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A NEW APPROACH FOR MODELING THE CONTRIBUTION OF NSM FRP STRIPS  

FOR SHEAR STRENGTHENING OF RC BEAMS 

Vincenzo Bianco 1, J.A.O. Barros 2 and Giorgio Monti 3 

 

Abstract: This paper presents the main features of an analytical model recently developed to predict the Near 

Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) strips shear strength contribution to a Reinforced 

Concrete (RC) beam throughout the beam’s loading process. It assumes that the possible failure modes that can 

affect the ultimate behavior of an NSM FRP strip comprise: loss of bond (debonding); concrete semi-conical 

tensile fracture; mixed shallow-semi-cone-plus-debonding and strip tensile fracture. That model was developed 

by fulfilling equilibrium, kinematic compatibility and constitutive law of both the adhered materials and the bond 

between them. The debonding process of an NSM FRP strip to concrete was interpreted and closed form 

equations were derived after proposing a new local bond stress-slip relationship. The model proposed also 

addressed complex phenomena such as the interaction between the force transferred to the surrounding concrete 

through bond stresses and concrete fracture as well as the interaction among adjacent strips. The main features of 

the proposed modeling strategy are shown along with the main underlying physical-mechanical concepts and 

assumptions. Using recent experimental data, the predictive performance of the model is assessed. The model is 

also applied to single out the influence of relevant parameters on the NSM technique effectiveness for the shear 

strengthening of RC beams. 

 

CE Database subject headings: FRP; NSM; Shear Strengthening; Concrete Fracture; Debonding; Tensile 

Rupture. 

 

Introduction 

Strengthening of shear-deficient RC structures by the employment of FRPs, both NSM (De Lorenzis and Nanni 

2001, Nanni et al. 2004, Teng et al. 2006, Mohammed Ali et al. 2006) and externally bonded (Triantafillou and 

Antonopoulos 2000, Teng et al. 2004, Monti and Liotta 2007) is a technique that has been attracting the attention 

of the academic community in the recent years. Shear strengthening of RC beams by NSM technique consists of 
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gluing FRP strips by a high performance adhesive into thin shallow slits cut onto the concrete cover of the 

beam’s web lateral faces. Some of the most recent experimental works on NSM (Dias and Barros 2008, Rizzo 

and De Lorenzis 2009) spotlighted the occurrence of a peculiar failure mode consisting of the progressive 

detachment and outward expulsion of the concrete cover from the underlying beam core. That failure mode was 

even more pronounced in case of low strength concrete beams (Dias et al. 2007). It was assumed, taking also 

advantage of the analogy between adhesive anchors and NSM FRP strips (Bianco et al. 2007a), due to the 

relative shortage of available test results, that such failure mode can be ascribed to the semi-conical tensile 

fracture of concrete surrounding each NSM strip (Fig. 1). When principal tensile stresses transferred to the 

surrounding concrete exceed its tensile strength, concrete fractures along a surface, envelope of the compression 

isostatics, whose shape can be conveniently assumed as semi-conical. Depending on the relative mechanical and 

geometrical properties of the materials involved, the possible failure modes affecting the ultimate behavior of 

NSM strips include: debonding, strip tensile rupture, concrete semi-conical tensile fracture and a mixed shallow-

semi-cone-plus-debonding failure mode (Fig. 1). The term debonding is herein adopted to designate loss of bond, 

which corresponds to a failure either within the adhesive layer or at the FRP strip/adhesive or adhesive/concrete 

interfaces, as further explained later on. During the loading process of a RC beam under-reinforced in shear, 

when the principal tensile stresses in a shear critical zone exceed the concrete average tensile strength ctmf , 

some shear cracks originate therein and successively progress towards the web extrados. Those cracks can be 

thought of as a single Critical Diagonal Crack (CDC) inclined of an angle   with respect to the beam 

longitudinal axis (Fig. 2). The CDC can be schematized as an inclined plane dividing the web into two portions 

sewn together by the crossing strips (Fig. 2a). At load step 1t , the two web parts separated by the CDC start 

moving apart by pivoting around the crack end (point E in Fig. 2b). From that step on, by increasing the applied 

load, the CDC opening angle  nt  progressively widens. The strips crossing the CDC oppose resistance to its 

widening by anchoring to the surrounding concrete to which they transfer, by bond, the force originating at their 

intersection with the CDC, 
l
iO , and due to the imposed end slip   Li nt  . The resisting capacity of each strip 

is provided by its available bond length fiL  that is the shorter between the two parts into which the crack divides 

its actual length fL  (Fig. 2b). As the spacing between adjacent strips fs  is reduced, their corresponding 

semi-conical fracture surfaces overlap and the resulting envelope area progressively becomes smaller than the 

mere summation of each of them (see Fig. 3a). This detrimental interaction between strips can be taken into 

account by modifying the semi-conical surface pertaining to each strip accordingly. By decreasing the strips 
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spacing, the resulting concrete failure surface is almost parallel to the web face of the beam, as confirmed by 

experimental observations, consisting in the detachment of the concrete cover from the underlying beam core 

(Dias and Barros 2008, Rizzo and De Lorenzis 2009). Since the position of those semi-conical surfaces is 

symmetric with respect to the vertical plane passing through the beam axis, the horizontal outward components 

of the tensile strength vectors distributed throughout their surfaces are balanced only from an overall standpoint 

but not locally (Fig. 3b). This local unbalance of the horizontal tensile stress components, orthogonal to the beam 

web face, justifies the outward expulsion of the concrete cover in both the uppermost and lowermost parts of the 

strengthened sides of the web. 

The shear strength contribution provided by a system of NSM FRP strips to a RC beam can be evaluated 

throughout the loading process by fulfilling equilibrium, kinematic compatibility and constitutive laws of both 

the intervening materials and the bond between them (Bianco 2008, Bianco et al. 2009). The kinematic 

mechanism herein adopted envisages, due to the rotation around the CDC end of the two parts into which the 

web divides, a linear distribution of imposed end slips along the CDC (Fig. 2b). The shear strengthening 

contribution at the generic load step   f nV t  can be evaluated by summing the resistance opposed by each i-th 

strip, as function of the resulting imposed end slip, to the CDC further widening. In correspondence of a generic 

load step, since concrete around the generic i-th strip is not necessarily capable of carrying the stresses 

transferred to it, it can fracture, up to reaching equilibrium. Contextually to the occurrence of such fractures, the 

resisting bond length of the strip RfiL , that is the amount of its initial available bond length fiL  still bonded to 

concrete, reduces accordingly. Contemporarily, due to the formation of successive co-axial semi-conical concrete 

fracture surfaces, the total height of the concrete fracture 
c
fiL  around the generic i-th strip increases accordingly. 

