
Mobile Networks and Applications 8, 377–387, 2003
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

The AROUND Architecture for Dynamic Location-Based Services

RUI JOSÉ, ADRIANO MOREIRA and HELENA RODRIGUES
Information Systems Department, University of Minho, 4800-058 Guimarães, Portugal

NIGEL DAVIES
Computing Department, Lancaster University, Bailrigg, Lancaster, LAI 4YR, UK, and

Department of Computer Science, University of Arizona, Tucson, AZ 85712, USA

Abstract. This paper presents a generic concept of location-based service as an abstraction for supporting the association between computa-
tional resources and location. The objective is to extend the advantages of service-based architectures to the development of location-based
systems, thus providing a more open and extensible alternative to the “vertical” approaches typically used in this type of system. The novel
AROUND architecture is proposed as an approach for supporting location-based services in the Internet environment. AROUND provides
a service location infrastructure that allows applications to select services that are specifically associated with their current location. The
architecture includes a flexible scope model that defines the association between services and location, and a service location infrastructure
organised by spatial criteria and optimised for location-based queries. Based on a prototype implementation of this architecture, we have
developed two case studies that illustrate the use of this approach for developing location-based systems. The overall results provide a valu-
able insight into the applicability of the architecture, and suggest that this model of location-based services can provide a useful approach
for the development of a wide range of location-based applications.

Keywords: location-based services, mobile computing, service discovery, info-mobility

1. Introduction

Recent years have seen considerable research and market
interest in applications that exploit information about the
physical position of users to provide them with contents that
are tailored for their particular location. This type of ap-
plication enables scenarios in which people are moving on
their daily lives while electronically interacting with their
surrounding environment or satisfying complex information
needs that are directly related with that environment. How-
ever, developing this type of system is still a very challenging
task, the main reason being the lack of generic mechanisms
for supporting the association between network resources and
physical location. As a result, each new location-dependent
system must develop its own location model and its own im-
plementation of functionality that is overall common to many
other systems of that nature. Furthermore, these “vertical”
approaches are valid only for narrow application domains
or specific technologies, and typically result in systems with
costly and inflexible designs that rank low in terms of open-
ness and extensibility. As this type of application matures, the
role of third-party entities in the provision of location-based
information is likely to experience a rapid growth, leading
to the key research challenge of how to address the issues
of openness and heterogeneity in the design of location-
dependent information spaces.

In this paper, we propose to address those issues with the
use of a particular concept of location-based service as an
abstraction for modelling the association between network re-
sources and physical location. In the context of our work,
a location-based service is a system providing a facility to the

network whose usage is semantically associated with physical
space. This semantic association with physical space is a fun-
damental characteristic of these services, and typically results
from one of the following situations: the service provides
some interaction with the environment, e.g., controlling the
temperature of a room; the service is acting as an electronic
counterpart to some real-world entity, e.g., a restaurant; or the
service provides information associated with a geographical
area, e.g., maps or traffic information.

Our main objective with this service model is to extend
the advantages of service-based architectures, more specifi-
cally their ability to deal with openness and heterogeneity,
to the development of location-dependent applications by al-
lowing applications to dynamically select services that are
specifically associated with their particular location. This
particular form of service location allows applications to be
made location-dependent simply by using whatever services
are available at each visited location. With this objective in
mind, we propose a globally available service selection in-
frastructure based on two key requirements:

(i) Physical locality. The system must provide a service se-
lection mechanism that is effectively based on physical
locality, thus allowing two physically co-located devices
to discover the same services independently of their net-
works or administrative domains. Supporting this form
of locality implies a discovery process capable of work-
ing in the wide area, over multiple network technologies,
and across multiple administrative domains.

(ii) Spatially distributed operation. The service location
space should allow queries to be scoped in spatial terms



378 R. JOSÉ ET AL.

and be answered without having to search the entire offer
space. Even though the system aims to be globally avail-
able, in the sense that it should be possible to discover
local services anywhere, it does not aim to support global
discovery, in the sense of searching for services available
anywhere. This particular characteristic of location-
based services discovery should be explored in the design
of a scalable global infrastructure for location-based ser-
vices by creating a distribution model that reflects the
spatial organisation of the service offer space.

Based on these requirements, we propose the novel
AROUND architecture, which provides a model for defining
the association between services and location, and a service
location infrastructure optimised for location-based queries.

To evaluate the approach, we have created a prototype im-
plementation of the key elements of this architecture and a
number of case studies in which the architecture is used as the
basis for location-dependent systems. The overall results pro-
vide a valuable insight into the effectiveness and applicability
of the approach, and suggest that location-based services can
provide a useful model for the development of a wide range
of location-based applications.

The remainder of this paper is organised as follows: in
the next section we describe the AROUND architecture, our
proposed mechanism for enabling location-based service se-
lection over the Internet. This is followed, in section 3, by
the description of two case studies which exemplify the use
of location-based services as the basis for location-dependent
systems. The results of these case studies are discussed in
section 4, where we also discuss other aspects of the evalua-
tion of the architecture. We then analyse, in section 5, some
existing systems and relate them to our own work. Finally, in
section 6, we discuss future work and present our conclusions.

2. The AROUND architecture

This section describes the architecture of the AROUND sys-
tem, which is our proposed mechanism for enabling the
discovery of location-based services over the Internet.

2.1. Proximity models for service discovery

A key issue when modelling the association between services
and physical space is which geographical criteria to use when
determining the “nearby” services that a client should select.
In the AROUND architecture, we have considered the two
distinct models of location-based selection represented in fig-
ure 1: distance-based and scope-based.

