
Universidade do Minho

Escola de Engenharia

André António dos Santos da Silva

Directed Evolution of Model-Driven

Spreadsheets

Setembro 2013

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

André António dos Santos da Silva

Directed Evolution of Model-Driven

Spreadsheets

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Doutor João Alexandre Saraiva

Doutor Jácome Miguel Cunha

Setembro de 2013

Acknowledgments

First of all, I would like to thank my supervisor and co-supervisor Prof. Dr. João Saraiva
and Dr. Jácome Cunha, respectively, for granting me the opportunity to work on such an
interesting subject matter, and for the huge support given to me during the duration of
this thesis.

I would also like to extend my gratitude to Dr. João Paulo Fernandes for very valuable
input regarding many aspects of the research.

My appreciation also goes to everyone that contributed to this thesis, be it a small or big
contribution, especially to Jorge Mendes for all the work related to ClassSheet to automata
conversion, integration with MDSheet, and for all the invaluable advice related to automata
atomic operations.

Lastly I would like to give a very special thank you to the people that encouraged me in
the last two years, and my family, especially my mother, Ana Santos.

This work is financed (or partially financed) by FEDER Funds through the Programa
Operacional Factores de Competitvidade - COMPETE and by National Funds through
FCT - Fundação para a Ciência e a Tecnologia under FCOMP-01-0124- FEDER-010048
and FCOMP-01-0124-FEDER-020532 projects.

iii

iv

Abstract

Directed Evolution of Model-Driven Spreadsheets

Spreadsheets are among the most used programming languages today. The easy to use
and the intuitive nature of the visual interface makes them a preferred programming tool
for any kind of individual or organization. The flexibility they provide to organize data as
users need to is one of the reasons that makes them so popular. However, this flexibility
also makes them very error-prone.

In order to improve spreadsheet quality and reduce the number of errors, software engi-
neering practices were introduced, namely object oriented and model-driven techniques.
These techniques enabled the specification of the spreadsheet business logic, which offers
the possibility to better structure data, while at the same time narrowing the range of types
of errors made by user input. While these developments had a huge impact, spreadsheet
evolution is still an inherently human process, which is in itself error-prone.

In many real world applications of spreadsheets, they are used to store and disseminate
data between different systems. Different systems can use different data formats, this leads
to the need to change and adapt the data produced by a source system so that it complies
to the data format consumed by a target system. Usually in these cases, both the initial
and final data models are known in advance.

The objective of this thesis is to present techniques that enable data evolution to be made
automatically, using model-driven spreadsheets.

Keywords: Spreadsheet; Model-Driven; Error; Automatic; Evolution.

v

vi

Resumo

Evolução Dirigida de Folhas de Cálculo Orientadas por Modelos

Folhas de cálculo são um dos paradigmas de programação mais utilizados actualmente. A
sua facilidade de utilização e reduzida curva de aprendizagem torna-as numa das ferramen-
tas de programação mais utilizadas diariamente por milhões de indivíduos e organizações.
A flexibilidade concedida pelas folhas de cálculo para organizar dados consoante a prefe-
rência dos utilizadores é uma das razões que as torna tão populares. Esta flexibilidade
tem, contudo, uma grande desvantagem: torna-as muito propícias a erros.

De forma a elevar a qualidade, e reduzir o número de erros em folhas de cálculo, foram
introduzidas práticas já estabelecidas em engenharia de software, nomeadamente técnicas
de desenvolvimento orientado a objectos e desenvolvimento dirigido por modelos. Com
estas técnicas passou a ser possível especificar a lógica de negócio de folhas de cálculo, o
que proporciona a estruturação dos dados nelas contidos e, ao mesmo tempo, limita o tipo
de erros passíveis de serem cometidos pelos utilizadores. Embora estes desenvolvimentos
tenham tido um grande impacto, a evolução de folhas de cálculo continua a ser um processo
inerentemente humano, o que pode, ainda assim, originar erros.

Em muitos casos reais de utilização de folhas de cálculo, elas são utilizadas para armaze-
nar e disseminar informação entre diferentes sistemas. Diferentes sistemas podem utilizar
diferentes formatos de dados, isto leva à necessidade de adaptar os dados produzidos por
um sistema para que sejam compatíveis com um determinado sistema de destino. Nor-
malmente nestes casos, ambos os modelos de dados são conhecidos à partida. O objectivo
desta tese é apresentar um conjunto de técnicas que permitam fazer esta evolução de forma
totalmente automática, utilizando para isso folhas de cálculo dirgidas por modelos.

vii

viii

Contents

1 Introduction 1
1.1 Spreadsheets . 3
1.2 Motivation . 5
1.3 Model-Driven Spreadsheet Engineering . 7
1.4 Model-Driven Evolution . 8
1.5 Research Questions . 9
1.6 Document Structure . 10

2 Model-Driven Spreadsheets 11
2.1 Templates . 11
2.2 ClassSheets . 13
2.3 Relational ClassSheets to UML+OCL . 16
2.4 Embedding of ClassSheet Models Within Spreadsheets 18
2.5 Bidirectional Transformation of Spreadsheets 19
2.6 Summary . 21

3 Operations Over ClassSheet Automata 23
3.1 ClassSheets as Automata . 25
3.2 Basic Operations over Automata . 31
3.3 ClassSheet Automata Operations . 34
3.4 Summary . 44

4 Directed Evolution of Model-Driven Spreadsheets 47
4.1 Model-Driven ClassSheet Evolution . 47
4.2 Summary . 59

5 Directed Evolution of Model-Driven Spreadsheets in Practice 61
5.1 Integration with MDSheet . 61

ix

5.2 Evolution Scenarios . 62
5.3 Limitations . 68
5.4 Summary . 68

6 Conclusion 69
6.1 Answers To The Research Questions . 70
6.2 Future Work . 70

References 73

x

Acronyms

MDSD Model-Driven Spreadsheet Development

MDSE Model-Driven Spreadsheet Engineering

OOD Object-Oriented Development

MDD Model-Driven Development

MDSD Model-Driven Software Development

MDE Model-Driven Engineering

CSV Comma-Separated Values

XML Extensible Markup Language

DFA Deterministic Finite Automata

UML Unified Modeling Language

USE UML-based Specification Environment

OCL Object Constraint Language

BA Banco Alimentar de Braga

EuSpRiG European Spreadsheets Risks Interest Group

xi

xii

List of Figures

1.1 Month-by-month wage account Tablet . 1
1.2 Binomial Distribution Table . 2
1.3 Economic Growth Table . 3
1.4 Computer Hash Table . 3
1.5 10-Column Worksheet . 4
1.6 Visicalc Spreadsheet System . 5
1.7 ClassSheet Example Using The ClassSheet Editor 8
1.8 Data Extraction Flow . 9

2.1 A template Model . 12
2.2 Template Instance . 12
2.3 Income ClassSheet And Corresponding UML Class Diagram 14
2.4 ClassSheet Syntax . 14
2.5 ClassSheet Tiling Rules . 16
2.6 ClassSheet Tiling Structures . 16
2.7 ClassSheet Extensions . 17
2.8 Flights UML class diagram . 18
2.9 Embedded ClassSheets . 19
2.10 Airline Company Spreadsheet Instance . 19
2.11 Bidirectional Transformations . 20
2.12 Model Operarions . 20

3.1 Item Class Expressed As An Automaton 24
3.2 Evolution Process . 24
3.3 Budget ClassSheet . 25
3.4 Textual Representation of Budget ClassSheet 25
3.5 Pilots ClassSheet . 27

xiii

3.6 Pilots ClassSheet Automaton . 29
3.7 Planes ClassSheet . 29
3.8 Planes ClassSheet Automaton . 30
3.9 Generic Automaton . 32
3.10 Generic Automaton With A New Transition 32
3.11 Generic Automaton With Edited Transition 33
3.12 Generic Automaton With New State . 33
3.13 Generic Automaton With A State Removed 33
3.14 ClassSheet Atomic Operations As A Sequence Of Basic Operations 34
3.15 Embedded Item ClassSheet . 35
3.16 Embedded Item ClassSheet Automaton . 35
3.17 Add Individual Cell Before Column x . 37
3.18 Add Column Before 1 . 37
3.19 Add Individual Cell After column x . 38
3.20 Add Column After 1 . 39
3.21 Cell Removed From Item ClassSheet . 40
3.22 Item ClassSheet Row 3 Structure . 41
3.23 Item ClassSheet After Add Row Before 3 41
3.24 Item ClassSheet Row 4 Structure . 42
3.25 Item ClassSheet After Add Row After 4 Operation 43
3.26 Item ClassSheet After Set Cell (1,2) item_value=0 45

4.1 Quantified Atomic Operations . 48
4.2 Source And Target Models, With Equal Transitions, Before Evaluation . . 51
4.3 Source And Target Models, With Equal Transitions, After Evaluation . . . 52
4.4 Target Automaton Has One More Column, Before Evaluation 52
4.5 Target Automaton With One More Column, After Evaluation 52
4.6 Source Automaton In Last Row And Target Automaton With One More

Column, Before Evaluation . 53
4.7 Source Automaton With Added Column 53
4.8 Source Automaton With One More Column, Before Evaluation 53
4.9 Automata Synchronized, After Evaluation 54
4.10 Source Automaton With One More Column, Before Evaluation 54
4.11 Source Automaton Without Last Column, After Evaluation 54

xiv

4.12 Target Automaton Has At Least One More Row Than Source Automaton,
Before evaluation . 55

4.13 Source Automaton Has One More Row, After evaluation 55
4.14 Source Automaton Has One More Row, Before evaluation 55
4.15 Source Automaton With Deleted Row, After evaluation 56
4.16 Final Model Has New Row Preceding A Class 56
4.17 Target Model After Row Preceding Class Is Inserted 57
4.18 Source Model Has Row Preceding Class . 57
4.19 Source Model After Deleted Row Preceding Class 57
4.20 Cells with different contents . 58

5.1 Pilots ClassSheet Model And Instance Before Evolution 62
5.2 Pilots Target Model . 62
5.3 Evolve To Control . 63
5.4 Pilots ClassSheet Model And Instance After Evolution 63
5.5 Planes ClassSheet Model And Instance Before Evolution 63
5.6 Planes Target Model . 64
5.7 Planes ClassSheet Model And Instance After Evolution 64
5.8 Budget Source Model Before Evolution . 64
5.9 Budget Source Instance Before Evolution 64
5.10 Budget Target Model . 65
5.11 Budget Source Model After Evolution . 65
5.12 Budget Source Instance After Evolution 65
5.13 Banco Alimentar De Braga ClassSheet Model 66
5.14 Banco Alimentar De Braga ClassSheet Instance 66
5.15 Banco Alimentar New UML Class Diagram 67
5.16 Banco Alimentar New ClassSheet Model 67
5.17 Banco Alimentar New ClassSheet Instance 67
5.18 Evolution In Real World . 67

xv

xvi

List of Algorithms

1 ClassSheet to DFA Conversion Function 31
2 Transformations Sequences Algorithm . 50
2 Transformations Sequences Algorithm (continued) 51

xvii

xviii

Chapter 1

Introduction

For the last 4500 years tables have been used to structure information and as a major
computational aid. Although they are very simplistic in nature, they are one of the most
important mathematical tools used in scientific advancement. Its uses range from rep-
resentation of mathematical functions to summarizing empirical values [Campbell-Kelly,
2007a].

Figure 1.1: Month-by-month wage account for the Sumerian temple of Enlil at Nippur, for the
year 1295 BC [Robson, 2007].

One of the first civilizations to use tables was the Sumerian. Sumerians employed tables to
keep track of livestock and wage account. Figure 1.1 shows a tablet utilized to keep record

1

of monthly salaries of temple personnel for the Sumerian temple of Enlil [Robson, 2007].
The tablet data layout is very similar to current days data organization: column headings
at the top of the table indicate month names and each row exhibits monthly wages for a
person, with subtotals each six months and a yearly total. The last row indicates names
and professions [Campbell-Kelly, 2007b].

