
Analysing Tactics in Architectural Patterns
Alejandro Sanchez∗‡, Ademar Aguiar†, Luis S. Barbosa‡, Daniel Riesco∗

∗Universidad Nacional de San Luis, Ejercito de los Andes 950, D5700HHW San Luis, Argentina
{asanchez,driesco}@unsl.edu.ar

†INESC TEC & Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
ademar.aguiar@fe.up.pt

‡HASLab INESC TEC & Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
{asanchez,lsb}@di.uminho.pt

Abstract—We present an approach to analyse the application
of tactics in architectural patterns. We define and illustrate the
approach by resorting to Archery, a language for specifying,
analysing and verifying architectural patterns. The approach
consists of characterising the design principles of an architectural
pattern as constraints, expressed in the language, and then,
establishing a refinement relation based on their satisfaction. The
application of tactics preserving refinement preserves the original
design principles expressed themselves as constraints for the
architectural pattern. The paper’s focus on fault-tolerance tactics,
and identifies a set of requirements for a semantic framework
characterising them. Model transformations to represent their
application are discussed and illustrated through two case studies.

I. INTRODUCTION

Architectural patterns and tactics play a fundamental role
during the design of a software system. An architectural
pattern packs a set of design decisions that are applicable
to a recurring problem [1], and its application is expected
to result in a known balance among a collection of quality
attributes. A tactic identifies a single design decision that aims
at achieving a specific quality attribute [2]. Both of them
shape the structure and behaviour of the software system and
facilitate understanding and documenting its design.

Catalogs for architectural patterns and for tactics aim at
underpinning the architectural design process. In the former
case, see, for example, [3], they usually include a descrip-
tion of the problem-solution pair, the consequences and the
rationale behind them. In the latter case, like in [2], [4], only
descriptions of the problem-solution are typically provided.
Architectural patterns and tactics can be selected from these
catalogs according to the quality attributes required by the
business case of the system.

However, predicting whether quality attributes are preserved
by the emergent structure and behaviour of a combination
of these design decisions is not straightforward. The relation
among them needs to be carefully considered in each case,
since a tactic may work along, or against, the design principles
that a pattern embodies [5]. Reference [6], investigates this
relation for fault-tolerance tactics and provide a classification
of the impact that a tactic has on a pattern according to five
values: good fit, minor changes, neutral, significant changes,
and poor fit. This classification helps as a guidance, but is not
enough for ensuring that a specific quality attribute is satisfied

up to a given level. In order to achieve this, an approach relying
on more precise grounds is required.

This work aims at contributing towards such an end. We
provide precise models relying on Archery [7], [8], an exper-
imental language for the specification, analysis and verification
of architectural patterns. Then, we characterise tactics by
indicating what structural and behavioural modifications are
entailed by their application to a given Archery specification.

The language is structured as a core – Archery-Core – and
extensions – Archery-Script and Archery-Constraint – built
on top of it. Archery-Core allows to specify the behaviour and
configuration of a software system in terms of architectural
patterns. A pattern specification in the language comprises a
set of architectural elements (connectors and components) and
their associated behaviours and interfaces (set of ports). An
architecture describes a particular configuration of instances of
a pattern’s elements as a set of attachments among their ports
and a description of the externally visible ports. An architec-
ture can be regarded itself as an instance of the corresponding
pattern, exhibiting an emergent behaviour. Then, patterns and
elements act as types of expected behaviour and structure.
Instances are kept and referenced through variables that have
a type. The language supports hierarchical composition of
architectural patterns, allowing the definition of configurations
by indifferently attaching ports of pattern or element instances.
Archery-Script is used to specify scripts for (re)configuring
software architectures. Finally, the purpose of Archery-Con-
straint is to characterise patterns’ design principles through
constrains on their behaviour or structure.

Archery semantics is given by a translation to mCRL2 [9]
and by an encoding into bigraphical reactive systems [10] for
the behavioural and structural parts, respectively. mCRL2 is a
specification language for reactive systems which combines
a process algebra [11] for describing system’s behaviours,
with higher-order abstract equational data types, for handling
structured data domains. Behavioural constraints can also be
described in the modal µ-calculus. Translating the behavioural
component of Archery descriptions into mCRL2, provides
access to the associated toolset enabling simulation, visu-
alisation, behavioural reduction and verification. Bigraphical
reactive systems (BRS) and their theory, on the other hand,
were developed to study systems in which locality and linking
of computational agents varies independently. They provide a

general unifying theory in which different calculi for concur-
rency and mobility can be represented. Structural constraints
are expressed in a subset of first order logic.

We characterise tactics by indicating which modifications
they entail to the structure and behaviour of an Archery
specification. In [5], the authors provide a textual description
of this sort of modifications in an architectural pattern. We
follow a different approach characterising these modifications
in terms of Archery. Once a modification is executed, it
is possible to verify which constraints no longer hold and
which still do. It is also possible to visualise and animate
the behaviour of the new configuration (namely, resorting to a
translator to mCRL2), which helps to assess and understand
the consequences of the modification.

