
Universidade do Minho
Escola de Engenharia

José António Barros Teixeira

A new Framework to enable rapid
innovation in Cloud Datacenter through a
SDN approach

Setembro de 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia
Departamento de Informática

José António Barros Teixeira

A new Framework to enable rapid
innovation in Cloud Datacenter through a
SDN approach

Mestrado em Redes e Serviços de Comunicações

Trabalho realizado sob orientação de
Professor Stefano Giordano
Professor Alexandre Santos

Setembro de 2013

Acknowledgments

I would like to thank my parents for standing up for the true meaning of the sentence which
i naively wrote in gifts as a kid ”Para os melhores pais do mundo” (”For the best parents in the
whole world”). A big thank you to my brother for his buddah patience while raising me and for
teaching valuable lessons. To my godmother and godfather for their support and for the strategies
which have always given me different perspectives on important subjects. All of you have been
true companions along this life and mean the world to me.

To Fábio, for being able to put up with me for all these years. The greatest adventures I ever
had were with you, you are a true friend.

A big thank you to professor Giordano and Adami for taking me into their research group,
and guiding all my work. I would also like to thank Gianni for its indispensable guidance, he was
a example of a tutor and an inspiring person. To everyone in the lab, it was one of best places
where I’ve worked, and you were the ones that made that made it this way (thank you also for
showing me the best food and places Italy has to offer).

A special thank you to professor Alexandre Santos for believing in my potential and for
helping going further.

Finally, to everyone I met along my academic life, this years would be this exciting without
you, thank you for enriching them.

i

Abstract

In the last years, the widespread of Cloud computing as the main paradigm to deliver a large
plethora of virtualized services significantly increased the complexity of Datacenters manage-
ment and raised new performance issues for the intra-Datacenter network. Providing heteroge-
neous services and satisfying users’ experience is really challenging for Cloud service providers,
since system (IT resources) and network administration functions are definitely separated.

As the Software Defined Networking (SDN) approach seems to be a promising way to ad-
dress innovation in Datacenters, the thesis presents a new framework that allows to develop and
test new OpenFlow–based controllers for Cloud Datacenters. More specifically, the framework
enhances both Mininet (a well–known SDN emulator) and POX (a Openflow controller writ-
ten in python), with all the extensions necessary to experiment novel control and management
strategies of IT and network resources.

Further more, the framework was validated by implementing and testing well known policies.
Hybrid allocation policies (considering both network and servers) were also implemented and
scalability tests were performed.

This work was developed under the ERASMUS student mobility program, in the Telecom-
munication Networks Research Group, Dept. of Information Engineering, University of Pisa,
and resulted in the paper Datacenter in a box: test your SDN cloud-datacenter controller at
home that was accepted into EWSDN2013.

Keywords: Datacenter, Cloud, SDN, OpenFlow.

ii

Resumo

Nos últimos anos, a difusão da computação em nuvem como o principal paradigma para
oferecer uma grande variedade de serviços virtualizados aumentou significativamente a com-
plexidade da gestão de Datacenters e trouxe novos problemas de desempenho para a sua rede
interna. A prestação de serviços heterogêneos e a satisfação dos utilizadores tornou-se um de-
safio para os provedores de serviços em nuvem, uma vez que as funções de administração de
rede e do sistema (recursos de TI) estão definitivamente separados.

Como o Software Defined Networking (SDN) aparenta ser um caminho promissor para tratar
a inovação em Datacenters, a tese apresenta uma nova framework que permite desenvolver e
testar novos controladores baseados em Openflow para Datacenters. Mais especificamente, a
framework melhora o Mininet (um emulador SDN) e POX (um controlador OpenFlow escrito
em python), com todas as extensões necessárias para o desenvolvimento de novas estratégias de
TI e de gestão das redes de controlo.

Além disso, a framework foi validada através da implementação e teste de políticas conheci-
das. Políticas híbridas de alocação de máquinas virtuais (considerando tanto os servidores como
as redes) foram implementadas e testes de escalabilidade foram realizados.

Este trabalho foi desenvolvido no âmbito do programa de mobilidade de estudantes ERAS-
MUS, no Grupo de Investigação em Redes de Telecomunicações TLCNETGRP, Departamento
de Engenharia de Informação da Universidade de Pisa, do qual resultou a elaboração do ar-
tigo Datacenter in a box: test your SDN cloud-datacenter controller at home que foi aceite no
EWSDN2013.

Palavras chave: Datacenter, Cloud, SDN, OpenFlow.

iii

Contents

Acknowledgments i

Abstract ii

Resumo iii

Contents iv

List of Acronyms viii

List of Figures viii

List of Tables x

1 Introduction 2

1.1 Introduction . 2

1.2 Motivation and objectives . 3

1.3 Thesis layout . 4

2 State of art 5

2.1 Available solutions . 5

2.1.1 CloudSim . 5

2.1.2 FPGA Emulation . 6

iv

CONTENTS

2.1.3 Meridian . 6

2.1.4 ICanCloud, GreenCloud and GroudSim 7

2.1.5 Mininet . 8

2.2 Openflow Controllers . 9

2.2.1 NOX . 9

2.2.2 POX . 9

2.2.3 Beacon . 10

3 The Framework 11

3.1 Requirements . 11

3.2 Chosen technologies . 12

3.3 Framework architecture . 14

3.4 Directory structure . 16

3.5 Framework modules: Mininet Environment . 16

3.5.1 Topology Generator . 17

3.5.2 Traffic Generator . 17

3.5.3 Configuration file . 21

3.6 Framework modules: Controller . 23

3.6.1 Topology (Discovery Module) . 23

3.6.2 Rules (OF Rules Handler) . 24

3.6.3 Stats (Statistics Handler) . 25

3.6.4 VM Request Handler . 27

3.6.5 Network Traffic Requester . 28

3.6.6 VMM - Virtual Machines Manager . 29

3.6.7 User Defined Logic . 29

3.6.8 Other POX Modules Used . 30

3.6.9 Configuration File . 31

v

CONTENTS

3.7 Framework modules: Web Platform . 34

3.7.1 Features and usage . 34

3.7.2 Design . 37

3.8 Framework modules: VM Requester (VM Requests Generator) 38

3.9 Using the framework . 39

3.9.1 Emulator . 39

3.9.2 Real Environment . 41

3.10 Framework extensions . 44

3.10.1 Enabling QoS . 44

3.10.2 Enabling Virtual Machine migration . 47

4 Validation and tests 52

4.1 Framework Validation . 52

4.2 Usecase: Hybrid VM Allocation policy . 55

4.3 Performance Evaluation . 57

5 Conclusions 61

5.1 Main contributions . 62

5.2 Future work . 62

A Mininet Environment – Configuration File 63

B Mininet - DC Topology Generator Algorithm 66

C Sniffex.c Modified 71

D clone_vms.sh 93

E Dijkstra Algorithm in Python 96

vi

CONTENTS

F Table creation script for MySQL database 98

G Script for enabling OpenVswitch on NICs 100

H Script for enabling NetFPGA 102

Bibliography 104

vii

List of Acronyms

CPU Central Processing Unit

DC Datacenter

DCN Datacenter Networks

IO InputOutput

IP Internet Protocol

IT Information Technology

OF Openflow

OS Operative System

QoS Quality of Service

QoE Quality of Experience

RAM Random-access Memory

SDN Software Defined Networking

VM Virtual Machine

VMM Virtual Machine Manager

WAN Wide Area Network

viii

List of Figures

2.1 Meridian SDN cloud networking platform architecture (Banikazemi et al. [1]) . . 7

2.2 POX vs NOX [2] . 10

3.1 Framework Architecture . 14

3.2 Tcpreplay performance in hybrid VM allocation policy - Switch utilization. Taken
from [3] . 20

3.3 Print screen of Traffic Generator with Iperf . 21

3.4 Available port statistics . 25

3.5 Available flow statistics . 25

3.6 Edge switch link statistics exported ’.csv’ file 27

3.7 WEB Platform - Top Panel . 34

3.8 WEB Platform - VM Request . 35

3.9 WEB Platform - VM list . 36

3.10 WEB Platform - VM Groups . 36

3.11 VM Requester console output . 38

3.12 Using the emulation environment. Top left: MN Topology Generator; Bottom
left: VM Requests Generator; Right: Controller 40

3.13 Architecture of the real environment . 41

3.14 Photo of the testing environment. Table: under the monitor - 2 servers; cube
computer - aggregation and edge switches; laptop - DC gateway, controller and
WEB Platform; Under the table: core switch . 43

ix

LIST OF FIGURES

3.15 QoS - Mininet testing environment . 46

3.16 QoS - Example of installed rules. Taken from [4] 46

4.1 The environment . 53

4.2 WF vs BF . 54

4.3 Average Host link Ratio vs per Host Generated Traffic 58

4.4 Average Host Link Ratio vs number of Hosts 58

4.5 Average Host Link Ratio vs number of Hosts per Outside Host 59

4.6 Host-PC Memory Utilization vs per Host Traffic Generated 60

4.7 Host-PC Memory Utilization vs number of Hosts 60

x

List of Tables

3.1 DC servers occupation example. (VMs allocated / server VM allocation capacity) 49

3.2 Keep DC policy algorithm - Best Fit vs Worst Fit 51

1

Chapter 1

Introduction

1.1 Introduction

A Cloud DC consists of virtualized resources that are dynamically allocated, in a seamless
and automatic way, to a plethora of heterogeneous applications. In Cloud DCs, services are no
more tightly bounded to physical servers, as occurred in traditional DCs, but are provided by Vir-
tual Machines that can migrate from a physical server to another increasing both scalability and
reliability. Software virtualization technologies allow a better usage of DC resources; DC man-
agement, however, becomes much more difficult, due to the strict separation between systems
(i.e., server, VMs and virtual switches) and network (i.e., physical switches) administration.

Moreover, new issues arise, such as isolation and connectivity of VMs. Services performance
may suffer from the fragmentation of resources as well as the rigidity and the constraints imposed
by the intra-DC network architecture (usually a multilayer 2-tier or 3-tier fat-tree composed of
Edge, Aggregation and Core switches [5]). Therefore, Cloud service providers (e.g., [6]) ask for
a next generation of intra-DC networks meeting the following features: 1) efficiency, i.e., high
server utilization; 2) agility, i.e., fast network response to server/VMs provisioning; 3) scalability,
i.e., consolidation and migration of VMs based on applications’ requirements; 4) simplicity, i.e.,
performing all those tasks easily [7].

In this scenario, a recent approach to programmable networks (i.e., Software-Defined Net-
working) seems to be a promising way to satisfy DC network requirements [8]. Unlike the classic
approach where network devices forward traffic according to the adjacent devices, SDN is a new

2

1.2. MOTIVATION AND OBJECTIVES

network paradigm that decouples routing decisions (control plane) from the traffic forwarding
(data plane). This routing decisions are made by a programmable centralized intelligence called
controller that helps make this architecture more dynamic, automated and manageable.

Following the SDN–based architecture the most deployed SDN protocol is OpenFlow [9]
[10], and it is the open standard protocol to communicate and control OF-compliant network
devices. Openflow allows a controller to install into OF–compliant network devices (called
switches) forwarding rules which are defined by the administrator/network engineer and match
specific traffic flows.

Since SDN allows to re-define and re-configure network functionalities, the basic idea is to
introduce an SDN-cloud-DC controller that enables a more efficient, agile, scalable and simple
use of both VMs and network resources. Nevertheless, before deploying the novel architectural
solutions, huge test campaigns must be performed in experimental environments reproducing a
real DC. To this aim, a novel framework is introduced that allows to develop and assess novel
SDN-Cloud-DC controllers, and to compare the performance of control and management strate-
gies jointly considering both IT and network resources [3].

1.2 Motivation and objectives

Although SDN came as a solution to fulfill the network requirements of the DCs, the only
point of interaction with the IT resources is the generated traffic. By definition SDN does not
go further, but if there could be a controller that manages both IT and network resources, all the
information could be shared easily and both of them could greatly benefit: the network could
start to anticipate IT actions and adapt itself to have higher performance, more redundancy, etc;
the IT because the resources could be better managed so that the network, not only stops being
the bottleneck, but actually helps the IT complete the tasks faster and without affecting adjacent
resources.

When developing an Openflow controller, the administrator/network engineer goals are to
implement the desired behaviour and to test it (making sure it suits the requirements). The cur-
rently available controllers already provide some abstraction, which varies according to the type
of programming language, but they are still too low level to allow rapid innovation. Following the
implementation, tests campaigns must be performed and for it a controlled environment should

3

1.3. THESIS LAYOUT

be set. Although Openflow allows the use of slices of the real network for testing purposes, it is
more convenient to use an emulator since the DC size can be dynamic, different scenarios can
be easily produced and it only needs a single computer – Mininet is such an emulator. Despite
its flexible API, Mininet does not provide any type of traffic generator and is not DC–oriented:
poor topology generation regarding DCs; no support for VMs;

A whole framework composed by a modified OF controller that allows the access to both IT
and network resources through an easy-to-use but full featured API, and a testing environment
that communicates with it to provide a real DC emulation is the the main objective. With this
it is expected to endue the administrator/network engineer with all the tools needed to quickly
develop, test and deploy VM and network management strategies into a DC.

1.3 Thesis layout

This thesis is structured into five chapters: the present Chapter 1 is a brief introduction of
the proposed work, its motivation and objectives; the second is the state of art, it addresses
the currently available solutions relating innovation in DCs and OF controllers; the third one
fully describes the framework, its evolution, extensions and how it can be used; in the forth
chapter is presented the framework validation, the results of a hybrid allocation algorithm and
performance tests; and in the last chapter are made conclusions about the developed work, as
well as suggestions for future work.

4

Chapter 2

State of art

2.1 Available solutions

A number of research efforts have focused on novel solutions for emulation/simulation of
Cloud DCs. The available solutions provide a reference and material to analyze and explore the
concepts addressed along this thesis. This section presents and overview of them, highlighting
their architecture, features and limitations.

2.1.1 CloudSim

Calheiros et al. [11] proposed a Java-based platform, called Cloudsim, that allows to estimate
cloud servers performance using a workflow model to simulate applications behaviour. By pro-
viding a framework for managing most key aspect of a Cloud infrastructure (DC hardware and
software, VM placement algorithm, Applications for VM, Storage access, Bandwidth provision-
ing) and by taking into consideration factors as energy-aware computational resources and costs,
it helps to identify possible bottlenecks and improve overall efficiency.

Regarding the network aspect of Clousim, Garg et al. [12] extended such a system with both
a new intra–DC network topology generator and a flow–based approach for collecting the value
of network latency. However, in such a simulator, networks are considered only to introduce

5

2.1. AVAILABLE SOLUTIONS

delay, therefore it is not possible to calculate other parameters (e.g., Jitter). A SDN extension
for Cloudsim as already been thought, Kumar et al. [13], but it still just an architecture design,
meaning it has not been implemented yet.

Although it allows to predict how the management strategies will behave, as a simulator,
it does not allow to run real applications and deploying the tested management logic in a real
environment still requires everything to be developed.

2.1.2 FPGA Emulation

Ellithorpe et al. [14] proposed, a FPGA emulation platform that allows to emulate up-to 256
network nodes on a single chip.