Since the Sumerian civilization, tables have been used in many other applications, from
statistic (Figure 1.2), to economy (Figure 1.3) and, more recently, as the development of
dynamic table structures in computer science (Figure 1.4). These show that there is still
importance in display information in a tabular way.

Figure 1.2: Binomial distribution table 1.

What makes tables so prevalent is that they allow to easily select, categorize, check, calcu-
late and extract data. Data can be presented in such a way that it can be systematically
processed.

Tables can be used to solve problems in almost every sphere of knowledge, the one we focus
on this thesis is related to spreadsheets.

1http://sites.stat.psu.edu/~mga/401/tables/binom.pdf. (19-09-2013)
2http://www.ibrc.indiana.edu/ibr/2006/outlook/international.html. (19-09-2013)
3http://www.cs.grinnell.edu/~walker/courses/153.sp02/lab-hashtables-inheritance.html.

(19-09-2013)

2

http://sites.stat.psu.edu/~mga/401/tables/binom.pdf
http://www.ibrc.indiana.edu/ibr/2006/outlook/international.html
http://www.cs.grinnell.edu/~walker/courses/153.sp02/lab-hashtables-inheritance.html

Figure 1.3: Projected world economic growth for 2006 2.

Figure 1.4: Storage of names and numbers in a Hash Table 3.

1.1 Spreadsheets

The terms spreadsheet and worksheet originated in accounting even before electronic
spreadsheets existed. Both had the same meaning, but the term worksheet was mostly
used until 1970 [Campbell-Kelly, 2007b]. These worksheets, as shown in Figure 1.5, were

3

standardized 6 or 10 column pre-printed paper sheets used by accountants to construct
trial balances. After 1970 the term spreadsheet became more widely used [Campbell-Kelly,
2007b].

Figure 1.5: 10-Column Worksheet 4.

While spreadsheets were very used on paper, they were not used electronically due to the
lack of software solutions. During the 1960s and 1970s most financial software bundles
were developed to run on mainframe computers and time-sharing systems. Two of the
main problems of these software solutions were that they were extremely expensive and
required a technical expertise to operate [Campbell-Kelly, 2007b]. All that changed in 1979
when VisiCalc was released for the Apple II system [Bricklin]. The affordable price and the
easy to use tabular interface made it a tremendous success, mainly because it did not need
any programming knowledge to be operated. VisiCalc was the first spreadsheet software
to include a textual interface composed by cells, as seen in Figure 1.6, and established
how the graphical interface of every other spreadsheet software that came after it would
be like. Other important aspect included the fast recalculation of values every time a cell
was changed, as opposed to previous solutions that took hours to compute results under
the same circumstances [Campbell-Kelly, 2007b].

In 1984, Lotus 1-2-3 was released with major improvements, which included graphics gener-
ation, better performance, and user friendly interface, which led it to dethrone VisiCalc as
the number one spreadsheet system. It was only in 1990, when Microsoft Windows gained
significant market share, that Lotus 1-2-3 lost the position as the most sold spreadsheet
software. At that time only Microsoft Excel6 was compatible with Windows, which raised
sales by a huge amount making it the market leading spreadsheet system [Campbell-Kelly,
2007b]. A lot has changed since then: new forms of collaborative editing of spreadsheets

4http://www.scoop.it/t/basic-accounting-concepts/p/716103071/
what-is-a-10-column-worksheet-in-accounting-click-here. (23-09-2013)

5http://pt.wikipedia.org/wiki/VisiCalc. (23-09-2013)
6http://office.microsoft.com/en-us/excel/. (27-10-2013)

4

http://www.scoop.it/t/basic-accounting-concepts/p/716103071/what-is-a-10-column-worksheet-in-accounting-click-here
http://www.scoop.it/t/basic-accounting-concepts/p/716103071/what-is-a-10-column-worksheet-in-accounting-click-here
http://pt.wikipedia.org/wiki/VisiCalc
http://office.microsoft.com/en-us/excel/

Figure 1.6: VisiCalc spreadsheet system on an Apple II 5.

over the Internet were developed, like Microsoft Office 3657, and Google Drive8, and free-
ware alternatives were released, like LibreOffice Calc9 and OpenOffice Calc10, but Excel
still holds the position as the most sold spreadsheet system today.

In spite of the huge evolution over the years, electronic spreadsheet systems still preserve
the same basic interface established by VisiCalc. The data is presented in a tabular-like
layout composed by cells, which can be individually referenced by a coordinate. Each
coordinate is composed by a column, which is identified by a letter, and a row, which is
identified by a number, for instance C3. Each cell can contain values or formulas, and a
formula can reference a cell by the respective coordinate, or a range of cells , for instance,
SUM(B3:B10).

1.2 Motivation

Spreadsheets are extensively used today in development of business applications. Estimates
say that every year are produced tens of millions of spreadsheets worldwide [Panko and
Ordway, 2008]. Besides being used to display data in a tabular-like interface they are also
used collect information from different systems and to adapt data from one system to the
format required by another [Cunha et al., 2012a].

7www.microsoft.com/office365. (27-10-2013)
8https://drive.google.com/. (27-10-2013)
9http://www.libreoffice.org/features/calc. (27-10-2013)

10http://www.openoffice.org/product/calc.html. (27-10-2013)

5

www.microsoft.com/office365
https://drive.google.com/
http://www.libreoffice.org/features/calc
http://www.openoffice.org/product/calc.html

The fact that any person can exploit the full potential of a spreadsheet environment with-
out any programming knowledge makes them a very attractive solution. Operating spread-
sheets is very simple in nature: the structuring of data in a flexible two-dimensional tabular
layout; basic operations like inserting and deleting of rows and columns; and direct data
manipulation. These characteristics make it very intuitive and with a very soft learning
curve. This flexibility, however, is also one of the main drawbacks of using this kind of
environments: operators can insert data as they see fit but nothing prevents them from
making mistakes. The lack of strict rules to define how a correct spreadsheet should be
structured makes them very error-prone.

Some studies state that the vast majority, some of them going as high as 90%, of spread-
sheets contain errors [Panko and Ordway, 2008; Panko, 2008; Powell and Baker, 2011;
EuSpRiG]. What is more disturbing is that some of these spreadsheets are used in critical
systems and can cause serious social, economic and political impact, as in the following
examples:

• A missing minus sign in a spreadsheet formula caused the announced dividends to be
distributed to Fidelity’s Magellan fund shareholders to be off by $2.6 billion. What
was being accounted as $1.3 billion of net capital gain was actually a net capital loss
[Catless, 1995].

• Canadian power company TransAlta lost $24M caused by a simple copy and paste
operation on a spreadsheet [Register, 2003].

• University of Toledo, in the United States, loses $2.4M in projected revenue caused
by a mistake in a spreadsheet formula [Blade, 2004].

• Australian party, Country Liberal Party, was forced to admit, on the eve of an elec-
tion, that their reported financial costs had a difference of tens of millions of dollars
and attributed it to a spreadsheet error committed by their accounting firm [ABC,
2005]. The next day the main opposing party, the Australian Labor Party, won the
election with 52.5% of the vote, while the Country Liberal Party fell behind with
35.3%.

• In the London 2012 Olympics, 10,000 tickets were oversold to the synchronized swim-
ming sessions. The error was caused when a member of the staff typed the value
20,000, instead of 10,000 tickets remaining into a spreadsheet [Telegraph, 2012].

6

European Spreadsheets Risks Interest Group (EuSpRiG)11 website has many other exam-
ples were the economic impact can range from a few thousands to billions of dollars.

1.3 Model-Driven Spreadsheet Engineering

The need to reduce errors in spreadsheets has been acknowledged long ago by the scientific
community, leding to the development of techniques and tools that endow end users with
a Model-Driven Spreadsheet Development (MDSD) methodology. One of the first forms of
model-driven spreadsheets was proposed in [Ireson-Paine, 1997]. Using this method, models
were defined using a textual language that would be later processed by a compiler. The
result was the generation of spreadsheets conforming to the specified model. This method
had some limitations, as it only worked with spreadsheet models with database-like tables.

In [Erwig et al., 2005] the tool Gencel was introduced: it takes a model of a spreadsheet,
dubbed template, and generates a spreadsheet conforming to that model. The consistency
between model and instance is enforced by restricting the editing operations allowed to
be carried out over the spreadsheet data. New operations, like add a set of columns with
default cell values, are also added to help reduce errors. This method has some drawbacks:
if an end user intends to update a model to reflect changes in a business model, this will
break conformity with the instances.

In 2005 ViTSL [Abraham et al., 2005] was presented , along with a ViTSL editor. This
allows to visually specify spreadsheets templates that can be passed to Gencel to generate
the corresponding instances. This still has the same disadvantage of breaking conformity
between model and instances when the model is updated.

Also in 2005 ClassSheets [Engels and Erwig, 2005] were proposed. This method is based on
templates and uses concepts from Object-Oriented Development (OOD) and Model-Driven
Development (MDD), namely classes and attributes. Using a Model-Driven Software De-
velopment (MDSD) method, an end user can specify a spreadsheet business model, as seen
in Figure 1.7, and using a ClassSheet editor similar to Gencel, generate the spreadsheet
that holds the actual data. The same limitations of the previous cases are still present.

11http://www.eusprig.org/horror-stories.htm. (19-09-2013)

7

http://www.eusprig.org/horror-stories.htm

Figure 1.7: ClassSheet example using the ClassSheet editor, taken from [Engels and Erwig,
2005].

A method to derive models from spreadsheets, based in Model-Driven Engineering (MDE)
concepts, was presented in [Hermans et al., 2010]. This allows to take advantage of patterns,
usually found in spreadsheets, to generate the corresponding class diagrams.

Techniques for spreadsheet improvement were proposed in [Cunha, 2011], which allows,
but is not limited, to migrate and refactor spreadsheets. This led to the development of
HaExcel, a tool that, in some cases, improves spreadsheet productivity and reduces errors
on spreadsheets, as concluded from the results of a study with end users [Beckwith et al.,
2011a,b].

The HaExcel framework was later used to support ClassSheets evolution [Cunha et al.,
2011], this is realized as a transformation system, with operations over models and in-
stances, using the 2LT framework [Cunha et al., 2006; Cunha and Visser, 2007].

In [Cunha et al., 2012b] MDSheet was introduced: this tool allows for model specification in
the same spreadsheet environment used for instance manipulation. It supports bidirectional
transformations of models and instances, meaning that when a model changes, the instances
are instantly co-evolved, and when an instance changes the model co-evolves automatically.

1.4 Model-Driven Evolution

Large software companies, banks, insurance corporations, and other enterprise class busi-
nesses rely on spreadsheets to store, disseminate, and adapt data produced by a system to
be processed by a different one. As a result, spreadsheets are part of the decision-making
process for these companies, which means that they must be continually updated to reflect
changes on the business model. Usually this process consists of extracting information

8

from a database to an intermediate file format, like a Comma-Separated Values (CSV)
or Extensible Markup Language (XML) file that subsequently will be used to generate a
corresponding spreadsheet, as described in Figure 1.8. Alternatively relational databases
can be transformed into spreadsheets, and spreadsheets can be converted into databases
[Cunha et al., 2009].

Figure 1.8: Data extraction and presentation flow.

In many real world applications of spreadsheets, different systems use different formats, so
the data produced by one system has to be adapted to be consumed by a target system.
Usually in these cases, both the spreadsheet initial format and final format, that is supposed
to be consumed by the target system, are known in advance. The objective of this thesis
is to take a step forward and propose techniques that allow the automatic evolution of
spreadsheets that conform to an initial format so that they comply with a given final
format.

1.5 Research Questions

The evolution method proposed, accomplishes ClassSheet model evolution at an automata
level. To do this, the three following research questions must be answered.