In the distance-based model the client selects the servers
located within some distance from its own position. Given
that proximity is a rather abstract concept, and that what we
perceive as being proximate may have dramatic variations ac-
cording to our current activities, we also consider that the
client is able to dynamically change the proximity range to
be used in the selection process. The main limitation of this
model, however, is that the correlation between context and

(a)

(b)

Figure 1. Proximity models for location-based selection.

proximity tends to decrease as we enlarge our notion of prox-
imity, i.e., more things that we do not care about will be seen
as being in our “proximity”. In the scope-based model, each
service is associated with a service scope that explicitly repre-
sents the usage context of that service as a region in physical
space. The client selects those services whose scope includes
its own location, i.e., a client is able to discover a service if
it is located within that service’s scope. To allow clients to
introduce the proximity scale that most suits them, we also
consider that they are able to limit discovery to services with
a scope that is larger or smaller than some physical scale.
The main characteristic of this model is that the correlation
between context and proximity is assured. The services dis-
covered, no matter how distant, are guaranteed to be relevant
to the client’s location.

The distance-based model places the focus on the location
of the server providing the service, whereas the scope-based
model places the focus on the geographical area defined for
the service usage. These differences make each of the mod-
els the best approach for particular types of service. The
distance-based model is the most adequate for services with
a strong association with a specific point in space, typically
services acting as electronic counterparts to real-world enti-
ties, e.g., a restaurant or a bus-stop. In these cases, finding
the physically nearest server is usually the most natural type
of query. On the other hand, the scope-based model is the
most adequate for services with a usage that is geographically
bounded but is not linked to any particular point in space, such
as maps, weather forecasts or restaurant guides. We thus be-
lieve that it is relevant to support both these models, as each
of them is the adequate approach for certain types of service.
However, we have chosen to use the scope-based model as



AROUND ARCHITECTURE FOR DYNAMIC LOCATION-BASED SERVICES 379

the primary mechanism for associating services with location,
and thus location-based services are always assumed to have
an associated scope. This design decision has been motivated
essentially by the possibility of expanding the range of prox-
imity from a small scale to a large scale without necessarily
increasing the number of selected services.

2.2. Scope model

The key mechanism used by the AROUND architecture for
modelling the association between services and location is to
associate each service with a service scope that explicitly ex-
presses the usage of that service as an area in physical space.
The expression of service scopes is achieved through a shared
set of symbolic locations, known as location contexts.

Definition 1. A location context is a symbolic representation
of an area in physical space that can be explicitly referenced
by a global name and can be used across multiple networks
and domains as a context for service discovery.

A service scope is thus the set of location contexts in which
a service is registered. Servers, when making a service reg-
istration, will always include a reference to the particular
location contexts in which they are registering the service.
Similarly, clients, when searching for location-based services,
will use one or more location contexts to indicate the spatial
scope of their queries. Each location context is identified by a
globally unique name with a format defined by the following
URN namespace:

“urn:x-around:”<FQDN>“:”<LID>

A Fully-Qualified Domain Name (FQDN) identifies an entity
responsible for creating names, for guaranteeing their unique-
ness and for providing or delegating their resolution. The
Location Identifier (LID) unambiguously identifies a loca-
tion context within the administrative domain specified by the
FQDN, and can be arranged in a hierarchy of atomic names,
e.g., “/library/room6”. Location contexts are also associated
with a type that indicates the nature of the represented lo-
cation, e.g., hospital, or airport. This explicit knowledge
about the characteristics of the represented locations allows
applications to make important deductions about their current
environment, such as the most appropriate service selection
strategy or the types of service that the user may need most.

2.2.1. Relationships between location contexts
In our architecture, location contexts can be linked through
unidirectional relationships whose goal is to enhance the
process of service discovery by transforming location con-
texts from isolated service aggregations into components of a
shared distributed service location space organised according
to spatial criteria. Relationships between contexts establish a
mechanism for the propagation of queries from a source con-
text to a target context, resulting in a graph structure similar to
that of federated trading architectures [12]. However, unlike

links between federated traders, links between location con-
texts have a spatial semantics that determines the way queries
are propagated in the graph and allows the search domain to
be specified in spatial terms.

Our architecture employs two types of context relation-
ship: containment and adjacency. The containment relation-
ship reflects the spatial inclusion of the area of a contained
context within the area of a container context, and defines a
partial order over any arbitrary set of location contexts. Given
the spatial semantics associated with containment, the rela-
tionship is transitive and the resulting graph is assumed to
be acyclic. Each location context can have more than one
containment relationship to other contexts, resulting in a lat-
tice structure. We assume the maximum number of location
contexts in a single chain to be restrained by its effect on
users. A very deep hierarchy could become too complex to
use and would necessarily involve location contexts with very
little meaning to the user. The number of contexts in a chain
should thus be fairly small, and typically correspond to only
a few levels, such as room, floor, building, street, area, town
and region. Another restriction results from a universal set of
principles that guides our notion of space and constrains the
containment relationships that may occur in the real world,
e.g., it should not be possible to create a containment rela-
tionship from a context of type “Building” to a context of type
“room”. To guarantee this consistency, the spatial semantics
of the trading graph is enriched with a set of restrictions on
the establishment of containment relationships between cer-
tain context types.

Containment is employed as the central relationship of
the architecture because of its key role in enabling the
scope-based model of proximity. A containment relationship
implicitly makes the services registered at the container con-
text available for selection in the contained context. This is
the opposite of the approach typically found in location sys-
tems, where “if a located-object is a member of a particular
domain, it must also be a member of all parents of this do-
main” [9]. As an example, figure 2 represents a set of location
contexts and their associated containment relationships. The
horizontal arrows represent the registration of a set of ser-
vices, A, B and C, in their respective contexts. The lower
half of each context indicates the services that can potentially

Figure 2. Service location through containment relationships.



380 R. JOSÉ ET AL.

be discovered at that context.1 Service A, registered at the
“Campus” context, is available everywhere, because all other
contexts are directly or indirectly contained in the “Cam-
pus” context. Service A is thus associated with a large scope
through a single registration at a high-level location context.
On the other hand, service C, registered at the “Lab.1” con-
text, is only available within that context, as “Lab.1” contains
no other contexts. Thus, a client searching for services in
the “Campus” context can only discover service A, whereas a
client searching in “Lab.1” can discover services A and C.