”Our basic approach to emulation involves constructing a model of the target
architecture by composing simplified hardware models of key datacenter building
blocks, including switches, routers, links, and servers. Since models in our system
are implemented in programmable hardware, designers have full control over emu-
lated buffer sizes, line rates, topologies, and many other network properties.”

Ellithorpe et al. [14]

This platform also allows the emulation of full SPARC v8 ISA compatible processor, which
along with full system control provides a greater system visibility. However, hardware program-
ming skills might be a requirement and the cost of a single board is approximately 2, 000 dollars
making this solution less attractive than ones based on just open–source software.

2.1.3 Meridian

Following the new shiny SDN paradigm, Banikazemi et al. [1] proposed Meridian, an SDN–
based controller framework for cloud services in real environments.

As shown in figure 2.1, the architecture is divided into three main layers: Network abstrac-
tions and API, where the network information can be accessed and manipulated (e.g. access con-
trolling policies, prioritizing traffic); Network Orchestration, translates the command provided

6

2.1. AVAILABLE SOLUTIONS

Figure 2.1: Meridian SDN cloud networking platform architecture (Banikazemi et al. [1])

by the API into physical network commands and orchestrates them for more complex operations.
it also reveals the network topology and its variations; finally the ”drivers” layer is an interface
for underlying the network devices so several network devices and tools can be used.

Generally, this platform allows to create and manage different kind of logical network topolo-
gies and use their information for providing a greater control of the DC. But as it works on top
of a cloud Iaas platform (i.e., Openstack [15], IBM SmartCloud Provisioning [16]), it is limited
to their management strategies and is only useful if one already has this type of infrastructure.
Not having a testing environment is also a downside since the normal operation of the real DC
can be compromised and also alter the testing results.

2.1.4 ICanCloud, GreenCloud and GroudSim

Other well–known open–source cloud simulators are ICancloud [17], GreenCloud [18] and
GroudSim [19], but in none of them SDN features are available.

7

2.1. AVAILABLE SOLUTIONS

2.1.5 Mininet

”Mininet is a network emulator which creates a network of virtual hosts, switches,
controllers, and links. Mininet hosts run standard Linux network software, and its
switches support OpenFlow for highly flexible custom routing and Software-Defined
Networking.”

Mininet [20]

As a network emulator for SDN systems, mininet can generate OF compliant networks that
connect to real controllers without the need of hardware resources. Such features derives from
the use of Open vSwitch and enables the assessment of the operation of an OF controller before
its deployment in a real environment.

It also provides tools for automatically generating topologies, however, as they can be basic,
an API is available to reproduce any type of topology and experiments. Mininet hosts behave
just like real hosts, can run any program as long as it does not depend on non linux kernels, and
can send packets through emulated interfaces. But as they share the same host file system and
PID space, a special attention is required when killing/running programs.

Despite its flexibility, Mininet lacks of a complete set of tools that easily allow to emulate the
behaviour of a cloud DC, thus raising the following questions:

∙ How to easily generate and configure typical DC topologies?

∙ How to simulate VMs allocation requests?

∙ How to emulate the inter and in/out DC traffic?

8

2.2. OPENFLOW CONTROLLERS

2.2 Openflow Controllers

In this section an overview of the most deployed and well-known controllers is presented.

2.2.1 NOX

NOX [21] was the first Openflow controller and was created jointly with the Openflow proto-
col by a company named Nicira Networks. It is based in C++ programming language and made
to provide fast and asynchronous IO. This controller supports Openflow 1.0 and give access to
it through its API. It has a scalable approach for managing flows in multiple switches, which
consists in sending only the first packet of a flow to the controller (when there are no rules that
match the flow), so it can create a rule, and send it to the switches. After this all the packets
belonging to that flow are forwarded according to that rule.

It already includes sample components like Topology Discovery, Learning Switch and Network-

wide Switch to help the developers and researchers write code for programmatically controlling
the switches.

2.2.2 POX

POX [2] is presented as ”NOX’s younger sibling”, and is a Python-based controller. With a
similar structure as NOX, it supports the same GUI and visualization tools as NOX.

POX aims for the rapid development and prototyping of network control software and it also
comes with sample components, but a bigger list of them (comparing to NOX).

9

2.2. OPENFLOW CONTROLLERS

Figure 2.2: POX vs NOX [2]

As can be seen in figure 2.2 where performance between NOX and POX is compared, NOX

allows a smaller delay and handles more flows per second (possibility due to the programming
language chosen), but POX taking into consideration that is written in Python, provides a good
flow throughput (30000 flows per second) and delay (0.6ms per flow).

2.2.3 Beacon

Beacon [22] is a fast, cross-platform Openflow controller both event and thread–oriented. It
is a Java-based controller making it easier to develop. It allows hot-swapping of code bundles (i.e
replace the learning switch application without disconnecting the switches) and can be embedded
in the Jetty enterprise web server and in a custom UI extensible framework.

Its development as started in 2010 and ”currently powers a 100-vswitch, 20-physical switch
experimental data center and has run for months without downtime” [22] making it a stable
controller.

10

Chapter 3

The Framework

3.1 Requirements

Provide the user with a full package for the development and test of DC SDN Controller
was one of the main purposes of the framework. Aiming for such goal, but without discarding
the deployment in a real DC, a single software platform was designed and developed. Because
the requirements change according to the controller being in the development or the deployment
phase, so should the platform by creating and environment that best suits each of them.

Development & Testing Phase

Encourage a rapid development is one of the main requirements since it promotes innovation
in the cloud DC. It must be simple and fast to develop the desired logic, which can be achieved
by providing easy access to information and management of the network and servers. More
specifically, automatic topology detection (and changes in it) associated with a high level API
for accessing and managing switch’s and server’s information and statistics.

When testing, the framework should provide an automatic way of generating the VM re-
quests and the traffic associated to each request (for testing the VM allocation and the network
behaviour). The traffic generator should also correctly represent the DC traffic profiles. Allow-
ing an easy access outside the controller for the statistics is also important, so it is possible to
analyze the logic effects on the DC.

11

3.2. CHOSEN TECHNOLOGIES

Deployment Phase

For the deployment, the framework should be easy to configure and monitor, and no extra
effort should be made for the framework to run on the real DC (it should adapt automatically).
There should also be an intuitive way to make manual VM requests, so clients can generate and
manage their own VMs.

3.2 Chosen technologies

Openflow Controller: POX

Being POX a python derivative of the NOX controller, which was developed by the same peo-
ple who developed the Openflow protocol, adopting it would be a surplus since there is a higher
chance it will continue to support Openflow, and that the new versions/features are available as
soon as possible. Besides, being a high level (comparing to C and C++), object and event ori-
ented programming language, helps to create the abstraction level required for agile development
and to make a more interactive controller.

Datacenter Emulator: Mininet

Mininet comes recommended in the Openflow tutorials as the platform for testing the OF
compliant controllers. It also provides an API in python for the development of custom made
topologies and specific experiments, which along with the capacity that the virtualized hosts have
of running almost any program, makes it a powerful platform.

Virtualization platform: XCP 1.6 (Xen Cloud Platform)

As a free and opensource platform though for the cloud, XCP bring all the features belonging
to Xen, plus it comes with ready-to-install images, making it simpler to install and configure.
Having multiple interaction option is also an attractive feature, but having a Xen python API was

12

3.2. CHOSEN TECHNOLOGIES

decisive since hit gives the possibility to write all the code in one programming language which
helps keeping the platform consistent.

Note: although XCP was the virtualization technology adopted, support for others can be

easily added.

13

3.3. FRAMEWORK ARCHITECTURE

3.3 Framework architecture

Figure 3.1: Framework Architecture

The framework architecture, shown in figure 3.1, gives an overview of the its modules and
their interaction. The framework is divided into two main parts: the mininet environment - an
extended version of mininet; and the controller - a modified, improved version of POX;

The mininet environment is made to be only used when testing the controller. It is composed
by the mininet platform with two extra modules that explore its API. One of them is the Topology

Generator, which allows to easily create multilayer 2-tier or 3-tier fat-tree DC topologies. The
other one is the Traffic Generator that allows to correctly simulate the allocation of VM into each
server by generating traffic from that server to the exterior of the DC. It also allows to simulate
inter VM communication.

As for the controller, it automatically manages the modules in order to only use the ones
that are needed for each phase (development and testing or deployment). Depending on it, the
controller will interact with the mininet environment or the Cloud DC (i.e. the real Cloud DC
infrastructure). In the figure 3.1, in the controller part, it can be seen a darker area which corre-
sponds to the modules that are used in both phases. These modules are:

14

3.3. FRAMEWORK ARCHITECTURE

∙ VM Request Handler – Connects with the Web platform and/or the VM requester, and
processes the VM requests;

∙ OF Rules Handler – Manages and keeps track of the installation/removal of the OF rules
from the switches;

∙ Topology Discover – Manages all the information regarding the switches, links, servers
and its detection;

∙ Statistics Handler – Collects statistics about the switches and links. Can be periodical or
manual;

∙ User-defined Logic – Space for the administrator/network engineer to develop the desired
DC management logic;

Regarding the other controller modules: the Network Traffic Requester which is only used
when performing tests, tells the mininet environment how much, when, from where and where to,
the traffic should be generated; and the VMM Handler which is only active when the controller is
in a real environment, communicates with the hypervisor to perform all the operations regarding
the VMs (allocate, deallocate, upgrade, etc).

Outside of the the mininet environment and the controller there is the WEB platform and
the VM Requester, that were created for making VM requests. While the first one is a platform
where DC clients can request (and manage) VMs that will be processed by the controller and
later allocated by the hypervisor (oriented for the deployment phase), the VM Requester is an
automatic full configurable VM request generator powered by random variables (oriented for the
testing phase).

An important feature that was taken into consideration when designing the framework’s ar-
chitecture is that all the modules are independent from each other, and they can be changed,
removed or added in order to fulfill all the user requirements.

15

3.4. DIRECTORY STRUCTURE

3.4 Directory structure

POX defined an ext folder so controller extensions could be added without interfering with
their development. This folder is used by the framework to store most of the modules (including
the ones that are not used by the controller). The framework directory is structured as follows:

∙ INIHandler – used only to read and write configuration files

∙ Rules – contains OF Rules Handler

∙ Stats – contains Statistics Handler

∙ Structures – used to stored basic class structures and event (Switch, Host, etc)

∙ Tools – external tools used in the framework (e.g. Dijkstra algorithm for calculating inter
VM path)

∙ Topology – contains Topology Discover

∙ VM – Contains all VM related modules. User-defined logic (VM Allocation Manager) and
VM Request Handler (VM Request Manager) are implemented here.

∙ XenCommunicator – VMM Handler (for now only supporting XEN hypervisor)

∙ Topology Generator (MN) – contains Mininet Topology and traffic generator

∙ VM Requests Generator – contains the VM requester

3.5 Framework modules: Mininet Environment

The Mininet Environment is composed by both mininet and two custom modules named
Topology Generator and Traffic Generator. These two modules where added to fill the missing
support for traffic generation and the basic integrated topology generator.

16

3.5. FRAMEWORK MODULES: MININET ENVIRONMENT

3.5.1 Topology Generator

Mininet allows their topology generator to create tree topologies but they do not have a
Gateway, meaning that they cannot correctly emulate a DC since when traffic reaches the core
switches it has nowhere to go (if it is traffic that addresses the outside of the DC).

Using its API, an algorithm for generating custom DC tree and fat tree topologies was created.

The algorithm works by creating the gateways (as hosts on mininet) and core switches, and
iterating through each gateway assigning the correspondent link and their characteristics to the
core switches. Similarly, the same logic is used between the core and aggregation switches,
followed by the aggregation and edge switches, and lastly with the edge switches and the servers
(created as hosts on mininet). Details on the algorithm can be seen on appendix B.

It is able to generate any number of gateways, hosts and core, aggregation and edge switches.
Is also generates the links between them, and the number of links between different levels (e.g.

from the gateways to the core switches) can be chosen. This way it is possible to create fat tree
topologies. Link bandwidth is also configurable by level, meaning one needs only to setup the
bandwidth for the 4 network levels.

3.5.2 Traffic Generator

Since emulating traffic sources is a key point, reproducing both VM-to-VM and VM to out-
of-DC data exchange is necessary to create an environment as close as possible to real scenarios.

As mininet does not give any support to traffic generation, it is up to the user to do it. Since
generating traffic manually for each VM allocation would be impractical for testing the DC
policies, an automatic traffic generator was created.

For the mininet environment to know the traffic characteristics it should start generating for
each VM, a network socket was open for communication with the controller. In this socket the
following information is exchanged,

∙ Server where traffic should be sent from;

∙ For how long is the VM allocated, so traffic is generated in this interval;

17

3.5. FRAMEWORK MODULES: MININET ENVIRONMENT

∙ Traffic characteristics (bandwidth, etc);

∙ Optional custom information (for supporting other features);

TCPReplay

With the goal of reproducing as closely as possible a DC behaviour, traffic samples from a
real cluster were collected, and tcpreplay [23] was used to replay them. The sample was collected
from the clusters of the Department of Informatics - University of Minho and has approximately
500Mb size.

As the sample traffic had to be adapted to suit the server interface’s IP, the sniffex.c [24]
program (given as an example of pcap library usage) was modified.

For modifying traffic samples instead of live capturing the packets, offline capture mode must
be set and then the pcap_loop can be started. Pcap_loop iterates throw each packet and applies
the function passed as argument, in this case pcap_spoof_ip.

/* setup offline capture */

handle = pcap_open_offline(filename, errbuf);

...

/* now we can set our callback function */

pcap_loop(handle, -1, pcap_spoof_ip, NULL);

pcap_close(handle);

Because part of the traffic sample captured contained VLAN tags, an if statement add to be
added for pushing the pointer 4 bytes further (4 bytes is the VLAN tag size). After knowing
where the ip header was, it was changed to the desired one, recalculated the checksum1, and
dumped the new packet into a different file.

/* Remake IP Addresses on the copied packet */

if(ether_type == 0x0800)

ip = (struct sniff_ip*)(packet_cpy+SIZE_ETHERNET);

else if(ether_type == 0x8100)

ip = (struct sniff_ip*)(packet_cpy+SIZE_ETHERNET+4);

...

1checksum calculation credits go to Gianni Antichi.

18

3.5. FRAMEWORK MODULES: MININET ENVIRONMENT

/*Change IP addresses*/

inet_aton(ipSourceAddressString, new_s);

ip->ip_src = *new_s;

inet_aton(ipDestAddressString, new_d);

ip->ip_dst = *new_d;

...

/* Recalculate Checksum */

ip->ip_sum=0;

uint16_t new_cksm = 0;

if(ether_type == 0x0800)

new_cksm=do_cksum(reinterpret_cast<uint16_t*>(packet_cpy+SIZE_ETHERNET),

sizeof(struct sniff_ip));

else if(ether_type == 0x8100)

new_cksm=do_cksum(reinterpret_cast<uint16_t*>(packet_cpy+SIZE_ETHERNET+4),

sizeof(struct sniff_ip));

ip->ip_sum=htons(new_cksm);

...

/* Dump the packet */

pcap_dump((u_char*)file,pkt_hdr,packet_cpy);

When received a new VM allocation from the controller, the traffic generator started rewriting
the traffic sample to fit the VM characteristics, and when ready, the modified sample was replayed
from the server which was selected for the allocation. In order to generate traffic only during the
time which the VM was allocated, the timeout program was used.