We illustrate our approach by developing two case studies.
In both cases we apply tactics to patterns but one differs from
the other in the impact [6] of each application. One them has
at least neutral impact applications; the other one is a case of
poor fit.

This paper is organised as follows: section II briefly
describes the Archery language; section III recalls fault-
tolerance tactics and the modifications enforced in an archi-
tectural pattern by adopting them. The precise characterisation
of a number of these fault-tolerance tactics; is presented in
section IV. Finally, section V develops the case studies and
section VI concludes.

II. THE ARCHERY LANGUAGE

Archery is structured as a core language and two ex-
tensions, referred to as Archery-Core, Archery-Script,
and Archery-Constraint, respectively. The basic language,
Archery-Core, was originally introduced in [7] and the
extensions in [8]. Archery-Script adds operations to build
configurations, whereas Archery-Constraint offers primitives
for defining constraints.

A. Archery-Core

An Archery-Core model comprises global data specifica-
tions, one or more patterns and a main architecture. We first
describe how patterns and their elements are specified and then
how an architecture is formed.

1) Patterns and elements: A pattern (see Figure 1 for its
syntactic structure) has a unique identifier and includes an
optional list of formal parameters, and one or more architec-
tural elements. Listing 1 show the specification of two typical
architectural patterns: Client-Server and Pipes and Filters.

Each architectural element in a pattern is described by
an identifier, an optional list of formal parameters, and a
description of its behaviour and an interface. The third consists
of a list of actions and a list of process expressions, specified
in a slightly modified subset of mCRL2, whose head is the
element’s initial behaviour. This process expressions yield a
sequential process that is equivalent to a labelled transition
system. An example of a declaration of a list of action
definitions and of a process expression are shown, respectively.
in lines 3 and 4 of Listing 1. They represent the behaviour

Pat ::= pattern TYPEID (IdsDecl?) Elem+ end
Elem ::= element TYPEID (IdsDecl?) Behaviour

ElemInterface
Behaviour ::= ActSpec ProcSpec
ActSpec ::= act ActDecl+
ActDecl ::= Ids (: Domain)?;
ProcSpec ::= proc MainProcDecl ProcDecl*
MainProcDecl ::= ID(MainProcPar? (, MainProcPar)*) =

ArProcExpr
MainProcPar ::= IdDecl = InitValue
ProcDecl ::= ID(IdsDecl? (, IdsDecl)*) = ArProcExpr
ArProcExpr ::= ID

| ID(DataExprs)
| DELTA
| TAU
| (ArProcExpr)
| ArProcExpr . ArProcExpr
| (DataExpr) –>ArProcExpr (<>ArProcExpr)?
| ArProcExpr + ArProcExpr

ElemInterface ::= interface Port+
Port ::= (in | out) Ids ;

Fig. 1. Archery Pattern Syntax

of instances of element Server, which receive a request
(rreq), compute a response (cres), send a respose (sres),
and iterate. The corresponding LTS is shown in Figure 2.

1 pattern ClientServer()
2 element Server()
3 act rreq, sres, cres;
4 proc Server() = rreq.cres.sres.Server();
5 interface in rreq; out sres;
6 element Client()
7 act sreq, rres;
8 proc Client() = sreq.rres.Client();
9 interface in rres; out sreq;

10 end
11 pattern PipeFilter()
12 element Pipe()
13 act accept, forward;
14 proc Pipe() = accept.forward.Pipe();
15 interface in accept; out forward;
16 element Filter()
17 act rec, trans, send;
18 proc Filter() = rec.trans.send.Filter();
19 interface in rec; out send;
20 end

Listing 1. Archery Example Patterns

An extension currently under development is the possibility
of indicating time constraints for actions. For instance, the
action that follows the reception of a request occurs no later
than five units of time, i.e., rreq@t.cres@(u <= t +5).

rreq cres

cres

Fig. 2. LTS for Server

The interface, on the other hand, contains one or more ports.

Each port is defined by a polarity, either in or out, and a
token that must match an action name in the list of action
definitions. For instance, the interface of Client defines two
ports in line 5. Archery adopts a water flow metaphor for
ports: an in port receives input from any port connected to
it, and an out port sends output to all ports connected to
it. Ports are synchronous: actually a suitable process algebra
expression can be used to emulate any other port behaviour.

2) Patterns and element instances: A variable has an
identifier and a type that must match an element or pattern
name. Allowed values are, of course, instances of elements
or patterns. Note that the variable that follows the pattern
definitions, must contain an architecture (the main one).

Var ::= ID : TYPEID = Inst ;
Inst ::= (ElemInst | PatInst)
ElemInst ::= TYPEID (DataExprs?)
PatInst ::= architecture TYPEID (DataExprs?)

ArchBody end
ArchBody ::= Instances Attachments? ArchInterface?
Instances ::= instances Var+
Attachments ::= attachments Att+
Att ::= from PortRef to PortRef ;
ArchInterface ::= interface Ren+
Ren ::= PortRef as ID ;
PortRef ::= ID.ID

Fig. 3. Archery Instance Syntax

An architecture defines a set of variables and describes the
configuration adopted by their instances. It contains a token
that must match a pattern name; an optional list of actual
arguments; a set of variables; an optional set of attachments;
and an optional interface. The actual arguments must match
in type and order those of the pattern acting as its type. Each
variable in the set must have as type an element defined in
the pattern the architecture is an instance of. As an example,
a nested architecture is defined in Listing 2 (lines 4 - 14).