Adjacency is the other type of relationship employed by
the architecture, and expresses an immediate physical prox-
imity between the areas of two location contexts. Adjacency
allows a query to go from its base context to contexts that
represent neighbour areas, thus allowing physically near ser-
vices to be selected, even if out-of-scope. Assuming that their
registration includes a location attribute, services can be se-
lected from multiple adjacent contexts based solely on their
distance to the client, thus enabling a distance-based model
of proximity with flexible selection range. Another role of
the adjacency relationship is to support rapid context changes
by allowing clients to adopt a “pre-fetching” attitude in which
they perform service selection in adjacent contexts before ac-
tually entering them. Typically, an adjacency relationship is
established between location contexts of the same nature in
well-structured places, e.g., rooms in a building, and the set of
location contexts involved must form an anti-chain, i.e., none
of its members should be comparable from the perspective of
the containment relationship.

2.3. Functional model

The functional structure of the AROUND architecture com-
prises the AROUND service, the contextualisation process,
and the name service. The main component of the sys-
tem, the AROUND service, is a distributed service location
infrastructure that maintains a repository of service informa-
tion organised by location contexts, and is described in the
next section. Contextualisation is the process that determines
the location context that corresponds to the current physical
position of a mobile device, called base context. This map-
ping of positions in physical space into contexts in a space
of location contexts can be based on information obtained
from multiple types of location sources, and thus the defin-
ition of specific contextualisation mechanisms is regarded as
being outside of the scope of this work. Ideally, a combina-
tion of contextualisation functions should complement each
other and provide a seamless positioning coverage, but the
existence of multiple sources may also lead to conflicting in-
dications on the current base context. When there are multiple
base context indications, fusion is attempted, particularly by
exploring potential containment relationships between those
location contexts, but, if that fails, they are all passed to the
application, which may choose to use them all as independent

1 Whether or not services are actually available depends also on other factors,
such as system policies (to be described in section 2.4.1).

contexts for service discovery. This situation is a normal con-
sequence of the one-to-many relationship between physical
space and location contexts assumed by the contextualisa-
tion process of the AROUND architecture. Even though each
location context is associated with a specific area in physi-
cal space, there is no assumption that a position in physical
space is uniquely associated with a single location context,
i.e., the AROUND architecture does not assume the existence
of a single, absolute hierarchy of location contexts, and al-
lows multiple spaces of location contexts to overlap on the
same physical space. Assuming otherwise would imply, ei-
ther being able to clearly associate administrative authorities
with each location, or having some global authority capable
of managing a global location model and providing a univer-
sal mapping. Since none of these assumptions seems very
reasonable from the perspective of the system scalability, the
AROUND architecture simply assumes that anyone is free to
create a location context for any area in physical space and
that the relevance of competing spaces of location contexts
would be determined by the number and widespread use of
their associated contextualisation mechanisms. As a result,
mapping a position in physical space into a location context
is a process that necessarily implies some administrative op-
tion regarding the particular set of location contexts to which
positions are going to be mapped.

The name service resolves global location context names
into references to specific AROUND servers at which they
can be accessed, allowing a single name to correspond to
more than one instance of the same location context. The re-
quirements of a name service for the AROUND architecture
are basically high availability, scalability and performance.
We believe that these generic requirements are fully addressed
by many name services described in the literature and also
that the particular characteristics of this architecture in terms
of locality of reference can make the best use of most of the
replication and caching techniques that are normally used for
achieving those goals. Therefore, we have not addressed the
creation of any specific name service for the AROUND archi-
tecture.

Contextualisation and naming, together, allow mobiles to
determine an access point to the system that can provide them
with the services for their current location. Whereas contex-
tualisation determines the base context of the device, naming
resolves the name of that base context into the respective
AROUND servers. Figure 3 depicts the functional model of
a system based on the AROUND architecture and illustrates
how an application interacts with the various components of
the architecture to make its behaviour depend on the set of
services available at each given location environment.

When the contextualisation process detects a change in
the current location context, it notifies the application of that
change, indicating the name of the newly entered context.
The application will then contact the name service to resolve
the name of new base context into one or more references to
AROUND servers that provide access to that particular loca-
tion context. Having obtained such references, the application
sends a service query to the respective AROUND server and



AROUND ARCHITECTURE FOR DYNAMIC LOCATION-BASED SERVICES 381

Figure 3. Functional model of a system based on the AROUND architecture.

obtains a number of references to location-based services that
are specifically associated with the current location of the sys-
tem. The application can then interact with those services
and obtain the information it needs to reflect the particular
information space of the new environment. This interaction
can itself be location-dependent, in which case the applica-
tion can communicate its location to the service and obtain an
even more specific response.

2.4. AROUND service

The AROUND service is provided by AROUND server in-
stances, each managing a set of location contexts. AROUND
servers can be federated by creating relationships between lo-
cation contexts maintained by different AROUND servers.
These external links enable servers to share their respective
service offer spaces and form a larger distributed context
space in which queries may traverse multiple servers and
possibly multiple administrative domains before being com-
pleted. The federation structure that results from this linkage
mechanism contains two important properties: Firstly, all the
services potentially relevant for a specific location are in a
reduced set of AROUND servers. Secondly, from its base
context, a client is able to reach all the other contexts that
may provide it with services relevant for its location.

2.4.1. Querying the AROUND service
The interface supported by AROUND servers is largely based
on the interface of the CORBA Trading service [12]. The
basic parameters of a query are: (i) the name of the location
context at which the query starts, (ii) the types of services to
select, and (iii) a set of constraints that the attributes of the
selected services must satisfy.

A query to the AROUND service may also include a set of
Policies, which determine the location contexts that the query
will traverse. Policies are thus the key mechanism for control-
ling the execution of queries that go through multiple contexts
and servers. Even though the service location infrastructure
provided by a federation of AROUND servers may be seen as
a global service, it does not support global queries. Queries,
thus, are always scoped, either explicitly, by policies included
with each query, or implicitly by default polices defined at
the AROUND service. The policies supported are basically

the same as in CORBA Trading, but new spatially-based poli-
cies have been added to embody the spatial characteristics of
the AROUND service: the Query_type policy defines the spa-
tial direction of the query, i.e., whether to follow adjacency
or containment links; the Context-bound identifies a specific
location context as the limit for the query. The query termi-
nates when it reaches the specified context or a context that
is not contained within the specified context; and the Type-
bound identifies a maximum location type for the query. The
query terminates (without selecting the local services) when
it reaches a location context with a type that cannot be con-
tained in a context of type Type-bound.