"./sniffex -f TrafficSample/traffic -s source_ip -d dest_ip"

Has the modification of the traffic sample was taking to long, compromising the testing ca-
pabilities of the framework, the modified samples started to be generated when mininet was
started (since the IP addressing scheme was already known). This allowed for much agile testing
since when a VM allocation arrived, the only thing needed to be done was replaying the already
generated traffic sample with the required characteristics.

The traffic generator was tested with a hybrid VM allocation policies. Unfortunately, due
to the TCPreplay’ poor performance it was not possible to achieve the expected switch and link
utilization. Trying to understand the problem, it was realized that TCPreplay uses a large amount

19

3.5. FRAMEWORK MODULES: MININET ENVIRONMENT

of CPU independently of the bandwidth which it generates. As an instance of TCPreplay was
running for each VM, there was not enough processing power for all of them to run normally.
As can be seen in figure 3.2, the switch utilization went little above the 2%. Despite the low
switch/link utilization, it was still possible to see the implemented hybrid VM allocation working.

Figure 3.2: Tcpreplay performance in hybrid VM allocation policy - Switch utilization. Taken
from [3]

Iperf

As an alternative to TCPreplay, Iperf [25] is a network diagnosing tool which is able to
reproduce both TCP and UDP traffic. Although it does not allow to replay traffic samples, it is
a good tool for testing the DC behaviour at its peak utilization. Spending few CPU is also an
advantage since many instances of it are required to run at the same time.

Because it uses the server/client paradigm it had run both on the servers and on the gateways
in order to work properly. In order to do so and coordinated with the controller VM allocations,
the same method as before was used, but instead of running TCPreplay with the traffic sample,
two instances of iperf were ran (both bidirectional, one with TCP and other with UDP). For
allowing some flexibility, the balance of TCP against UDP traffic per VM can be changed. In
figure 3.3 can be seen the output of the Traffic Generator, where Iperf is used and the generated

20

3.5. FRAMEWORK MODULES: MININET ENVIRONMENT

traffic is half TCP and half UDP.

Figure 3.3: Print screen of Traffic Generator with Iperf

D-ITG

Traffic emulation must be fully customizable (which iperf is not) in order to allow the user’s
experiments: while traffic modeling is out of the scope of this framework, giving the user tools
that allows to easily create different traffic profiles is a main issue. For this reason it is planned
to integrate D-ITG [26], a distributed traffic generator that allows to generate a large spectrum of
network traffic profiles(e.g., poisson distribution, DNS, VoIP, etc..). Application-specific traffic
profiles can be defined, inserting their statistical parameters, possibly in the configuration file
(i.e., traffic shape, transport protocol, transmission rate, traffic duration, etc..). Moreover, during
the configuration phase, the user should be able to specify how frequently these applications run
into the DC.

Similarly to what was happening before, every time a new VM is successfully allocated (i.e.,
the OF controller chooses the server to allocate the VM and sets up the rules on the OF switches)
at least a new bidirectional traffic instance starts between one outside host and the one that hosts
the new VM. It is worth pointing out that the number of instances and the type of traffic should
only strictly depend on the application chosen in the configuration phase.

3.5.3 Configuration file

The configuration file for the Mininet environment includes parameters for both the Topology

Generator and Traffic generator. It follows the normal structure of the .ini files, and all the
configurations explained above can be made here. For organization purposes it is divided into
types of configuration. An example of a configuration file can be seen in appendix A.

21

3.5. FRAMEWORK MODULES: MININET ENVIRONMENT

∙ TopologySwitches – for changing the number of switches of each type;

∙ TopologyHosts – for changing the number of hosts (servers or gateways);

∙ TopologyLinks – for changing the number of links between DC network level;

∙ SwitchBandwidth – for changing the link bandwidth of each DC network level;

∙ Traffic – for changing Iperf settings (UDP VS TCP ratio, etc);

∙ SwitchQueues – EXPERIMENTAL: for setting port queues - QoS experiment;

22

3.6. FRAMEWORK MODULES: CONTROLLER

3.6 Framework modules: Controller

The controller is the most important part of the framework, since all the interaction with the
network and the IT resources are made through it.

3.6.1 Topology (Discovery Module)

The Topology is where all the information regarding the switches, links and it resources is
kept and managed. It uses basic classes implemented under the structures directory and saves
the information in the form of dictionaries for easy and fast access to it.

It also automatically detects the topology, and topology changes. To do so, it listens to the
POX core events and uses two POX modules, the discovery and the host_tracker. For basic
information about the OF switches it handles the ConnectionUp, ConnectionDown, SwitchJoin,

SwitchTimeout and PortStatus events. The first four give information about the switch state, id
(known as dpid) and connection (so rules can be installed), while the last one gives information
about all their ports and their ports state (down, up, administratively down).

Regarding the discovery module, it raises an event related to the links (allowing to know if
they exist, are up or are down). To do it, it uses LLDP (Link Layer Discovery Protocol) packets
which are sent through the switches interfaces, and with this information, it raises a LinkEvent
saying if a link is up or down, and which switches and ports it connects.

As for the host_tracker it allows to detect non OF devices(servers and gateways). The process
for discovering them is similar to the one used by the discovery module, but it uses ping instead.
Because this module does not raise any events, it was slightly modified to do so. 3 type of
events where added HostJoin, HostTimeout and HostMove. Like the name suggests, HostJoin is
raised when a host is detected and provides information to which switch and port it is connected;
HostTimeout is raised when a host previously detected stop answering the ping request; and
HostMove is raised when the host is connected to a different switch or port than the one registered
before.

For classifying the level which the switches belong to (edge, aggregation or core), gateways
need to be distinguished from the servers, otherwise all the directly connected switches will be

23

3.6. FRAMEWORK MODULES: CONTROLLER

recognized as edge. As the addressing schemes are typically different from inside DC to the out-
side, this was used to differentiate them. To be fully parameterizable, the IP addresses/network
addresses of both can be configured in the provided configuration file.

Unfortunately, OF does not provide yet information about the ports bandwidth, so it has to
be configured manually.

3.6.2 Rules (OF Rules Handler)

The Rules module provides methods for easily installing and deleting rules from the OF
switches, and keeps track of everything that was installed. Once again the information is saved
into dictionaries and both rules for outside DC communication and inter VM communication are
stored. All the rules are defined by the user in the user-defined logic, but this modules provides
easier methods for installing them (based only on destination and source IP). As more complex
rules with special matching condition might be used, more complete methods are also available,
giving the user higher control over the traffic.

For future work it is expected to implement supernetting with the goal of decreasing the
amount of rules that are installed in each switch, which will have a direct impact on the rule
searching time.

24

3.6. FRAMEWORK MODULES: CONTROLLER

3.6.3 Stats (Statistics Handler)

Statistics

The statistics module allows for statistics to be collected and saved. Aiming to provide easier
access to the statistics provided by OF, this module was developed. having access previous data
collected is an important feature since it might be crucial to understand the DC behaviour.

OF by default provides statistics regarding the ports of a switch and the installed flows. In
figures 3.4 and 3.5 a list of the available values is shown.

Figure 3.4: Available port statistics Figure 3.5: Available flow statistics

Although a lot of port statistical values are available, bitrate is not one of them. Without
bitrate it is not possible to know the port usage ratio and as a consequence the switch usage ratio.
As this is a threat if one wants to develop an algorithm considering the network (e.g. If network
is considered for VM allocation, it makes no sense to allocate a VM in a server which is only
connected to a overloaded switch).

Despite bitrate not being directly available, there are at least 2 ways to obtain it. One would
be to change the OF switch implementation and protocol to implement it, but it is excessively
intrusive and would turn the framework into a non standard option. The other one would be to
use the byte count (in and out) and a time counter. Although it is not an accurate solution, it is
the most viable.

25

3.6. FRAMEWORK MODULES: CONTROLLER

Respecting the statistics, POX implementation of the OF controller uses events for notifying
that the statistics request is ready. To obtain the bitrate as accurate as possible, a statistics request
is made, the timestamp of the event with the statistical data is registered, a new request is made,
and again the timestamp of the latest event is registered. By subtracting the oldest timestamp
to the newest it is obtained the time between the statistical data. The amount of bytes that were
counted in that interval can be obtained in the same way. Finally by converting the bytes into bits
(multiplying by 8) and divide it by the time (converted to seconds), the bitrate is obtained.

#obtain the bit_rate for this port in mbps

bit_rate = ((bytes_count*8)/(time_elapsed))/1000000

To calculate the port ratio the bitrate is divided by the port capacity. For the switch ratio, an
average of all its ports ratios is made.

Despite methods for accessing the statistics as they were collected is available, an alternative
method is provided, which does a ponderation of the latest collected values with the average of
the historical ones. The historical ponderation value can be changed in the configuration file.

bit_rate_port_stats[port_no] =

(self.historical_ponderation * temp_hist_bit_rate) +

((1-self.historical_ponderation)* newest_bit_rate)

Statistics can be collected, periodically (with periodicity indicated in the configuration file),
can be retrieved whenever requested (e.g. a VM request arrives) or both.

Statistics Exporter

Statistics Exporter was created with the purpose of allowing statistics to be analyzed outside
the running environment. To do so, it periodically checks the statistics module, collecting and
saving all the information into ’.csv’ files. Statistics exporter should have the same periodicity
for statistics collection than the statistics module, in order to maximize the information gathered.
Two types of files are generated: for switches and for links.

26

3.6. FRAMEWORK MODULES: CONTROLLER

Figure 3.6: Edge switch link statistics exported ’.csv’ file

A link statistics file can be seen in figure 3.6. Columns represent the switch and its port, and
lines the link ratio in each timestamp. Where the files are saved can be chosen in the configuration
file.

3.6.4 VM Request Handler

This module is responsible for parsing the VM requests (allocation or inter VM commu-
nication) and raising events with their requirements. It creates a thread and a socket inside it
for receiving and parsing the VM requests from both the VM Request Generator and the WEB

Platform. After the VM requests have been validated, an event with the VM requirements is
raised.

For the VM allocation request the following event is raised,

class VMRequest (Event) :

’’’

Event with new virtual machine allocation request

’’’

def __init__ (self, vm_id, time, cpu, ram, disk,

network, request_type, timeout) :

Event.__init__(self)

self.vm_id = vm_id

self.time = time

self.cpu = cpu

self.ram = ram

27

3.6. FRAMEWORK MODULES: CONTROLLER

self.disk = disk

self.network = network

self.request_type = request_type

self.timeout = timeout

Since inter VM communication is frequent in the DCs, allowing their communication without
the need for the traffic to go to the gateway is important. For this reason, and because it is relevant
that it is the administrator/network engineer defining the path, and event with the list of VMs to
allow intercommunication is raised.

class InterVMComRequest (Event):

"""

Event with the inter virtual machine communication request

"""

def __init__(self, inter_vm_id, vm_list):

Event.__init__(self)

self.inter_vm_id = inter_vm_id

self.vm_list = vm_list

After the VMRequest or the InterVMComRequest have been processed and either allocat-
ed/accepted or rejected (typically in the User-defined logic), this module communicates the state
back to the source of the request.

3.6.5 Network Traffic Requester

The Network Traffic Requester only function is to capture the event which says the VM
as been allocated, and notify the mininet module Traffic Generator to start generating traffic
from the server in which the VM as been chosen to be allocated, with the network required
characteristics and during the time the VM remains allocated

The network requirement varies according to the traffic generator being used, but in the case
of Iperf, just the amount of bandwidth is requested.

28

3.6. FRAMEWORK MODULES: CONTROLLER

3.6.6 VMM - Virtual Machines Manager

This modules provides an abstraction level for the communication with the hypervisor. How-
ever, there are a lot of configurations that must be made before it can be used. These configura-
tions vary from hypervisor to hypervisor, but in the case of XEN are the installation of XCP in
each server, and the configuration of a VM template.

For the allocation process to be agile, a debian VM (other OSs are also supported) was
previously installed and configured for external access. The idea is to clone this VM template,
reducing the allocation time drastically.

By using XEN API, this process should not be hard to implement, however, what seemed
like a simple implementation, rapidly became a ”nightmare” since the available documentation
is very poor, and there is a lack of examples. With the impossibility of correctly interacting with
Xen API, a different approach was taken. By using ssh to control the machine where the hypervi-
sor was installed, the xe commands and a script created by citrix for cloning VM templates (can
be seen in appendix D), a new VM was successfully allocated into a server. When the VM gets
allocated, it is automatically started up, and an IP addressed is given (this IP address which is
later communicated to the source of the VM Request, so the VM can be accessed).

3.6.7 User Defined Logic

While all the other modules provide methods or data structures that ease the process of ac-
cessing and manipulating the information, this module just has to use those tools to produce the
desired logic. The User Define Logic is a space for the administrators/network engineers to define
their DC management policy (e.g.VM allocation policies, smart DC routing, etc). No limitations
in terms of management functionalities are present. As long as everything is OF compliant and
can be accessed through some provided API, it can be used in the logic.

Aiming to help the administrator/network engineer understanding in which ways it could be
used, an hybrid VM allocation policy is included (takes into consideration the switches statistics
and the server occupation), and also the Dijkstra algorithm is applied for calculating the shortest
path between VMs that wish to communicate directly.

29

3.6. FRAMEWORK MODULES: CONTROLLER

The hybrid VM allocation policy is fully described in [3]. It includes 2 algorithms for VM
allocation: a server driven; and a network driven.

” a) Server-Driven algorithm
In the Server-Driven algorithm, first a physical server is selected for placing the

VM, then a sequence of switches is chosen for forwarding the traffic flows to/from
that VM across the DC network(...)

b) Network-Driven algorithm
In case of the Network-Driven algorithm, when a new VM placement request

arrives, candidate core, aggregation and edge switches are firstly selected using a
specific selection policy (e.g., FF, BF or WF) and checking that switches are able
to process and forward the overall traffic possibly exchanged by the VM (i.e., the
switches are not overloaded and at least one downlink is not congested) (...) Next,
the physical server is selected within the set of servers directly connected to the
candidate edge switch by applying a VM placement policy (e.g., FF, BF or WF) and
checking that its network link is not congested (...) The VM placement process ends
when the OF Controller inserts the proper forwarding rule in the edge, aggregation
and core switches.”

Adami, D. et al. [3]

With respect to the inter VM communication, an already implemented Dijkstra algorithm
for shortest path was adopted (appendix E). As the data structure for the topology (graph) was
different, it had to be converted before calling the shortestpath method. This method was used
to calculate the shortest path between all combination of VM pairs.

The code for both implementations can be seen in 2.

3.6.8 Other POX Modules Used

Besides using two POX modules on the topology module (Discovery and host_tracker), an-
other module was also used: dhcpd. It is a simple DHCP server, which in the framework is used

2https://github.com/jbteixeir/Openflow-DC-Framework/blob/master/ext/VM/vm_
allocation_manager.py. For allocation algorithms please check the methods networkDrivenAlgorithm and
serverDrivenAlgorithm, and for inter VM communication interVMPathAlgorithm

30

https://github.com/jbteixeir/Openflow-DC-Framework/blob/master/ext/VM/vm_allocation_manager.py
https://github.com/jbteixeir/Openflow-DC-Framework/blob/master/ext/VM/vm_allocation_manager.py

3.6. FRAMEWORK MODULES: CONTROLLER

for attributing IP addresses for the newly created VMs. For simplicity, all the parameters can be
configured in the controllers configuration file.

