-Milner logic [4] is used to express
constraints. A constraint ϕ is an expression of the form

ϕ ::= > | ⊥ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| ϕ1 → ϕ2 | [m]ϕ | 〈m〉ϕ.

The logic is interpreted over a Kripke frame F =
〈W, {Rm}m∈MOD〉 where W are configurations, and MOD



is a set of modalities representing reconfiguration operations.
A modality in MOD represents an operation and its actual
parameters. The syntax for modalities is shown in Table I.
Arguments a of the operation are of the form [t][:q] where
t is a type and q a path, and both are optional. Types are
either patterns or elements and paths are absolute and relative
references to variables and ports, respectively. Paths, in turn,
are of the form n[.n]*. A constant or a variable can be used
when specifying a modality.

For example, the main design principle of the Pipes & Fil-
ters mentioned above, can be formalised as constraint ϕ1. The
constraint indicates that in any configuration, there cannot be
an attachment operation that connects two variables with type
Filter. This constraint rules out the script in Listing 2 since
operation in line 4 makes ϕ1 false. Other example constraints
are ϕ2 and ϕ3 that respectively indicate that configurations that
attach a pipe p (p matching a variable name in reconfiguration
operations) to itself are not accepted and that it is not possible
to rename a port of a pipe, but is possible to do so for a filter.

ϕ1 : [attach(Filter, _, F ilter, _)] ⊥.
ϕ2 : [attach(p : Pipe, _, p : Pipe, _)] ⊥.
ϕ3 : [show(Pipe, _, _)] ⊥ ∧ 〈show(Filter, _, _)〉 >

III. BIGRAPHICAL MODELLING

An ARCHERY-CORE specification is modelled as a bi-
graph, i.e., an inhabitant of category BG(ΘS), where ΘS =
(ΣS , φS) is a sorted signature composed of a signature ΣS

and a predicate sorting φS . Table II shows the controls in ΣS

as follows: the first column indicates the control name and
arity, the second column defines its activeness, and the third
column provides a brief description of the represented object.
The encoding of the pattern and architecture in Listing 1 yields
expressions (1) and (2), respectively. The names PF, P, F
of nodes with controls Pat and Elem in (1) stand for types
PipeFilter, Pipe, Filter, respectively. These names are
linked to nodes with controls Var and Inst in (2), and indicate
the type of modelled variables and instances. Variable and
port identifiers are modelled as names. Then, attachments and
renamings are represented as linkings obtained by substituting
the names of nodes representing ports, by unique names (which
in our example are ren1, ren2, att1 and att2).

PatPF .(ElemF .(Inrec | Outsnd) | ElemP .(Inacc | Outfwd)) (1)
Varpf,PF .(/r1/s1 InstPF .(RInren1,r1 | ROutren2,s2

| Varf1,F .(ren1/rec att1/snd InstF .(Inrec | Outsnd))

| Varp1,P .(att1/acc att2/fwd InstP .(Inacc | Outfwd))

| Varf2,F .(att2/rec ren2/snd InstF .(Inrec | Outsnd))))) (2)

TABLE II. CONTROLS FOR Σs

Ctrl Activeness Represented Item
Patx passive pattern

Elemx passive element
Inx atomic in port within an instance

Outx atomic out port within an instance
Instx active instance
Varxy active variable
RInxy atomic renaming of an in port

ROutxy atomic renaming of an out port

The predicate sorting φS is defined according to the sorting
logic described in [6] to limit ourselves to a subcategory of
bigraphs which contains the ones representing ARCHERY spec-
ifications. This logic ensures sufficient mathematical structure
in the subcategory to derive labels applying the approach in
[1]. The fragment of φS that concerns bigraphs modelling
architectures is as follows: (a) if a node v is parent of a node u
and has associated control Var, then u has associated control
Inst; (b) if a node v is parent of nodes u an w, and has
associated control Var, then u is equal to w; (c) if a node
v is parent of a node u and has associated control Inst, then
u has associated control in the set {Var,Out, In,RIn,ROut}.

This fragment of φS suffices to characterise bigraphs
modelling variables and architectures. They adopt the form of a
list of lists, in which each list node can be a list of lists itself, as
is described in Lemma 1. The rest of the predicate (not shown
here) ensures that bigraphs modelling patterns, attachments,
and renamings, are well-formed.

Lemma 1 (Bigraphical model of architectures). Given a
bigraph in BG(ΘS), modelling an architecture referenced by
a variable, and k, k′ ∈ N0, its place-graph is of form

V k = Var.Inst.(U0 | . . . | U j | . . . | Uk) (3)

where each U j adopts the form of V k′
, or has as associated

control any in the set {In,Out,RIn,ROut}.
Proof (hint). The proof is by induction over the place-graph
of a bigraph in BG(ΘS).

Reconfiguration scripts specified in ARCHERY-SCRIPT are
modelled as instances of BG(ΘD,RD) – a BRS with sorted
signature ΘD = (ΣD, φD) and set of parametric reaction rules
RD. Signature ΣD adds a set Σr of controls to ΣS , where
each control in Σr represents a reconfiguration operation in
Table I. A reaction rule in RD models the changes that a
reconfiguration operation entails on a bigraph, and each control
in Σr partially triggers one of such reaction rules. Predicate
sorting φD is the conjunction of φS and the condition that if a
node v with control in Σr has parent w, then w has a control
in Σr as well. Therefore, any inhabitant of BG(ΘS) is also an
inhabitant of BG(ΘD,RD). Nodes with control in Σr may be
nested one inside another. Upon reaction, the external node is
removed and its content is left in an active context to trigger the
next reaction. This mechanism ensures the sequential activation
of the nested nodes in the script. Set RD is not exhaustively
shown here. Instead, the form assumed by any redex L of a
reaction rule (L,R) in RM ⊂ RD is given in Lemma 2, and
a parametric reaction rule, modelling attachment operations, is
presented as an example.