1 cs:ClientServer =
2 architecture ClientServer()
3 instances
4 s:Server = architecture PipeFilter()
5 instances
6 f1:Filter = Filter();
7 f2:Filter = Filter();
8 p1:Pipe = Pipe();
9 attachments

10 from f1.send to p1.accept;
11 from p1.forward to f2.rec;
12 interface
13 f1.rec as rreq; f2.send as sres;
14 end
15 c1:Client=Client(); c2:Client=Client();
16 attachments
17 from c1.sreq to s.rreq;
18 from c2.sreq to s.rreq;
19 from s.sres to c1.rres;
20 from s.sres to c2.rres;
21 end

Listing 2. Archery Example Pattern Instance

Each attachment includes a port reference to an output port,
and another one to an input port. A port reference is an ordered
pair of identifiers: the first one matching a variable identifier,
and the second a port of the variable’s instance. Then, an
attachment indicates which output port communicates with
which input port — see e.g. f1.send with p1.accept in
line 10.

The architecture interface is a set of one or more port
renamings. Each port renaming contains a port reference and a
token with the external name of the port. An example interface
is shown in line 13. Ports not included in this set are not visible
from the outside. Including the same port in an attachment and
the interface is incorrect.

B. Archery-Script

Archery-Script is used to specify scripts for creating ar-
chitectures or for reconfiguring existing ones. It assumes
the existence of a process that triggers a script under some
conditions. Its combinators are informally described in Table I
and the use of some of them is illustrated through the example
in Listing 3. An essential feature is that their definition is
independent of any pattern. The design principles for patterns
are enforced through constraints, as shown in Section II-C.
This independence, and the fact that a variable may contain an
instance whose type may not necessarily match the variable’s
type, allows the reuse of a script in an open family of patterns
(related by some refinement relation).

1 script
2 import("initial"); // first part
3 s2 : Server;
4 s2 = Server();
5 addInst(cs, s2);
6 detach(cs.c2.sreq, cs.s1.rreq);
7 detach(cs.s1.sres, cs.c2.rres);
8 attach(cs.c2.sreq, cs.s2.rreq);
9 attach(cs.s2.sres, cs.c2.rres);

10 import("pf"); // second part
11 f3 : Filter = new Filter();
12 addInst(pf, f3);
13 attach(pf.p1.forward, pf.f3.rec);
14 remRen(pf.sres);
15 addRen(pf.f3.send, sres);
16 move(pf, cs.s2);
17 c3 : Client = Client(); // third part
18 addInst(cs, c3);
19 detach(cs.c2.sreq, cs.s2.rreq);
20 detach(cs.s2.sres, cs.c2.rres);
21 attach(cs.c2.sreq, cs.c3.rres);
22 attach(cs.c3.sreq, cs.c2.rres);
23 end

Listing 3. Example script

The example in Listing 3 is divided in three parts and
assumes the existence of an initial configuration denoted by
csinitial. The configuration is similar to the one in Listing
2, but for the fact that the nested architecture (between lines
4 and 14) is now replaced by a Server instance (in a
single line s1:Server=Server();). The first part of the
example reconfigures csinitial by adding and connecting a

TABLE I
COMBINATORS FOR ARCHERY-SCRIPT

Name Format Description
Import import(s) Receives as a parameter a reference

s to an Archery specification and
imports it to the environment of the
executing script (e.g., line 2 in Listing
3)

Create
Variable

v:type Creates a variable with name v and
type type (line 3)

Create
Instance

v=type() Creates a new instance of type type
and assigns it to a variable v (line 4)

Remove
Variable

remVar(v) Removes a variable v and any instance
it references

Add
Instance

addInst(a,v) Adds a variable v and the instance it
refers to to the architecture in variable
a (line 5)

Remove
Instance

remInst(a,v) Removes a variable v and the instance
it refers to from the architecture in
variable a

Attach attach(f.o,
t.i)

Attaches the port o of the instance in
variable f to the port i of the instance
in variable t (line 8)

Deattach detach(f.o,
t.i)

Removes the attachment between the
port o of the instance in variable f and
the port i of the instance in variable
t (line 6)

Add
Rename

addRen(v.p,q) Renames port p in variable v to q (line
15)

Remove
Rename

remRen(v.q) Removes rename q in the architecture
in variable v (line 14)

Move move(s,t) Whatever is referred by variable s be-
comes referred by variable t (line 16);
the reference to the contents of t is
lost, but its attachments and renamings
remain

second server. It starts with an import operation that leaves
the configuration in variable cs. Operations in lines 3 and
4 create a new variable s2 and assign a fresh instance of
Server to it. Upon that, s2 is included in the architecture
in cs. Then, the operations in the next two lines remove the
attachments of instances referred to by variables cs.c2 and
cs.s1. Subsequently, new attachments are created between
the instance in variable cs.c2 with the instance in variable
cs.s2. The resulting configuration is referred in the sequel
as csfirst.