3.6.9 Configuration File

The configuration file on the controller makes it easier to configure parameters that can easily
change. As one might prefer to insert the values in an interactive way, in case the configuration
file does not exist, there is the possibility that each modules asks for the configuration it needs,
and in the end everything is written into a file.

31

3.6. FRAMEWORK MODULES: CONTROLLER

[topology]

link capacities in mbps

outside_link = 60

core_link = 60

agg_link = 30

edge_link = 10

[host]

#HOst Capacity

cpu - number of cores

Ram and Disk - GB

cpu = 8

ram = 16

disk = 2000

[hostippool]

#dhcpip - ip of the dhcp server

server=10.0.0.0/16

gateway=10.128.0.0/16

dhcpip=10.0.0.254

vm=10.128.128.0/24

dns=8.8.8.8

[stats]

polling time - seconds

#Historial statistics weight

polling_time = 100

hist_weight = 0.125

[statsexport]

#directory where the switch and

link statistics will be placed

switchsratiodir = ./stats

linksratiodir = ./stats

Listing 3.1: Configuration file - controller (1/2)

[vmallocation]

algorithms - ND/SD

#ND - Network Driven

#SD - Server Driven

algorithm = ND

policies - FF/BF/WF

core_policy = BF

agg_policy = BF

edge_policy = BF

host_policy = BF

#maximum ratio a switch can have

so it is chosen for new vm

allocation

#maximum ratio a link can have so

it is chosen for new vm

allocation

switch_ratio = 1.20

link_ratio = 1.20

[vmreceiver]

#IP and port for listening to the

VM requests

ip = 10.0.2.15

port = 3000

[credencial]

#Credential for xen hosts

username = root

password = xensource

Listing 3.2: Configuration file - controller (2/2)

32

3.6. FRAMEWORK MODULES: CONTROLLER

In the example above (listings 3.1 and 3.2), the configuration file includes sections for the
main framework modules, but as can be seen, a section for the VM allocation as been added,
where it can be chosen which algorithms will be used, and even the maximum ratio for switches
and links to still be considered when choosing the path.

Adding parameters is as simple as inserting them in the configuration file, and, in the module
where they are used, assign them to variables.

33

3.7. FRAMEWORK MODULES: WEB PLATFORM

3.7 Framework modules: Web Platform

The WEB Platform was created to provide the DC clients with a platform where their VM
requests could be made and their VMs could be managed.

3.7.1 Features and usage

Although it still is an early development phase, the included features are:

∙ Authentication system for clients;

∙ Request and View VMs;

∙ Request and View VMs Groups (for inter VM communication);

Figure 3.7: WEB Platform - Top Panel

The top panel of the WEB Platform is where the client can access all the available features,
including to sign up or log in. It can be seen in figure 3.7.

34

3.7. FRAMEWORK MODULES: WEB PLATFORM

Figure 3.8: WEB Platform - VM Request

For requesting a VM the client needs to click in ”Request a new virtual machine”, fill the VM
requirement fields and submit the request (figure 3.8). This request is sent to the controller, that
after running the implemented allocation policy will install the rules and order the hypervisor to
start the allocation process. When all these tasks are completed, the WEB Platform is informed
of the success state of the operation, and information for the VM to be accessed is returned. If
the client wants to view the VMs that it requested and their characteristics and current state, they
are made available in ”View all virtual machines” on the top panel (3.9).

For requesting inter VM communication, a place for VM groups was created. The VM group

page as similar looks to the VM list page, but with checkboxes for choosing the VMs that belong
to the same group (figure 3.10). After requesting a VM group, a similar process to the VM
allocation request is started. Instead of running the allocation policy, the VM group policy is ran,
the rules are installed and the feedback about the process is given back to the WEB Platform.

35

3.7. FRAMEWORK MODULES: WEB PLATFORM

Figure 3.9: WEB Platform - VM list

Figure 3.10: WEB Platform - VM Groups

36

3.7. FRAMEWORK MODULES: WEB PLATFORM

3.7.2 Design

The architecture of the WEB Platform follows the MVC (Model-view-controller) model. It
includes a MySql [27] database to save information that is important for the WEB Platform

normal functioning. For now, most of the information is just a copy of the one kept by the OF
controller. Security concerns are beyond this decision. The database contains 3 tables: ”users”
for keeping personal information about the users; ”vms” for information related to the VMs (e.g

CPU, RAM, etc); and ”vm_groups” for mapping the VMs into the group they belong. A script
for creating this configuration can be seen in appendix F.

For communicating with the OF controller a socket is opened and the requests are sent. For
now they are string based requests, but it is planned to use an encrypted json [28] notation.

37

3.8. FRAMEWORK MODULES: VM REQUESTER (VM REQUESTS GENERATOR)

3.8 Framework modules: VM Requester (VM Requests Gen-
erator)

Figure 3.11: VM Requester console output

As explained before, this modules is only to be used when testing. Its purpose is to automat-
ically generate VM requests. In order to do so, it uses a poisson random variable, for generating
both the time interval between requests and the each of the requirements of the VM requests
(CPU, RAM, DISK and Network).

Also developed in python, this independent program communicates with the controller VM

request manager to send VM requests. It implements threads for receiving the status of the VM
request, so it can at the same time keep making VM requests. The status are printed as the VMs
get allocated.

38

3.9. USING THE FRAMEWORK

3.9 Using the framework

3.9.1 Emulator

Setting up the development environment

The mininet website provides a Ubuntu 12.04 LTS virtual machine image with mininet (and
all its dependencies) already installed and configured. By using this image in e.g Virtualbox [29]
there is no need to change the native OS. If additionally ssh and ftp access to the Mininet VM
are given, the administrator/network engineer can use its favorite text editor or IDE to change
the code and test it. For adding the framework to the Mininet VM, one just needs to copy the
framework folder inside the VM.

Testing new DC allocation policies

The controller part of framework can be ran like a normal POX module. Its name is ercs, and its
responsible for calling all the sub-modules inside the controller. When testing, the DEBUG log
level should be activated, as it prints more information into the console.

~/poxbetta/pox.py ercs log.level --DEBUG

For generating the desired topology, the configuration file provided under the same folder as
the Mininet script must be changed, and script must be ran.

~/poxbetta/ext/Topology\ Generator\ \(MN\)/tpgeneratormn2.0.py

Finally, the VM requests are generated by running the following command,

python ~/poxbetta/ext/VM\ Requests\ Generator/vmrequesterpoisson.py {args}

The list of arguments comprises the controller socket IP and port, the VM request rate and
the VM requirements.

39

3.9. USING THE FRAMEWORK

In figure 3.12 is a print-screen of all the components running.

Figure 3.12: Using the emulation environment. Top left: MN Topology Generator; Bottom left:
VM Requests Generator; Right: Controller

40

3.9. USING THE FRAMEWORK

3.9.2 Real Environment

Setting up the real environment

The real environment was assembled using real PCs for both the servers and the switches.
For the servers XCP 1.6 was used has the virtualization platform, and for the OF switches Open

VSwitch - OF 1.0 complaint, except for the ones that had NetFPGA cards3.

The implemented architecture is shown in figure 3.13.

Figure 3.13: Architecture of the real environment

Since OF separates the data plane from the control plane, two separate networks are required.
Thus, a non OF switch was added connecting the controller with all the OF switches an the
servers. For simplicity reasons, the laptop in the figure3.13, is simultaneously the gateway, the
OF controller and the WEB Platform.

The specifications of the equipment used is shown below.

∙ 2 x Servers

– Intel Xeon CPU 3075@2.66Ghz

– 4 GB Ram

– 900 GB HD

– NIC Intel 82566DM-2 Gigabit Network Connection

3The NetFPGA is an open source hardware and software platform that is able to act as an OF 1.0 compliant
switch

41

3.9. USING THE FRAMEWORK

– NIC Intel 82541GI Gigabit Network Connection

∙ 2 x Edge Switches and 2 x Aggregation Switches

– AMD Phenom 9650 Quad-Core 1.16Ghz

– 450 GB HD

– 4 GiB RAM

– 2 x NIC Intel 82571EB Gigabit Ethernet Controller

– NIC Realtek Semiconductor RTL8111/8168B Pci Express Gigabit Ethernet Con-
troller

∙ 1 x Core Switch

– Intel Core i7 CPU 860 2.8Ghz x 8

– 4 GiB Ram

– 450 GB HD

– NIC Realtek Semiconductor RTL8111/8168B Pci Express Gigabit Ethernet Con-
troller

– NetFPGA 4 ports Gigabit Ethernet

∙ 1 x Laptop (Gateway/Controller/WEB Platform)

– 1 Intel Core i5 2430M - 2.4Ghz x 4

– 8 GB RAM

– 500 GB HD

– 1 NIC Qualcomm Atheros AR8151 v2.0 Gigabit Ethernet

– 1 NIC Intel Corporation Centrino Wireless-N 100

– 1 NIC ASIX AX88772A USB 2.0 Fast Ethernet Network Adapter

For enabling OF on the network interfaces of the non NetFPGA cards, a script was used.
Although this configuration changes according to the network interfaces and their quantity, an
example of the script can be found in appendix G. As for the NetFPGAs another script was also
necessary, but this one for programming into the netFPGA the correct OF 1.0 Switches (appendix
H).

42

3.9. USING THE FRAMEWORK

Some problems where encountered while configuring the environment, namely: understand-
ing why the controller was not able to connect the switches. Solved by creating a parallel network
for the OF control plane; and network interfaces that were not detecting the network cable. Some
network interfaces do not negotiate the link speed, so when some 100mbps NICs were connected
to 1gbps NICs, they were not working. Solved by only connecting interfaces with the same link
speed;

In figure 3.14, a photo of the real environment is shown.

Figure 3.14: Photo of the testing environment. Table: under the monitor - 2 servers; cube com-
puter - aggregation and edge switches; laptop - DC gateway, controller and WEB Platform;
Under the table: core switch

43

3.10. FRAMEWORK EXTENSIONS

3.10 Framework extensions

Framework extensions were though to allow a wider range of experiments and to show that
important subjects are been taken into consideration. QoS and VM migration were the two
chosen, one from the network side and the other from the IT resources. Although both of the
topics have been addressed, only QoS have been implemented.

3.10.1 Enabling QoS

State of art: QoS in Openflow

The OF protocol as been evolving to provide support for QoS. However, as they argue that
will bring extra complexity [4], until version 1.3.1 (latest) they only added support for simple
queuing mechanisms. Version 1.0 started by bringing to queues minimum guaranteed rate but
queue configuration was still done outside the OF protocol. Later, in version 1.2, maximum rate
was also included.

Although this features are available most research efforts focus on QoS approaches to OF
using, among other techniques, dynamic routing and are oriented for either streaming [30] [31]
or multimedia [32].

Regarding mininet and its OF switches implementation, the latest version is 2.0 and contains
Open VSwitch driver 1.3.4, which fully supports OF 1.0. More recent versions of OF can be
integrated by upgrading the version of Open VSwitch, however, they are still experimental and
may not include all the features provided in the protocol specification.

QoS in the framework

As the framework aims for providing the administrators/network engineers the tools for de-
veloping and testing their logic, it is their responsibility to develop QoS techniques/algorithms
similar to the ones shown previously, while the framework should limit itself to help with the
interaction with the OF supported QoS features and their expected usage in the cloud DC.

44

3.10. FRAMEWORK EXTENSIONS

However, as an experiment, we went for a different perspective on how QoS is used. It
was implemented traffic differentiation for giving different type of user, different types of QoE.
Instead of following the traffic classes, it was created classes of users/VM types (e.g. free users
vs gold users; VoIP server vs web server vs etc), where each queue corresponds to a class.

Bringing QoS into the framework implied making changes in all the main modules, mostly
because it is associated with the requests, and, as said before, the current implementation of
queues in OF switches must be done manually. The following modules where modified:

∙ Mininet Environment – Added to Topology Generator a method for creating for each port
in each switch, the number of desired queues (classes) and their corresponding percentage
of the whole bandwidth. It also takes into consideration the different link’s bandwidth.
Dpctl was the tool used for creating the queues and tc for setting the minimum rate.

∙ VM Requests Generator – Attached to VM Requests the type of class. The type of the
VM request is chosen by the already existing poisson random variable.

∙ Controller

– VM Request Manager – Changed requests parsing and events thrown to include
type of class.

– Rules – Created new methods for installing the rules that will send the flows to the
specific queues. The main difference for the previous method was the action used:
”openflowlib.ofp_action_enqueue(port = switch_port, queue_id = queue_type))”, which
included not only the port where the packets should be forwarded, but also the queue.

– VM Allocation Manager – This was modified just for performing tests (this is were
the desired logic would be implemented).Changed algorithms to allocate each VM
type to a corresponding servers. This helps checking if the tests work, since the OF
protocol does not have statistics for queues, only for ports.

Figure 3.15 shows a representation of the mininet topology and how it was possible to test
the QoS solution. It started by creating the shown topology and setting the links bandwidth
equal for edge-to-server links and edge-to-aggregation links (so the bandwidth would have to be
disputed and it was possible to see the queues in action). By allocating two VMs of different
types into two servers that share the same edge switch, and by setting their IO requirements to
the maximum bandwidth capacity of the edge-to-aggregation link that they share (first green link
counting from the bottom), it should be possible to see the class with more "minimum rate" have

45

3.10. FRAMEWORK EXTENSIONS

at least the bandwidth corresponding to its class. The minimum rate configuration for the classes
was 70%-30%.

Unfortunately, by analyzing the ratios of the blue and red links, it was not possible to see
any differentiation. Both servers got half of the available bandwidth - an output that was not
expected.

Figure 3.15: QoS - Mininet testing environment

A closer look to the article published online by the Openflow group [4], showed that the
ENQUEUE action was not supported yet, but that the queues could still be created and the
flows could still be mapped to the queues by using the SET_TOS and SET_VLAN_PCP OF
parameters. As in their example they did not use any of these parameters, and the rules installed

Figure 3.16: QoS - Example of installed rules. Taken from [4]

on the switches used the enqueue action (figure 3.16), the current implementation was misled.

Note: They have been contacted regarding how to reproduce such experiment, but no answer

as been given yet.

46

3.10. FRAMEWORK EXTENSIONS

3.10.2 Enabling Virtual Machine migration

State of art: Virtual Machine migration

VM migration is mostly handled by the hypervisors, which depending on the type of migra-
tion (live or not) take into consideration more or less requirements. Research have been focus on
helping making this tasks faster, simpler and without affecting the normal functioning of the DC.

More specifically, Stage A. et al. in [33] discuss the management of bandwidth allocation
while migrating VMs and also the assignment of priority to VM migration. They also propose
an architecture design for DC.

Taking a step further, Boughzala, B. et al. [34] used OF for supporting inter-domain VM
migration. A study on how long rules take to be installed is made, and scalability is taken into
consideration (usage of multiple OF controller, each with a specific OF domain). However it
does not focus on helping VM migrations, only at allowing inter DCN migration.

By using OF rules to assist the Xen-based VM migration, Pedro S. Pisa et al [35], were able to
have zero downtime. They also support WAN migration without packet loss due to the bilateral
rule installation.