• Can ClassSheet models be expressed as automata?

• Can model evolution operations proposed in [Cunha et al., 2012a] be de-
fined over finite automata?

9

• Can an initial ClassSheet model expressed as automaton be consecutively
transformed, in a directed way, until it is equivalent to a given final au-
tomaton?

From this point on, the focus of this thesis is to try to find affirmative answers to all
these questions, as such it is divided in two major components, one theoretical and other
practical.

The theoretical component is devoted to the study of model-driven evolution techniques.
These techniques allow carrying out the transformation of an initial ClassSheet model to a
final model known in advance. Models are represented by deterministic finite automatons,
and initial work is developed to identify which transformation operations are to be applied
to these automatons so that the final model can be explicitly attained.

The practical component consists on the development of a demonstration prototype capable
of directed evolution of ClassSheet models and co-evolving the respective instances.

1.6 Document Structure

This thesis is structured as follows:

Chapter 2 Describes the state of the art of MDSD.

Chapter 3 Describes how ClassSheets will be represented as automata and how oper-
ations over ClassSheet models introduced in [Cunha et al., 2012a] are related to
automata operations.

Chapter 4 Presents how an initial ClassSheet model can be evolved until a final model
is attained, and how the data that conforms to the initial model can be evolved so it
conforms to the final model.

Chapter 5 Describes the integration of the developed prototype with the MDSheet tool.

Chapter 6 Concludes this thesis mentioning the work done, and with some suggestions
for future work.

10

Chapter 2

Model-Driven Spreadsheets

For a long time the spreadsheet research community and tool vendors have tried to miti-
gate spreadsheet errors by trying to introduce a set of guidelines and best practices, create
spreadsheet templates, and develop specific tools to assist in spreadsheet application devel-
opment, but they all center excessively on the low-level cell-oriented nature of spreadsheets
[Engels and Erwig, 2005]. Spreadsheet development was still missing some well-established
and proven software engineering principles like OOD [Engels and Groenewegen, 2000] and
MDD [Kleppe, 2003].

2.1 Templates

A first approach was presented to step up from the low level development previously used
to a model level [Abraham et al., 2005], where a spreadsheet structure is described by
grouping cells together to form blocks that can be repeated vertically or horizontally. This
process consists of defining a model, designated template, by means of a visual editor called
ViTSL [Abraham et al., 2005]. ViTSL offers four visual elements to describe templates:

• Cells, represented by rectangles that can contain labels, values or formulas;

• References, symbolizing concrete cell addresses;

• Vex groups, represented by vertical dots indicating the possibility of vertical expan-
sion of a group of cells; and

11

• Hex groups, represented by horizontal dots indicating the possibility of horizontal
expansion of a group of cells;

The models created using ViTSL are then be passed as an argument to a tool, dubbed
Gencel [Abraham et al., 2005], that generates spreadsheets according to the defined model,
and constrain the type of operations allowed to make over the instances so that they
always comply with the underlying model. In Figure 2.1 shows a template for a budget
spreadsheet defined using the ViSTL editor. One can see that the block composed by
the columns C, D and E can be repeated horizontally, and that line 4 can be repeated
vertically. In Figure 2.2 an instance of that model, generated for Microsoft Excel, can be
visualized. The block composed by columns C, D and E has, in fact, two occurrences, and
the block composed by line 4 has three occurrences.

Figure 2.1: A template defined using ViSTL.

Figure 2.2: Automatically generated Gencel spreadsheet.

Templates are an evolution over the old low-level development paradigm, and introduced
model-driven development to spreadsheets, but had some limitations:

12

• The absence of connection between the modeling environment and the spreadsheet
system prevented the synchronization between model and instances.

• Developers had to learn a different environment to be able to create the models.

• Were still error-prone because users could easily make mistakes grouping repeating
blocks or wrongly introducing cell references.

2.2 ClassSheets

[Engels and Erwig, 2005] improved upon templates by introducing ClassSheets, a high-level
model, based on object-oriented development, that allows describing spreadsheet business
logic using concepts like classes and attributes. By using ClassSheets it is possible to group
cells into logical units, identified by a name, that contain attributes with defined types,
which closely match Unified Modeling Language (UML) classes. ClassSheet classes have
some differences compared to UML classes though, namely, they can have labels, to help
identify attribute names, formulas, and may be expandable, horizontally or vertically. In
Figure 2.3 an example for an income sheet is shown. From an object-oriented stand point
the ClassSheet is composed by a summation object, named Income, which aggregates
a collection of objects containing a single data value, and named Item. From a layout
point of view there is a list of data values extended by the header Item, representing the
Item class, which in turn is embedded into the summation object that consists of a header
Income and a footer with a label Total and an aggregation formula assigned to an attribute
total. Figure 2.3 also shows the corresponding UML class diagram.

As can be observed, one great advantage over templates is that cell references are no longer
used. Instead, attribute names are utilized in formulas, making ClassSheet instances a lot
less error-prone than templates. In combination with the visual representation, a formal
definition was also introduced.

This formal representation allows to specify ClassSheet models textually using the abstract
syntax presented in Figure 2.4. Using this syntax, a ClassSheet model can be defined in
the following way:

• A Sheet is a composition of fixed or horizontally composed classes.

13

Figure 2.3: Income ClassSheet and corresponding UML class diagram.

Figure 2.4: ClassSheet Syntax.

• A Class is composed by fixed or vertically expandable blocks of cells.

• Each of the cells can be comprised of values and attributes or possibly empty.

• Attributes have a name (a) and a formula (f) defining its value, that can be referenced
by using qualified attribute names (n.a).

• Each block related with a class is identified with a label (l), that can be a row (n),
a column (|n), a table (|n) or a cell class label (.n).

Using the ClassSheet model represented in Figure 2.3 it is possible to give a better under-
standing of how the formal definition can be used to describe ClassSheets.

Suppose we want to represent the Item class of the spreadsheet. That portion of the
spreadsheet is composed by two cells, one with the value Item, used as a header, and the
other one with a vertically repeated attribute named value. By labeling that two cell blocks
with the value Item and marking it with a vertically repeatable label, that block is to be
perceived as a vertically repeatable class, and it is represented by the following syntax:

14

|Item : Item ˆ
|Item : (value=0)↓

Next, the vertically expandable class Income is included. This class has a particularity,
when compared to the Item:, the header cell is separated from the two cells in the bottom.
To solve this problem, a vertical expandable Income class identifier is included before the
two lowermost cells.

|Income : Income ˆ
|Item : Item ˆ
|Item : (value=0)↓ ˆ
|Income : Total ˆ
|Income : total=SUM(Item.value)

The above example is the complete textual representation of the example depicted in
Figure 2.3. This syntax will have an important role in ClassSheet model evolution, as it
will be based on it that automata will be generated and evolved (see Chapter 3).

The abstract syntax by itself has some limitations, as it does not enforce structural con-
straints caused by the two dimensional layout. For instance, it is possible to define the
following sheet [Engels and Erwig, 2005].

|Income : Income ˆ
|Item : Item ˆ
|Income : (value=0)↓ ˆ
|Item : Total ˆ
|Income : total=SUM(Item.value)

This would imply that it would be possible to have an Income class that aggregates a
class Item which in turn aggregates the class Income. This is not possible, and as such
should not be considered a ClassSheet [Engels and Erwig, 2005].

To enforce a valid ClassSheet spatial structure, called tiling, a type system was formal-
ized. With this system it is possible to define the four main tiling structures, i) non-
aggregated single classes, ii) one-dimensional horizontally expandable aggregated classes,
iii) one-dimensional vertically expandable aggregated classes an iv) two-dimensional ag-
gregations. Aggregation tiles can also be nested and tiles can be horizontally or vertically
composed. Tiling rules are presented in Figure 2.5.

15

Figure 2.5: ClassSheet tiling rules.

In Figure 2.6 are depicted five examples of correct tiling. From left to right, there a
simple sheet, a vertical one-dimensional aggregation, a horizontal aggregation, a vertical
aggregation over two vertical aggregations, and a two-dimensional aggregation.

Figure 2.6: ClassSheet tiling structures.

Although ClassSheets are a great enhancement over templates, the process used to create a
model, initially, was essentially the same. The ClassSheet model had to be produced using
a ClassSheet editor and, after that, another tool had to be used to generate instances that
comply with that model.

2.3 Relational ClassSheets to UML+OCL

A transformation method between ClassSheets and UML class diagrams, enriched with
Object Constraint Language (OCL) constraints, was presented in [Cunha et al., 2012d].
This allowed the application of model validation techniques, already avaiable for UML, to
spreadsheets. The aforementioned was accomplished by extending ClassSheets to support
characteristics of relational databases, namely the existence of primary and foreign keys,
associated with ClassSheet tables. The proposed extensions are shown in Figure 2.7 marked
in red.

The new ϕµ extension, allows the representation of unique values within a column or row,
and these values are to be perceived as primary keys in database tables. The n.a extension

16

Figure 2.7: ClassSheet extensions, from [Cunha et al., 2012d].

has a stronger meaning than in the original ClassSheet syntax and it is to be perceived in
the same way as a foreign key in a database model. Each time a declaration n.a is defined,
the existence of class n and attribute a is verified, before it is accepted. Also attribute a
has to be declared as a primary key, i.e., as unique in class n. These two extensions ensure
that the values in cells with both types of keys are always valid.

Mapping ClassSheets into UML classes with OCL constraints, using the proposed method
in [Cunha et al., 2012d], is then a three step process. First UML classes are generated from
ClassSheet classes, subsequently the associations between classes are inferred, and finally
OCL code is generated to ensure that both representations possess the same properties,
namely restrictions on primary and foreign keys. These specifications are generated in the
notation for UML-based Specification Environment (USE), proposed in [Gogolla et al.],
which is a tool with UML execution and OCL support, enabling for instant validation of
spreadsheet models.

In Figure 2.9 a ClassSheet model for an airline company is displayed. Such model is
composed by three main classes; Pilots, with primary key id, Planes, with primary key n-
number, and Flights. The Flights class is in turn composed by three classes; PlanesKey,
which references Planes by the n-number attribute, PilotsKey , that references Pilots
by the id attribute, and an association class between the PlanesKey and Pilots classes.
Extracting the UML class diagram using the techniques presented in [Cunha et al., 2012d],
results in the diagram of Figure 2.8, as drawn by the USE tool.

The inverse process, which is generating ClassSheet models from UML class diagrams, is
straightforward, and allows to broaden the range of possible evolutions. This is crucial in
the context of the work carried out in this thesis.

17

Figure 2.8: Flights UML class diagram, as presented in [Cunha et al., 2012d].

2.4 Embedding of ClassSheet Models Within Spread-
sheets

In [Mendes, 2011] a method to embed ClassSheet model specifications in spreadsheet sys-
tems was proposed. Embedded ClassSheets are visually similar to normal ClassSheets,
except that classes are represented with solid colors and repetition rows and columns are
explicitly represented on the spreadsheet.

Also, new techniques were introduced to evolve ClassSheet models and instances so that
they both stay synchronized when changes are applied. This brought two major advantages:
(1) allowed the users of the spreadsheet system to work with both, model and instances,
without having to learn a different environment, and (2) simplified the architecture of the
software system responsible to keep models and instances synchronized.

In Figure 2.9 we can observe how ClassSheet models can be specified in a spreadsheet
environment almost in the same way as in ViTSL. In order to create the Pilots class, a
user had to group a block of cells and select an option to add a class, naming it Pilots and
assign the label values ID, Name and Flight Hours to the respective cells. A second
vertically expandable class had to be created and the id, name and flight_hours attributes
had to be assigned to the respective cells. The conforming model, where we can see three
occurrences of the vertically expandable class data, is shown in Figure 2.10.

18

Figure 2.9: Embedded ClassSheet representing a system for an airline company as proposed in
[Mendes, 2011].

Figure 2.10: Spreadsheet instance for an airline company as proposed in [Mendes, 2011].