The second part of the example starts in line 10 and
shows how the interface of an architecture is modified and a
server is replaced. It assumes the existence of a configuration
pf , similar to the one described between lines 4 and 14 in
Listing 2, stored in a variable pf of type PipeFilter. The
script imports such a configuration, creates a new instance
of Filter in variable f3 and includes it in pf. Line 14
removes renaming sres from pf. This has a similar effect
to deleting line 13 from Listing 2. Then, a new renaming is
included in the interface, but now for port send in variable
pf.f3. Subsequently, the instance in pf is moved to variable
cs.s2. The instance referred to by variable cs.s2 is now
the architecture of type PipeFilter, but attachments and
renamings, set for the previous instance, remain.

The third part begins in line 17. It creates a new client
and connects it in an incorrect way. A new variable c3 is

created and a new instance of the type Client is assigned
to it. Next, the fresh variable is included in the architecture
in cs. Subsequently, the attachments between the instances
in variables cs.c2 and cs.s2 are removed. Then, the script
creates two attachments between instances in variables cs.c3
and cs.c2. The resulting configuration, referred to as cswrong

in the sequel, violates the design principle underlying a Client-
Server architecture by connecting two clients.

C. Archery-Constraint
This extension allows for the definition of constraints to

characterise and verify design principles for architectural pat-
terns. A constraint ϕ can be defined either for an element E
– local, or for a pattern P – global. In both cases, constraints
either refer to the structure or to the behaviour, and their
evaluation respectively resorts to the bigraphical encoding [8]
and the LTS [7] for the specification. The satisfaction relations,
E |= ϕ and P |= ϕ, are precisely defined somewhere else [12].
We illustrate these possibilities in two cases: first a global
structural constraint, then a local behavioural one.

Ruling out incorrect configurations, such as cswrong above,
entails the need for a global structural constraint characterising
what the valid instances of a pattern are. Since the variable cs
in the script, shown in Listing 3, is of type ClientServer,
we could add to the pattern specification a constraint ϕ to
express that clients can only connect to servers and vice versa.
We define ϕ for all attachments att in an architecture of type
ClientServer as follows:

client(from(att))⇔ server(to(att)) ∧
client(to(att))⇔ server(from(att)) (1)

where from (respectively, to) is a function that returns the
variable with an out (respectively, in) port in att, and where
client (respectively, server) is a predicate valid whenever its
argument is of type Client (respectively, Server).

By constraining patterns in this way, one can prevent the
inclusion in a script of operations which may generate invalid
configurations. Clearly, cswrong does not satisfy the constraint
above. In contrast, configuration csfirst does.

Assume now that we want to prevent the situation in which a
client issues a second request before receiving a response back.
This can be achieved by associating to the element Client
the constraint below.

[sreq.(sreq ∪ rres) ∗ .sreq] false

The expression states that for any instance of element Client
in an architecture of type ClientServer, it is not possible
to issue a request (sreq), and then other actions different from
sending a request (sreq) or receiving a response (rres), and
then send a second response (sreq).

III. FAULT-TOLERANCE TACTICS

The objective of fault-tolerance tactics is to prevent that a
fault in a system becomes a service failure [13]. They were
first described as tactics in [2] and subsequently refined in
[4]. Designing a system for fault-tolerance requires detecting,

recovering from, and preventing faults. Typical measures for
achieving such capacities are:
• Fault detection.

– Ping-echo. A process learns whether another is
reachable and what is the roundtrip delay by ex-
changing asynchronous request/response messages.

– Watchdog. Monitored processes periodically send
messages to reset a timer in the monitor. If the timer
expires, the monitor assumes that the monitored
process is suffering a fault.

– Heartbeat. A monitor periodically sends messages
to the monitored processes and expects a response
within a time frame.

– Exception detection. A condition that will alter the
normal execution of a process can be detected.

– Voting. A cluster of redundant processes receives the
same input and send their output to a voting process
that can detect inconsistencies.

• Fault recovery – preparation and repair.
– Active redundancy. A set of redundant processes,

one active and the other spare, receive and process
in parallel the same input and, in consequence, are
ready to be exchanged.

– Passive redundancy. An active process among a set
of redundant ones, receives and processes all inputs.
It also sends periodic state updates to the other
(spare) processes.

– Spare. An active process receives and process all
inputs while it periodically persists its state at check-
points. Upon a fail in the active process, another
process is initialised with the last persisted state, and
processing is resumed from that checkpoint.

– Exception handling. Upon the detection of an excep-
tion, an alternative course of execution is started.

– Software upgrade. A mechanism that allows to up-
grade the behaviour of a service during runtime
without affecting its delivery.

• Fault recovery – reintroduction. Processes are corrected
upon a failure and reintroduced.

– Shadow. An process that failed runs for a period of
time as a spare before it acquires an active role.

– State resynchronisation, rollback. It is a mechanism
that allows an process to acquire a state that is
equivalent to the one of the active process. A rollback
is the case in which the state corresponds to a check-
point and is acquired from a persistent repository.