At last, Mishra, M. et al. in [36], present an overview of the VM migration techniques
and how to use them to obtain dynamic resource management. They point out the important
characteristics of cloud-based DCs (Making resources available on demand, flexible resource
provisioning and fine-grained metering), classify the resource management actions into types
(server consolidation, load balancing and hotspot mitigation) and which heuristics are adopted
(for each action) for answering when, which VM and where to migrate.

Virtual Machine migration in the framework

Aiming for providing full featured and generic access and control of the VM migration (being
it live or not), a modified approach to the techniques previously presented was taken.

Although server consolidation and load balancing are the most used actions for resource
management, they both fit in the same category - keeping DC policy. Specially if we take into
consideration the goal of the framework, it makes sense not to limit the resource management

47

3.10. FRAMEWORK EXTENSIONS

actions, but instead provide a generic way of keeping the DC policy, independently in what it is
based (it might be server consolidation, but its up to the administrator/network engineer to define
it).

Hotspot Mitigation may also be split into server or network hotspot, which are quite different
and have different ways of being solved.

Further more, since it is important to provide full access to DC, another question must be
added – which is the path chosen for VM migration.

For this to be possible, a few additions should be made to the controller:

∙ Collect and save statistics from the servers.

∙ Add VM migration manager sub-module to User-defined Logic.

– When to migrate – Methods where it is defined how hotspots occurrence, for both
network or server, are detected (or expected occurrence, so reactive and proactive
VM migration are possible). Also a method for analyzing the current DC occupation
(network and servers) and if it is not according to the defined policy (or combination
of policies) start a VM migration process.

– Which VMs to migrate – Place for defining which VMs should be migrated.

– Where to migrate – Define where the VMs should be migrated.

– Which path to do the migration – Choose which path each migration should take.

48

3.10. FRAMEWORK EXTENSIONS

Although all the above should be defined by the administrator/network engineer, it would be
an advantage if it was possible to automatically manage the VMs so the logic defined for the allo-
cation was kept over time. Meaning that, as time passes and VMs get allocated and deallocated,
the way they are spread through the servers might not be the one which was previously defined.
E.g. lets assume the best fit (server consolidation) algorithm is implemented and 2 servers were
full with VM allocations (6/6). If, after a while, half of the VMs in each server expire, instead of
having just a server with all the VMs, we have two servers with half their capacity used (the best
fit policy is no longer present) – table 3.1.

Server 1 Server 2
When VMs were allocated 6/6 6/6
After some of them expired 3/6 3/6

What it should be if DC policy was kept (BF) 6/6 0/6

Table 3.1: DC servers occupation example. (VMs allocated / server VM allocation capacity)

Having that in mind, and aiming for a way to keep the DC VM organization over the time
independently of the defined allocation policy, the following algorithm 1 was developed.

49

3.10. FRAMEWORK EXTENSIONS

Algorithm 1 Keep DC policy
1: %retrieve the server list
2: 𝑠𝑒𝑟𝑣𝑒𝑟_𝑙𝑖𝑠𝑡← 𝑔𝑒𝑡𝑆𝑒𝑟𝑣𝑒𝑟𝐿𝑖𝑠𝑡()
3: %retrieve server from the server list
4: 𝑠𝑒𝑟𝑣𝑒𝑟 ← 𝑔𝑒𝑡𝑆𝑒𝑟𝑣𝑒𝑟𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑠𝑒𝑟𝑣𝑒𝑟_𝑙𝑖𝑠𝑡)
5: while 𝑠𝑒𝑟𝑣𝑒𝑟 ̸= 𝑛𝑢𝑙𝑙 do
6: %retrieve the VM list
7: 𝑣𝑚_𝑙𝑖𝑠𝑡← 𝑔𝑒𝑡𝑉 𝑚𝐿𝑖𝑠𝑡(𝑠𝑒𝑟𝑣𝑒𝑟)
8: %retrieve vm from the VM list
9: 𝑣𝑚← 𝑔𝑒𝑡𝑉 𝑚𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑣𝑚_𝑙𝑖𝑠𝑡)

10: while 𝑣𝑚 ̸= 𝑛𝑢𝑙𝑙 do
11: %pretend to subtract the vm requirements to the server in which is allocated
12: 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑉 𝑚𝑇𝑜𝐷𝐶(𝑣𝑚)
13: %run the user-defined policy to get the place where the vm would be allocated
14: 𝑛𝑒𝑤_𝑠𝑒𝑟𝑣𝑒𝑟 ← 𝑢𝑠𝑒𝑟𝐷𝑒𝑓𝑖𝑛𝑒𝑑𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑙𝑖𝑐𝑦(𝑣𝑚)
15: if 𝑠𝑒𝑟𝑣𝑒𝑟 ̸= 𝑛𝑒𝑤_𝑠𝑒𝑟𝑣𝑒𝑟 then
16: %get the migration path for this vm
17: 𝑣𝑚_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑡ℎ← 𝑔𝑒𝑡𝑉 𝑚𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑎𝑡ℎ(𝑠𝑒𝑟𝑣𝑒𝑟, 𝑛𝑒𝑤_𝑠𝑒𝑟𝑣𝑒𝑟)
18: %start the vm migration
19: 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑉 𝑀(𝑣𝑚, 𝑠𝑒𝑟𝑣𝑒𝑟, 𝑛𝑒𝑤_𝑠𝑒𝑟𝑣𝑒𝑟, 𝑣𝑚_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑝𝑎𝑡ℎ)
20: end if
21: %Remove this vm from the list
22: 𝑣𝑚_𝑙𝑖𝑠𝑡← 𝑟𝑒𝑚𝑜𝑣𝑒𝑉 𝑚𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑣𝑚_𝑙𝑖𝑠𝑡, 𝑣𝑚)
23: %retrieve other vm from the VM list
24: 𝑣𝑚← 𝑔𝑒𝑡𝑉 𝑚𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑣𝑚_𝑙𝑖𝑠𝑡)
25: end while
26: %Remove this server from the list
27: 𝑠𝑒𝑟𝑣𝑒𝑟_𝑙𝑖𝑠𝑡← 𝑟𝑒𝑚𝑜𝑣𝑒𝑆𝑒𝑟𝑣𝑒𝑟𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑠𝑒𝑟𝑣𝑒𝑟_𝑙𝑖𝑠𝑡, 𝑠𝑒𝑟𝑣𝑒𝑟)
28: %retrieve other server from the server list
29: 𝑠𝑒𝑟𝑣𝑒𝑟 ← 𝑔𝑒𝑡𝑆𝑒𝑟𝑣𝑒𝑟𝐹𝑟𝑜𝑚𝐿𝑖𝑠𝑡(𝑠𝑒𝑟𝑣𝑒𝑟_𝑙𝑖𝑠𝑡)
30: end while

The algorithm consists in, going to each server and each of its VMs and subtracting the
VM requirements to the DC server in which it is allocated(so apparently the VM has not been
allocated) and after run the user-defined VM allocation policy to see if it would change place. If
so, the path for migration is calculated, and the VM migration process starts.

For simplicity purpose, the algorithm took only into consideration the servers, but as it fol-
lows the same logic, the VM network path and other vm related aspects could also be included.

The algorithm as at least N complexity, but this varies as it must be multiplied by the com-
plexity of the user-defined VM allocation algorithm and correspondent VM migration path cal-

50

3.10. FRAMEWORK EXTENSIONS

culation.

For analyzing the algorithms behaviour, two test were made using BF and WF.

Note: For the sake of simplicity, 3 servers where taken into consideration with 3 possible VM

allocations, and all with the same requirements. The number of allocated VMs considered for

the start of the algorithm was randomly generated (this set of numbers represents the state of the

DC in a given time and results from the dynamics between the VM allocations and expirations).

VM Allocation Policies
Best Fit Worst Fit

Number of Virtual Machines Number of Virtual Machines
Iteration Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

Start 0 3 3 0 3 3
1 0 2 4 1 2 3
2 0 1 5 2 1 3
3 0 0 6 2 1 3
4 0 0 6 2 2 2
5 0 0 6 2 2 2
6 0 0 6 2 2 2

Table 3.2: Keep DC policy algorithm - Best Fit vs Worst Fit

Although it is a very basic example, as can be seen in table 3.2, the algorithm successfully re-
covered the DC policy. On both cases, after the 3rd iteration, no more migration were performed,
however, as the algorithm runs through all the VMs, all 6 iterations were made.

Although BF and WF do not, by far, represent all the types of VM allocation policies, they
are a good starting point for the validation of the algorithm. Further test should be made to ensure
the algorithms correctness. Assessing the efficiency and effective gain in the framework and real
DC is yet to be made, but it is a point to be addressed in a near future.

51

Chapter 4

Validation and tests

4.1 Framework Validation

Understanding the impact on the DC network infrastructure of well–known VM allocation
policies represents the first step for finding more and more optimized solutions. The main con-
cern was to validate the framework by analyzing the behaviour of the system under common
situations, in order to compare the obtained results with the theoretical ones.

For this reason in the user-defined logic part of the controller, it was firstly implemented Best
Fit (BF), then Worst Fit (WF). The BF algorithm chooses the server with the smallest available
resources that still suits the requirements. On the other hand WF chooses the one with the most
available resources. Therefore, it is expected that as each request comes, using a BF policy, all
the VMs should be allocated in one single host until it is able to fulfill the requirements. Then
a new host will be selected, and so on until all the hosts have no more free space. In the second
case (i.e., WF policy), the VMs should be firstly equally spread through all the hosts.

The DC topology was configured with 1 outside host, 2 core switches, 4 aggregation switches,
8 edge switches, and 16 hosts (i.e., 2 per edge). Each host was configured to be able to allocate
up to 3 VM, for sake of simplicity (and to easily understand the results), and all the requests
equal in terms of requirements (i.e., CPU, RAM, amount of disk space and bandwidth). It was
defined the host (server) link ratio as the amount of traffic received per host (server) against the
link speed set on the DC initialization phase. The DC was also configured in order to saturate
the host link when three different VMs have been allocated.

52

4.1. FRAMEWORK VALIDATION

Figure 4.1: The environment

Figure 4.1 shows an high–level vision of the proposed environment. Starting from the frame-
work, few lines of code were necessary to implement the allocation policy, since it provides all
the necessary APIs to make sure that the controller can interact with the VM Requester, Traffic
Generator and the DC switches. Every time the controller receives a new VM allocation request
(i.e., generated by the VM requester according to the DC configuration) it installs the proper
rules on the switches (optionally it can ask for switches statistics – even periodically). Once this
process is completed, the controller informs the VM requester about the result of the allocation
process and the traffic generation starts.

53

4.1. FRAMEWORK VALIDATION

Figure 4.2: WF vs BF

Figure 4.2 shows the first host link ratio (link which connect the host to the edge switch) over
the time. Using a BF allocation policy, once a VM has been allocated in a host, all the following
VMs are allocated in the same host until no more could be allocated (e.g., useful for energy
saving). Having a new VM allocation request per second, after three seconds the first host link
reaches the saturation. Using the WF policy instead, the VMs should be firstly equally spread
through all the hosts. In fact, being 16 the DC hosts, and having just 1 request per second, the
first host link saturate at the 33–th second.

54

4.2. USECASE: HYBRID VM ALLOCATION POLICY

4.2 Usecase: Hybrid VM Allocation policy

For demonstrating the potential of combining the network and it resources management,
and for showing that the framework is able to help doing it, the algorithms developed in [3]
were implemented and tested. The algorithms logic as already been explained previously on
subsection 3.6.7.

The results presented in the emulation part of [3] were generated using this framework.

” b) Emulation results We tested our prototype directly on Mininet starting from
a 3- Tier DC network topology. We compared the switches utilization over the time
with respect to the two joint it and network resources selection algorithms described
in Section IV. Emulating a whole DC on Mininet by using a single machine requires
too many HW resources. For this reason, we set-up a light DC environment where
only a small number of switches was actually involved (i.e, 2 core switches, 8 ag-
gregation switches and 16 edge switches) and where the link capacity between them
was considerably scaled (i.e., from 1 Mbps to 10 Mbps). In order to emulate the
system behaviour we needed two more elements:

∙ an agent in charge of actually perform the VM allocation requests;

∙ background traffic.

The former is a script able to contact the OFVN controller asking for a VM with
a given amount of CPU and traffic peak rate .VM allocation requests are generated
according to a Poisson process whose inter-arrival time is exponentially distributed
with an average 1/𝜆 = 1s. We generated background traffic from a virtual host
directly connected to the two Core switches. Finally, we set the mean value of the
VM holding time to 85 minutes.

Figures 18, 19 and 20 shows the mean switches utilization using the Server-
driven algorithm. While the WF policy tries to spread as much as possible the load
all over the switches the other two policies reveals to be less fair. For this reason,
FF and BF policies could be mainly used when the energy saving is one of the main
target of the system. In fact, such a non linear distribution in the switch selection
process could be exploited to turn off some of the most unused switches.

55

4.2. USECASE: HYBRID VM ALLOCATION POLICY

56

4.3. PERFORMANCE EVALUATION

Figure 23 Core Switches Average Utilization – Network-Driven Algorithm Fig-
ures 21, 22 and 23 shows the mean switches utilization using the Network-driven
algorithm. In this case, it is worth highlighting a lower number of switches that are
highly loaded. In fact, choosing the network path for first lead to privilege some
switches with respect to others. Again, such policy is preferable when the energy
saving is one of the main target of the system. ” Adami, D. et al [3]

4.3 Performance Evaluation

It was evaluated the actual performance of the proposed framework through a variety of
experiments using a PC equipped with an Intel i5 3GHz and 8GB of DD3 RAM (i.e., from now
on it will be called Host-PC). The first tests have been carried out to inspect the impact of the
amount of generated traffic, the DC topology size and the number of gateways on the server link
ratio (from now on it will be called outside hosts to the gateways and hosts to the servers). Firstly,
it was generated a static topology (i.e, 2 outside hosts, 2 core switches, 4 aggregation switches,
8 edge switches, 8 hosts), then started up measuring the host link ratio increasing the generated
traffic per host.

As shown in figure 4.3 it was possible to generate up to few Mbps of traffic per host. Then
the host link ratio decreases as the generated traffic grows. It is worth pointing out that such
limitation does not affect any kind of DC performance tests made with the framework, because
the link speed can be scaled as much as wanted during the DC initialization phase, reaching every
time 100% of host link ratio.

In order to test the impact of the DC topology size on the host link ratio the amount of
the generated aggregated traffic was kept constant while exponentially increasing the number of
switches and hosts. The same testing topology was used.

On DC initialization phase, the link speed was configured in order to fully saturate the host
links.

The results in figure 4.4 show that regardless of the hosts number, the host link ratio remains
constant. This means that as long as the total amount of generated traffic per host and the links
speed can guarantee the link saturation, the system can scale indefinitely, being the only limits
the Mininet itself, or the controller.

57

4.3. PERFORMANCE EVALUATION

Figure 4.3: Average Host link Ratio vs per Host Generated Traffic

Figure 4.4: Average Host Link Ratio vs number of Hosts

58

4.3. PERFORMANCE EVALUATION

Finally it was investigated the relationship between the number of hosts connected to just one
outside host and the average link ratio.