Thus, the shear strength contribution, at the generic load step, can be evaluated by summing the contribution 

provided by each strip   fi nV t  where this latter can be evaluated by means of an iterative procedure that, given 

the current value of the imposed end slip and the current value of resisting bond length, searches for the 

corresponding equilibrium configuration as further explained below. 

 

NSM Shear Strength Contribution 

The algorithm adopted (Fig. 4) takes as input both geometrical and mechanical parameters, i.e.: depth wh  and 

width wb  of the strengthened beam web; inclination angle of both the CDC and the strips with respect to the 

beam longitudinal axis,   and  , respectively; strips spacing measured along the beam axis fs ; angle   
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between axis and generatrices of the semi-conical fracture surface; concrete average compressive strength cmf ; 

strips tensile strength fuf  and strips Young’s modulus fE ; thickness fa  and width fb  of the strip’s cross 

section; values of bond stress 0 1 2, ,    and slip 1 2 3, ,    defining the adopted local bond stress-slip relationship; 

increment   and maximum value max  of the opening angle of the CDC. The algorithm, from the information 

above and for each k-th possible geometrical configuration that the CDC could assume with respect to the strips, 

determines the NSM strips shear strength contribution as function of the crack opening angle   ,f k nV t  

throughout the loading process ( 1n st t t   where st  is the number of assumed CDC angle increments). In the 

present work, three geometrical configurations are examined ( 1,2,3k  ), defined as follows: ( 1k  ) the 

minimum number of strips ( ,minfN ) with the first one located at a distance equal to the spacing from the crack 

origin; ( 2k  ) an even number of strips ( ,f evN ) symmetrically placed with respect to the central point of the 

segment OE  (Fig. 2b) which is the trace of the CDC plane on the web face ; ( 3k  ) an odd number of strips 

( ,f oddN ) with the central one attaining the maximum fiL  by being placed along the axis of the trace of the CDC 

plane on the web face. For each k-th configuration, in correspondence of each nt  load step, the contribution 

provided by each i-th strip   ,fi k nV t  is evaluated and added to the overall shear strength   ,f k nV t : 

        , , ,2 sinf k n f k n fi k nV t V t V t                   (1) 

The contribution provided by the i-th strip   ,fi k nV t  to the overall shear strength is evaluated by taking into 

consideration: (a) the current value of the imposed end slip   Li nt   as results from the imposed kinematic 

mechanism (Fig. 2b), (b) the current value of the resisting bond length ,Rfi kL , (c) the state of the strip that is 

whether it has already reached its ultimate state ( , 1i ku  ) or not ( , 0i ku  ) and (d) the height of the semi-conical 

concrete fracture  ,
c
fj k nL t  around each of the other strips ( ,1: f kj N  and j i ). 

 

Single strip contribution 

To determine the i-th strip contribution   fi nV t , an iterative procedure ( 1:m eq q q ) is carried out (Fig. 5a-b) 

in order to determine the equilibrium condition ( eq ) in the concrete surrounding the i-th strip depending, in the 

most general case, on: a) the imposed end slip (  Li nt ), b) its current state (  i nu t ,  Rfi nL t ) and c) the current 

state of concrete fracture regarding all of the other strips (  c
fj nL t  with ,1: f kj N  and j i ). Nonetheless, that 
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iterative procedure can be easily visualized (Fig. 5a-b) referring to the simple case in which: a) the strips are 

orthogonal to the CDC (e.g. 45    ) and b) there is no interaction among adjacent strips (e.g. fs  ) 

since, in that case, the progressive concrete fracture capacity  cf l
ifiV X  has an explicit dependence on the value 

l
iX  of the abscissa along the strip available bond length. In fact, in that simple case,  cf l

ifiV X  is a parabola 

(Fig. 5a-b), as further explained below. That iterative procedure is performed as long as neither the surrounding 

concrete has reached equilibrium nor the strip has ruptured ( 0iu  ). Within each iteration ( mq ), the current bond 

transfer length (    , ; ;tr fi Li n Rfi n mL t L t q   ) is evaluated as function of the imposed end slip  Li nt  and the 

current value of the resisting bond length  ;Rfi n mL t q  and scanned to check if the force progressively transferred 

through bond (    ; ; ;bd tr
fi Li n Rfi n m iV t L t q x 
  ) exceeds the concrete fracture capacity (  cf l

ifiV X ). The transfer 

length is evaluated and discretized in dn  ( 1:n dn n n ) segments and the progressive force transferred by bond 

is evaluated in their extremities      ; ; ;bd tr
fi Li n Rfi n m i nV t L t q x n 
  . The progressive value of 

cf
fiV , evaluated in 

correspondence of the incremental value of the i-th strip available bond length (  l c tr
i fi i nX L x n  ), is evaluated 

by spreading the concrete mean tensile strength ctmf  over the semi-conical surface with height l
iX , orthogonally 

to it in each point and by integrating according to the following formula (Fig. 5c): 

 

 ;

sin
l

fi i

cf
ctm fifi

C X

V f dC



                 (2) 

where fiC  concisely denotes the semi-conical surface. Eq. (2) can be reduced to the evaluation of the area of the 

semi-ellipse ( fiE ) intersection of the semi-cone with the crack plane as follows (Bianco et al. 2006, Bianco 

2008): 

 

 ;

sin
l

fi i

cf
ctm fifi

E X

V f dE



                    (3) 

In general, due to the interaction among adjacent strips, 
cf
fiV  also depends on the length of the semi-cones that 

have already formed along all of the strips as further specified below but, for the simple case in which the strip 

does not interact with other strips and it is orthogonal to the crack plane (Fig. 5c), Eq. (3) simplifies into: 

 
220.5

cf l
ctm ifiV f tg X      . After having scanned the transfer length and having taken note of both the eventual 
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occurrence of concrete fracture and the height of the occurred semi-conical fracture, one of the following 

alternatives might be the case: 

 Concrete has fractured but the fracture has not reached the free extremity ( c
fi fiL L ). In this case, it is taken 

note of the up-dated height of the cone (  1;c
fi n mL t q  ), of the resisting bond length (  1;Rfi n mL t q  ) and iteration 

is performed ( 1m mq q  ); 

 Concrete has fractured and the fracture has reached the free extremity ( c
fi fiL L ). Note is taken of the 

updated value of both semi-cone height and resisting bond length as above and of the i-th strip having reached its 

ultimate state ( 1iu  ) . The i-th strip shear strength contribution is    cf
fi n fifiV t V L ; 

 Concrete has not fractured and the actual value of bond-transferred force is lower than the strip tensile 

rupture capacity (  bd tr
fi d fV n V ). In this case equilibrium in concrete is reached and there is no need to iterate 

and the strip strength is equal to the actual value of the force transferred by bond (    bd
fi n fi dV t V n ); 

 Concrete has not fractured and the actual value of bond-transferred force is higher or equal to the strip 

tensile rupture capacity (  bd tr
fi d fV n V ). In this case equilibrium in concrete is reached and there is no need to 

iterate, the strip strength is equal to the strip tensile fracture capacity (   tr
fi n fV t V ) and note can be taken that 

the strip has reached its ultimate state ( , 1i ku  ). 