– Escalating restart. It allows to restart different sets of
processes according to a level of granularity with the
aim of minimising the impact on the service delivery.

– Non-stop forwarding. The management of a service
is separated from its delivery in a way that allows the
service delivery to continue despite the management
part failed.

• Fault prevention.
– Removal from service. It is a mechanism to prevent

that a process with a fault receives a request to fulfil
any service in the system.

– Transactions. Allows the atomic, consistent, isolated
and durable (ACID) exchange of asynchronous mes-
sages among distributed processes.

– Process monitor. A process that monitors the health
of a process in order to ensure that it is operating
within its nominal parameters.

– Exception prevention. It refers to mechanisms that
prevent exceptions from occurring.

IV. ENCODING FAULT-TOLERANCE TACTICS

Characterising the application of fault-tolerance tactics re-
quires a semantic framework for the source and target specifi-
cations, and a representation of the transformation. The former
must allow modelling the intended structure an behaviour of
the tactics in Section III. We discuss requirements for such
a framework and identify which of them can be expressed in
the Archery language. Subsequently, we provide an informal
description of the transformations needed to apply tactics on
such models, and a criteria to evaluate whether new constraints
are needed.

A. Semantic Framework Requirements
The description of any of the tactics requires a minimal set

of behavioural operators (B), data types and variables (D), and
structure (S). Operators in B include sequential composition,
alternative choice, and parallel composition, supported by
standard process algebras [11].

From the textual description of tactics in [2], [4], sum-
marised in Section III, we recognise the need for modelling
three more specific behavioural concerns. The need for mod-
elling time (T) emerges from tactics such as watchdog or
heartbeat. In cases like escalating restart, software upgrade
or shadow, there is a need for creating new processes (P)
which requires a proper semantic foundation [14]. The third
issue we consider emerges from tactics such as exception
detection and exception handling, that require modelling the
interruption or alteration of the normal execution of a process,
and compensation procedures (C) [15]. In Table II we show
what are the requirements for each tactic.

The Archery language supports B, D, S and support for T
is under development. The process algebra operators (B) are
either embedded or implicit in the language, data types and
state (D) is inherited from mCRL2, and structural operators
(S) rely on semantics given by a translation to Bigraphical
Reactive Systems. Time (T) will be supported by extending
the core of the language and the corresponding translation to a
process algebra. In Section V we provide illustrative examples
for some of the tactics that can be represented, i.e., the ones
that do not have an X beyond the fourth column.

B. Transformations
We consider three different cases as follows:
• Reconfiguration. The configuration changes but the pat-

tern is not modified. This transformation can be specified
in Archery-Script.

TABLE II
SEMANTIC FRAMEWORK REQUIREMENTS

Tactic B D S T P C

Ping-echo X X X X
Watchdog X X X X
Heartbeat X X X X
Exception detection X X X X
Voting X X X

Active redundancy X X X
Passive redundancy X X X
Spare X X X X
Exception handling X X X X
Software upgrade X X X X
Shadow X X X X X X
State resynchronisation X X X
Rollback X X X
Escalating restart X X X X X
Non-stop forwarding X X X X

Removal from service X X X X
Transactions X X X X
Process monitor X X X
Exception prevention X X X

• Add/Remove pattern. A pattern in the specification is
either added or removed. This transformation contem-
plates the case in which instances in a configuration are
hierarchically composed. A reconfiguration script must
also indicate configuration changes.

• Modify pattern. The pattern is modified in any of the ways
described below. A reconfiguration script may or may
not be necessary, depending on the specific configuration
under evaluation.

– Modify constraints. A constraint (local or global) is
either added, modified, or removed.

– Add/remove element. An element in the pattern is
either added or removed.

– Modify element. When an element is modified check
whether the modification only affects its internal
behaviour or also its external (visible) one.

C. Evaluation

In order to evaluate whether a new constraint is needed, we
define a refinement relation among patterns. Such a relation
must relate specifications in a way that allows to distinguish
when the changes in the target specification go either along or
against the design principles of the patterns in the source one.

As it is natural, we define such relation by relying on
both local and global constraints defined for the pattern
with Archery-Constraint. We define an element E′ to be a
refinement (.) of E, if and only if, E′ satisfies all constraints
E does. The expression for such condition is

E′ . E ⇔
∀ ϕ ∈ const(E), E |= ϕ⇒ E′ |= ϕ (2)

, in which const(E) is the set of constraints associated with
element E. Then, a pattern P ′ is a refinement (.) of another
pattern P ′, if each element E′ in P ′ is a refinement of a an
element E in P , and P ′ satisfies all global constraints of P .
The corresponding expression is shown in (3).

P ′ . P ⇔
∀ E′ ∈ P ′,∃ E : E′ . E ∧
∀ ϕ ∈ cons(P), P |= ϕ⇒ P ′ |= ϕ (3)

V. CASE STUDIES

We develop two case studies: one in which fault-tolerance
tactics are applied to an architectural pattern without violating
its design principles, and another in which the modifications
work against such principles.