2.5 Bidirectional Transformation of Spreadsheets

A co-evolution technique, based on bidirectional transformations, was proposed in the con-
text of the SSaaPP1 project to synchronize ClassSheet models and instances [Cunha et al.,
2012a]. In this approach two different sets of operations, one corresponding to editing
operations over ClassSheet models, and other corresponding to editing operations over
instances, were developed and bound together by means of a symmetrical bidirectional
framework. The purpose of this method is to allow evolutions over models to be trans-
formed in evolutions over instances of that model and vice-versa. The principle behind it
is that every time a model or instance is changed, that change has to be reflected not only
on the entity that changed but also on all of the others, in order to restore conformity,
as illustrated in Figure 2.11. This bidirectional framework is implemented in MDSheet

19

[Cunha et al., 2012b].

conforms to conforms to

Op

Op

to
from

M

D

ClassSheet

Spreadsheet

ClassSheet'

Spreadsheet'

Figure 2.11: Spreadsheet bidirectional transformation system, as proposed in [Mendes, 2011].

The set of edit operations defined over models, and displayed in Figure 2.12, is of paramount
importance to the work carried out in this thesis, as the same operations are implemented
at automata level so that automatic evolution can be achieved.

Figure 2.12: Operations over ClassSheet models, as proposed in [Cunha et al., 2012a].

Even with all that was presented before, spreadsheet model evolution is still a manual
process. Users still have to directly manipulate models or instances so that changes take
effect, which still makes it, although to a lesser extent, error-prone. On chapters 3 and 4 a
method to automatically evolve ClassSheet models and co-evolve the respective instances
is proposed, building upon what was just presented.

1http://ssaapp.di.uminho.pt/twiki/bin/view/Main/. (23-09-2013)

20

http://ssaapp.di.uminho.pt/twiki/bin/view/Main/

2.6 Summary

In this chapter an extended overview about MDSD was made, to establish the grounds on
which this thesis is based.

We started by reviewing templates, this models are a first step up from the low level cell
oriented development previously used.

Afterwards ClassSheets were addressed: this method builds upon templates and allows
the specification of a spreadsheet business model using OOD constructs, like classes and
attributes. The fact that cell references are substituted by attribute names makes them
considerably less error-prone than templates.

Finally, the embedding of ClassSheet models in the same environment used to manipulate
the instances, and the bidirectional framework used to keep everything synchronized was
presented.

21

22

Chapter 3

Operations Over ClassSheet
Automata

Methods for model-driven spreadsheet evolution were already proposed [Cunha et al.,
2012a], however this evolution had to be done manually, and a human operator had to
apply successive transformations to the spreadsheet model until it reached the desired fi-
nal state. This can be time consuming and lead to errors. In this chapter we present the
first techniques that allow automatically evolving a ClassSheet model to a desired final
model while, at the same time, migrating the data that conforms to the initial model so
it conforms to the final model. The method proposed in this document to create an auto-
matic evolution framework for ClassSheet models is based on automata transformation and
equivalence, we chose automata mainly for two reasons. First, it is a formal way of repre-
senting information. Second, ClassSheets already provide the necessary tool to transition
from model level to automata level evolution. Their formal, textual, description defines a
regular language and thus, by formal definition, ClassSheets can be expressed by a finite
automaton. One possible representation for the Item class in the ClassSheet presented in
Figure 2.3 is shown in Figure 3.1.

This representation is translated directly from the ClassSheet formal syntax and describes
the ClassSheet in the following way: the first transition works as the identification of the
vertically expandable class Item, which indicates that the following content belongs to
class Item, next is the content of the first cell of the ClassSheet, which holds the value
Item, followed by a vertical composition (ˆ). On the second row appears once again the

23

Figure 3.1: Item class expressed as an automaton.

identification of the class followed by the open parenthesis, which means that all transitions
that follow, until the closing parenthesis, are considered repeatable content. In this case
the value attribute is vertically repeatable, as can be witnessed by the last transition.

Figure 3.2: Evolution process.

To achieve our goal for automatic evolution, the first step is to establish a conversion
method between ClassSheet models and deterministic finite automata, so that evolution
can take place at automata level. After that, equivalent operations over ClassSheet mod-
els proposed in [Cunha et al., 2012a] have to be defined over automata. Subsequently a
technique for model evolution has to be applied so that, given initial and final automata,
the initial automaton can be transformed until it is equivalent to the final automaton.
In Figure 3.2 one can visualize how the expected evolution process will progress. First,
the initial model (CS1) has to be converted to an automaton (A1) using an appropriate
conversion function (f). Transformation operations at automata level (ax) are then con-
tinually applied until the final model is attained (An). The important thing to notice is
that these operations are directly related to operations defined over ClassSheet models
(ex) in [Cunha et al., 2012a]. The main objective of this process is to identify the sequence
of operations needed to apply to the first automaton, to transform it into the final one.
When this sequence of operations is determined, migrating the data that complies with the
initial ClassSheet model (CS1) can be done by using bidirectional transformations defined
in [Cunha et al., 2012a].

24

3.1 ClassSheets as Automata

As already observed, representing ClassSheets as automata can be achieved by converting
the formal language syntactic elements to automata transitions; however this process has
drawbacks. When representing a ClassSheet model with a horizontal aggregation over a
relation, or with two-dimensional aggregations, a difficulty arises that makes it impossible
to process a ClassSheet automaton in row-by-row manner. A ClassSheet with a two-
dimensional aggregation, and corresponding formal definition, is presented in Figure 3.3
and Figure 3.4, respectively.

Figure 3.3: Two-dimensional example of a ClassSheets, as seen in [Engels and Erwig, 2005].

Figure 3.4: Textual representation of the Budget ClassSheet.

To formally define the budget ClassSheet model in Figure 3.3, one has to describe the
model as horizontally composing blocks; these blocks are identified in Figure 3.4. The

25

first block is composed by columns A and B and belongs to the root class Budget and
an aggregation class Category. The middle block is composed by columns C,D and
E, and belongs to the column aggregation class Year and Category, which surround
the association class .Cpy. The final block is composed by column F and, like the first
block, belongs to classes Budget and Category. The problem with this representation
is that the first block is defined from top to bottom, and then the middle and third
blocks are defined sequentially in the same way. For reasons that will become clear in
Chapter 4 a different representation, still based on the ClassSheet formal representation,
is required. This representation allows sequentially defining a ClassSheet model, row-by-
row, starting on the upper-left corner and ending on the lower-right corner. In this thesis
we are considering embedded ClassSheets, and as such, vertical and horizontal expansion
symbols are also included on the new representation.The new representation is attained by
re-writing the ClassSheet using the transformation function (τ) presented next.

τ : ClassSheet→ TClassSheet

τ f = f

τ ϕ = ϕ

τ (a = f) = (a = f)
τ ((l1 : (c1ˆc2)) | (l2 : (c3ˆc4)→)) = τ(l1) : τ(c1) | (τ(l2) : τ(c3) | · · ·)→ |τ(c2|c4)
τ (b1|b2) = τ(b1) |τ(b2)
τ (b1ˆb2) = τ(b1)ˆτ(b2)
τ .n = .n

τ n = n

τ |n = n

τ |n = n

τ (l : b) = τ(l) : τ(b)
τ (l : b ↓) = τ(l) : (τ(b)ˆτ(l) : rep(... , width(b))) ↓
τ (l : b1ˆb2) = (τ(l) : τ(b1))ˆ(τ(l) : τ(b2))
τ (c1ˆc2) = τ(c1)ˆτ(c2)
τ (c→) = τ(c)→
τ (s1|s2) = τ(s1)|τ(s2)

The fifth and the last case look the same but as it happens in the original ClassSheet
language the same vertical bar is used to compose blocks and sheets. In the case for l : b ↓

26

the rep function takes as arguments a symbol and a number of columns, and horizontally
composes the symbol in that amount of times.

To better understand how this representation can be used to represent ClassSheet models
as automata two simple examples will ensue.

The first example (Figure 3.5) is a ClassSheet model with a root class named Pilots with
three labels with values, ID, Name and Flight Hours, respectively. This class aggregates
a vertically expandable class, here named PilotsA, with three attributes; id, name and
flight_hours.

Figure 3.5: Pilots ClassSheet.

This ClassSheet formal representation is shown next.

|Pilots: Pilots | t | t ˆ
|Pilots: ID | Name | Flight Hours ˆ
|PilotsA: (id=”” | name=”” | flight_hours=0)↓ ˆ
|Pilots: t | t | t

The row-by-row textual specification of this ClassSheet model, after applying the transfor-
mation function previously explained, can be realized in the following way.

Pilots: Pilots | t | t ˆ
Pilots: ID | Name | Flight Hours ˆ
PilotsA: (id=”” | name=”” | flight_hours=0 ˆ
PilotsA:

... |
... |

...)↓ ˆ
Pilots: t | t | t

The first row starts with the Pilots class which contains a block composed by three hor-
izontally composed (|) cells. The first cell has a label identifying the name of the class,
in this case Pilots, followed by two empty cells (t), the row ends with the vertical com-
position (ˆ) of rows. The second row has a similar structure: it starts with the Pilots

27

class and has a vertical composition of three cells with labels, ID, Name and Flight Hours,
used to identify attributes of the PilotsA class; like the first one, it ends with a vertical
composition. The third row has some differences, compared to the first two; it starts with
the aggregated class PilotsA, which contains a vertically repeatable block (()↓), which can
be divided into two vertically composed blocks, of these two blocks, only the first one is
contained in the third row. This block is a horizontal composition of three cells that hold
the id, name and flight_hours attributes of the PilotsA class, the row ends with a vertical
composition of blocks (ˆ). The fourth row holds the second block of the previous vertical
composition, containing a horizontal composition of three cells, and each one of these cells
marks the vertical repeatability of the class (...). The fifth and final row starts with the
class Pilots that contains a block consisting of three horizontally composed empty cells.
This concludes the row-by-row description of the Pilots ClassSheet.

With the new representation, converting the textual definition to an automaton is a
straightforward task; each language symbol can be converted into an automaton tran-
sition. To generate the complete automaton for a ClassSheet model, each transition must
be sequentially connected to one another in the same order as the symbols appear in the
textual definition.

The resulting automaton, attained from converting the Pilots ClassSheet model from
textual representation, can be visualized in (Figure 3.6). As does the representation,
automata representation also is a row-by-row description of a model, and all the symbols
have the same meaning as in the former.

The previous example allows observing how it is possible to attain a ClassSheet automaton
from its textual representation but it does not allow to understand how the new representa-
tion can be used to specify a horizontally expandable class. To address this, the ClassSheet
pictured in Figure 3.7 is presented. This ClassSheet is composed by a class named Planes
that possesses four labels with contents, Planes, N-Number, Model and Name, respectively,
and aggregates a horizontally expandable class named PlanesA that holds three attributes,
n-number, model and name.

The formal representation of this ClassSheet model is presented next.

Planes Planes ˆ
Planes: N-Number ˆ
Planes: Model ˆ

28

Figure 3.6: Pilots ClassSheet automaton.

Figure 3.7: Planes ClassSheet.

Planes: Name ˆ
|
(PlanesA: t ˆ
PlanesA: n-number=”” ˆ
PlanesA: model=”” ˆ
PlanesA: name=””)→
|
Planes: t ˆ
Planes: t ˆ
Planes: t ˆ
Planes: t ˆ

29

To textually specify the Planes ClassSheet, in a row-by-row way, the aggregated class
PlanesA has to be divided in multiple horizontally expandable sub-blocks, with each sub-
block belonging to a single row. Below is the textual definition of the Planes ClassSheet.