Figure 4.5: Average Host Link Ratio vs number of Hosts per Outside Host

Figure 4.5 shows that a maximum of 8 hosts can be managed by just one outside host (i.e.,
the host link speed is set in order to have a link saturation). Such a result gives to the user
an important constraint that should be used during the DC configuration phase. It is important
to point out that this limitation is native of the Mininet environment and it is not due to our
framework.

The second tests have been carried out to inspect the impact of both the amount of generated
traffic and the DC topology size on the amount of memory the Host-PC needs.

59

4.3. PERFORMANCE EVALUATION

Figure 4.6: Host-PC Memory Utilization vs per Host Traffic Generated

Figure 4.7: Host-PC Memory Utilization vs number of Hosts

Figure 4.6 shows that the memory utilization does not depend on the amount of generated
traffic for each host. On the other hand, as shown in figure 4.7, as the topology size grows, the
memory usage also grows in the same proportion, which allows to conclude that it scales linearly.

60

Chapter 5

Conclusions

In this thesis, it was presented a novel SDN Cloud DC framework, built on top of Mininet
and POX, that allows the DC administrator/network engineer to evaluate performances of their
OF cloud DC controllers. The framework addresses several issues in testing such controllers pro-
viding some useful APIs (i.e., topology discovery, traffic generation, DC configuration and VM
request). This work has been validated showing one use–case where two different well–known
VMs scheduling algorithms were implemented. Some of its potentials have also been demon-
strated by implementing and testing VM hybrid policies. Framework scalability and stability
were also evaluated increasing both the number of emulated hosts and the DC links load.

Openflow has been catching companies attention and gaining a lot of importance is a recent
technology, however, as a new technology, a lot of features that usually can be seen on any router
are still missing, which ends up limiting the features the framework makes available (e.g regard-
ing QoS). Also, as a new technology, the existing controllers do not provide a lot of support, and
solutions for encountered errors are not easily found or not found at all. For overcoming this
errors, sometimes a deep knowledge of how the controller works is required.

A similar problem was faced when integrating XEN, as the documentation is very poor, and
few examples are available. This leads to conclude that even opensource projects that have
success tend to neglect documentation.

Aiming to make the framework a more complete and mature solution, work is still in progress.

61

5.1. MAIN CONTRIBUTIONS

5.1 Main contributions

As a direct result of the work developed in this thesis, a contribution to the paper Virtualization-

aware Network Control Strategies exploiting OpenFlow in Cloud Data Centers [3] emulation
results was made.

Additionally, a paper focused only on the framework was created Datacenter in a box: test

your SDN cloud-datacenter controller at home and accepted into the EWSDN2013(Second Eu-
ropean Workshop on Software Defined Networks) [37].

5.2 Future work

Although all the proposed objectives were accomplished, improvements can always be done,
a few are already planned.

One would be to be able to access XEN through their API, since it would bring much more
control and information over the servers and virtual machines. The other would be to greatly
improve the WEB Platform by not only giving the DC clients more information about their VMs
and pricing tags but also to create a space for the DC administrator/network engineer to control
and monitor the whole infrastructure.

Additionally, tests should be extended to compare the behaviour of different algorithms using
the framework and a DC of significant size. Deeper tests and analysis of results regarding each
of the framework features and comparing with dedicated OpenFlow controllers would allow to
see possible bottlenecks and possibly extend the frameworks scalability.

62

Appendix A

Mininet Environment – Configuration File

Filename: conf.ini

[TopologySwitches]

#Integer value

#core_no - number of core switches

#agg_no - number of aggregation switches

#edge_no - number of edge switches

core_no = 4

agg_no = 8

edge_no = 16

[TopologyHosts]

#Integer value

#out_no - number of outside hosts

#host_no - number of hosts per edge switch

#host_detectacle_time - time in seconds in which the hosts send

packets

so the host_tracker can detect them (0 == always detectable)

out_no = 4

host_no = 2

host_detectable_time = 2

[TopologyLinks]

#Integer value

63

#edgetoagglinkno - number of links that connect each edge switch to

aggregation switches

#aggtocorelinkno - number of links that connect each aggregation

switch

to core switches

#coretooutlinkno - number of links that connect each core switch to

outside hosts

edgetoagglinkno = 2

aggtocorelinkno = 2

coretooutlinkno = 1

[SwitchBandwidth]

#Float value - mbps

#out_bw - bandwitdh for links that connect outside hosts

#core_bw - bandwitdh for links that connect core switches

#agg_bw - bandwitdh for links that connect aggregation switches

#edge_bw - bandwitdh for links that connect edge switches

out_bw = 4

core_bw = 4

agg_bw = 2

edge_bw = 1

[SwitchQueues]

#Float value

#queue_no - number of queues per switch and per port

#queue_number = bandwidth ratio - queue minimum bandwidth

(please use lower numbers for higher priority so the controller can

assign premium users to this queues)

queue_no = 2

queue_bw1 = 0.8

queue_bw2 = 0.2

[Traffic]

#Iperf configuration

#Amount of udp traffic against tcp one

#starting port for iperf to run on each host

udp_ratio = 0.5

64

iperf_port = 16000

65

Appendix B

Mininet - DC Topology Generator
Algorithm

def generateTopology(self):

#Out self.myhosts (self.myhosts that pretend to be the next

thing after the gateway)

for h in range(self.out_no):

host_id = ’o%i’%

(len(self.myhosts)+len(self.outside_hosts)+1)

Each outside host gets 30%/n of system CPU

host = self.addHost(host_id)

#host = self.addHost(host_id,

cpu=0.5/((self.host_no*self.edge_no)+(self.out_no)))

#set the ip of the outside host so it doesn’t belong to the

same subnet as the other hosts

#TODO:net.getNodeByName(host).setIp("10.10.0."+str(h))

#initialize link record

self.alllinks[host_id] = list()

#add host records

self.outside_hosts.append(host_id)

66

#Core Switches

for s in range(self.core_no):

switch_id =

’c%i’%(len(self.core_switches)+len(self.agg_switches)+len(self.edge_switches)+1)

switch = self.addSwitch(switch_id)

#Add edge switch records

self.core_switches.append(switch_id)

#initialize link records

if not self.alllinks.has_key(switch_id):

self.alllinks[switch_id] = list()

#add link to out

switch_link_no = 0

self.outside_hosts.sort()

for host_id in self.outside_hosts :

if

len(self.alllinks[host_id])<((self.core_no*self.core_out_link_no)/self.out_no):

self.addLink(switch_id, host_id, bw=self.out_bw)

#add link to record

self.alllinks[host_id].append(switch_id)

self.alllinks[switch_id].append(host_id)

switch_link_no += 1

if switch_link_no >= self.core_out_link_no:

break

#Agg Switches

for s in range(self.agg_no):

switch_id =

’a%i’%(len(self.core_switches)+len(self.agg_switches)+len(self.edge_switches)+1)

switch = self.addSwitch(switch_id)

67

#Add edge switch records

self.agg_switches.append(switch_id)

#initialize link records

if not self.alllinks.has_key(switch_id):

self.alllinks[switch_id] = list()

#TODO: add link to core

switch_link_no = 0

self.core_switches.sort()

for core_id in self.core_switches :

if

len(self.alllinks[core_id])-self.core_out_link_no<((self.agg_no*self.agg_core_link_no)/self.core_no):

self.addLink(switch_id, core_id, bw = self.core_bw)

#add link to record

self.alllinks[core_id].append(switch_id)

self.alllinks[switch_id].append(core_id)

switch_link_no += 1

if switch_link_no >= self.agg_core_link_no:

break

#Edge Switches

for s in range(self.edge_no):

switch_id =

’e%i’%(len(self.core_switches)+len(self.agg_switches)+len(self.edge_switches)+1)

switch = self.addSwitch(switch_id)

#Add edge switch records

self.edge_switches.append(switch_id)

#initialize link records

if not self.alllinks.has_key(switch_id):

self.alllinks[switch_id] = list()

#TODO: add link to agg

68

switch_link_no = 0

self.agg_switches.sort()

for agg_id in self.agg_switches :

if

len(self.alllinks[agg_id])-self.agg_core_link_no<((self.edge_no*self.edge_agg_link_no)/self.agg_no):

mylink = self.addLink(switch_id, agg_id, bw =

self.agg_bw)

#add link to record

self.alllinks[agg_id].append(switch_id)

self.alllinks[switch_id].append(agg_id)

switch_link_no += 1

if switch_link_no >= self.edge_agg_link_no:

break

#add self.myhosts and connection to self.myhosts

for h in range(self.host_no):

host_id = ’h%i’ %

(len(self.myhosts)+len(self.outside_hosts)+1)

Each host gets 50%/n of system CPU

host = self.addHost(host_id)

#host = self.addHost(host_id,

cpu=0.5/((self.host_no*self.edge_no)+(self.out_no)))

#add link 100 Mbps, 5ms delay, 10% loss

#self.addLink(host_id, switch_id, bw=10, delay=’5ms’,

loss=10, max_queue_size=1000, use_htb=True

self.addLink(host_id, switch_id, bw = self.edge_bw)

#initialize link records

if not self.alllinks.has_key(host_id):

self.alllinks[host_id] = list()

#add link records

self.alllinks[host_id].append(switch_id)

self.alllinks[switch_id].append(host_id)

69

#add host records

self.myhosts.append(host_id)

#Add hosts until you can separate the host network and the

outside host network

len(self.myhosts)+len(self.outside_hosts)+1

70

Appendix C

Sniffex.c Modified

*

* sniffex.c

*

* Sniffer example of TCP/IP packet capture using libpcap.

*

* Version 0.1.1 (2005-07-05)

* Copyright (c) 2005 The Tcpdump Group

*

* This software is intended to be used as a practical example and

* demonstration of the libpcap library; available at:

* http://www.tcpdump.org/

*

**

*

* This software is a modification of Tim Carstens’ "sniffer.c"

* demonstration source code, released as follows:

*

* sniffer.c

* Copyright (c) 2002 Tim Carstens

* 2002-01-07

* Demonstration of using libpcap

* timcarst -at- yahoo -dot- com

*

* "sniffer.c" is distributed under these terms:

71

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above

copyright

* notice, this list of conditions and the following disclaimer in

the

* documentation and/or other materials provided with the

distribution.

* 4. The name "Tim Carstens" may not be used to endorse or promote

* products derived from this software without prior written

permission

*

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS

IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE

LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF

* SUCH DAMAGE.

72

* <end of "sniffer.c" terms>

*

* This software, "sniffex.c", is a derivative work of "sniffer.c"

and is

* covered by the following terms:

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Because this is a derivative work, you must comply with the

"sniffer.c"

* terms reproduced above.

* 2. Redistributions of source code must retain the Tcpdump Group

copyright

* notice at the top of this source file, this list of conditions

and the

* following disclaimer.

* 3. Redistributions in binary form must reproduce the above

copyright

* notice, this list of conditions and the following disclaimer in

the

* documentation and/or other materials provided with the

distribution.

* 4. The names "tcpdump" or "libpcap" may not be used to endorse or

promote

* products derived from this software without prior written

permission.

*

* THERE IS ABSOLUTELY NO WARRANTY FOR THIS PROGRAM.

* BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY

* FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT

WHEN

* OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES

* PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED

73

* OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS

* TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD

THE

* PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING,

* REPAIR OR CORRECTION.

*

* IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING

* WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

* REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES,

* INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING

* OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED

* TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES

SUSTAINED BY

* YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH

ANY OTHER

* PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF

THE

* POSSIBILITY OF SUCH DAMAGES.

* <end of "sniffex.c" terms>

*

**

*

* Below is an excerpt from an email from Guy Harris on the

tcpdump-workers

* mail list when someone asked, "How do I get the length of the TCP

* payload?" Guy Harris’ slightly snipped response (edited by him to

* speak of the IPv4 header length and TCP data offset without

referring

* to bitfield structure members) is reproduced below:

74

*

* The Ethernet size is always 14 bytes.

*

* <snip>...</snip>

*

* In fact, you *MUST* assume the Ethernet header is 14 bytes, *and*,

if

* you’re using structures, you must use structures where the members

* always have the same size on all platforms, because the sizes of

the

* fields in Ethernet - and IP, and TCP, and... - headers are defined

by

* the protocol specification, not by the way a particular platform’s

C

* compiler works.)

*

* The IP header size, in bytes, is the value of the IP header length,

* as extracted from the "ip_vhl" field of "struct sniff_ip" with

* the "IP_HL()" macro, times 4 ("times 4" because it’s in units of

* 4-byte words). If that value is less than 20 - i.e., if the value

* extracted with "IP_HL()" is less than 5 - you have a malformed

* IP datagram.

*

* The TCP header size, in bytes, is the value of the TCP data offset,

* as extracted from the "th_offx2" field of "struct sniff_tcp" with

* the "TH_OFF()" macro, times 4 (for the same reason - 4-byte words).

* If that value is less than 20 - i.e., if the value extracted with

* "TH_OFF()" is less than 5 - you have a malformed TCP segment.

*

* So, to find the IP header in an Ethernet packet, look 14 bytes

after

* the beginning of the packet data. To find the TCP header, look

* "IP_HL(ip)*4" bytes after the beginning of the IP header. To find

the

* TCP payload, look "TH_OFF(tcp)*4" bytes after the beginning of the

TCP

* header.

75

*

* To find out how much payload there is:

*

* Take the IP *total* length field - "ip_len" in "struct sniff_ip"

* - and, first, check whether it’s less than "IP_HL(ip)*4" (after

* you’ve checked whether "IP_HL(ip)" is >= 5). If it is, you have

* a malformed IP datagram.

*

* Otherwise, subtract "IP_HL(ip)*4" from it; that gives you the

length

* of the TCP segment, including the TCP header. If that’s less than

* "TH_OFF(tcp)*4" (after you’ve checked whether "TH_OFF(tcp)" is >=

5),

* you have a malformed TCP segment.

*

* Otherwise, subtract "TH_OFF(tcp)*4" from it; that gives you the

* length of the TCP payload.

*

* Note that you also need to make sure that you don’t go past the end

* of the captured data in the packet - you might, for example, have a

* 15-byte Ethernet packet that claims to contain an IP datagram, but

if

* it’s 15 bytes, it has only one byte of Ethernet payload, which is

too

* small for an IP header. The length of the captured data is given in

* the "caplen" field in the "struct pcap_pkthdr"; it might be less

than

* the length of the packet, if you’re capturing with a snapshot

length

* other than a value >= the maximum packet size.

* <end of response>

*

**

*

* Example compiler command-line for GCC:

* gcc -Wall -o sniffex sniffex.c -lpcap

*

76

**

*

* Code Comments

*

* This section contains additional information and explanations

regarding

* comments in the source code. It serves as documentaion and

rationale

* for why the code is written as it is without hindering

readability, as it

* might if it were placed along with the actual code inline.

References in

* the code appear as footnote notation (e.g. [1]).

*

* 1. Ethernet headers are always exactly 14 bytes, so we define this

* explicitly with "#define". Since some compilers might pad

structures to a

* multiple of 4 bytes - some versions of GCC for ARM may do this -

* "sizeof (struct sniff_ethernet)" isn’t used.

*

* 2. Check the link-layer type of the device that’s being opened to

make

* sure it’s Ethernet, since that’s all we handle in this example.

Other

* link-layer types may have different length headers (see [1]).