 

Progressive bond transferred force 

The progressive value of the force transferred by the i-th strip through bond stresses to the surrounding concrete 

along the current value of the resisting bond length      ; ; ;bd tr
fi Li n Rfi n m i nV t L t q x n 
   and due to the imposed end 

slip  Li nt  is obtained by fulfilling equilibrium, constitutive law of the adhered materials and the local bond 

stress-slip relationship between them. The local bond stress-slip relationship herein proposed to simulate the 

subsequent phases undergone by bond during the loading process is composed of four different linear branches 

(Fig. 6). Those phases, representing the physical phenomena occurring in sequence within the adhesive layer by 

increasing the imposed end slip, are labeled as: elastic, softening, softening friction and free slipping. The first 

rigid branch ( 00  ) represents the overall initial shear strength of the joint independent of the deformability of 

the adhesive layer and attributable to the micro-mechanical and chemical properties of the involved materials and 

interfaces. In fact, the parameter 0  is the average of the following physical entities encountered in sequence by 
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forces flowing from the strip to the surrounding concrete, i.e.: adhesion at the strip-adhesive interface, cohesion 

within the adhesive itself, and adhesion at the adhesive-concrete interface. From 0  up to the peak strength 1 , a 

macro-mechanical strength due to the adhesive layer elastic stiffness adds to the constant adhesive-cohesive 

strength. That macro-mechanical strength due to the elastic stiffness of the intact adhesive layer can be 

conveniently modeled by a linear elastic behavior. Approaching the peak strength, the adhesive fractures along 

diagonal planes orthogonal to the tension isostatics as outlined by Sena-Cruz and Barros (2004) by means of 

post-test optical microscope photos and finite element materially nonlinear analysis (Sena-Cruz 2004). During 

the subsequent softening phase, force is transferred from the strip to the surrounding concrete by the resulting 

diagonal micro-struts. Anyway, throughout the softening phase, by increasing the imposed slip, the adhesive at 

the extremities of those struts progressively deteriorates, so that, by increasing the imposed slip, micro-cracks 

parallel to the strip start to appear at both the strip-adhesive and adhesive-concrete interfaces. Approaching the 

softening friction phase, the softening resisting mechanism is gradually replaced by friction and 

micro-mechanical interlock along those micro-cracks. Nonetheless, even those mechanisms undergo softening 

due to progressive material degradation. When the resisting force provided by friction is exhausted, those 

micro-cracks result in smooth discontinuities. The free slipping phase follows, during which the strip keeps being 

pulled out without having to overcome any opposing restraint left. For computational ease, both softening and 

softening-frictional behaviors are modeled as linear. The resulting analytical relationship is the following: 

 
 

 

1 0
0 1

1

1 2
1 1 1 2

2 1

2
2 2 2 3

3 2

3

0

0

τ τ
τ δ                      δ δ

δ

τ τ
τ δ δ            δ δ δ

δ δτ δ

τ
τ δ δ             δ δ δ

δ δ

                                                 δ δ


   




    
 


     






              (4) 

Note that, even if at a first sight the consideration of 0  may seem an useless and sterile redundancy, from a 

strict analytical standpoint it is indeed absolutely necessary to obtain an explicit equation providing the value of 

the bond transfer length as function of the imposed and slip and the resisting bond length (Bianco et al. 2007b, 

2009). 

Among the parameters defining the turning points of the local bond stress slip relationship, the adhesive-cohesive 

term 0  is the one that more markedly depends on the micro-mechanical and chemical properties of the 

composite, of the adhesive and of the concrete surfaces as well as on the adhesive layer thickness. For better 

characterizing the influence of those aspects, a closer scale investigation is deemed as necessary. Moreover, all 
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of the parameters defining the local bond stress-slip relationship should not be considered as having universally 

valid values but, on the contrary, should be determined on the basis of the mechanical-chemical and geometrical 

parameters characterizing the specific case at hand but, in that respect, further research is required. 

The current value of the bond transfer length  , ;tr fi Rfi LiL L   is discretized in dn  segments and the 

corresponding values of the progressive force transferred to the surrounding concrete through bond 

 ; ;bd tr
fi Rfi Li i nV L x n 
   are evaluated. 

It was recently assumed (Bianco et. al 2008), also by means of comparison between experimental recordings and 

analytical predictions, that the employment of bond and the successive and progressive loss of bond (debonding), 

under an increasing end slip to an NSM FRP strip, can be thought of as a “constant wave”, i.e., an invariant 

distribution of tangential stress progressing from the loaded end inwards, towards the free extremity. From an 

analytical standpoint, for the given value of Li , the governing differential equation is first solved for an infinite 

value of the resisting bond length, thus determining the trends of slip  x , tangential stress  x  and axial 

stress in the strip  f x  along the corresponding transfer length  tr LiL  . After that, the actual value of the 

transfer length  , ;tr fi Rfi LiL L   is determined, as the minimum between the necessary transfer length  tr LiL   

and RfiL  and then discretization and integration are performed as further explained below. The governing 

differential equation is the following (Bianco et al. 2009): 

  
2

1 12

1
0 with

p f

f f c c

L Ad
x J J

A E A Edx


 

 
      

 
           (5) 

where 2p f fL b a    is the effective bond perimeter of the strip cross-section, f f fA a b   is the strip cross-

section area and 0.5c f wA s b    is the area of the cross-section of the concrete prism that is the amount of the 

surrounding concrete attributed to the i-th strip. Eq. (5) is obtained by taking into consideration: a) the 

equilibrium relationships:     0f p fd x dx x L A     and     0f f c cx A x A     ; b) the constitutive 

equations for the adhesive layer      and for the two adhering materials: f f fE du dx    and 

c c cE du dx   ; c) kinematic compatibility      f cx u x u x   , where  fu x  and  cu x  are the local 

displacements of strip and concrete, respectively. 