Planes: Planes | PlanesA: (t | · · ·)→ | Planes: t ˆ
Planes: N-Number | PlanesA: (n-number=”” | · · ·)→ | Planes: t ˆ
Planes: Model | PlanesA: (model=”” | · · ·)→ | Planes: t ˆ
Planes: Name | PlanesA: (name=”” | · · ·)→ | Planes: t ˆ

The first row is defined as a horizontal composition of classes; it initiates with the Planes
class, that possesses a cell with a label Planes, this class horizontally composes with the
class PlanesA, that holds a horizontally expandable block (()→), this block contains two
cells, one empty, and another indicating the expandability of the class (· · ·), the final
part of the composition is poised by the class Planes which holds an empty cell. The
following rows are described exactly in the same way, the important thing to emphasize
is that horizontally expandable classes, in this case PlanesA, are defined as separated
horizontally expandable blocks. Like the Pilots ClassSheet, the automaton can be attained
by simply converting the formal language symbols into automaton transitions, the result
can be visualized in Figure 3.8.

Figure 3.8: Planes ClassSheet automaton.

With the transformation function previously presented is possible to attain an automaton
representing a ClassSheet model. The conversion between ClassSheet and Determinis-

30

tic Finite Automata (DFA) is shown in Algorithm 1. The first step is to transform the
ClassSheet textual representation to a row-by-row description. This description is then
utilized to generate the vocabulary of the automaton. This is done by collecting all lan-
guage symbols in the new textual representation. Next, the transitions table is generated
by connecting all language symbols in the same order as they appear in the representation.
Using the transitions table it is possible to determine the set of states by obtaining every
state in all transitions. The following step is to identify the initial state, this is done by
finding the only state not present as destiny on any transition. The set of final states is de-
termined by finding all states not present as origin in any transition. Finally an automaton
is generated using the parameters previously computed.

Algorithm 1 ClassSheet to DFA Conversion Function
1: function classSheetToDFA(classsheet)
2: transformedCS ← τ(classsheet)
3: vocabulary ← getAllSymbols(transformedCS)
4: transitionsTable← generateTT(transformedCS)
5: states← getStates(transitionsTable)
6: initialState← getInitialState(transitionsTable)
7: finalStates← getFinalStates(transitionsTable)
8: return genDFA(vocabulary, states, initialState, finalStates, transitionsTable)
9: end function

3.2 Basic Operations over Automata

Before model operations are defined over ClassSheet automata, five basic operations are
necessary. These operations are used in conjunction to produce higher level, ClassSheet
model operations. The description of the five basic operations follows. To aid in the
description of the operations we will use as an example the automaton in Figure 3.9.

3.2.1 Add Transition

The first operation we introduce adds a transition to an automaton, given the state where
the transition begins, the state where the transition ends, and the symbol that allows the
transition between states to take place. The result of adding a transition between states 2
and 3, by the symbol e, to the automaton pictured in Figure 3.9 is presented in Figure 3.10.

31

Figure 3.9: Generic automaton.

Figure 3.10: Generic automaton with a new transition.

3.2.2 Delete Transition

This operation deletes a transition from an automaton, given the state where the transition
begins, the state where the transition ends and the symbol of the transition. The result
of deleting the transition between states 2 and 3 by the symbol e, from the automaton in
Figure 3.10 results in the automaton pictured in Figure 3.9.

3.2.3 Edit Transition

This operation allows to modify the states and symbol components of a transition. Given
a transition to be modified and the new values of the three components, it updates the
transition so it reflects the new values. The result of altering the transition between states
2 and 3, by the symbol e, in the automaton in Figure 3.10 to connect states 3 and 1, by
symbol f, is presented in Figure 3.11.

32

Figure 3.11: Generic automaton with an edited transitions.

3.2.4 Add State

Given a new state, this operation adds it without any transitions to an automaton. Adding
a state to the automaton in Figure 3.9 results in the automaton in Figure 3.12.

Figure 3.12: Generic automaton with a new state.

3.2.5 Remove State

The last operation removes a state from an automaton, and all transitions associated with
that state using the remove transition operation previously defined. The result of removing
state 2 from the automaton in Figure 3.9 results in the automaton in Figure 3.13.

Figure 3.13: Generic automaton with a state removed.

33

3.3 ClassSheet Automata Operations

In this section, equivalent operations over ClassSheet models proposed in [Cunha et al.,
2012a] are presented over ClassSheet models expressed as automata. These are established
on top of the basic operations previously defined. The process of applying a ClassSheet
model operation over an automaton is depicted in Figure 3.14. A ClassSheet automata
operation (a), that transforms an automaton (A1) in an automaton (An), is a sequence
of basic operations (bx) that are consecutively applied as a single, atomic, operation. On
the other hand, an automata operation (a) conforms to ClassSheet operation (e) and, as
such, the outcome of applying operation (a) to automaton (A1) yields the same result as
applying operation e to the ClassSheet (CS1), and converting the result to automaton,
both resulting in automaton (An).

Figure 3.14: ClassSheet atomic operations as a sequence of basic operations.

Atomic operations over ClassSheet automata share a same basic strategy, each transition
is traversed, while at the same time a coordinate count is kept. Each automaton starts
at a given initial position. Every time a horizontal composition transition (|) is reached
the x coordinate is incremented, likewise the y coordinate is incremented when a vertical
composition transition (ˆ) occurs.

In Figure 3.16 the automaton that represents the Item ClassSheet model in Figure 3.15 is
displayed, and above each state a coordinate count is shown. Starting in position (1,1) the
ClassSheet automaton has a transition identifying an Item class followed by a cell with
value Item located at the same coordinates. A transition indicating a vertical composition

34

(ˆ) is next, so the y coordinate has to be incremented, resulting in coordinates (1,2). On
the subsequent rows the same process is repeated, the coordinates are unchanged until the
vertical composition transition is reached, and at that point the y coordinate is incremented
again. This simple example has only one column, but in case it had more than one, each
time a horizontal transition was reached (|), the x coordinate had to be incremented instead.

Figure 3.15: Embedded Item ClassSheet.

Figure 3.16: Embedded Item ClassSheet automaton.

An atomic operation is accomplished by traversing and applying basic operations to au-
tomata, based on the transition type and coordinate count. A description of each atomic
operation follows.

3.3.1 Add Column

The first operation adds to an automaton the states and transitions corresponding to
adding a column in a ClassSheet model. This is the automata equivalent to the following
operation from [Cunha et al., 2012a].

35

addColumnM :: Where→ Index→ OpM

This operation takes as parameters the position where to insert the new column, if it should
be inserted before or after that column. When defining this operation over automata,
depending on the position where the new column is to be added, two different situations
can occur.

The first case is the case where the new column is to be inserted before the index column
(c). To do this the automaton has to be traversed, and in each occurrence of a transition
of type cell that has coordinate x = c, the following sequence of basic operations has to be
applied:

1. Add a new state (st1).

2. Add a new state (st2).

3. Edit the transition that precedes the cell transition in column (c) so that it transitions
to st1.

4. Add a transition representing an empty cell connecting st1 to st2.

5. Add a transition connecting st2 to the cell transition in column (c), denoting a
horizontal composition (|).

An example ensues to better understand how this operation is completed.

Suppose one wants to add a column before column 1 to the automaton in Figure 3.16. To
do this, all the steps previously mentioned have to be taken each time a transition of type
cell is located at coordinates with x = 1. The first transition that meets this criterion is
the one that transitions from state 2 to state 3 by the symbol Item. Figure 3.17 illustrates
the result of applying the basic operations to the automaton. First of all, states 15 and 16
are added, then the transition that connected states 1 and 2 by the symbol Item:, is edited
so that it connects states 1 and 15, afterwards, a transition denoting an empty cell is added
between states 15 and 16, and finally a transition designating a horizontal composition is
added between states 16 and 2. To help visualize he result, the edited transition is shown
in blue color, while states and transitions that were added appear colored in red1.

1We assume colors are visible through the digital version of this document.

36

Figure 3.17: Add individual cell before column x.

Since the automaton represents a single-column ClassSheet these transformations have
to be applied to every cell transition in the automaton. The final result can be seen in
Figure 3.18. One important matter to mention is that cells in row 3 have a special meaning
and are used to mark the vertical expandability of the class, so instead of adding an empty
cell, a cell of the same type must be added.

Figure 3.18: Add column before 1, operation.

A different situation occurs when a column is added after the reference column (c). In
this case, each time a cell transition has coordinate x = c, the following sequence of basic
operations is applied to the automaton:

1. Add a new state (st1).

2. Add a new state (st2).

3. Edit the transition that succeeds the cell transition at column c so that it succeeds
st2 instead.

37

4. Add a new transition denoting a horizontal composition after the cell transition at
column c and connect it to st1.

5. Add a new transition, representing an empty cell, connecting st1 to st2.

Adding a column after column 1 to the automata in Figure 3.16 shares the same principle
as the previous case. On all transitions that represent cells and are located at coordinates
with an x = 1 the sequence of basic operations is applied to the automaton. Once again,
the first transition to meet this criterion is the transition from state 2 to 3, and at this
stage states 15 and 16 are added. The transition that originates in state 3 is edited so
it originates in state 16 instead, following, a transition denoting a horizontal composition
is added between states 3 and 15, and finally a transition between states 15 and 16 is
added representing an empty cell. The result can be seen in Figure 3.19, where the edited
transition is blue colored and added states and transitions are red colored.

Figure 3.19: Add individual cell after x, operation.

This sequence of operations is applied on every occurrence of a cell transition resulting in
the automaton displayed in Figure 3.20.

3.3.2 Delete Column

The next operation deletes the states and transitions corresponding to deleting a column
from a ClassSheet model, and is the automata equivalent to the following operation from
[Cunha et al., 2012a].

delColumnM :: Index→ OpM

This operation deletes the column located at the given index position (c). To do this, the
automaton is traversed and at each occurrence of a cell transition located at coordinates
with x = c, the following basic operations are applied.

38

Figure 3.20: Add column after 1, operation.

1. The transition that succeeds the cell transition and respective horizontal composition
transition is edited so that it originates on the transition that precedes both of them.

2. The state to where the automaton transitions by the cell symbol is deleted.

3. The state to where the automaton transitions by the horizontal composition symbol
is deleted.

In the next example the operation to delete column 2 is applied to the automaton in
Figure 3.20. This atomic operation consists in traversing the automata and applying the
sequence of basic operations previously mentioned each time a cell transition is located
at coordinates with x = 2. The first occurrence of such a case is at the transition that
originates from state 15, and the result of applying the sequence of basic operations can be
visualized in Figure 3.21. The first basic operation to apply is editing the transition that
originates in state 16 so that it originates from state 3, followed by the deleting of the states
16 and 15, which are the states to where the automaton transitions by the cell symbol, and
the horizontal composition symbol, respectively. The edited transition is colored in blue
and the removed states and transitions are marked in gray.

The result of employing this process in all subsequent cell transitions located at column 2
is the transformation of the automaton in Figure 3.20 into the automaton in Figure 3.16.

39

Figure 3.21: Cell removed from Item ClassSheet.

3.3.3 Add Row

The next operation adds the states and transitions corresponding to adding a row in a
ClassSheet model. This is the automata equivalent to the following operation from [Cunha
et al., 2012a].

addRowM :: Where→ Index→ OpM

This operation takes as input the position, before or after, and an index where the new
row is to be added. The row located at the given index is used to ascertain the structure
of the new row, that is, the sequence of classes and columns it possesses. As with the add
column operation, when defining this operation over automata, depending on the position
where the new row is to be added, two different cases can occur.

The first case arises when the new row is to be added before the index row (r). Generically,
this transformation is carried out in the following steps.

1. The automaton is traversed until the first transition (t) with y = r.

2. The structure from the reference row is determined, and added to the automaton.

3. A vertical composition transition is added between the end of the row structure added
in step 2 and the transition t.

4. The transition that precedes t is edited so it transitions to the beginning of the row
structure added in step2.

As an example, suppose one wants to add a row before row 3 in the automaton in Fig-
ure 3.16. The first step is to identify the first transition with coordinate y = 3, which is
the transition that originates in state 8 and transitions to state 9 by the symbol ItemA:.