*

* 3. This is the filter expression that tells libpcap which packets

we’re

* interested in (i.e. which packets to capture). Since this source

example

* focuses on IP and TCP, we use the expression "ip", so we know

we’ll only

* encounter IP packets. The capture filter syntax, along with some

* examples, is documented in the tcpdump man page under "expression."

* Below are a few simple examples:

*

* Expression Description

77

* ---------- -----------

* ip Capture all IP packets.

* tcp Capture only TCP packets.

* tcp port 80 Capture only TCP packets with a port equal to 80.

* ip host 10.1.2.3 Capture all IP packets to or from host 10.1.2.3.

*

**

*

*/

#define APP_NAME "sniffex"

#define APP_DESC "Sniffer example using libpcap"

#define APP_COPYRIGHT "Copyright (c) 2005 The Tcpdump Group"

#define APP_DISCLAIMER "THERE IS ABSOLUTELY NO WARRANTY FOR THIS

PROGRAM."

#include <pcap.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <ctype.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netinet/ip.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <signal.h>

#include <byteswap.h>

#include <math.h>

#include <errno.h>

#define min(a,b) ((a) < (b) ? (a) : (b))

#define SR_PACKET_DUMP_SIZE 1514

#define DEFAULT_IFACE "nf2c0"

78

/*Handle arguments*/

int c;

char *logfile = NULL;

char *interface = NULL;

char *filename = NULL;

pcap_dumper_t* file;

char *dev = NULL; /* capture device name */

pcap_t *handle; /* packet capture handle */

bpf_u_int32 mask; /* subnet mask */

bpf_u_int32 net; /* ip */

char errbuf[PCAP_ERRBUF_SIZE]; /* error buffer */

char ipSourceAddressString[16] = "";

char ipDestAddressString[16] = "";

/* default snap length (maximum bytes per packet to capture) */

#define SNAP_LEN 1518

/* ethernet headers are always exactly 14 bytes [1] */

#define SIZE_ETHERNET 14

/* Ethernet addresses are 6 bytes */

#define ETHER_ADDR_LEN 6

/* Ethernet header */

struct sniff_ethernet {

u_char ether_dhost[ETHER_ADDR_LEN]; /* destination host address

*/

u_char ether_shost[ETHER_ADDR_LEN]; /* source host address */

u_short ether_type; /* IP? ARP? RARP? etc */

};

/* IP header */

struct sniff_ip {

u_char ip_vhl; /* version << 4 | header length >> 2 */

79

u_char ip_tos; /* type of service */

u_short ip_len; /* total length */

u_short ip_id; /* identification */

u_short ip_off; /* fragment offset field */

#define IP_RF 0x8000 /* reserved fragment flag */

#define IP_DF 0x4000 /* dont fragment flag */

#define IP_MF 0x2000 /* more fragments flag */

#define IP_OFFMASK 0x1fff /* mask for fragmenting bits */

u_char ip_ttl; /* time to live */

u_char ip_p; /* protocol */

u_short ip_sum; /* checksum */

struct in_addr ip_src,ip_dst; /* source and dest address */

};

#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)

#define IP_V(ip) (((ip)->ip_vhl) >> 4)

/* TCP header */

typedef u_int tcp_seq;

struct sniff_tcp {

u_short th_sport; /* source port */

u_short th_dport; /* destination port */

tcp_seq th_seq; /* sequence number */

tcp_seq th_ack; /* acknowledgement number */

u_char th_offx2; /* data offset, rsvd */

#define TH_OFF(th) (((th)->th_offx2 & 0xf0) >> 4)

u_char th_flags;

#define TH_FIN 0x01

#define TH_SYN 0x02

#define TH_RST 0x04

#define TH_PUSH 0x08

#define TH_ACK 0x10

#define TH_URG 0x20

#define TH_ECE 0x40

#define TH_CWR 0x80

80

#define TH_FLAGS

(TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)

u_short th_win; /* window */

u_short th_sum; /* checksum */

u_short th_urp; /* urgent pointer */

};

void

print_payload(const u_char *payload, int len);

void

print_hex_ascii_line(const u_char *payload, int len, int offset);

void

print_app_banner(void);

void

print_app_usage(void);

/*

* app name/banner

*/

void

print_app_banner(void)

{

printf("%s - %s\n", APP_NAME, APP_DESC);

printf("%s\n", APP_COPYRIGHT);

printf("%s\n", APP_DISCLAIMER);

printf("\n");

return;

}

/*

* print help text

*/

81

void

print_app_usage(void)

{

printf("Usage: %s [interface]\n", APP_NAME);

printf("\n");

printf("Options:\n");

printf(" interface Listen on <interface> for packets.\n");

printf("\n");

return;

}

/*

* print data in rows of 16 bytes: offset hex ascii

*

* 00000 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 0d 0a GET /

HTTP/1.1..

*/

void

print_hex_ascii_line(const u_char *payload, int len, int offset)

{

int i;

int gap;

const u_char *ch;

/* offset */

printf("%05d ", offset);

/* hex */

ch = payload;

for(i = 0; i < len; i++) {

printf("%02x ", *ch);

ch++;

/* print extra space after 8th byte for visual aid */

if (i == 7)

82

printf(" ");

}

/* print space to handle line less than 8 bytes */

if (len < 8)

printf(" ");

/* fill hex gap with spaces if not full line */

if (len < 16) {

gap = 16 - len;

for (i = 0; i < gap; i++) {

printf(" ");

}

}

printf(" ");

/* ascii (if printable) */

ch = payload;

for(i = 0; i < len; i++) {

if (isprint(*ch))

printf("%c", *ch);

else

printf(".");

ch++;

}

printf("\n");

return;

}

/*

* print packet payload data (avoid printing binary data)

*/

void

print_payload(const u_char *payload, int len)

{

83

int len_rem = len;

int line_width = 16; /* number of bytes per line */

int line_len;

int offset = 0; /* zero-based offset counter */

const u_char *ch = payload;

if (len <= 0)

return;

/* data fits on one line */

if (len <= line_width) {

print_hex_ascii_line(ch, len, offset);

return;

}

/* data spans multiple lines */

for (;;) {

/* compute current line length */

line_len = line_width % len_rem;

/* print line */

print_hex_ascii_line(ch, line_len, offset);

/* compute total remaining */

len_rem = len_rem - line_len;

/* shift pointer to remaining bytes to print */

ch = ch + line_len;

/* add offset */

offset = offset + line_width;

/* check if we have line width chars or less */

if (len_rem <= line_width) {

/* print last line and get out */

print_hex_ascii_line(ch, len_rem, offset);

break;

}

}

return;

}

84

uint16_t do_cksum(uint16_t *addr, int len)

{

int nleft = len;

uint16_t *w = addr;

uint16_t answer;

uint32_t sum = 0;

/*

* Our algorithm is simple, using a 32 bit accumulator (sum),

* we add sequential 16 bit words to it, and at the end, fold

* back all the carry bits from the top 16 bits into the lower

* 16 bits.

*/

while (nleft > 1) {

sum += ntohs(*w++);

nleft -= 2;

}

/* mop up an odd byte, if necessary */

if (nleft == 1){

sum += *(reinterpret_cast<u_char *>(w));

}

/*

* add back carry outs from top 16 bits to low 16 bits

*/

sum = (sum >> 16) + (sum & 0xffff); /* add hi 16 to low 16 */

sum += (sum >> 16); /* add carry */

answer = ~sum; /* truncate to 16 bits */

return (answer);

}

void ex_programm(int sig){

pcap_dump_close(file);

(void)signal(SIGINT, SIG_DFL);

}

85

void pcap_spoof_ip(unsigned char* arg, const struct pcap_pkthdr *

pkt_hdr, unsigned char const* packet) {

struct pcap_pkthdr h;

int size;

int len;

int i;

int size_ip;

unsigned char s_octet[4] = {0,0,0,0};

unsigned char d_octet[4] = {0,0,0,0};

/* declare pointers to packet headers */

const struct sniff_ethernet *ethernet; /* The ethernet header [1] */

struct sniff_ip *ip; /* The IP header */

(void)signal(SIGINT,ex_programm);

/* Get info from packet header */

len = pkt_hdr->caplen;

size = min(SR_PACKET_DUMP_SIZE, len);

/* Copy packet */

unsigned char* packet_cpy;

packet_cpy = (unsigned char*) malloc(len);

memcpy(packet_cpy, packet, len);

ethernet = (const struct sniff_ethernet *)packet;

uint16_t ether_type = ntohs(ethernet->ether_type);

/* Remake IP Addresses on the copied packet */

if(ether_type == 0x0800)

ip = (struct sniff_ip*)(packet_cpy+SIZE_ETHERNET);

else if(ether_type == 0x8100)

ip = (struct sniff_ip*)(packet_cpy+SIZE_ETHERNET+4);

86

ip->ip_ttl = 14;

size_ip = IP_HL(ip)*4;

if (size_ip < 20) {

printf("* Invalid IP header length: %u bytes\n", size_ip);

return;

}

in_addr *new_s;

new_s = (in_addr*) malloc(sizeof(struct in_addr));

in_addr *new_d;

new_d = (in_addr*) malloc(sizeof(struct in_addr));

inet_aton(ipSourceAddressString, new_s);

ip->ip_src = *new_s;

inet_aton(ipDestAddressString, new_d);

ip->ip_dst = *new_d;

/* For Debug Purposes

ip->saddr = ntohl(new_saddr);

ip->daddr = ntohl(new_daddr);

for (i=0; i<4; i++)

s_octet[i] = (ip->saddr >>(i*8)) & 0xFF;

for (i=0; i<4; i++)

d_octet[i] = (ip->daddr >>(i*8)) & 0xFF;

printf("NEW source ip:

%d.%d.%d.%d\n",s_octet[3],s_octet[2],s_octet[1],s_octet[0]);

printf("NEW destination ip:

%d.%d.%d.%d\n",d_octet[3],d_octet[2],d_octet[1],d_octet[0]);

*/

87

/* Recalculate Checksum */

ip->ip_sum=0;

uint16_t new_cksm = 0;

if(ether_type == 0x0800)

new_cksm=do_cksum(reinterpret_cast<uint16_t*>(packet_cpy+SIZE_ETHERNET),sizeof(struct

sniff_ip));

else if(ether_type == 0x8100)

new_cksm=do_cksum(reinterpret_cast<uint16_t*>(packet_cpy+SIZE_ETHERNET+4),sizeof(struct

sniff_ip));

ip->ip_sum=htons(new_cksm);

/* Dump the packet */

//h.caplen = pkt_hdr->caplen;

//h.len = (size < SR_PACKET_DUMP_SIZE) ? size :

SR_PACKET_DUMP_SIZE;

pcap_dump((u_char*)file,pkt_hdr,packet_cpy);

//printf("New packet dumped\n");

}

int setup_live_capture(char *dev, pcap_t *handle, bpf_u_int32 net,

bpf_u_int32 mask, char *errbuf){

/* find a capture device if not specified on command-line */

dev = pcap_lookupdev(errbuf);

if (dev == NULL) {

fprintf(stderr, "Couldn’t find default device: %s\n",

errbuf);

exit(EXIT_FAILURE);

}

/* get network number and mask associated with capture device */

if (pcap_lookupnet(dev, &net, &mask, errbuf) == -1) {

fprintf(stderr, "Couldn’t get netmask for device %s: %s\n",

88

dev, errbuf);

net = 0;

mask = 0;

}

/* print capture info */

printf("Device: %s\n", dev);

/* open live capture device */

handle = pcap_open_live(dev, SNAP_LEN, 1, 1000, errbuf);

if (handle == NULL) {

fprintf(stderr, "Couldn’t open device %s: %s\n", dev, errbuf);

exit(EXIT_FAILURE);

}

/* make sure we’re capturing on an Ethernet device [2] */

if (pcap_datalink(handle) != DLT_EN10MB) {

fprintf(stderr, "%s is not an Ethernet\n", dev);

exit(EXIT_FAILURE);

}

}

int setup_filter(pcap_t* handle, bpf_u_int32 net, char* filter_exp,

struct bpf_program* fp){

/* compile the filter expression */

if (pcap_compile(handle, fp, filter_exp, 0, net) == -1) {

fprintf(stderr, "Couldn’t parse filter %s: %s\n",

filter_exp, pcap_geterr(handle));

exit(EXIT_FAILURE);

}

/* apply the compiled filter */

if (pcap_setfilter(handle, fp) == -1) {

fprintf(stderr, "Couldn’t install filter %s: %s\n",

filter_exp, pcap_geterr(handle));

exit(EXIT_FAILURE);

}

}

89

int main(int argc, char **argv)

{

char filter_exp[] = "ip"; /* filter expression [3] */

struct bpf_program fp; /* compiled filter program (expression) */

int num_packets = 10; /* number of packets to capture */

int s = 0 ;

int d = 0 ;

while ((c = getopt(argc, argv, "f:i:l:s:d:")) != EOF)

{

switch (c)

{

case ’f’:

filename = optarg;

break;

case ’i’:

interface = optarg;

break;

case ’l’:

logfile = optarg;

break;

case ’s’:

memcpy(ipSourceAddressString, optarg,

sizeof(ipSourceAddressString));

s++;

break;

case ’d’:

d++;

memcpy(ipDestAddressString, optarg,

sizeof(ipSourceAddressString));

break;

}

}

/*PRINT DISCLAIMER STUFF */

90

print_app_banner();

/* check for log file and capture device name or pacap filename on

command-line */

if (s == 0 || d == 0){

fprintf(stdout, "No Source IP or Dest IP indicated\n");

return -1;

}

if (!logfile){

fprintf(stdout, "No log file indicated, using default

(log.log)\n");

logfile = (char *)"log.log";

}

if (!interface)

if (!filename){

fprintf(stdout, "An interface or a pcap file must be entered

(use -i or -f, respectively)\n");

return -1;

}

else

{

/* set device name as interface name */

//dev = interface;

/* setup a live capture */

//setup_live_capture(dev, handle, net, mask, errbuf);

}

/* open offline capture file */

handle = pcap_open_offline(filename, errbuf);

if(handle == 0){

fprintf(stderr, "Couldn’t open pcap file %s: %s\n", filename,

errbuf);

exit(EXIT_FAILURE);

}

/* setup filter for capture/pcap packets */

91

//setup_filter(handle, net, filter_exp, &fp);

/* setup dump file */

file = pcap_dump_open(handle, logfile);

if(file == NULL){

printf("pcap_dump_open(): %s\n", errbuf);

exit(1);

}

/* now we can set our callback function */

pcap_loop(handle, -1, pcap_spoof_ip, NULL);

pcap_close(handle);

printf("\nPcap changed successfully.\n");

return 0;

}

92

Appendix D

clone_vms.sh

#!/bin/sh

Copyright (c) 2006-2007 XenSource, Inc.

#

Permission to use, copy, modify, and distribute this software for

any

purpose with or without fee is hereby granted, provided that the

above

copyright notice and this permission notice appear in all copies.