A. Fult-Tolerance Tactics in a Client-Server Configuration
Assume that the selected architectural pattern for a software

system is Client-Server. The main design principle is, as
described in Section II-C by expression 1, clients can only
connect to servers and viceversa.

Each server offers a service built on top of a legacy
system that may fail non-deterministically. We represent this
by modifying the original pattern into the one shown in Listing
4. Note that in line 4, there is a non-deterministic choice that
may interrupt the service loop. In the sequel, we will refer to
the configuration between lines 11 and 19 as conf1.

1 pattern ClientServerF()
2 element Server()
3 act rreq, sres, cres, fail;
4 proc Do()=rreq.(cres.sres.Do()+fail);
5 interface in rreq; out sres;
6 element Client()
7 act sreq, rres;
8 proc Do() = sreq.rres.Do();
9 interface in rres; out sreq;

10 end
11 base:ClientServerF =
12 architecture ClientServerF()
13 instances
14 c1 : Client = Client();
15 s : Server = Server();
16 attachments
17 from c1.sreq to s.rreq;
18 from s.sres to c1.rres;
19 end;

Listing 4. Client-Server with Failures

An important property of the Client-Server architectural
pattern is that once a request is issued, a response must follow.
For the particular case of conf1, we can formulate constraint
ϕ1, which states that once c1 issues a request, a response sent
by s is inevitable.

ϕ1 = [true ∗ .synch(c1, sreq, s, rreq)]
µX.([synch(s, sres, c1, rres)]X ∧ 〈true〉true)

This property is not satisfied, i.e., conf1 6|= ϕ1, because of the
non-deterministic choice that interrupts the service. In order
to address this problem we apply fault tolerance tactics.

We start by applying active redundancy. We do this by
defining a server to be hierarchically composed by an instance
of a Master-Slave pattern [16] refinement (shown in Listing 5).
Note that the transformation incorporates a new pattern to the
specification, but does not modify pattern ClientServerF.

1 pattern MasterSlave()
2 element Master(np:Int)
3 act req, res, s, f;
4 proc Do(n:Int=np) =
5 req.s.f.res.Collect(n).Do(n);
6 Collect(n:Int)=
7 f.(n>0) -> Collect(n-1) <> tau;
8 interface in req, f; out res, s;
9 element Slave()

10 act s,d,f;
11 proc Do() = s.d.f.Do();
12 interface in s; out f;
13 end

Listing 5. Master-Slave with Active Redundancy

The server is refined as a MasterSlave instance that has
a Master instance, and in turn, Server instances acting
as Slave ones. The behaviour of the former begins when a
request is received (req). Then, the request is forwarded to all
slaves (s), and with the first response from any of them (f),
a response to the requester is sent back (res). Subsequently,
the rest of the responses, (from the other slaves) are collected.
The configuration is shown in Listing 6 and in the sequel we
will refer to it as conf2. An Archery-Script can be defined to
reconfigure conf1 into conf2. The new configuration, among
other issues that may be observed, does not satisfy ϕ1, i.e.,
conf2 6|= ϕ1.

1 base:ClientServer =
2 architecture ClientServer()
3 instances
4 c1:Client = Client();
5 s:Server = architecture MasterSlave()
6 instances
7 m:Master = Master(2);
8 sl1:Slave = architecture ClientServer()
9 instances

10 sr1:Server = Server();
11 interface sr1.rreq as s; sr1.sres as f;
12 end
13 sl2:Slave = architecture ClientServer()
14 instances
15 sr2:Server = Server();
16 interface sr2.rreq as s; sr2.sres as f;
17 end
18 attachments
19 from m.s to sl1.s; from m.s to sl2.s;
20 from sl1.f to m.f; from sl2.f to m.f;
21 interface m.req as rreq; m.res as sres;
22 end
23 attachments
24 from c1.sreq to s.rreq;
25 from s.sres to c1.rres;
26 end;

Listing 6. Client-Server with Active Redundancy

In order to ensure that a response is sent back, we need

to apply two more tactics: heartbeat to detect a failure in the
servers, and escalating restart to repair a failed one, besides
having redundant servers. We achieve this by modifying the
MasterSlave pattern. The Master element assumes the
role of controller and the Slave the one of the controlled. We
also modify the latter to have the behaviour of a Server and
in this way we avoid modifying pattern ClientServerF,
and having two levels of hierarchical composition. The de-
sign principles of the Master-Slave pattern are preserved by
this pattern modification, since the structural arrangement is
limited to a star configuration with a central Master instance.