40

The second step is to determine the reference row structure, in this case row 3 has a class
ItemA: which possesses one column (Figure 3.22), meaning that the new row has the same
structure.

Figure 3.22: Item ClassSheet row 3 structure.

The third step is to add a transition, with a vertical composition(ˆ), connecting state 17,
which is the last state in the row structure added in the previous step, to state 8, the initial
state in the transition identified in the first step. Finally, the transition that originates in
state 7 is edited so is transitions to state 15, the beginning of the new row. The result can
be visualized in Figure 3.23.

Figure 3.23: Item ClassSheet after Add Row Before 3 operation.

The second situation happens when a row is added after the index row (r). In this case
the following sequence of operations is applied to the automaton:

1. The automaton is traversed until the last transition (t) with coordinate y = r is
reached.

41

2. The structure from the reference row is determined, and added to the automaton.

3. A vertical composition transition is added between the last state in transition t and
the first state in the row structure added in step 2.

4. The transition that originates in the last state of transition t is edited so it originates
in the last state of the row structure added in step 2.

The ensuing example should aid in the understanding of how this atomic operation is
applied.

Suppose one wants to apply the operation add row after 4 to the automaton in Figure 3.16.
The first step is to identify the last transition with coordinate y = 4, which is the transition
that originates in state 13 and transitions to state 14 by the empty cell symbol. The second
step is to determine the reference row structure, in this case row 4 has a class named Item
which possesses one column (Figure 3.24), which means that the new row has the same
structure.

Figure 3.24: Item ClassSheet row 4 structure.

The next step is to add a vertical composition transition between state 14, which is the
last state in row 4, and state 15, which is the first state in the row structure added in the
previous step. Since row 14 does not have more transitions, step 4 can be ignored. The
result of adding a row after row 4 to the automaton in Figure 3.16 is shown in Figure 3.25,
with the added states and transitions colored in red.

3.3.4 Delete Row

The following operation deletes, from an automaton, the states and transitions corre-
sponding to deleting a row from a ClassSheet model. It is the automata equivalent to the
following operation from [Cunha et al., 2012a].

delRowM :: Index→ OpM

This operation deletes the row located at the given index position (r). In order to ensure
this, the following operations are applied.

42

Figure 3.25: Item ClassSheet after Add Row After 4 operation.

1. The automaton is traversed until the first transition(t) with coordinate y = r is
reached.

2. The transition that precedes transition t, in case it exists, is edited so it transitions
to the first state in row (r + 1).

3. All states in row (r) are deleted.

Suppose one wants to delete row 3 in the automaton in Figure 3.23. The first step is to
locate the first transition in row 3, which in this case is the one that transitions from state
15 to state 16 by the symbol ItemA:. Since it has a preceding transition, the one marked
in blue, that transition is edited so it transitions to state 8 instead, which is the first state
in row 4, thus concluding step 2. Finally all states in row 3 are removed, which comprises
all the states that are colored in red. The result of removing row 3 from the automaton is
pictured in Figure 3.16.

43

3.3.5 Set Cell

This operation changes the value of a cell type transition in an automaton, and is the
automata equivalent to the following operations from [Cunha et al., 2012a].

setLabelM :: (Index, Index)→ Label→ OpM

setFormulaM :: (Index, Index)→ Formula→ OpM

Which are unified in MDSheet as the following single operation.

setCellM :: (Index, Index)→ String → OpM

MDSheet integration is a crucial point to take into account and as such, in this thesis, only
setCellM is considered.

This operation takes as input the coordinates (c) of the cell to be modified and the new
content. To apply it, the automaton has to be traversed until the transition of type cell
with coordinates (x, y) = c is reached. This transition is subsequently modified using an
edit transition operation so it reflects the new value.

If one wants to apply the set cell (1,2) ”item_value=0” operation to the automaton in
Figure 3.16, the automaton has to be traversed until the transition of type cell with coor-
dinates with value (1,2) is reached. This transition, the one that connects state 6 to state
7 by the symbol ”value=0”, has to be then modified to connect both states via the symbol
”item_value=0”. The result of using this operation is shown in Figure 3.26 with the edited
transition colored in blue.

3.4 Summary

In this chapter a method for expressing ClassSheets as automata, based on their formal
representation, was introduced.

A set of operations over generic automata was also defined to serve as support for higher
level ClassSheet model operations over automata.

Furthermore, equivalent operations over ClassSheet models proposed in [Cunha et al.,
2012a] were defined over automata. Such operations establish a base to support model
evolution of ClassSheets expressed as automata, which we explore in the next chapter.

44

Figure 3.26: Item ClassSheet after Set Cell (1,2) item_value operation.

45

46

Chapter 4

Directed Evolution of Model-Driven
Spreadsheets

Spreadsheets, like almost all software artifacts, need to be constantly updated. For numer-
ous reasons, like reflecting changes on a business model, or in cases where spreadsheets are
used to disseminate data between different systems, it might be required to change the data
on a spreadsheet so that it can be compatible with the target systems. In all cases, spread-
sheets have to be manually transformed by a human operator, this manual transformation
has some drawbacks: as an operator modifies a spreadsheet, errors might occur, which can
have significant impact on a business. On the other hand, manual transformations can also
be very time consuming wich can involve substantial financial costs.

4.1 Model-Driven ClassSheet Evolution

In many real world applications where spreadsheets are used to migrate data from one sys-
tem to another, both the initial and final systems’ models are known in advance. This can
be achieved using model-driven spreadsheets, in particular, using ClassSheets, by which
both system models are specified. this can be done by inferring ClassSheets from exist-
ing data [Cunha et al., 2010] or by converting other models to ClassSheets, for instance,
by applying the inverse transformation presented in [Cunha et al., 2012d]. In this chap-
ter a technique is presented that allows to automatically evolve a given initial ClassSheet

47

model, and co-evolve the respective instances, so that they comply with a specified final
model. This technique is based on automata equivalence and transformation, using atomic
operations over ClassSheet models expressed as automata defined in chapter 3, and bidi-
rectional transformations of model-driven spreadsheets proposed in [Cunha et al., 2012a].
The method presented, and visualized in Figure 3.2, involves converting ClassSheet initial
(CS1) and final (CSn) models to automata, identifying the sequence of atomic operations
(ax) required to be applied to the initial automaton (A1) so that it is transformed into the
final automaton (An). Subsequently, using the bidirectional framework defined in [Cunha
et al., 2012a], the computed transformations sequence is applied to the initial model (CS1)
and propagated to the respective instances.

The evolution process proposed in this thesis implies the computation of multiple transfor-
mations sequences. In order to determine which sequence to apply we use a criterion, based
on the modifications that a sequence of transformations performs on data. The sequence
that requires fewer changes in cells with formulas or values is selected, this is due to the
fact that this data is potentially more valuable in any decision making process. The conse-
quence of using this criterion is that atomic operations have to be quantified so that data
change cost can be calculated. This requires that for each atomic operation (a), defined
on chapter 3 and illustrated in Figure 4.1, there is an operation (a’) that when applied to
an initial automaton (A1) produces a pair of values, containing the same automaton (An)
resulting from applying operation (a) to (A1) and the respective data change cost (c).

Figure 4.1: Quantified atomic operations.

Operation Cost
Insert cell transition 1
Formula change 10
Value change 10
Label change 2

Table 4.1: Costs per operation.

48

The values present in table 4.1 are used to calculate the cost of an operation and are
explained next.

• In atomic operations where transitions representing cells are inserted, like add column
and add row, each inserted cell has a cost of 1, since data on the spreadsheet is not
modified.

• In operations where data might change, like delete column, delete row or set cell, the
cost is determined by the type of data present in each cell. If a cell containing a label
is being altered or deleted, that cost has a value of 2.

• If the data present on a cell is a formula or a value, that cost has a value of 10.

4.1.1 Computing the Sequences of Transformations

The process of ascertaining the sequence of transformations to be applied consists in
traversing initial and target automata simultaneously, and consecutively comparing pairs
of transitions, one from each automaton, while keeping a coordinate count for the target
automaton position. When two transitions are different, a decision is taken, based on both
transitions, to determine which atomic operation is applied next. The source automaton is
sequentially transformed while, at the same time, a sequence of the applied transformations
is kept. The automaton is transformed up until its equivalence to the target automaton is
established, culminating in a valid transformation sequence.

To determine which operation has to be applied is not always possible,since in particular
circumstances it is necessary to attempt different alternatives, which originates in multiple
valid transformations sequences. Afterwards it is necessary to decide which sequence to
apply. Such decision is based on the total cost of data change, as explained in section 4.1.

Systematically evolving a source automaton to a target automaton, in a directed way until
equivalence is met, is based on a fundamental principle, that is, a transformations sequence
is only pursued if at each operation applied the resulting automaton is closer to the final
one. If the resulting automaton diverges, then the transformations sequence resulting
from applying that operation can be discarded. Determining if the result of an operation
approximates or diverges from the solution is based on the number of equal sequential
transitions both automata possess, until the first difference occurs. If after an operation

49

is applied the number of common equal sequential transitions decreases, then the result
is diverging from the target automaton, otherwise it is converging. Algorithm 2 is a naïve
approach to solve this problem. For clarity reasons the transition count is omitted, but
it should be kept in mind that a transformation operation is only applied if the current
transition count is equal or greater than the previous count.

Algorithm 2 Transformations Sequences Algorithm
1: function computeTSequences(sa,ta,ic)
2: return walk(getInitialTransition(sa),getInitialTransition(ta),sa,ic,{},0)
3: end function
1: function walk(st,tt,sa,(x, y),p,pc)
2: if hasNoMoreTransitions(st,tt) then
3: return (p, pc)
4: end if
5: if st = tt then
6: nc← updateCoordinates(st,(x, y))
7: return walk(nextTransition(st),nextTransition(tt),sa,nc,p,pc)
8: end if
9: if targetAutomatonHasExtraColumn(st,tt) then
10: if not inLastRow(st,sa) then
11: return walk(st,nextTransition(tt),sa,(x, y),p,cs)
12: else
13: (na, oc)← addColumn(After x, sa)
14: enqueue(AddColumn After x,p)
15: return walk(getInitialTransition(na),getInitialTransition(ta),na,p,pc + oc)
16: end if
17: end if
18: if sourceAutomatonHasExtraColumn(st,tt) then
19: if not inLastRow(st,sa) then
20: return walk(nextTransition(st),tt,sa,(x, y),p,pc)
21: else
22: (na, oc)← delColumn(x + 1, sa)
23: enqueue(delColumn x + 1,p)
24: return walk(getInitialTransition(na),getInitialTransition(ta),na,p,pc + oc)
25: end if
26: end if
27: if targetAutomatonHasExtraRow(st,tt) then
28: (na, oc)← addRow(After y, sa)
29: enqueue(addRow After y,p)
30: return walk(getNextTransition(st),getNextTransition(tt),na,p,pc + oc)
31: end if
32: if sourceAutomatonHasExtraRow(st,tt) then
33: (na, oc)← delRow(y + 1, sa)
34: enqueue(delRow y + 1,p)

50

Algorithm 2 Transformations Sequences Algorithm (continued)
35: return walk(getNextTransition(st),getNextTransition(tt),na,p,pc + oc)
36: end if
37: if rowsStartWithDifferentClasses(st,tt) AND classIsNext(tt,st,ta) then
38: (na, oc)← addRow(After y − 1, sa)
39: enqueue(addRow After y − 1,p)
40: return walk(getInitialTransition(na),getInitialTransition(ta),na,p,pc + oc)
41: end if
42: if rowsStartWithDifferentClasses(st,tt) AND classIsNext(st,tt,sa) then
43: (na, oc)← delRow(y, sa)
44: enqueue(delRow y,p)
45: return walk(getNextTransition(st),tt,na,p,pc + oc)
46: end if
47: if cellsHaveDifferentContent(st,tt) then
48: tryAllOperations()
49: all← concatenateComputedTransformations()
50: return all
51: end if
52: return {}
53: end function

The computeTSequences function takes as input a source automaton (sa), a target automa-
ton (ta) and the source automaton initial coordinates (ic). This function invokes the walk
function, which receives as input a transition from the source automaton (st), a transition
from the target automaton (tt), the source automaton to be evolved (sa) the current coor-
dinates (x, y), the transformations sequence (p) and the current transformations sequence
cost (pc).