Once the relationship  x  has been obtained by solving Eq. (5) with the convenient boundary conditions, the 

equations for the axial stress in the strip and the tangential stress along this latter can be deduced as follows: 
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  2 2with
f c c

f
c c f f

E E Ad
x J J

dx E A E A




 
  

  
            (6) 

and: 

 
 

2

3 32
with

f f c c

p c c f f

E A E Ad
x J J

L E A E Adx




  
  

   
           (7) 

 

Solution of Bond for an infinite resisting bond length 

Elastic phase 

When the imposed end slip is 1 Li , the equation of the interfacial slip, obtained by solving Eq. (5) written in 

the local reference system eox  originating in the leftward unloaded extremity of the transfer length (Fig. 7a) and 

imposing the boundary conditions 0e   at 0ex   and e
Li   at e e

trx L , is the following: 

  0 1
1 2 2

e ee e e x e x J
x C e C e  




   
                  (8) 

where  1
e e

trC L ,  2
e e

trC L  and   are integration constants whose analytical expressions are herein omitted, for 

the sake of brevity, but they can be found elsewhere (Bianco et. al 2007b, 2008). By imposing the equilibrium 

condition    
0

e
trL

e e e e
p f f trL x dx A L     , the equation of the transfer length for the first phase can be obtained as 

function of the imposed slip: 

   
1

arcosh
2

e
e

tr Li tr Li e

B
L L

A
 


  


                                                    (9) 

with eA  and eB  constants (Bianco et. al 2007b, 2008). The transfer length at the end of the elastic phase 1trL  

and the corresponding value of force transferred to concrete 
bdV1 , both invariants for given input parameters, are 

obtained by imposing 1 Li : 

     
1

,
1 1 1 1

0

; =
trL

e bd bd e e e e
tr tr pL L V V L x dx                               (10) 

 

Softening Phase 
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When the imposed end slip is 21 δδδ Li  , the equation of the interfacial slip, obtained by solving Eq. (5) 

written in the reference system sox  originating at the point of the bond length where slip is equal to 1  

(Fig. 7b), with boundary conditions 1
s   at 0sx   and 

s
Li   at 

s s
trx L , is the following: 

      1 1
1 1 2 1 12

1

sin coss s s s s s J
x C x C x


   




                 (11) 

with  1
s s

trC L , 2
sC  and 1  integration constants (Bianco et. al 2007b, 2008). The equation of the transfer length 

 Li
s
trL   corresponding to the amount of the infinite bond length undergoing softening is: 

 

   
1 22 2

1 1

1 1
arcsin

s
s
tr Li

s s

C
L

A B

 
 

   
 
  

            (12) 

with sA , sB ,
sC  and   constants (Bianco et. al 2007b, 2008). The overall transfer length, for 21 δδδ Li  , is 

then: 

   1
s

tr Li tr tr LiL L L                 (13) 

The maximum value of the transfer length that can undergo softening and the relevant value of the force 

transferred to the surrounding concrete are the following invariants: 

     
2

,
2 2 2 2

0

; 
trL

s bd bd s s s s
tr tr pL L V V L x dx               (14) 

 

Softening Friction Phase 

When the imposed slip is larger than the value at which softening friction begins, 32   Li , the equation for 

the interfacial slip, obtained by solving Eq. (5) written for a reference system sfox  originating at the point of the 

infinite bond length where slip is equal to 2  (Fig. 7c) and with boundary conditions 2
sf   at 0sfx   and 

sf
Li   at 

sf sf
trx L , is: 

     1 1 31 2sin cos
sf sfsf sf sf sfx C x C x                                  (15) 

with  1
sf sf

trC L , 2
sf

C  and 1  constants (Bianco et. al 2007b, 2008). The expression of the transfer length  sf
tr LiL   

corresponding to the amount of length undergoing softening friction is: 

 

   
1 22 2

1 1

1 1
arcsin

sf
sf
tr Li

sf sf

C
L

A B

 
 


   

 
  

         (16) 
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with sfA , sfB , sfC  and   constants (Bianco et. al 2007b, 2008). The overall transfer length, for 32 δδδ Li  , 

is: 

   Li
sf
trtrtrLitr LLLL   21              (17) 

The maximum value of the infinite bond length that can undergo softening friction and the relevant value of the 

force transferred to the surrounding concrete are: 

     
3

,
3 3 3 3

0

;
trL

sf bd bd sf sf sf sf
tr tr pL L V V L x dx               (18) 

 

Free Slipping Phase 

When the imposed slip is larger than the value at which free slipping begins, 3 Li , the equation for the 

interfacial slip, obtained by solving Eq. (5) written for a reference system fsox  originating at the point of the 

bond length where slip is equal to 3  (Fig. 8) and with boundary conditions 3
fs   at 0fsx   and 

fs
Li   

at 
fs fs

trx L , is: 

  1 2
fs fsfs fs fsx C x C                                (19) 

with  1
fs fs

trC L  and 2
fs

C  constants (Bianco et. al 2007b, 2008). The expression of the transfer length  Li
fs
trL   

corresponding to the amount of length undergoing free slipping is: 

 
bdbdbd

Li
pLi

fs
tr

VVV
LJL

321

3
3







           (20) 

The overall transfer length, for 3δδLi  , and the force transferred by bond to the surrounding concrete, are: 

     
3 3

1 1

;fs bd bd
tr Li trp tr Li Li p

p p

L L L V V  
 

               (21) 

 

Solution of Bond for the actual value of the resisting bond length 

After having solved the governing differential equation for the current value of the imposed slip Li  and having 

thereby determined the corresponding transfer length  tr LiL   and trend of bond stress  x  for the case of an 

infinite resisting bond length (Fig. 9a), the actual value of the transfer length  , ;tr fi Rfi LiL L   is determined as the 

minimum between  ;Rfi n mL t q  and  tr LiL  . The transfer length is then discretized and the progressive value of 
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force transferred by bond is determined by integrating the tangential stress according to the following general 

formulation: 

       bd tr sf sf sf s s s e e e
fi i n pV x n L x dx x dx x dx                       (22)  

where the integration extremities are omitted since they depend on both the phase undergone by the free end and 

the current value of the progressive abscissa  tr
i nx n  along the transfer length (Fig. 9b1-2). 