We first study the application of the heartbeat tactic by
discussing how the respective LTSs for the controlled and
the controller processes are modified. Assume that the LTS
in Figure 4(a) corresponds to a fragment of the behaviour that
needs to be monitored, because it may fail, as in the case
of a Server instance. In order to represent the behaviour
of a controlled process, for each state we consider needs to
be monitored and is part of the normal flow of control (s0
and s1), we add an outbound transition (up) to a new state
(s3 and s4, respectively), that represents receiving a message
from the controller, and an inbound transition (dw) from such
new state that represents responding back before n units of
time has passed. If the process fails, it will not respond to
such message, as it is shown in Figure 4(b).

s0 s1

s2

cres

fail

(a) Source Process

s0 s1

s2

s3

s4
cres

fail

up@t

dw@u<t+n

up@t

dw@u<t+n

(b) Target Process

Fig. 4. LTS Modifications for a Heartbeat Controlled Processes

The modification to the controller is a little more involved,
as it is shown in Figure 5. The controller expects a response (f)
from each controlled process, as it is shown in Figure 5(a). We
add states and transitions, as shown in Figure 5(b), to represent
the periodical message sent to all controlled processes, the
timeout period, and the reception of the expected message f.
Note that state s1 represents the situation in which one answer
was received, and all processes responded to monitoring
messages. Also note that states s3 and s4 respectively represent

the situations in which none of the processes has answered,
and at least one of them has not answered. Both states are
candidates for starting recovery procedures.

s0 s1
f

(a) Source Process

s0

s1

s2 s3

s4 s5

up@t

u=t+N∧Ok
down@u<t+5

down@u<t+5

u=t+N∧¬Ok

f

u=t+N∧Ok u=t+N∧¬Ok

(b) Target Process

Fig. 5. LTS Modification for a Heartbeat Controller Processes

We show a specific approach for encoding and applying
the escalating restart recovery tactic in Figure 6. Note that, as
indicated in Table II, a general treatment requires modelling
the interruption and creation of processes. The controller,
when a situation requiring a restart is detected, issues an off,
followed by an on signal (LTS fragment shown in Figure 6(a)).
The controlled needs to consider receiving these messages at
all states. This is illustrated by the modified LTS for a fragment
of the Server behaviour in Figure 6(b). All states, with the
exception of s1, should have a loop transition for the reception
of an on signal. This is not shown in the LTS.

s0 s1

off

on

(a) Controller Process

s0

s1

s2

s3 s4

offon

rreq

off cres

off

fail

off

(b) Controlled Process

Fig. 6. LTS Fragments for Escalating Restart Processes

The resulting configuration still does not satisfy ϕ1. The
problem lies in that a loop in which servers always fail
is possible. A property considering fairness, that such loop
cannot go forever, would be satisfied by conf3.

B. Fault-tolerance Tactics in a Pipes and Filters Configuration

In this case study we assume that latency is important for
the software system under development. The architecture can
be organised according to a refinement of the Pipes and Filters
pattern, as in the case of the nested architecture between lines
4 and 14 in Listing 2.

The design principles of the selected pattern facilitate the
analysis of the system’s response times. It imposes that filters
can only connect to pipes, and that there are no cycles in this
connections. The expression below characterises such design
principles.

(∀ att ∈ conf : attachment(att) ∧
filter(from(att))⇔ pipe(to(att)) ∧
pipe(to(att))⇔ filter(from(att)))

∧ (∀ f ∈ conf : filter(f) ∧ ¬path(f, f))

in which conf is the configuration, attachment(att) is a
predicate that holds if att is an attachment, and filter (respec-
tively pipe) is a predicate yielding true when evaluated with
a variable of type Filter (respectively, Pipe). Under this
design principles, the system can be regarded as the functional
composition of the filters. If the worst response time for each
filter is known, then, the worst response time for the whole
system can be estimated.

The application of some fault-tolerance tactics results in a
pattern in which estimating such value by exploting a restricted
configuration is no longer possible. Assume some of the flters
may fail in a non-deterministic way. We can model this by
modifying the pattern in Listing 1 to a pattern such as the one
in Listing 7, with an extra element for a failing filter. The level
of fault-tolerance of the system could be improved by applying
active redundancy, heartbeat and escalating restart tactics on
failing filters. However, it is no possible to use an approach
based on hierarchical composition, as in the case study in
Section V-A, and a controller component needs to be included
in the pattern as well. The introduction of this controller
breaks the design principles of the pattern, and in consequence
prevents analysing the response time by exploiting a lineal
configuration.

1 pattern PipeFilterF()
2 element Pipe ... element Filter ...
3 element FilterF()
4 act rec, trans, fail, send;
5 proc Filter() =
6 rec.(fail + trans.send.Filter());
7 interface in rec; out send;
8 end

Listing 7. Pipes and Filters with Fails

The introduction of tactics not aligned with the design
principles of the pattern can be detected by resorting to the
refinement relation as described in Section IV-C. Assuming
that it is possible to characterise the introduced controller
component as a filter, an instance of such component requires
a constant feedback from the filters, which creates a circular

path, and invalidates the constraint characterising the Pipes and
Filter pattern. Then the transformed pattern is not a refinement
of the original and in consequence, verifying if a specific level
of a quality attribute is satisfied requires further analysis.

We resort to an Archery specification with time constraints
for such analysis. Upon adding time constraints for the actions
in filters and in the controller, we need to make one assump-
tion. We are interested in the worst time with no failures, so
we need to remove the non-deterministic choice in line 6 for
our analysis. Once this is done, we can evaluate an expression
such as the one below,

sum t : Real.