To better understand the algorithm, the cases that can occur when comparing ClassSheet
models, using a row-by-row strategy, are presented. For simplicity, models are pictured in
the ClassSheet visual language and the transitions being evaluated are represented as red
colored cells.

The first case, displayed in Figure 4.2, arises when the transitions in the source automaton
and final automaton are equal. This corresponds to the if clause in line 5 of algorithm 2.

Figure 4.2: Source and target models, with equal transitions before evaluation.

51

When this happens the following actions have to take place.

• Update the coordinate count.

• Advance both transitions to the next ones.

The result of advancing both transitions is pictured in Figure 4.3.

Figure 4.3: Source and target models, with equal transitions, after evaluation.

The next case, displayed in Figure 4.4, occurs when the transition in the source automaton
is the last transition in a block of cells and it is not located in the final row of the model,
and the target automaton has, at least, another column (if clause in line 10 of algorithm 2).

Figure 4.4: Target automaton has one more column than source automaton, before evaluation.

When this occurs the target automaton transition has to be advanced to the next one,
until both automata synchronize. The result is shown in Figure 4.5.

Figure 4.5: Target automaton with one more column than source automaton, before evaluation.

The following situation (Figure 4.6) arises when the source automaton transition is located
at the end of a block of cells, in the last row of the automaton, and the target automaton
has, at least, one more column (else clause in line 12 of algorithm 2).

52

Figure 4.6: Source automaton in last row and target automata has, at least,one more column,
after evaluation.

When this case occurs the following sequence of actions takes place.

• Add a column after column x to the source automaton.

• Add the transformation just applied to the sequence of transformations.

• Update the transformations sequence cost.

• Compare both automata from the beginning.

The result of applying the previous operations is shown in Figure 4.7.

Figure 4.7: Source automaton with new added column.

The case pictured in Figure 4.8 occurs when the target automaton transition is at the end
of a block of cells not located in the final row, and the source automaton has, at least, one
more column (if clause in line 19 of algorithm 2).

Figure 4.8: Source automaton has, at least, one more column than the target automaton.

In this case the source automaton transition is skipped to the next one. The result is
displayed in Figure 4.9.

53

Figure 4.9: Source automaton synchronizes to target model.

The ensuing case, shown in Figure 4.10, occurs when the target automaton transition is
located at the end of a block of cells and the source automaton has, at least, one more
column, and the transition is located in the last row of the automaton (else clause in line
21 of algorithm 2).

Figure 4.10: Source automaton reached the last row and has, at least, one more column.

In this situation the following steps are taken.

• Column x+1 is deleted from the initial automaton.

• The transformation applied is added to the current transformations sequence.

• The transformations sequence cost is updated.

• Both automata are compared again from the beginning.

The result is presented in Figure 4.11.

Figure 4.11: Source automaton with last column deleted.

The case depicted in Figure 4.12 occurs when the source automaton reaches its end but
the target automaton still has, at least, one more row (if clause in line 27 of algorithm 2).

In this situation the following steps are taken.

54

Figure 4.12: Target automaton has, at least, one more row than the source automaton.

• Add a row after y to the initial automaton.

• The transformation applied is added to the current transformations sequence.

• The transformations sequence cost is updated.

• The automata continue to be compared.

The result is shown in Figure 4.13.

Figure 4.13: Source automaton has one more row.

The next scenario (Figure 4.14) occurs when the target automaton reaches the end the
block of cells, but the source automaton has, at least, one more row (if clause in line 32 of
algorithm 2).

Figure 4.14: Source automaton has one more row, before evaluation.

When this happens the following steps are taken.

• Row y+1 is deleted from the source automaton.

• The transformation applied is added to the current transformations sequence.

55

• The transformations sequence cost is updated.

• The automata continue to be compared.

In this case, since the target automaton does not posses any more rows, equivalence is
established and the algorithm computes a valid transformations sequence. If the source
automaton would have any more rows, the algorithm would proceed to find any more
differences. The result is shown in Figure 4.15.

Figure 4.15: Source automaton with deleted row, after evaluation.

The next case (Figure 4.16) occurs at the beginning of both rows being processed, when
each row belongs to a different class, and the current class in the source model only starts at
the beginning of a subsequent row in the target model (if clause in line 37 of algorithm 2).
In this example, Class B in the source model starts at coordinates A2, but in the target
model it only starts at coordinates A3. In such situations the next steps have to e applied.

• Add a row after y-1 to the source automaton.

• The transformation applied is added to the current transformations sequence.

• The transformations sequence cost is updated.

• The automata are compared from the beginning.

Figure 4.16: Final model has a new row preceding a class.

The result of adding the new row is shown in Figure 4.17.

56

Figure 4.17: Target model after row preceding class is inserted.

The following case (Figure 4.18) arises when the two rows being processed belong to dif-
ferent classes, and the class in the target model starts only in a subsequent row in the
source model (if clause in line 42 of algorithm 2). In this case the following steps have to
be taken.

• Row y is deleted from the source automaton.

• The transformation applied is added to the current transformations sequence.

• The transformations sequence cost is updated.

• Both automata continue to be compared.

Figure 4.18: Source model has, at least, one more row preceding a class than the target model.

Figure 4.19 shows the result of removing the row from the source model.

Figure 4.19: Source model after deleted row preceding class.

The subsequent case to be addressed (Figure 4.20), is the case where two cells have different
content (if clause in line 47 of algorithm 2). Due to the fact that to determine the exact

57

operation to be applied is not always a trivial task to do, multiple operations are applied
to the source automaton, which potentially results in numerous transformations sequences.

Figure 4.20: Cells holding different content.

In this particular case, the following transformation steps take place.

• Apply add column before x to the initial automaton and update the transformations
sequence, and cost.

• Recursively compute the rest of the transformations sequence and respective cost.

• Repeat the previous two steps for operations add column after x-1, del column x,
add row before y, add row after y-1, del row y and set cell.

• Concatenate all transformations sequences, and respective costs, resulting from the
recursive calls and return the result.

The next case to address is when equivalence between the two automata is achieved. In
this case the current transformations sequence and respective cost is returned.

The final case is when the number of equivalent sequential transitions in both automata
decreases, after an operation is applied to the initial automaton. This means that the
source automaton is diverging from the target automaton and, as such, the search for a
solution with the current transformations sequence can be abandoned.

In the end the best transformations sequence, based on data cost, can be attained by
simply choose the sequence with lower cost. This sequence can then be used to evolve the
initial ClassSheet model, and automatically co-evolve the respective instances using the
bidirectional framework defined in [Cunha et al., 2012a]. In chapter 5 some examples are
presented to demonstrate how this process can be used to evolve model-driven spreadsheets.

58

4.2 Summary

In this chapter a method for automatic evolving of ClassSheet models, and co-evolving
instances, is introduced. This method is based in automata equivalence and transformation,
using atomic operations defined on Chapter 2, and bidirectional transformations.

The evolution process implies the computation of multiple transformations sequences, and,
in the end, choosing the appropriate one.

Finally an algorithm is introduced, to evolve a source ClassSheet automaton to a target
automaton, in a directed form, while keeping track of the atomic operations applied during
that process. These atomic operations are then used to evolve ClassSheet models and
instances until both comply with the target automaton.

59

60

Chapter 5

Directed Evolution of Model-Driven
Spreadsheets in Practice

The validation of results of the work carried out in this thesis is done in the form of
a software prototype that implements all the techniques presented previously. In this
chapter several examples of evolution using this software artifact are demonstrated, where
the evolution of a given source model, and the co-evolution of the respective data, is
performed until both are in compliance with the new model.

5.1 Integration with MDSheet

To illustrate the outcome of the evolution process, the software prototype is integrated into
MDSheet. MDSheet is an extension for OpenOffice/LibreOffice Calc that supports the
specification and manipulation of ClassSheet models and instances, using a single spread-
sheet environment. To achieve this, it supports the sets of operations over ClassSheet mod-
els and instances, and the bidirectional transformations defined in [Cunha et al., 2012a],
which means that whenever a model is modified, the corresponding instance is updated
to bring it into conformity with the new model, and vice-versa. The developed prototype
allows adding automatic evolution functionality to the range of functionalities of MDSheet.

61

5.2 Evolution Scenarios

This section has two purposes: i) demonstrate how automatic evolution is executed in
practice, and ii) to determine how it performs. Three basic examples are presented, one
for a vertically expansible class, one for a horizontally expansible class, and one for a two-
dimensional expansible class. The hardware used to run the tests is a computer with an
Intel Core Duo T2400 CPU, running at 1.83 GHz, and 4GB of RAM.

In order to use the automatic evolution functionality, first a model must be created in
a spreadsheet, using model editing operations already supported by MDSheet. When the
model is created an instance is simultaneously generated in a second worksheet. The second
step is to modify that instance, using operations over instances, and fill it with data. In
Figure 5.1 a Pilots ClassSheet model and respective instance, created with MDSheet can
be visualized.

Figure 5.1: Pilots ClassSheet model and instance before evolution.

To evolve the model and instance previously defined, one must create the target model
(Figure 5.2) in a separated sheet, select the source model and press the “Evolve To” control
(Figure 5.3). In this case the target model possesses a new column, after column C, with
a new attribute, base_salary with default value 10000.

Figure 5.2: Pilots target model.

62

Figure 5.3: Evolve To control.

Due to the fact that multiple transformations sequences are calculated during an evolution
process, the solution can take some time to be achieved. This particular example takes 6
seconds to complete, including the time it takes to compute the transformations sequence,
and evolving the source model and instance until both conform to the target model. The
result can be seen in Figure 5.4.

Figure 5.4: Pilots ClassSheet model and instance after evolution.

In the next example a Planes ClassSheet model is presented alongside with a conforming
instance (see Figure 5.5).

Figure 5.5: Planes ClassSheet model and instance after evolution.

Both model and instance are to be evolved so that both comply with the model in Fig-
ure 5.6, which possesses two new rows with attributes airline and number_of_seats respec-
tively.

The total computational time to evolve this example is 1 minute and 17 seconds. The result,
with both model an instance conforming to the target model, is presented in Figure 5.7.

63

Figure 5.6: Planes target model.

Figure 5.7: Planes ClassSheet model and instance after evolution.

The last example is a more complex, two-dimensionally expansible, Budget ClassSheet.
The source model and instance are exhibited in Figure 5.8 and Figure 5.9, respectively.

Figure 5.8: Budget source model before evolution.

Figure 5.9: Budget source instance before evolution.

Both model and instance are to be evolved until they comply with the target model pictured
in Figure 5.10. This model has an extra column between columns D and E, which possesses
a new attribute named vat with default value 0.23. The formula in the total attribute, in
the association class, is also updated to take in to account vat when calculating the total
cost.

64

Figure 5.10: Budget target model.

This example is one of the more computational intensives, taking 7 minutes and 26 seconds
to calculate the transformations sequence and evolve the model and instance. The resulting
model is shown in Figure 5.11, and the resulting instance is show in Figure 5.12.

Figure 5.11: Budget source model after evolution.

Figure 5.12: Budget source instance after evolution.

This case yields some interesting results, changing the formula of the total attribute, in the
association class, has the consequence of also changing the values of the total attributes of
the classes Category and Year, as can be seen in the resulting instance.