Varf,x1
.(Instx2

.(Outo | d0))

‖ Vart,y1
.(Insty2

.(Ini | d1)) ‖ Attf,o,t,i,att.d2 _
Varf,x1 .(att/o Instx2 .(Outo | d0))

‖ Vart,y1
.(att/i Insty2

.(Ini | d1)) ‖ d2 (4)

The rest of the paper focuses on RM , a subset of RD to
modify architectures. A similar approach is taken to extend the
results to RD. Let Qk, with k ∈ N0, be a parametric redex
that matches bigraphs of the form V k, as defined in (3).



Lemma 2 (Redex). For any (L,R) in RM , the redex L is of
the form Q ‖ O, where Q = 1, or Q = Qk, or Q = Qk ‖ Qk′

,
and O matches a node o with any control in Σr.

Proof (hint). The proof proceeds by showing that for any
(L,R) ∈ RM and for any bigraph a matching L, a also
matches the form Q ‖ O.

IV. DERIVING LABELS FOR RECONFIGURATIONS

This section provides a derivation method that yields labels
suitable for carrying out analysis and verification of reconfig-
urations. The method underpins the construction of an LTS
that can be used to compare reconfigurations and as a Kripke
frame for the logic presented in section II.

Definition 1 (Reconfiguration label derivation). Given a
(L,R) ∈ RM , triggered by nodes of the form O, and a bigraph
b ∈ BG(ΘD,RD) with form Q ‖ O, modelling an architecture
and a reconfiguration operation, labels are derived as follows:
1) derive bigraphs o and args from b with two applications of
Leifer’s approach [1] considering as agents, bigraphs matching
Q and O, respectively; 2) obtain the pair of contexts (B,A),
taken as the bigraphical label in the sequel, with A ‖ B of
the form Q ‖ O, by decomposing args ‖ o as (A ‖ B) d,
where d is the instantiation of the parameters of the redex
L; 3) construct the label by concatenating the name of the
operation modelled by the control associated with B, with
the names of nodes in A, which represent variable types and
identifiers, and port identifiers.

For instance, consider the attach operation in line 3 of List-
ing 2: attach(p1,fwd,f3,rec). Applying the method
to the corresponding bigraph and reaction rule yields the
bigraphical label

( Attp1,fwd,f3,rec,att3, Varp1,P .(InstP .(Outfwd | Id))

‖ Varf3,F .(InstF .(Inrec | Id)) ) (5)

representing the operation and its arguments, which leads
to label attach(Pipe : p1, fwd, Filter : f3,
rec). The application of this method yields labels according
to the form shown in the third column of Table I.

Theorem 1 (Reconfiguration labels). Labels derived through
the method given in Definition 1 for a bigraph in BG(ΘD,RD)
are of the form op(arg1, . . . argn), where op is the name of a
reconfiguration operation, and each argi is an actual parameter.

Proof (hint). The proof assumes a bigraph of the form Q ‖ O
and for each (L,R) ∈ RM finds the form of the minimal
context for each application of Leifer’s approach [1]. Such
forms are obtained by transforming expressions through the
categorical and bigraphical axioms collected in [8].

An LTS can be constructed with the derived labels and used
as a model for the logic introduced in section II. Moreover,
well known behavioural equivalences, such as bisimilarity (∼),
can be applied to compare two reconfigurations. Our next result
shows that bisimilarity is congruential within such LTSs, i.e.,
if agents a and b are bisimilar (a ∼ b), for any context C, we
have that Ca and Cb are bisimilar as well (Ca ∼ Cb).
Theorem 2 (Congruential bisimulation). The first and second
components of a bigraphical label (B,A), derived using the

method given in Definition 1, are minimal contexts that char-
acterise the operation and its actual parameters, respectively,
and yield an LTS in which bisimulation is a congruence.

Proof (hint). The minimality of each component of (B,A)
and what they model are enforced by construction. The con-
gruential bisimulation in an LTS with labels (B,A), requires
showing that the LTS that results from using as label the com-
ponent A (B, respectively), is the same as the one constructed
applying [1] considering bigraphs modelling operations (archi-
tectures, respectively) as agents. Then, the proof can proceed
in a similar way to that of Theorem 7.16 in [9].

V. CONCLUSION AND FUTURE WORK

This work presents a label derivation method and extends
structural semantics for the ARCHERY language. Architectures
and reconfigurations specified in ARCHERY are encoded into a
BRS, and the derivation method in Definition 1 allows for the
construction of an LTS in which states and transitions represent
configurations and reconfigurations. Then, such LTS allows
for the comparison of reconfigurations using bisimulation, and
becomes a Kripke frame over which ARCHERY constraints,
expressed in the Hennessy-Milner logic [4], can be interpreted.

Future and ongoing work includes adding hybrid features
and recursion (in the style of modal µ−calculus) to the logic.
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