The other query parameter is a Preferences expression that
can be used to request a particular ordering of the set of
matched services. Preferences are also based on CORBA
Trading, but we added the new “nearest <position>” expres-
sion to support the ordering of services by their distance to
the specified position. This feature, together with adjacency
links and location attributes, provides the key mechanism for
enabling service selection using distance-based proximity.

2.4.2. Replication
The AROUND architecture supports two distinct replication
mechanisms. Replication of location contexts consists of
having multiple instances of the same context managed by
different AROUND servers, and plays a key role in the avail-
ability of the system. Firstly, it provides a fault-tolerance
mechanism, as a location context is no longer associated with
a single server. Secondly, it can be used to support load bal-
ancing in contexts with intensive use. Finally, an appropriate
distribution of replicas can also increase the availability of the
system in the face of network partitions. Service Caching al-
lows an AROUND server to cache the service registrations
from a location context managed by some other AROUND
server. The caching mechanism benefits considerably from
the locality of reference that is inherent to the scope model on
which the architecture is based, as the set of cacheable loca-
tion contexts in an AROUND server directly results from the
links of the location contexts maintained by that server and
not from arbitrary user requests. The cache of an AROUND
server will typically include location contexts to which it
maintains some containment or adjacency relationship, thus
allowing it to answer locally to queries that would otherwise
have to be sent to other servers.

Both replication mechanisms assume a loose, or converg-
ing consistency model. The adequateness of loose consis-
tency as a model for replicating service registrations is based
on the idea that inaccurate information about services can ei-
ther be detected (e.g., the service is no longer available) or
will have no major consequences (e.g., there is a new ser-
vice available but some parts of the system still do not know
about it). The scalability of service caching is also based on
two key assumptions about the patterns of service registration.
The first is that the read/write ratio increases at the higher
levels of the hierarchy of location contexts. The dynamic of
service registrations is assumed to be inversely proportional to
the size of the respective scopes, and thus the set of services



382 R. JOSÉ ET AL.

registered with large scopes is expected to change slowly. The
other assumption is that service registrations will be reason-
ably distributed among the various levels in the containment
hierarchies, i.e., there will be some administrative control ca-
pable of promoting a balance between the higher visibility
provided by a registration at a higher level and the adminis-
trative cost associated with that registration.

2.5. Implementation

In order to provide the basis for the evaluation of the system,
we have created a prototype implementation of the AROUND
architecture. Considering the nature of this work, we have
decided to focus on a rapid and flexible prototyping of the
AROUND service functionality rather than on a low-level im-
plementation optimised for performance. We have chosen to
developed a JAVA implementation based on the Jini frame-
work [15], in which Jini lookup services are used as service
registries, and service definitions, e.g., service types and at-
tributes, are based on the Jini programming environment. The
system has been developed using JDK 1.2.2 and the SUN ref-
erence implementation of Jini (version 1.0).

3. Applications

In order to evaluate the feasibility of the approach and gain
some insight into its implications, we have developed a
number of prototype systems based on the AROUND archi-
tecture. We will now describe our two major prototypes: the
AROUND client and the Hypergeo portal.

3.1. The AROUND client

Within the context of the AROUND project [1], we have de-
veloped a test-bed in the town of Guimarães for validating
the architecture. This case study has included the creation
of a generic service infrastructure, with multiple AROUND
servers, location contexts and location-based services, and the
development of multiple client applications over that common
infrastructure.

The service infrastructure was based on an heterogeneous
set of location contexts, ranging from rooms at the University
campus to areas of various sizes in the town and its sur-
roundings. Since the case study was thematically focused on
applications for assisting mobile users with useful travelling
and guidance information, and in particular public transporta-
tion information, these location contexts were populated with
location-based services of the following types: a BusInfo
service that gives information about the bus services for a
specific area; a BusStop service that acts as an Internet coun-
terpart to the information typically available at real world
bus-stops; a Map service that provides maps in several for-
mats for specific areas; a Weather service from which several
formats of weather forecast can be obtained; and a SpatialInfo
service that provides structured information about the current
location, e.g., postal code, address, or a simple description.

Figure 4. AROUND client application.

Some of these services, e.g., SpatialInfo, are available at var-
ious levels of the hierarchy of location contexts with various
degrees of specificity. Others are available at specific types
of location context, e.g., the BusStop service can typically be
found in contexts representing small town areas.

With this prototype infrastructure operational, we have
begun to explore the use of location-based services for the
creation of location-dependent systems. Our main applica-
tion, simply called AROUND client [11], was engineered for
a medium-size handheld device equipped with GSM or IEEE
802.11 connections, and is represented in figure 4.

The application was designed as a flexible client of the
AROUND architecture, capable of enabling many different
patterns of information access. To achieve this flexibility, the
application core supports only generic functionality, such as
contextualisation and user interface, whereas specific func-
tionality is encapsulated in thematic modules that act as
dedicated sub-applications within the framework provided by
the overall AROUND client. Each module may have its own
behaviour in terms of the service types to use, query scop-
ing, and service selection criteria. Given the thematic focus
of the case study, the AROUND client has been tailored as
a travel assistant by creating a set of modules that provide
the user with complementary information about visited lo-
cations, more specifically Transportation, Local Description,
Weather, Maps and Events. The user can activate and select
modules by clicking the icons at the top of the application
screen. The HTML output of the currently selected module
is displayed in the central display area. When a new con-
text is entered, all the active modules request the services
they need, interact with those services, and generate a new
location-dependent output, so that when they are selected they
are able to provide immediate results. The availability of new
information is signalled to the user by flashing the respec-
tive module icon on the top of the screen, and in the case
of the selected module, by activating the “new info” button,
which indicates to the user that the currently displayed in-
formation is no longer correctly contextualised. The shared
application environment makes prototyping of new access



AROUND ARCHITECTURE FOR DYNAMIC LOCATION-BASED SERVICES 383

patterns easier as modules can share the common functional-
ity of the application. Even though we have not implemented
such functionality, the dynamic downloading of new modules
would be a normal extension to our current implementation.