#

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL

WARRANTIES

WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE

FOR

ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES

WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN

AN

ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING

OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

93

Allow the path to the ’xe’ binary to be overridden by the XE

environment variable

if [-z "${XE}"]; then

XE=xe

fi

if [! -e "${HOME}/.xe"]; then

read -p "Server name: " SERVER

read -p "Username: " USERNAME

read -p "Password: " PASSWORD

XE="${XE} -s ${SERVER} -u ${USERNAME} -pw ${PASSWORD}"

fi

Check there’s a vm uuid parameter to the command

if [$# -ne 1]; then

echo "usage: $0 <vm_uuid_to_duplicate>"

exit 1

fi

vmuuid=$1

Check if there’s a VM by the uuid specified

${XE} vm-list params=uuid | grep -q " ${vmuuid}$"

if [$? -ne 0]; then

echo "error: no vm uuid \"${vmuuid}\" found"

exit 2

fi

Check the power state of the vm

name=$(${XE} vm-list uuid=${vmuuid} params=name-label --minimal)

state=$(${XE} vm-list uuid=${vmuuid} params=power-state --minimal)

wasrunning=0

If the VM state is running, we shutdown the vm first

if ["${state}" = "running"]; then

${XE} vm-shutdown uuid=${vmuuid}

${XE} event-wait class=vm power-state=halted uuid=${vmuuid}

wasrunning=1

94

fi

Clone the VM

newuuid=$(${XE} vm-clone uuid=${vmuuid} new-name-label=cloned_vm)

If the VM state was running before cloning, we start it again

along with the new VM.

if ["$wasrunning" -eq 1]; then

${XE} vm-start uuid=${vmuuid}

${XE} vm-start uuid=${newuuid}

fi

95

Appendix E

Dijkstra Algorithm in Python

from priodict.priodict import priorityDictionary

def Dijkstra(G,start,end=None):

D = {} # distace

P = {} # predecessors

Q = priorityDictionary()

Q[start] = 0

for v in Q:

D[v] = Q[v]

if v == end: break

for w in G[v]:

vwLength = D[v] + G[v][w]

if w in D:

if vwLength < D[w]:

raise ValueError

elif w not in Q or vwLength < Q[w]:

Q[w] = vwLength

P[w] = v

return (D,P)

96

def shortestPath(G,start,end):

D,P = Dijkstra(G,start,end)

Path = []

while 1:

Path.append(end)

if end == start: break

end = P[end]

Path.reverse()

return Path

97

Appendix F

Table creation script for MySQL database

--

-- Table structure for table ‘users‘

--

CREATE TABLE ‘users‘ (

‘id‘ int(11) NOT NULL auto_increment,

‘usr‘ varchar(32) collate utf8_unicode_ci NOT NULL default ’’,

‘pass‘ varchar(32) collate utf8_unicode_ci NOT NULL default ’’,

‘email‘ varchar(255) collate utf8_unicode_ci NOT NULL default ’’,

‘regIP‘ varchar(15) collate utf8_unicode_ci NOT NULL default ’’,

‘dt‘ datetime NOT NULL default ’0000-00-00 00:00:00’,

PRIMARY KEY (‘id‘),

UNIQUE KEY ‘usr‘ (‘usr‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE ‘vms‘ (

‘id‘ int(11) NOT NULL auto_increment,

‘usr_id‘ varchar(32) collate utf8_unicode_ci NOT NULL default ’’,

‘cpu‘ int(4) NOT NULL,

‘ram‘ int(4) NOT NULL,

‘disk‘ int(4) NOT NULL,

‘io‘ int(4) NOT NULL,

‘ipv4‘ int unsigned NOT NULL,

‘time‘ datetime NOT NULL default ’0000-00-00 00:00:00’,

98

‘dt‘ datetime NOT NULL default ’0000-00-00 00:00:00’,

‘active‘ tinyint(1) NOT NULL,

PRIMARY KEY (‘id‘),

FOREIGN KEY (‘usr_id‘) REFERENCES users(‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

CREATE TABLE ‘vm_groups‘ (

‘id‘ int(11) NOT NULL auto_increment,

‘group_id‘ int(10) NOT NULL,

‘vm_id‘ int unsigned NOT NULL,

PRIMARY KEY (‘id‘),

FOREIGN KEY (‘vm_id‘) REFERENCES vms(‘id‘)

) ENGINE=MyISAM DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

99

Appendix G

Script for enabling OpenVswitch on NICs

echo 1 > /proc/sys/net/ipv4/ip_forward

service network-manager stop

ifconfig eth0 192.168.2.5/24

#comment if you don’t want to load kernel module at the starting

point.

/sbin/rmmod bridge

insmod /home/openvswitch-1.9.0/datapath/linux/openvswitch.ko

ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \

--remote=db:Open_vSwitch,manager_options \

--private-key=db:SSL,private_key \

--certificate=db:SSL,certificate \

--bootstrap-ca-cert=db:SSL,ca_cert \

--pidfile --detach

ovs-vsctl --no-wait init

ovs-vswitchd --pidfile --detach

ovs-vsctl add-br switchpox1

ovs-vsctl set bridge switchpox1 datapath_type=netdev

#ovs-vsctl add-port switchpox1 eth0

ovs-vsctl add-port switchpox1 eth1

ovs-vsctl add-port switchpox1 eth3

100

ovs-vsctl add-port switchpox1 eth4

ovs-vsctl set-controller eth0 tcp:192.168.2.1:6633

ovs-vsctl list-ports switchpox1

101

Appendix H

Script for enabling NetFPGA

#caricare modulo kernel

#cd /root/netfpga/lib/C/kernel/

#insmod nf2.ko

#ifconfig eth0 192.168.0.2 netmask 255.255.255.0

#caricare la netfpga

/usr/local/netfpga/lib/scripts/cpci_reprogram/cpci_reprogram.pl --all

#cd /root/netfpga/bitfiles

#nf_download openflow_switch.bit

##QUESTO DA USARE

nf_download /root/nf2_top_par.bit

#settare in modalitÃ switch la netfpga

#la roba tra parentesi e per il vecchio openflow

#(cd /home/netlab/openflow/utilities

102

#./dpctl adddp nl:0

#ifconfig of0 hw ether 00:4E:46:32:43:01

#./dpctl addif nl:0 nf2c0

#./dpctl addif nl:0 nf2c1

#./dpctl addif nl:0 nf2c2

#./dpctl addif nl:0 nf2c3

#)

#/root/openflow/udatapath/ofdatapath --detach punix:/var/run/dp0 -d

004e46324302 -i nf2c0,nf2c1,nf2c2,nf2c3

/root/openflow/udatapath/ofdatapath --detach punix:/var/run/dp0 -d

0C0C00000002 -i eth0,eth1,nf2c0,nf2c1,nf2c2,nf2c3

#/root/openflow/udatapath/ofdatapath --detach punix:/var/run/dp0 -d

0C0C00000002 -i eth0,eth2

#/root/openflow/secchan/ofprotocol unix:/var/run/dp0

tcp:192.168.0.100:6633

#/root/openflow/secchan/ofprotocol unix:/var/run/dp0

tcp:10.216.176.4:6633

/root/openflow/secchan/ofprotocol unix:/var/run/dp0

tcp:192.168.2.1:6633

#/root/openflow/secchan/ofprotocol unix:/var/run/dp0

tcp:131.114.152.113:6633

#/root/openflow/secchan/ofprotocol unix:/var/run/dp0

tcp:131.114.53.73:6633

#./home/netlab/openflow/utilities/dpctl dump-flows unix:/var/run/dp0

103

Bibliography

[1] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang. Meridian: An sdn
platform for cloud network services. Communications Magazine, 2013.

[2] POX Home Page. http://ww.noxrepo.org.

[3] D. Adami, B. Martini, G. Antichi, S. Giordano, M. Gharbaoui, and P. Castoldi. Effective
resource control strategies using openflow in cloud data center. In International Symposium

on Integrated Network Management. IEEE/IFIP, 2013.

[4] OpenFlow Slicing Page. http://archive.openflow.org/wk/index.php/Slicing.

[5] K. Bilal, S.U. Khan, J. Kolodziej, L. Zhang, K. Hayat, S.A. Madani, N. Min-Allah,
L. Wang, and D. Chen. A comparative study of data center network architectures. In
European Conference on Modelling and Simulation, 2012.

[6] AWS Home Page. http://aws.amazon.com.

[7] O. Baldonado, SDN, OpenFlow, and next-generation data center networks.
http://www.eetimes.com/design/embedded/43715 43/SDN–OpenFlow–and-next-

generation-data-center-networks.

[8] J. Oltsik and B. Laliberte. Ibm and nec bring sdn/openflow to enterprise data center net-
works.

[9] OpenFlow Home Page. http://www.openflow.org.

[10] Open Networking Foundation Home Page. https://www.opennetworking.org.

[11] N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, and R. Buyya. Cloudsim: A
toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and Experience, 41(1):23–50, 2011.

104

BIBLIOGRAPHY

[12] K. Garg and R. Buyya. Networkcloudsim: Modelling parallel applications in cloud simu-
lations. In Internation Conference on Utility and Cloud Computing. IEEE, 2011.

[13] A. Kumar, N. Siddhartha, A. Soni, and K. Dubey.
http://search.iiit.ac.in/uploads/cloudsim.pdf.

[14] J.D. Ellithorpe, Z. Tan, and R.H. Katz. Internet-in-a-box: Emulating datacenter network
architectures using fpga’s. In Design Automation Conference. ACM/IEEE, 2009.

[15] Openstack Home Page. http://www.openstack.org.

[16] IBM Smart Cloud Provisioning Home Page. http://www-

01.ibm.com/software/tivoli/products/smartcloud-provisioning.

[17] A. Nunez, J.L. Vazquez-Poletti, A.C. Caminero, G.G. Castane, J. Carretero, and I.M.
Llorente. icancloud: A flexible and scalable cloud infrastructure simulator. Journal of

Grid Computing, 2012.

[18] D. Kliazovich, P. Bouvry, and S.U. Khan. Greencloud: A packet-level simulator of energy-
aware cloud computing data centers. In Globecom. IEEE, 2010.

[19] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer. Groudsim: An event-based
simulation framework for computational grids and clouds. Euro-Par 2010 Parallel Pro-

cessing Workshops, 2011.

[20] Mininet Home Page. https://mininet.github.com.

[21] NOX Home Page. http://ww.noxrepo.org.

[22] Beacon Home Page. https://openflow.stanford.edu/display/Beacon/Home.

[23] TCPReplay Home Page. http://tcpreplay.synfin.net/.

[24] Sniffex (Example of pcap Library Usage). http://www.tcpdump.org/sniffex.c.

[25] Iperf Home Page. http://iperf.sourceforge.net/.

[26] A. Pescapé A. Dainotti, A. Botta. A tool for the generation of realistic network workload
for emerging networking scenarios. Computer Networks (Elsevier), 2012, Volume 56, Issue

15, pp 3531-3547, 2012.

105

BIBLIOGRAPHY

[27] MySQL Home Page. http://www.mysql.com/.

[28] JSON Home Page. http://www.json.org/.

[29] Virtualbox Home Page. https://www.virtualbox.org/.

[30] S. Civanlar, M. Parlakisik, A.M. Tekalp, B. Gorkemli, B. Kaytaz, and E. Onem. A qos-
enabled openflow environment for scalable video streaming. GLOBECOM Workshops (GC

Wkshps), 2010 IEEE, 2010.

[31] IEEE Seyhan Civanlar Hilmi E. Egilmez, Student Member and IEEE A. Murat Tekalp, Fel-
low. An optimization framework for qos-enabled adaptive video streaming over openflow
networks. Multimedia, IEEE Transactions on (Volume:15 , Issue: 3), April 2013.

[32] H.E. Egilmez, Turkey Koc Univ., Istanbul, S.T. Dane, K.T. Bagci, and A.M. Tekalp. Open-
qos: An openflow controller design for multimedia delivery with end-to-end quality of
service over software-defined networks. Signal and Information Processing Association

Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, 2012.

[33] Alexander Stage and Thomas Setzer. Network-aware migration control and scheduling of
differentiated virtual machine workloads. In CLOUD 09 Proceedings of the 2009 ICSE

Workshop on Software Engineering Challenges of Cloud Computing, 2009.

[34] B. Boughzala, R. Ben Ali, M. Lemay, Y. Lemieux, and O. Cherkaoui. Openflow sup-
porting inter-domain virtual machine migration. In Wireless and Optical Communications

Networks (WOCN), 2011 Eighth International Conference, 2010.

[35] Pedro S. Pisa, Natalia C. Fernandes, Hugo E. T. Carvalho, Marcelo D. D. Moreira, Miguel
Elias M. Campista, LuÃs Henrique M. K. Costa, and Otto Carlos M. B. Duarte. Openflow
and xen-based virtual network migration. In Third IFIP TC 6 International Conference,

WCITD 2010 and IFIP TC 6 International Conference, NF 2010, 2010.

[36] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo. Dynamic resource management using virtual
machine migrations. In Communications Magazine, IEEE 𝑉 𝑜𝑙𝑢𝑚𝑒 50, 𝐼𝑠𝑠𝑢𝑒 9, 2012.

[37] EWSDN Home Page. http://www.ewsdn.eu/.

[38] NS3. http://www.nsnam.org.

[39] Login system. http://tutorialzine.com/2009/10/cool-login-system-php-jquery/.

106

BIBLIOGRAPHY

[40] J. Matia, E. Jacob, D. Sanchez, and Y. Demchenko. An openflow based network virtualiza-
tion framework for the cloud. In International Conference on Coud Computing Technology

and Science. IEEE, 2011.

[41] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic
flow scheduling for data center networks. In NSDI. ACM, 2010.

[42] R. Raghavendra, J. Lobo, and K.W. Lee. Dynamic graph query primitives for sdn-based
cloud network management. In HotSDN. ACM, 2012.

[43] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying nox to the datacenter. In
HotNets. ACM, 2009.

[44] Clark C., Fraser K., Hand S., Gorm Hansen J., Jul E., et al. Live migration of virtual
machines. In NSDI05 Proceedings of the 2nd conference on Symposium on Networked

Systems Design and Implementation - Volume 2, 2005.

107

	Acknowledgments
	Abstract
	Resumo
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation and objectives
	Thesis layout

	State of art
	Available solutions
	CloudSim
	FPGA Emulation
	Meridian
	ICanCloud, GreenCloud and GroudSim
	Mininet

	Openflow Controllers
	NOX
	POX
	Beacon

	The Framework
	Requirements
	Chosen technologies
	Framework architecture
	Directory structure
	Framework modules: Mininet Environment
	Topology Generator
	Traffic Generator
	Configuration file

	Framework modules: Controller
	Topology (Discovery Module)
	Rules (OF Rules Handler)
	Stats (Statistics Handler)
	VM Request Handler
	Network Traffic Requester
	VMM - Virtual Machines Manager
	User Defined Logic
	Other POX Modules Used
	Configuration File

	Framework modules: Web Platform
	Features and usage
	Design

	Framework modules: VM Requester (VM Requests Generator)
	Using the framework
	Emulator
	Real Environment

	Framework extensions
	Enabling QoS
	Enabling Virtual Machine migration

	Validation and tests
	Framework Validation
	Usecase: Hybrid VM Allocation policy
	Performance Evaluation

	Conclusions
	Main contributions
	Future work

	Mininet Environment – Configuration File
	Mininet - DC Topology Generator Algorithm
	Sniffex.c Modified
	clone_vms.sh
	Dijkstra Algorithm in Python
	Table creation script for MySQL database
	Script for enabling OpenVswitch on NICs
	Script for enabling NetFPGA
	Bibliography