 

Concrete Fracture Capacity 

In the most general case in which the i-th strip progressive concrete fracture capacity  cf l
i nfiV X n 

   is influenced 

by the semi-conical fracture surfaces that have already occurred around all of the strips up to that moment 

(  ; 1,., andc
fj n m fkL t q j N j i   ) (Fig. 5d) its evaluation becomes more complex. However, the simplification 

adopted in Eq. (3) that reduces the evaluation of the semi-conical surface area to the area of the semi-ellipse 

(intersection of the semi-conical surface with the CDC plane) is extremely powerful to correctly quantify 

interaction among strips. In the most general case (Fig. 5d and Fig. 10) such interaction can be either 

mono-directional - longitudinal or transversal - or bi-directional. Longitudinal interaction can occur when, due to 

the reduced spacing with respect to the height of the beam’s web, the semi-cones associated to adjacent strips 

located on the same side of the web, and consequently their corresponding semi-ellipses, overlap along their 

major semi-axis (see for instance the semi-ellipses 1 and 3 of the example of Fig. 10). Transversal interaction can 

occur when, for slender beam cross-sections of high w wh b  ratio, the semi-ellipses symmetrically placed on the 

opposite sides of the web, intersect each other along their minor semi-axis (see the semi-ellipse 2 of Fig. 10). In 

this latter case, the area of the i-th semi-ellipse is limited, upwards, by the line 2wY b , i.e. the trace, on the 

CDC plane (with reference system OXY ), of the vertical plane passing through the beam axis. In case 

bidirectional interaction occurred, the area on the CDC plane associated to the i-th strip would be composed of 

two terms: 
nlin
fiA , limited upwards by the non-linear branch of the corresponding semi-ellipse  iY X  and 

another, 
lin
fiA , limited by the line 2wY b . Hence, due to the bi-directional interaction, the area of the semi-

ellipse associated to the i-th strip is calculated as follows: 

 

 
;l

fi i fi

nlin lin
fi fi fi

E X

dE



  A A               (23) 
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The two areas lin
fiA  and nlin

fiA  are evaluated by a geometrical closed-form algorithm (Bianco et al. 2006, 

Bianco 2008) that briefly consists of: (1) writing the equation of each j-th semi-ellipse associated to the j-th 

strip’s latest semi-conical fracture surface ( ,:1 f kj N ), if it has formed, in the CDC reference system; (2) 

evaluating and storing in some auxiliary vectors the abscissa of the points that might constitute integration 

extremities for the i-th semi-ellipse; (3) suitably selecting the integration extremities for both the linear and non-

linear integration range of the i-th semi-ellipse and (4) integrating (Fig. 10). For the sake of brevity, all of the 

analytical details are herein omitted but they can be found elsewhere (Bianco et al. 2006, Bianco 2008). 

 

Model Appraisal 

The proposed model was applied to the RC beams tested by Dias and Barros (2008), by Dias et al. (2007) and by 

Dias (2008). The beams tested in the first two experimental programs (series I and II) were T cross-section RC 

beams characterized by the same test set-up with the same ratio between the shear span and the beam effective 

depth ( 2.5a d  ), the same amount of longitudinal reinforcement, the same kind of CFRP strips and epoxy 

adhesive and they differed for the concrete mechanical properties. In fact, the first experimental program was 

characterized by a concrete mean compressive strength cmf  of 31.1 MPa, while the second by 18.6 MPa. Both 

series presented different configurations of NSM strips, in terms of both inclination   and spacing fs . The first 

program also included beams characterized by a different amount of existing steel stirrups (see Table 1). The 

beams tested in the third experimental program (series III) were characterized by the same test set up, but with a 

different shear aspect ratio ( 3.3a d  ) and distinct concrete mechanical properties ( 59.4cmf MPa ). Some of 

them were also subject to pre-cracking (their label includes a letter F). The details of the beams taken to appraise 

the predictive performance of the developed model are listed in Table 1. Those beams are characterized by the 

following common geometrical and mechanical parameters: 180wb mm ; 300wh mm ; 2952fuf MPa  (for 

the series I and II) and 2847.9fuf MPa  (for the series III); 166fE GPa  (for the series I and II) and 

174.3fE GPa  (for the series III); 1.4fa mm ; 10.0fb mm . The parameters characterizing the adopted 

local bond stress-slip relationship, being the average values of those obtained in a previous investigation by 

curve fitting of experimental recordings (Bianco et al. 2007b and 2009), are: 0 2.0 MPa  ; 1 20.1 MPa  ; 

2 9.0 MPa  ; 1 0.07 mm  ; 2 0.83 mm  ; 3 14.1 mm  . The CDC inclination angle   adopted in the 

simulations, listed in Table 1 for all the analyzed beams, is the one experimentally observed by inspecting the 
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crack patterns. The angle   was assumed equal to 28.5°, being the average of values obtained in a previous 

investigation (Bianco et al. 2006) by back analysis of experimental data. The two parameters characterizing the 

loading process are: 0.01    and max 1.0   . Concrete average tensile strength ctmf  was calculated from the 

average compressive strength by means of the formulae of the CEB Fib Model Code 1990 resulting in 2.45 MPa, 

1.45 MPa and 4.17 MPa for the series I, II and III, respectively. 

Comparison between the numerical results and experimental recordings, for some of the beams listed in Table 1, 

are plotted in Fig. 11. From that comparison, a satisfactory data-fitting performance of the proposed model, in 

terms of prediction of the NSM shear strength contribution ,f kV , arises, regardless of the different concrete 

mechanical properties, inclination of the strips, their spacing along the beam axis, amount of existing stirrups and 

shear span to depth ratio. 

As to the influence of the amount of existing steel stirrups, it is expected that, when their amount is increased, the 

semi-conical concrete fracture surfaces can not penetrate deep inside the web core but remain shallower. The 

proposed model may be easily adjusted to take into consideration that aspect even if the interaction with existing 

stirrups is deemed a marginal aspect. In fact in practice, most of beams that need a retrofitting intervention are 

characterized by a small amount of existing stirrups. However, the amount of existing stirrups also affects the 

occurred CDC inclination angle i.e.: in general, the larger the amount of reinforcement, the less inclined the 

CDC. Thus, the model ends up giving reasonable estimates of the experimental recordings even for the beams 

with larger amount of existing stirrups, when the experimentally observed CDC inclination exp  is adopted 

(Table 1). Further research is, in this respect, needed.  

When the spacing between adjacent strips is increased, the difference between the peak shear strength 

contribution obtained in the three different geometrical configurations increases (see Fig. 11), as expected. 