3.2. The Hypergeo portal

The Hypergeo project [8] has developed a web portal sys-
tem for providing mobile users with several types of tourism
related information. The system, which has been deployed
in Toulouse and Karlsruhe, allows a person equipped with a
wirelessly connected PDA to access several types of location-
dependent information. At the exception of maps, which have
their own module, most of that information is obtained us-
ing the AROUND architecture. When receiving a request
for information associated with a location, the portal uses
the AROUND architecture to select services with relevant
information about the current location of the user, and then
accesses those services to generate a personalised page with
location-dependent content. Figure 5 represents the compo-
nents of the Hypergeo Information Server that implement this
functionality, and in particular the Hypergeo LBS component,
which in this case plays the role of the client of location-based
services.

The User Profile Manager (UPM) maintains information
about registered users, including the user’s identity, an history
of past positions, preferences, and configuration. Information
about the location of the user is managed by two different
components. The Position tracker component parses and val-
idates GPS positioning information sent over the mobile GSM
network and updates the corresponding user profile. The Lo-
cation Trends Extractor combines information about speed
and sinuosity of the user with contextual data, such as trans-
port networks, to derive a fuzzy reasoning about conjectured
activity (e.g., shopping) or transport characteristics (e.g., on a
train). Location-based services are not represented as part of
the Hypergeo Information Server because, although they have
to register with the AROUND service established for the Hy-
pergeo server, they are assumed to be provided by third-party
entities. The services created provide information about the
Weather, Restaurants, Hotels, Monuments, Points of Interest,
Events, YellowPages and Local Description.

Figure 5. Architecture of the Hypergeo infrastructure.

The sequence of interactions starts when a client sends a
request, as an URL, to the Web portal (1). When the portal
identifies a request as being for local information, it passes the
request to the Hypergeo LBS component (2). The LBS will
then request from the UPM (3) the current position of the user
and from the contextualisation component the corresponding
base context (4). Before formulating a query to the AROUND
service, the LBS goes back to the UPM and obtains further in-
formation about the user (5), particularly the user preferences
and location trends. This information plays a key role in the
behaviour of the LBS by determining the type of informa-
tion needed and how it is going to be presented to the user.
The objective is to create a personalised content that reflects
the combination of the user interests with its current context
(place, time of the day, conjectured activity). After selecting
the services it needs from the AROUND service (6), the LBS
component interacts with those services (7) and generates an
XML output that is then sent to the Web Portal, where it will
be formatted according to the characteristics of the mobile
device.

4. Evaluation

Our evaluation of the AROUND architecture has been essen-
tially qualitative and oriented towards the understanding of
the main issues raised by the use of this particular approach
as a generic mechanism for enabling location-dependent sys-
tems. We first analyse some of the main issues raised by the
case-studies, and then discuss the system from the perspec-
tives of openness, scalability and security.

4.1. Analysis of the case studies

The two prototypes created have demonstrated the practical
application of the concept of location-based services in de-
veloping location-dependent applications, and allowed us to
gain a valuable insight into the implications of developing
systems based on the AROUND architecture, into the na-
ture of the applications that the architecture can support, and
into the advantages and disadvantages of the approach. The
AROUND case study has mainly exercised the creation of a
generic infrastructure of location-based services, and the de-
velopment of multiple location-dependent applications on top
of that common service infrastructure. The Hypergeo case
study has exercised a more focused use of location-based ser-
vices within the framework of a server-side portal and showed
how the openness of the AROUND architecture can be used to
extend the functionality of a system that would otherwise be
self-contained. The overall results suggest that location-based
services can effectively be used as a generic approach for sup-
porting the development of location-based applications, but
have also raised the following issues.

Definition of location contexts. Regarding the definition of
location contexts, it has become evident that such definition
is much simpler for location contexts indoors and in urban ar-
eas than it is in areas of reduced human presence. In the latter



384 R. JOSÉ ET AL.

case, it is often difficult to clearly identify suitable zones to be
used as symbolic locations, i.e., areas whose boundaries are
easy to identify. Our typical approach has been to rely on ex-
isting administrative divisions of space, such as postal codes,
but this approach alone can lead to very shallow hierarchies
and to areas that do not have enough symbolism to function
as location contexts.

Contextualisation. The most obvious limitation in the con-
textualisation process concerns the inevitable existence of
overlaps between location contexts, meaning that a mobile
device can effectively be located in two location contexts at
the same time. This is a generic issue with symbolic models,
but in the case of the AROUND architecture there is also the
possibility of having multiple independent spaces of location
contexts overlapping on the same physical space. Despite as-
suming that the contextualisation process may result in the
indication of more than one base context, the AROUND ar-
chitecture does not include any mechanisms for handling such
situations, except when one of the contexts is contained in
the other, and thus it is possible to select the most specific
of them. All other situations must be handled by the client
application without any assistance from the contextualisa-
tion mechanisms. Our development of client applications has
shown that this is not usually a satisfactory solution, as client
applications have no access to the inner functionality and lo-
cation sources of the contextualisation process, and thus have
no means to make an informed decision regarding the rel-
evance of the various base context indications. Their only
option is either to use them all or to require user assistance.

User interface. The development of interactive applications
has raised several user interface issues. Some of them are
common to context-aware applications in general [3]; e.g.,
how to make the user interface reflect context changes or
how to combine explicitly retrieved information with context-
aware information, but others were prompted directly by the
use of location-based services. One of those issues has been
how to present the user with its options in terms of the ser-
vice selection process, and particularly in what concerns the
spatial scoping of queries. An adequate representation of
the space of location contexts should allow users to eas-
ily perceive the currently available alternatives in terms of
the spatial scoping of queries and take advantage of the
multiple proximity models supported by the AROUND archi-
tecture. However, the lattice structure of the location context
space is not conveniently represented by common navigation
metaphors. Another user interface issue concerns the repre-
sentation of contextual factors associated with information. In
our applications, the user does not directly select his sources
of information, and is even unaware of which sources are
being used. Furthermore, an application may combine in-
formation obtained from multiple sources and present it as
a single piece of information. This prevents the user from as-
sessing contextual factors that are normally associated with
information, such as its source, the way it is presented, or
where it is referenced. Without such elements, the user may

fail to evaluate the background and trustworthiness of the
available information.