[true ∗ .action(p1, rec)@t.
true ∗ .action(pn, send)@u]
∧ (u ≥ t+ 10) false

which must hold for the given configuration, and assumes
that the filter receiving the input is in variable p1, the one
sending the output is in pn, and rec and send are actions
in the respective interfaces of the instances referenced by the
variables. The constraint indicates that it is not possible that
a send (send) action occurs ten units of time later than the
receive (rec) one. If it is verified for a configuration, we ensure
that the worst response time is less than 10 units, provided no
failure occurs.

VI. CONCLUSIONS

In this work we discussed an approach for analysing the
application of tactics in architectural patterns by resorting, as
long as possible, to precise foundations. We used Archery, a
language for specifying, analysing and verifying architectural
patterns, as a semantic foundation to define and illustrate it.

We identified a set of requirements for precisely modelling
fault-tolerance tactics [2] and discussed the possible trans-
formations a model may undergo when a tactic is applied
to an architectural pattern. The set of requirements provides
a guide for establishing which tactics can be expressed in
a language (Archery in our case) and which not. It turns
out that Archery covers an interesting range of them. We
subsequently discussed a set of model transformations that
serve for representing the application of tactics. What we
presented differs from the one in [5] because we systematically
covered the possibilities (since we aim at a tool-supported
approach), rather than observing tactic applications in software
system documentation.

Then, we provide a criteria to establish whether a tactic
application goes against, or along, the design principles of
an architectural pattern. We precisely characterise such design
principles as constraints and we provide a refinement relation
based on the satisfaction of such constraints. Then, a derived
pattern that does not satisfy the constraints of the original
one requires further attention since the design principles were
not preserved by the tactic application. Once identified the
unsatisfied constraints, it is possible to define new ones to
assess to what extent, a quality attribute is fulfilled.

Finally, we illustrated our approach by developing two
examples. One in which the design principles of the pattern
were preserved, and another in which not.

As part of ongoing and future work we mention the def-
inition of the model and logic to underpin the verification
of constraints such as the ones described in this document.
Specifically, we are exploring the translation of strutural
constraints to BiLog [17] – a spatial logic for bigraphs.

ACKNOWLEDGMENT

This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme (opera-
tional programme for competitiveness) and by National Funds
through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within
project FCOMP-01-0124-FEDER-010047.

REFERENCES

[1] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[2] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
2nd ed. Addison-Wesley Longman Publishing Co., Inc., 2003.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture Volume 1: A System of Patterns.
Wiley, 1996.

[4] J. Scott and R. Kazman, “Realizing and refining architectural
tactics: Availability,” Carnegie Mellon University, Software Engineering
Institute, Tech. Rep., 2009. [Online]. Available: http://www.sei.cmu.
edu/library/abstracts/reports/09tr006.cfm

[5] N. B. Harrison and P. Avgeriou, “How do architecture patterns and
tactics interact? a model and annotation,” Journal of Systems and
Software, vol. 83, no. 10, pp. 1735 – 1758, 2010.

[6] N. Harrison and P. Avgeriou, “Implementing reliability: The interac-
tion of requirements, tactics and architecture patterns,” in Architecting
Dependable Systems VII, ser. Lecture Notes in Computer Science,
A. Casimiro, R. de Lemos, and C. Gacek, Eds. Springer Berlin /
Heidelberg, 2010, vol. 6420, pp. 97–122.

[7] A. Sanchez, L. S. Barbosa, and D. Riesco, “A language for behavioural
modelling of architectural patterns,” in Proceedings of the Third Work-
shop on Behavioural Modelling, ser. BM-FA ’11. New York, NY, USA:
ACM, 2011, pp. 17–24.

[8] ——, “Bigraphical modelling of architectural patterns (to appear),” in
Post-proceedings of the Eighth International Symposium on Formal
Aspects of Component Software, ser. FACS 2011. Springer, 2011.

[9] J. F. Groote, A. Mathijssen, M. Reniers, Y. Usenko, and M. van
Weerdenburg, “The formal specification language mCRL2,” in Methods
for Modelling Software Systems: Dagstuhl Seminar 06351, 2007.

[10] R. Milner, The space and motion of communicating agents. Cambridge
University Press, 2009, vol. 54.

[11] J. C. M. Baeten, T. Basten, and M. A. Reniers, Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge University
Press, 2010.

[12] A. Sanchez, “A calculus of architectural patterns (to appear),” Ph.D.
dissertation, Universidad Nacional de San Luis, 2012.

[13] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans.
Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[14] R. Milner, Communicating and Mobile Processes: the π-Calculus.
Cambridge University Press, 1999.

[15] R. Bruni, H. Melgratti, and U. Montanari, “Theoretical foundations for
compensations in flow composition languages,” SIGPLAN Not., vol. 40,
no. 1, pp. 209–220, Jan. 2005.

[16] F. Buschmann, K. Henney, and D. Schmidt, Pattern-Oriented Software
Architecture: A Pattern Language for Distributed Computing. John
Wiley & Sons, 2007.

[17] G. Conforti, D. Macedonio, and V. Sassone, “Spatial logics for bi-
graphs,” in 32th International Colloquium on Automata, Languages and
Programming, ICALP 2005., vol. LNCS 3580. Springer, 2005, pp.
766–778.