The typical graph of shear strength contribution as function of the CDC opening angle   f nV t  is 

characterized by abrupt decays which correspond to the failure of the strips. The peculiar behavior of a RC beam 

strengthened in shear by NSM technique can be easily explained referring to one of those beams, as for instance 

2S-7LI45-II beam, whose cracking scenario, both numerically predicted and experimentally recorded, is reported 

in Fig. 12. The first strips to fail are those of shorter available bond lengths that generally fail in the first stages of 

the loading process, like for instance: the 1st ( 0.02   ) and the 5th ( 0.03   ) of the 1st configuration 

(Fig. 12a); the 1st and 6th ( 0.01   ) and the 2nd ( 0.02   ) of the 2nd configuration (Fig. 12b). Those failures 

are not so evident in the corresponding graph (Fig. 11) since, in the first load steps, the contribution provided by 



 15 

the strips with a longer available bond length is increasing and relatively much higher. When a strip fails at a 

higher stage of the loading process, the corresponding decay in the load carrying capacity, is much more evident, 

like it happens, for instance: for the 2nd strip of the 1st configuration at 0.07   , the 3rd of the 2nd configuration 

at 0.07    or the 3rd strip of the 3rd configuration at 0.19   . The former two are mixed shallow-semi-cone-

plus-debonding failures and the third is characterized by a semi-conical concrete fracture that reaches the inner 

tip. After those failures ( 11 21 32, ,p p p ), the corresponding graphs, show a different trend (Fig. 11): in the first two 

cases (configurations 1k  and 2k  ) a relative maximum follows ( 12 22p p ), while in the third case 

(configuration 3k  ) the shear carrying capacity decreases continuously. The behavior of the first two cases is 

due to the fact that, when the last fracture occurs, the remaining strips still have a resisting bond length larger 

than the required transfer length and their contribution can still increase before the occurrence of complete 

debonding. The behavior of the third case is due to the fact that, when the 3rd central strip fails, the 2nd and the 

4th, had already failed by mixed failure, therefore the overall carrying capacity keeps diminishing up to the 

complete debonding of their left resisting bond lengths. 

The numerical modeling strategy herein proposed also lets parametric studies be carried out in order to assess the 

influence of all the involved parameters on the NSM shear strength contribution. Herein, for the sake of brevity, 

only a small parametric study is presented (Fig. 13a-b) that aims at singling out, even by means of comparison 

between numerical predictions and experimental recordings, the influence of the strips spacing for beams with 

strips at 60° and with two different kinds of concrete. It arises that, as expected, the higher the concrete 

mechanical properties, the higher the shear carrying capacity, for the same value of spacing between adjacent 

strips. It can also be gathered that, by reducing the spacing between adjacent strips, due to the increase of the 

number of strips effectively crossing the CDC, the shear strength contribution increases even if, as highlighted in 

Fig. 13c for the 3rd configuration only (with 60   ; 31.1cmf MPa ; 45    and all the other parameters 

with the same values adopted for the series I, II), the smaller the spacing, the higher is the group effect. This 

latter can be defined as the decrease of shear strength contribution with respect to an ideal situation in which 

(Fig. 14), the same system of strips, characterized by the real value of the spacing fs , the same available bond 

lengths and the same imposed end slips, are spaced out, along the CDC, at such an extent that they do not interact 

any longer between each other. The corresponding increase in shear strength contribution increases up to a 

maximum ideal value beyond which any further increase of the ideal spacing between adjacent strips does not 

produce any further increase in carrying capacity. This can be also gathered from Fig. 13d in which the ideal 
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trend is plotted as function of the ideal spacing for the real configuration of strips at 75fs mm . The 

detrimental group effect increases by reducing the spacing between strips (Fig. 13c). 

 

Conclusions 

The need to provide a rational explanation to the observed peculiar failure mode affecting the behavior, at 

ultimate, of RC beam strengthened in shear by the NSM technique led to the development of a comprehensive 

numerical model to simulate the NSM shear strength contribution throughout the loading process. The 

comparison between the numerical predictions and the experimental recordings showed a satisfactory level of 

accuracy of the proposed model, especially if one considers that: the model neglects the softening behavior of 

concrete in tension, the high scatter affecting concrete tensile strength, which indeed, was indirectly evaluated 

from compression tests results.  

The application of that model also allowed to identify and thoroughly describe some complex phenomena, such 

as the group effect between adjacent strips. Despite its relative complexity, the proposed model can be usefully 

applied to single out relevant information for designers interested in applying such front-line technique.  
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Notation 

cA  = area of the cross section of the concrete prism on which the FRP strip is bonded 

fA  = area of the strip’s cross section 

sfA  = constant in the expression of the softening friction transfer length 

eA  = constant in the expression of the elastic transfer length 

sA  = constant in the expression of the softening transfer length 

lin
fiA  = 

Area ascribed to the i-th semi-ellipse underlying the line whose equation is 

2wY b  

nlin
fiA  = Area ascribed to the i-th semi-ellipse underlying the i-th semi-elliptic curve  iY X  

sfB  = constant in the expression of the softening friction transfer length 

eB  = constant in the expression of the elastic transfer length 

sB  = constant in the expression of the softening transfer length 

 1
fs fs

trC L  = first integration constant for the free slipping phase 

fs
C2  = second integration constant for the free slipping phase 

 1
e e

trC L  = first integration constant for the elastic phase 

 2
e e

trC L  = second integration constant for the elastic phase 

sfC  = constant in the expression of the softening friction transfer length 

sC  = constant in the expression of the softening transfer length 

 1
s s

trC L  = first integration constant for the softening phase 

sC2  = second integration constant for the softening phase 

 1
sf sf

trC L  = first integration constant for the softening friction phase 

2
sf

C  = second integration constant for the softening friction phase 

 ; l
fi iC X  = concrete semi-conical fracture surface around the i-th strip 

cE  = concrete Young’s modulus 

fE  = strips’ CFRP Young’s modulus 

fiE  = Area of the ellipse intersection of the i-th semi-conical surface with the CDC plane 

1J  = constant in the governing differential equation with unknown  x  

2J  = constant in the equation to determine  xf  

3J  = constant in the equation to determine  x  

fL  = strip actual length 

fiL  = i-th strip available bond length 

 , ;c
fi k n nL t q  = height of the concrete semi-cone in correspondence of the i-th strip of the k-th 
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geometrical configuration 

pL  = effective perimeter of the strip cross section 

 , ;Rfi k n mL t q  = resisting bond length of the i-th strip of the k-th geometrical configuration 

 , ;tr fi Rfi LiL L   = 
transfer length of the i-th strip, function of the corresponding imposed end slip and 

resisting bond length 

1trL  = maximum invariant value of transfer length that can undergo elastic phase  

2trL  = maximum invariant value of transfer length that can undergo softening  

3trL  = maximum invariant value of transfer length that can undergo softening friction  

 tr LiL   = 
value of the necessary transfer length for an infinite value of the resisting bond 

length and function of the imposed end slip only 

 Li
fs
trL   = 

amount of a transfer length for an infinite resisting bond length undergoing free 

slipping 

 Li
e
trL   = amount of a transfer length for an infinite bond length undergoing elastic phase 