4.2. Openness

The AROUND architecture has been designed from start with
openness as one of its main motivations. Our case studies,
were thus based on the implicit assumption that their vari-
ous elements, i.e., services, client applications, and location
contexts, could all be independently developed and managed.
As a result, both prototypes showed a considerable potential
for evolution in terms of the sources of information used, the
types of information supported, or the underlying infrastruc-
ture. All these extensions were possible, and simple, because
the abstractions on which the system design is based avoids
hidden dependencies between the various components of the
system, providing a clear separation of concerns between key
functionality, such as information provision, location mod-
elling, service location and application development.

However, the evaluation of the prototype as an open ar-
chitecture has necessarily been compromised to some extent
by the lack of established standards for most of the system
elements. This has forced us to create, specifically for this
purpose, all the elements in our case studies rather than sim-
ply integrating truly independent components. If, as in our
case studies, the creation of a single location-dependent sys-
tem implied the creation of a service infrastructure to serve
it, then the potential advantages of an open approach would
become blurred when compared with the much more prag-
matic approach of a vertical system. We believe, however,
that this limitation is merely transitional and that in the near
future the adoption of open standards for automatic informa-
tion exchange, on which multiple industrial groups are now
working [14,16,18], will lead the Internet to better approx-
imate a truly service-based infrastructure. When these yet
missing pieces start to be in place, the advantages of an open
approach will become more and more evident.

4.3. Scalability

The effects of scale are a major concern for any system aimed
at the Internet environment. In our architecture the potential
growth in the number of queries, services, users and locations
are handled mainly through the mechanisms of distribution,
replication and caching.

Distribution is the key scalability technique used in the
AROUND architecture. The service is distributed among
multiple AROUND servers, each managing only a small por-
tion of the overall space of location contexts. This distribution
reduces the number of requests that must be handled by each
server, allows different parts of the system to be managed by
different administrative entities, and allows the information
to be placed where it is most likely to be needed. Despite
being a global system, there are not any global variables or
system-wide states, except naming, and there is not any “root”
location context. Each component of the architecture can
function with only a reduced knowledge of the other compo-
nents of the system. Furthermore, the particular scope model



AROUND ARCHITECTURE FOR DYNAMIC LOCATION-BASED SERVICES 385

on which the architecture is based introduces a strong local-
ity of reference, as a result of which, interactions within the
system typically involve only a reduced and stable set of ele-
ments that are likely to be close to each other.

Replication of location contexts is another important
mechanism for the scalability of the system. It allows
replicas of a location context to be placed on different
AROUND servers, thus supporting load-balancing between
those servers. The caching of service information to lower
levels in the hierarchy allows the system to scale in the num-
ber of location contexts and respective network distance. It
reduces the number of servers that need to be contacted to
satisfy each query and removes considerable load from the
servers that maintain the higher level location contexts.

4.4. Security considerations

Even though we have not actually implemented any secu-
rity mechanisms we have conducted a careful analysis of the
security services needed by the different components of the
architecture and of how they could be introduced. The most
obvious requirement is to be able to guarantee the correct op-
eration of the system by protecting communication between
the various system entities and by controlling resource usage.
Additionally, we have also identified the need to integrate the
services’ security policies with AROUND service queries.
When submitting a query to an AROUND server, a client
should be able to specify its access authorisations in such a
way that the AROUND server would only reply with services
to which the client is able to access. Otherwise, clients would
risk having to go through multiple successions of queries to
the AROUND service and service access attempts until reach-
ing a service without a limiting access control. Addressing
this issue requires the ability to represent in service registra-
tions the access control criteria of the services and to evaluate
the authorisation of any potential clients of that service. An-
other issue is how to evaluate the integrity and trustworthiness
of the information stored in the AROUND service, i.e., “is
the service really run by the claimed entity and is that entity
a trustworthy source?”. All these issues can be addressed by
standard security techniques for basic services such as authen-
tication, data integrity, and rule-based access control, but their
introduction without jeopardising the openness of the system
remains an open issue at least until the use of horizontal secu-
rity mechanisms becomes widespread in the Internet.

5. Related work

The motivation for this work has largely emerged from
systems such as GUIDE [4], developed at Lancaster Univer-
sity, or CyberGuide [10] developed at the Georgia Institute
of Technology. We share with these classic examples of
location-aware systems the aim of building applications that
react to changes in their location. What separates our ap-
proach is the use of location-based service discovery as the
abstraction for modelling the association between resources

and location. More than proposing a vertical approach for
addressing the requirements of a particular application, we
aim to provide a new horizontal approach that is capable of
bringing the benefits of service-based architectures to the de-
velopment of location-dependent systems.

A whole range of new info-mobility services with location-
based content is currently being launched within the context
of cellular networks and allow customers to access informa-
tion specific to their location via their handheld devices and
WAP enabled mobile phones. These services typically take
into account the current position of the mobile terminal to
provide general interest information, such as nearby restau-
rants or local traffic reports. What mainly distinguishes our
approach is where to introduce location-dependency. In those
services, location-dependency is exclusively handled by the
server, and does not contribute for service selection. As a
consequence, each service must be pre-defined, must be able
to deal with location information, and must be able to provide
global coverage, i.e., it should be able to provide a convenient
answer to requests from any of the possible locations of the
client application. In our approach, location information is
mainly used for selecting a relevant server, which may itself
be location-dependent. Servers do not need to provide global
coverage, as multiple services can be created to address the
particular needs of each location.

Our work has also much in common with a great num-
ber of service location frameworks that are now available.
The Service Location Protocol (SLP) [6] is proposed for ser-
vice location in LANs under a single administrative domain.
Jini [15] is a Java-centric technology that aims to support the
association of groups of autonomous devices and software
components into a dynamic system. The Universal Plug and
Play (UPnP) [17] technology aims to simplify the transparent
interconnection of appliances, PCs and services by leveraging
Internet technology. One characteristic that all these systems
have in common is a discovery mechanism strongly based
on network proximity. We aim to build a system in which
proximity is effectively based on physical locality, and is not
constrained by administrative or network boundaries.

The CORBA Trading Object Service [12] supports a dis-
tributed service offer space and provides a model for sharing
the offer spaces from various traders by creating links be-
tween them. Even though it is possible to select services
based on location attributes, a link from a trader to another
is simply a routing path for queries, and nothing else can be
assumed about the nature of those interconnections. As a con-
sequence, this model provides a weak specification about how
search domains are specified, about when searches terminate
and about where services are published [13]. The Service Dis-
covery Service (SDS) [5] is a globally-distributed architecture
for wide-area service location. SDS aims to support the selec-
tion of a server anywhere on the Internet, with location being
just another potential search criterion. What mainly distin-
guishes the AROUND service is that the location space is
itself organised by spatial criteria and is optimised for sup-
porting spatially scoped queries. As a result, global queries



386 R. JOSÉ ET AL.

are not necessary for selecting the services that are relevant
for a particular location.

The Cooltown project [2] is a platform for enabling a sys-
tematic correlation between the entities in the physical world
and their respective web pages. The architecture proposed
by Hodes in [7] supports the discovery of services associ-
ated with a particular physical location by separating the role
of discovery, performed by a beaconing daemon, from the
role of service selection, supported by a specific server. We
share with both these systems the strong role played by phys-
ical location on the process of service selection. However,
their discovery mechanisms are based on isolated infrastruc-
tures that support service selection within a restricted domain,
whereas we propose a concept of location-based service based
on abstract scopes that can scale to large areas and a globally
available service location infrastructure.

6. Conclusions

6.1. Future work

In this section, we describe what we believe to be the main
points for further research within the context of this work.

The current approach to the management of location con-
texts and their federated operation, essentially based on
simple policies, is, admittedly, less than ideal. Also, in a re-
alistic scenario of multiple overlapping location hierarchies
managed by different authorities, the establishment of rela-
tionships modelled by purely spatial criteria may become a
serious limitation to the collaborative development of multi-
domain location context spaces. The administrative model
should thus be able to support flexible relationships that,
while keeping the essence of the spatial nature of the links,
could also accommodate administrative decisions regarding
the sharing of services between contexts. While these ad-
ministrative aspects were not of great significance for the
proof-of-concept infrastructure that we have developed, they
would be of paramount importance in a widely deployed plat-
form, and should thus be a key topic for further research. The
creation of effective solutions in this area may, however, be
subjected to the ability to foresee the potential business mod-
els that may arise in a service infrastructure of this nature.

We also aim to explore new application models that can
better exploit the basic trade-off between generality, i.e.,
the application ability to satisfy many different information
needs, and specificity, i.e., the application ability to adopt
the most adequate behaviour for a particular task. Generality
is important, particularly for applications aimed at providing
information, as otherwise the diversity of people informa-
tion needs would lead to a myriad of small applications each
providing some very specialised content. Specificity is also
important because it allows the knowledge about the selec-
tion and use of specific services to be incorporated into the
application. This in turn allows the application to support
in a pro-active way many of the service selection opera-
tions, bringing important benefits in terms of enhancing those

operations, making them transparent to the user, and also ad-
ditional optimisations such as background pre-fetching. We
will therefore explore new approaches for combining these
two elements in the design of client applications for location-
based services.

Other points for further research include the best practices
for the definition of location contexts, enhancements to the
contextualisation model, and implementation of security ser-
vices.

6.2. Concluding remarks

The work described in this paper has sought to investigate
the use of location-based service selection as an open and
generic approach to support the development of many types
of location-dependent systems. To enable that approach, the
novel AROUND architecture has been proposed as a ser-
vice location infrastructure capable of allowing applications
to select Internet services that are specifically associated with
their current location. The results obtained from a number
of case studies suggest that location-based services can effec-
tively provide an adequate abstraction for the development of
location-dependent systems. The resulting prototypes exhibit
significant potential for evolution in terms of new informa-
tion sources, new locations or the underlying infrastructure.
The main limitation in terms of our initial objectives has been
the current lack of open standards for automatic information
exchange, without which the potential advantages of an open
approach become compromised. We believe, however, that
this limitation is merely transitional and that in the near fu-
ture the adoption of such standards will allow the important
benefits of openness to be fully realised.

Acknowledgements

Work on the AROUND architecture and prototype was car-
ried out as part of the AROUND project, supported by the
Portuguese Government Praxis programme (PRAXIS/P/EEI/
14267/1998). Work on the Hypergeo portal was carried out
as part of the Hypergeo project, supported by the European
Commission IST programme (IST-1999-11641). Special
thanks are also due to all the team members in both projects,
and particularly to Filipe Meneses and Hélder Pinto.

References

[1] AROUND project web site, http://www.dsi.uminho.pt/
get/around (2000).

[2] D. Caswell and P. Debaty, Creating web representations for places,
in: Handheld and Ubiquitous Computing, Vol. 1927, eds. P.T. Gellersen
and H.W (Springer, Berlin, 2000) pp. 114–126.

[3] K. Cheverst, N. Davies, K. Mitchell and A. Friday, The role of
connectivity in supporting context-sensitive applications, in: HUC99,
International Symposium on Handheld and Ubiquitous Computing,
Karlsruhe, Germany, ed. H.-W. Gellersen (1999).

[4] K. Cheverst, N. Davies, K. Mitchell and A. Friday, Experiences of
developing and deploying a context-aware tourist guide: the GUIDE



AROUND ARCHITECTURE FOR DYNAMIC LOCATION-BASED SERVICES 387

project, in: Sixth Annual International Conference on Mobile Comput-
ing and Networking, Boston, MA (2000) pp. 20–31.