 Li
sf
trL   = softening frictional amount of a transfer length for an infinite resisting bond length 

 Li
s
trL   = amount of a transfer length for an infinite bond length undergoing softening 

,f evN  = even (integer) number of strips that can effectively cross the CDC 

,f kN  = 
Number of strips effectively crossing the CDC in the k-th geometrical 

configuration 

,minfN  = minimum (integer) number of strips that can effectively cross the CDC 

,f oddN  = odd (integer) number of strips that can effectively cross the CDC 

OXYZ  = crack plane reference system 

l
i

l
i XO  = reference axis along the i-th strip available bond length fiL  

cV  = vertex of the i-th concrete semi-conical fracture surface 

 ; ;bd tr
fi Li Rfi iV L x  = 

progressive force transferred through bond stresses along the current value of the 

resisting bond length as function of the current value of the imposed end slip 

 cf l
ifiV X  = 

progressive concrete tensile fracture capacity along the i-th strip available bond 

length fiL  

 ; ;bd tr
fi Rfi Li iV L x  = progressive value of the force transferred to concrete by the i-th strip 

 LiRfi
bd
fi LV ;  = actual value of force transferred to concrete through bond by the i-th strip 

  ,fi k nV t  = 
Resistance opposed by the i-th strip of the k-th geometrical configuration to the 

CDC opening angle  nt  

  ,f k nV t  = 
NSM shear strength contribution as function of the imposed end slip for the k-th 

geometrical configuration 

 Li
ebdV ,

 = force transferred by bond in the elastic phase for an infinite bond length 
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 Li
sbdV ,  = force transferred by bond in softening phase for an infinite bond length 

 Li
sfbdV ,  = force transferred by bond in the softening friction phase for an infinite bond length 

1
dbV  = value of force transferred by bond along the elastic transfer length 1trL  

dbV2  = value of force transferred by bond along the softening transfer length 2trL  

dbV3  = value of force transferred by bond along the softening friction transfer length 3trL  

fiX  = position of the i-th strip along the CDC 

l
iX  =  Reference axis along the i-th strip available bond length  

 iY X  = 
general expression of the equation of the i-th semi-ellipse in the OXY  crack plane 

reference system 

a  = beam shear span 

fa  = strip cross section’s thickness 

fb  = strip cross section’s width 

wb  = beam web width 

d  = beam cross section effective depth  

cmf  = concrete average compressive strength 

ctmf  = concrete average tensile strength 

fuf  = FRP tensile strength 

wh  = beam web depth 

i  = counter of the strips effectively crossing the CDC 

j  = counter of the strips effectively crossing the CDC 

k  = 
counter of the geometrical configurations assumed by the strips with respect to the 

CDC  

dn  = number of segments into which the bond transfer length is discretized 

dn  = 
counter of the number of segments into which the bond transfer length is 

discretized 

1n  = first segment of the discretization of the bond transfer length 

fsfs xo  
= reference axis along the amount of the infinite strip in free slipping phase 

ee xo  
= reference axis along the amount of the infinite strip in bond elastic phase 

ss xo  
= reference axis along the amount of the infinite strip in softening phase 

sfsf xo  
= reference axis along the amount of the infinite strip in softening friction phase 

tr
i

tr
i xo  = reference axis along the strip’s transfer length 

eq  = iteration in correspondence of which equilibrium is attained in the concrete  

mq  = m-th iteration 

fs  = strips spacing along the beam axis 
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1t  = load step at which the critical diagonal crack starts widening 

nt  = generic n-th load step 

st  = number of assumed CDC opening angle increments 

 cu x  = local displacement of the concrete surrounding the strip 

 fu x  = local displacement of the strip 

,i ku  = 
logical parameter indicating if the i-th strip of the k-th geometrical configuration 

has reached , 1i ku   or not , 0i ku   its ultimate state 

  = angle between the axis and the generatrices of the concrete semi-conical farctures 

  = FRP strips inclination angle with respect to the beam longitudinal axis 

1  =  constant entering the governing differential equation for softening phase 

  = constant in the expression of the softening transfer length 

 x  = slip along the strip’s resisting bond length 

1  = slip corresponding to peak of local bond stress-slip relationship 

2  = slip corresponding to start of softening-friction in the local bond relationship 

3  = 
slip corresponding to the start of free-slipping in the local bond stress-slip 

relationship 

  Li nt   = imposed slip at the loaded extremity of the i-th strip 

 fsfs x  = slip-abscissa relationship along the amount of transfer length in free slipping phase 

 e ex  = slip-abscissa relationship along the amount of transfer length in elastic phase 

 ss x  = slip-abscissa relationship along the amount of transfer length in the softening phase 

 sfsf x  = 
slip-abscissa relationship along the amount of transfer length in the softening 

friction 

1  = constant in the expression of the softening frictional transfer length 

 nt  = critical diagonal crack opening angle 

  = imposed angle increment for the critical diagonal crack opening angle   

max  =  maximum value of the CDC opening angle 

  = constant entering the governing differential equation for elastic phase 

  = shear crack inclination angle 

 xc  = concrete axial stress along the resisting bond length 

 f x  = Strip axial stress along the resisting bond length 

   = local bond stress-slip relationship  
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 e ex  = 
bond stress-abscissa relationship along the amount of transfer length in elastic 

phase 

 fs fsx  = 
bond stress-abscissa relationship along the amount of transfer length in softening 

frictional phase 

 s sx  = 
bond stress-abscissa relationship along the amount of transfer length in softening 

phase 

 sf sfx  = 
bond stress-abscissa relationship along the amount of transfer length in softening 

frictional phase 

 x  = bond stress along the strip resisting bond length 

0  = adhesive-cohesive initial bond strength 

1  = peak stress of the local bond stress-slip relationship 

2  = shear strength at the beginning of softening-friction of local bond 

   = constant in the expression of the softening frictional transfer length 
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TABLE CAPTIONS 

Table 1. Values of the parameters characterizing beams adopted to appraise the proposed model. 

 

Table 1. Values of the parameters characterizing beams adopted to appraise the proposed model. 

Beam  

Label 

exp

° 

  

° 

fs  

mm 

Steel  

Stirrups 

max
,1fV  

kN 

max
,2fV  

kN 

max
,3fV  

kN 

exp
fV  

kN 

2S-3LV-I 40 90 267 F6/300mm 18.53 6.46 55.33 22.20 

2S-5LV-I 40 90 160 “ 52.33 26.42 55.34 25.20 

2S-8LV-I 36 90 100 “ 68.58 58.88 64.33 48.60 

2S-3LI45-I 45 45 367 “ 35.10 15.41 45.73 29.40 

2S-5LI45-I 45 45 220 “ 46.11 49.14 45.74 41.40 

2S-8LI45-I 36 45 138 “ 75.89 79.71 78.73 40.20* 

2S-3LI60-I 33 60 325 “ 50.69 18.90 51.68 35.40 

2S-5LI60-I 36 60 195 “ 36.37 36.59 48.55 46.20 

2S-7LI60-I 33 60 139 “ 52.98 63.07 67.58 54.60 

2S-7LV-II 46 90 114 F6/300mm 26.72 31.84 35.59 28.32 

2S-4LI45-II 40 45 275 “ 25.06 21.89 37.30 33.90 

2S-7LI45-II 30 45 157 “ 49.36 47.13 45.95 48.00 

2S-4LI60-II 40 60 243 “ 21.31 15.04 29.38 33.06 

2S-6LI60-II 27 60 162 “ 42.79 37.54 39.45 42.72 

4S-7LV-II 46 90 114 F6/180mm 26.72 31.84 35.59 6.90* 

4S-4LI45-II 40 45 275 “ 25.06 21.89 37.30 26.04 

4S-7LI45-II 40 45 157 “ 40.58 37.48 40.63 31.56 

4S-4LI60-II 40 60 243 “ 21.31 15.04 29.38 25.08 

4S-6LI60-II 30 60 162 “ 38.92 35.46 36.71 35.10 

3S-5LI45-III 30 45 275 F6/300mm 59.74 59.55 70.01 66.10 

3S-5LI45F1-III** 23 45 275 “ 83.05 86.96 81.15 85.75 

3S-5LI45F2-III** 30 45 275 “ 59.74 59.55 70.01 65.35 

5S-5LI45-III 28 45 275 F6/200mm 78.24 59.55 72.01 74.90 

5S-5LI45F-III** 28 45 275 “ 78.24 59.55 72.01 74.90 

3S-9LI45-III 32 45 157 F6/300mm 109.88 109.32 98.30 101.85 

5S-9LI45-III 32 45 157 F6/200mm 109.88 109.32 98.30 108.90 

3S-5LI60-III 26 60 243 F6/300mm 71.74 76.20 62.81 69.00 

5S-5LI60-III 25 60 243 F6/200mm 68.48 77.44 63.79 73.35 

5S-5LI60F-III** 25 60 243 “ 68.48 77.44 63.79 72.55 

3S-8LI60-III 22 60 162 F6/300mm 112.82 119.58 112.25 112.30 

5S-8LI60-III 19 60 162 F6/200mm 123.34 122.74 132.00 122.45 

3S-6LV-III 45 90 180 F6/300mm 58.24 26.62 66.53 39.58 

3S-10LV-III 32 90 114 “ 97.50 82.41 85.21 83.25 

I) beams tested by Dias & Barros (2006) and characterized by a/d equal to 2.5 and cmf  equal to 31.1 MPa; 

II) beams tested by Dias et al. (2007) and characterized by a/d equal to 2.5 and cmf  equal to 18.6 MPa; III) 

beams tested by Dias (2008) and characterized by a/d equal to 3..3 and cmf  equal to 59.4 MPa. 

* beams whose experimental value of NSM shear strength contribution is affected by some disturbance; 
** beams which were subjected to pre-cracking 
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FIGURE CAPTIONS 

 

Fig. 1. Possible failure modes of an NSM FRP strip: (a) debonding, (b) laminate tensile rupture, (c) concrete 

semi-conical fracture, (d) mixed shallow semi-cone plus debonding. 

Fig. 2. RC beam web: a) axonometric view of the adopted schematization and b) shear loading process. 

Fig. 3. Interaction among adjacent strips: a) axonometric view and b) section parallel to the CDC plane. 

Fig. 4. NSM shear strength contribution evaluation: flow chart. 

Fig. 5. Single Strip Contribution: (a-b) iterative procedure for searching the equilibrium condition in the 

surrounding concrete; (c) evaluation of the progressive concrete fracture capacity for a single slip in the simple 

case of orthogonality between strips and CDC and large spacing and (d) in presence of interaction between 

adjacent strips not orthogonal to the CDC plane. 

Fig. 6. Assumed local bond stress-slip relationship: relevant phases of the failure occurring within the adhesive 

layer. 

Fig. 7. Debonding process for an infinite bond length. Distribution of slip, bond stress, strip axial stress and force 

transferred to the surrounding concrete along the transfer length for the bond phases: (a) elastic, (b) softening and  

(c) softening friction. 

Fig. 8. Free Slipping phase of the debonding process for an infinite bond length: distribution of slip, bond stress, 

stress in the strip and progressively transferred force. 

Fig. 9. Bond wave progressing from the loaded end to the free extremity: (a) invariant distribution of shear stress 

 x  and slip  x  and the corresponding distribution of strip axial stress  f x  and progressive value of the 

force transferred to the surrounding concrete through bond stresses for an infinite value of the resisting bond 

length, (b) distribution of slip, tangential stress and progressive force transferred to concrete for a finite value of 

the resisting bond length and imposed end slip  Li nt  and for (c)  1Li nt  . 

Fig. 10. CDC plane: (a) geometrical quantities in OXY  and the ellipse local reference system 1 2j j jo e e ; (b) 

abscissa values necessary to evaluate the i-th ellipse’s, both, Linear 
lin

fiA and Non Linear area 
nlin

fiA .   

Fig. 11. Appraisal of the proposed model for the beams tested by Dias and Barros (2008) and by Dias et al. 

(2007). 

Fig. 12. Cracking scenario regarding beam 2S-7LI45-II: numerical result for k = 1 (a), k = 2 (b), k = 3 (c), and 

experimental post-test pictures (d-f). 
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Fig. 13. Comparison between numerical and experimental results: as function of the spacing between adjacent 

strips at 60° for concrete fcm 31.1 MPa (a) and fcm 18.6 MPa (b); group effect for the 3rd configuration (concrete 

fcm 31.1 MPa and β 60°) (c) and ideal shear strength contribution for a system of NSM with spacing 75 mm (d). 

Fig. 14. Group effect: (a) a real case with a certain value of the spacing between adjacent strips ( ,f reals ), (b) a 

real case with a reduced value of the spacing ( ,0.5 f reals ) and (c) ideal situation corresponding to the real case 

depicted in (a). 