[5] S.E. Czerwinski, B.Y. Zhao, T.D. Hodes, A.D. Joseph and R.H. Katz,
An architecture for a secure service discovery service, in: Fifth An-
nual ACM/IEEE International Conference on Mobile Computing and
Networking, MOBICOM99, Seattle, WA (1999) pp. 24–25.

[6] E. Guttman, C. Perkins, J. Veizades and M. Day, Service location pro-
tocol, Version 2, RFC 2608 (1999).

[7] T.D. Hodes, R. Katz, E. Servan-Schreiber and L. Rowe, Composable
ad hoc mobile services for universal interaction, in: 3rd ACM/IEEE
International Conference on Mobile Computing and Networking, MO-
BICOM97, Budapest, Hungary (1997).

[8] Hypergeo Consortium, Easy and friendly access to geographic infor-
mation for mobile users, http://www.hypergeo.org/ (2001).

[9] U. Leonhardt, Supporting location-awareness in open distributed sys-
tems, Ph.D. thesis, Imperial College of Science, Technology and
Medicine, University of London (1998).

[10] S. Long, R. Kooper, G.D. Abowd and C.G. Atkeson, Rapid prototyp-
ing of mobile context-aware applications: the cyberguide case study,
in: ACM/IEEE International Conference on Mobile Computing and
Networking, MOBICOM96, Rye, NY (1996) pp. 97–107.

[11] F. Meneses, A. Moreira and R. José, How do I design a location-
dependent application?, in: SPIE’s International Symposium on
the Convergence of Information Technologies and Communications,
ITCom 2001, Denver, CO (2001).

[12] OMG, CORBA services: common object services specification, Tech-
nical Report (1998).

[13] G. Outhred and J. Potter, An enterprise trader model for DCOM,
in: IFIP/IEEE International Conference on Open Distributed Process-
ing and Distributed Platforms, Toronto, Canada, eds. J. Rolia, J. Slonim
and J. Botsford (1997) pp. 63–73.

[14] Parlay group web site, www.parlay.org (2001).
[15] SUN Microsystems, Jini web site, http://www.sun.com/jini/

(1999).
[16] UDDI, Universal description, discovery and integration of bussiness for

the Web, www.uddi.org (2001).
[17] Universal Plug and Play Forum, Universal Plug and Play web site,

http://www.upnp.org/ (2000).
[18] W3C, Web services activity, http://www.w3.org/2002/ws/

(2002).

Rui José is an Assistant Professor at the Depart-
ment of Information Systems, University of Minho.
He holds a D.Eng. (Licenciatura) in informatics and
systems engineering, and an M.Sc. in informatics
(specialisation in distributed systems, computer co-
munications, and computer architectures) both from
University of Minho. In 2001, he obtained his Ph.D.
in computer science (field of distributed systems) at
Lancaster University for his work on location-based
services. At the University of Minho, he participated

in several funded research projects in the area of mobile computing, including
the AROUND and Hypergeo projects, and he is currently the principal inves-
tigator of the Vade project, which explores new mobile application models
combining services from mobile network operators with services from the
local environment. Rui José is since 1997 a member of ACM and its Special
Interest Group on Mobility of Systems, Users, Data and Computation (SIG-
MOBILE).
E-mail: rui@dsi.uminho.pt

Adriano J.C. Moreira is an Assistant Professor in
the Department of Information Systems, University
of Minho, since 1996. He received the Licenciatura
degree in electronics and telecommunications en-
gineering and the Ph.D. degree in electrical engi-
neering, respectively in 1989 and 1997, from the
University of Aveiro, Portugal. He has been a vot-
ing member of the IEEE 802.11 working group
(Wireless Access Method and Physical Layer Spec-
ification) where he participated in the specification

of the infrared physical layer. His research interests are in indoor optical
wireless transmission systems, wireless local area networks and mobile and
context-aware computing. He participated in many research projects, more
recently in the AROUND – Supporting Location-Based Internet Services and
the Hypergeo – Easy and Friendly Access to Geographic Information for Mo-
bile Users. He is a member of the IEEE Communications Society.
E-mail: adriano.moreira@dsi.uminho.pt

Helena Rodrigues was born in Portugal. She did her
undergraduate studies and received her Mestrado de-
gree (M.Sc.) in computer science at Universidade do
Minho, Portugal. She received her Ph.D. degree in
computer science from the University of Kent, UK,
in 1998, with her Ph.D. Thesis entitled “Cyclic Dis-
tributed Garbage Collection”. Since 1998 she is an
Assistant Professor at the Department of Information
Systems, University of Minho. Her current research
interests are in distributed systems, distributed appli-

cations, object-oriented technology and mobile computing. Recently, she
has been a member of the research team of the AROUND project – Sup-
porting Location-based Internet Services, ended in 2001 and funded by the
Portuguese government, and also a member of the research team of Hypergeo
– Easy and Friendly Access of Geographic Information for Mobile Users, an
European funded R&D project (IST-1999-11641), ended in 2001.
E-mail: helena@dsi.uminho.pt

Nigel Davies holds a B.Sc. and Ph.D. in computer
science, both from Lancaster University, UK. Having
completed his studies he was a visiting researcher at
the Swedish Institute of Computer Science (SICS)
before returning to Lancaster in 1994 to help cre-
ate the University’s Mobile Computing Group. He
has since managed numerous projects at Lancaster,
including the MOST and GUIDE projects, both of
which have been widely reported on in the academic
literature and the popular press. During 1999/2000

he spent a year as a visiting researcher at Sony’s Distributed Systems Lab
in San Jose working on integrating mobile devices with home AV networks.
In recognition of his work in establishing Lancaster as a major research cen-
ter in the field of mobile computing he was awarded a personal chair in the
Computing Department in 2000. He has participated actively in the mobile
computing research community and has served in a number of roles includ-
ing Program Chair for IEEE WMCSA 2000, tutorials co-chair for Mobicom
2000 and demo chair for Mobicom 2001. He currently divides his time be-
tween Lancaster and Tucson, AZ where he is an Associate Professor at the
University of Arizona.
E-mail: nigel@comp.lancs.ac.uk