5.2.1 Food Bank: Directed Evolution In Real World

At this point we are able to model the business logic of a large spreadsheet using ClassSheets
and we can automatically evolve an initial model to a target model, but evolution between
ClassSheets can be inserted in a broader setting. To give some context a real world spread-
sheet is utilized. This spreadsheet is taken from Banco Alimentar de Braga (BA)1 institu-
tion, a social solidarity institution devoted to helping people in need with food products.
In Figure 5.13 the spreadsheet model, defined using MDSheet, is displayed. This model

65

specifies the structure of a spreadsheet used to store products and respective quantities to
be distributed to various other social solidarity institutions. Figure 5.14 shows an instance
conforming to that model as generated by MDSheet. Note that the data here used is not
real data, as this would reveal private information.

Figure 5.13: Banco Alimentar de Braga ClassSheet model.

Figure 5.14: Banco Alimentar de Braga ClassSheet instance.

Suppose that BA now has a database and its administrator specifies a new schema that
conforms to the UML class diagram in Figure 5.15. This results in the necessity to migrate
the spreadsheet instance in Figure 5.14 so that the data can be stored in the database.
To do this two steps have to be taken: i) a ClassSheet model has to be inferred from
the UML class diagram, using a reverse technique to the one proposed in [Cunha et al.,
2012d], after infering the ClassSheet from data [Cunha et al., 2010], and, ii) the initial
model (Figure 5.13) has to be evolved until equivalence to the new model is met, while at
the same time co-evolving the respective instance (Figure 5.14) so it conforms to the new
model. The resulting instance (Figure 5.17) can then be used to store the information in
the database using techniques introduced in [Cunha et al., 2009]. The entire process can
be visualized in Figure 5.18.

1http://www.braga.bancoalimentar.pt/ (19-9-2013).

66

http://www.braga.bancoalimentar.pt/

Figure 5.15: Banco Alimentar new UML class diagram.

Figure 5.16: Banco Alimentar new ClassSheet Model.

Figure 5.17: Banco Alimentar new ClassSheet instance.

Figure 5.18: Evolution in real world.

67

5.3 Limitations

Although the prototype already supports a significant number of operations it still has the
following limitations.

• Only supports one class or table. Our algorithm supports evolution of individual
ClassSheet models, and at this stage our front end is only able of single ClassSheet
model evolution. For example, the airline spreadsheet in Figure 2.9 is not yet fully
supported.

• At this stage add/remove class operations are not supported.

5.4 Summary

In this chapter a prototype, with the implementation of the techniques proposed in this
thesis, is presented.

A description of how the prototype is integrated with MDSheet, and can be used to evolve
ClassSheet models and instances, is made.

Some tests are exhibited, showing the result of evolving a source model and instance
until they conform to a target model. We also present the time it takes to compute that
evolution.

Finally, some limitations of the prototype are referred.

68

Chapter 6

Conclusion

Besides being used by human operators, spreadsheets are also used to bond different sys-
tems. Data produced by one system is transferred, as a spreadsheet, to be consumed by
a target system. What happens in some cases is that the data produced by the source
system is not totally compatible with the endpoint system, and data has to be adapted
so it can be processed. Generally this job is assigned to a human operator. This person
modifies the source spreadsheet until the format conforms to the system that is going to
process it. Due to the human factor sometimes errors are inadvertently introduced.

Much research has been done on Spreadsheets in recent years, with the aim to reduce errors
typically present in them. Tools were introduced by spreadsheet software vendors to try
to decrease mistakes made by users.

Model-driven spreadsheet development was introduced to try to mitigate this problem. One
of the most accepted methods by the scientific community was proposed in [Engels and
Erwig, 2005]. This approach is based on model-driven engineering and allows specifying
spreadsheet business logic using software engineering constructs, like classes and attributes.

The work done in this thesis provides a framework for automatic evolution of ClassSheet
models and instances, based on automata equivalence and transformation. ClassSheet
model operations were implemented as automata operations and used in the evolution
process to determine which operations have to be applied to a source model, expressed as
automaton, until equivalence to a final automaton is achieved.

69

The presented framework offers the possibility to solve two kinds of problems: reduce the
errors introduced by users, by allowing them to specify a final model and only then migrate
the data, and second, allows seamlessly bridging two systems, in a fully automatic way,
i.e., removing the need of human intervention.

6.1 Answers To The Research Questions

We are now in conditions to answer the research questions asked at the end of chapter 1.

Q: Can ClassSheet models be expressed as automata?

A: ClassSheet models can be expressed as automata, using their textual representation
and the transformation method proposed in section 3.1.

Q: Can model evolution operations proposed in [Cunha et al., 2012a] be defined
over finite automata?

A: Equivalent operations defined over ClassSheet models in [Cunha et al., 2012a] can be
defined over finite automata, as presented on chapter 3.

Q: Can an initial ClassSheet model, expressed as automaton, be consecutively
transformed, in a directed way, until it is equivalent to a given final automa-
ton?

A: An initial ClassSheet model expressed as automaton can be consecutively transformed,
in a directed way, until equivalence to a given final automaton is achieved. In Chapter 4 we
developed an algorithm that allows this directed evolution to take place while, at the same
time, keeping track of the sequence of transformations applied to the initial automaton.

6.2 Future Work

Furthermore, we have integrated automatic evolution support into a tool, that allows
manipulating ClassSheet models and instances, to validate the work done in this thesis.

70

At this stage the developed prototype only supports evolution of models with different cell
contents or different physical dimensions, by adding or removing columns, or adding or
removing rows. As future work functionalities to add and remove classes are planned. Also
the possibility to use ClassSheet evolution to evolve other types of models and instances
is left open. Other types of models can be converted to ClassSheets, evolved and, in the
end, the evolution mechanism can be used to evolve the original models and instances, as
with spreadsheets. Selecting the transformation sequence to be applied is based on data
change, in the future a different criterion based on spreadsheet [Cunha et al., 2012c] or
ClassSheet model quality [Cunha et al., 2013] can be used.

Also a paper is being submited to be released in the near future with the findings resulting
from the work carried out in this thesis.

71

72

References

ABC (2005). Accountants make AUD$30M mistake. http://www.abc.net.au/news/
newsitems/200506/s1394937.htm (last retrieved: 19-09-2013). 6

Abraham, R., Erwig, M., Kollmansberger, S., and Seifert, E. (2005). Visual Specifications
of Correct Spreadsheets. In Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC ’05, pages 189–196. IEEE Computer Society.
7, 11, 12

Beckwith, L., Cunha, J., ao Paolo Fernandes, J., and Saraiva, J. (2011a). End-users
productivity in model-based spreadsheets: An empirical study. In Proceedings of the
Third International Symposium on End-User Development, IS-EUD ’11, pages 282–288. 8

Beckwith, L., Cunha, J., Fernandes, J. P., and Saraiva, J. (2011b). An empirical study
on end-users productivity using model-based spreadsheets. In Thorne, S. and Croll,
G., editors, Proceedings of the European Spreadsheet Risks Interest Group, EuSpRIG ’11,
pages 87–100. 8

Blade, T. (2004). University of Toledo loses $2.4M in projected
revenue. http://www.toledoblade.com/Education/2004/05/01/
University-of-Toledo-loses-2-4M-in-projected-revenue.html (last retrieved:
19-09-2013). 6

Bricklin, D. VisiCalc: Information from its creators, Dan Bricklin and Bob Frankston.
http://www.bricklin.com/visicalc.htm (last retrieved: 19-09-2013). 4

Campbell-Kelly, M., C. M. F. R. R. E. (2007a). Introduction. In The History of Mathematical
Tables From Summer to Spreadsheets, pages 1–15. Oxford University Press. 1

73

http://www.abc.net.au/news/newsitems/200506/s1394937.htm
http://www.abc.net.au/news/newsitems/200506/s1394937.htm
http://www.toledoblade.com/Education/2004/05/01/University-of-Toledo-loses-2-4M-in-projected-revenue.html
http://www.toledoblade.com/Education/2004/05/01/University-of-Toledo-loses-2-4M-in-projected-revenue.html
http://www.bricklin.com/visicalc.htm

Campbell-Kelly, M. (2007b). The rise and rise of the spreadsheet. In The History of
Mathematical Tables From Summer to Spreadsheets, pages 323–346. Oxford University
Press. 2, 3, 4

Catless (1995). The Risks Digest Volume 16: Issue 72 - Computing error at Fidelity’s
Magellan fund. http://catless.ncl.ac.uk/Risks/16.72.html (last retrieved: 19-09-
2013). 6

Cunha, A., Oliveira, J. N., and Visser, J. (2006). Type-Safe Two-Level Data Transforma-
tion. In Misra, J., Nipkow, T., and Sekerinski, E., editors, FM 2006: Formal Methods,
volume 4085 of Lecture Notes in Computer Science, pages 284–299. Springer-Verlag. 8

Cunha, A. and Visser, J. (2007). Strongly Typed Rewriting for Coupled Software Transfor-
mation. Electronic Notes in Theoretical Computer Science, 174(1):17–34. Elsevier Science.
8

Cunha, J. (2011). Model-based Spreadsheet Engineering. PhD thesis, University of Minho.
8

Cunha, J., Erwig, M., and Saraiva, J. a. (2010). Automatically inferring classsheet models
from spreadsheets. In Proceedings of the 2010 IEEE Symposium on Visual Languages and
Human-Centric Computing, VLHCC ’10, pages 93–100, Washington, DC, USA. IEEE
Computer Society. 47, 66

Cunha, J., Fernandes, J. P., Mendes, J., Pacheco, H., and Saraiva, J. (2012a). Bidirectional
Transformation of Model-Driven Spreadsheets. In Hu, Z. and de Lara, J., editors, Theory
and Practice of Model Transformations – ICMT 2012, volume 7307 of Lecture Notes in
Computer Science, pages 105–120. Springer-Verlag. 5, 9, 10, 19, 20, 23, 24, 34, 35, 38,
40, 42, 44, 48, 58, 61, 70

Cunha, J., Fernandes, J. P., Mendes, J., and Saraiva, J. (2012b). MDSheet: A Frame-
work for Model-driven Spreadsheet Engineering. In Proceedings of the 34rd International
Conference on Software Engineering, ICSE’12, pages 1412–1415. ACM. 8, 20

Cunha, J., Fernandes, J. P., Mendes, J., and Saraiva, J. (2013). Complexity Metrics for
Spreadsheet Models. In The 13th International Conference on Computational Science and
Its Applications, ICCSA’13. LNCS. to appear. 71

74

http://catless.ncl.ac.uk/Risks/16.72.html

Cunha, J., Fernandes, J. P., Peixoto, C., and Saraiva, J. (2012c). A quality model for
spreadsheets. In Proceedings of the 8th International Conference on the Quality of Infor-
mation and Communications Technology, Quality in ICT Evolution Track, pages 231–236.
71

Cunha, J., Fernandes, J. P., and Saraiva, J. (2012d). From Relational ClassSheets to
UML+OCL. In Proceedings of the Software Engineering Track at the 27th Annual ACM
Symposium On Applied Computing (SAC 2012), pages 1151–1158. ACM. 16, 17, 18, 47,
66

Cunha, J., Saraiva, J., and Visser, J. (2009). From spreadsheets to relational databases
and back. In Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation and
program manipolation, PEPM ’09, pages 179–188, New York, NY, USA. ACM. 9, 66

Cunha, J., Visser, J., Alves, T., and Saraiva, J. (2011). Type-Safe Evolution of Spread-
sheets. In Giannakopoulou, D. and Orejas, F., editors, Fundamental Approaches to Soft-
ware Engineering – FASE ’11/ETAPS ’11, volume 6603 of Lecture Notes in Computer Sci-
ence, pages 186–201. Springer-Verlag. 8

Engels, G. and Erwig, M. (2005). Classsheets: Automatic Generation of Spreadsheet
Applications from Object-Oriented Specifications. In Proceedings of the 20th IEEE/ACM
international Conference on Automated Software Engineering, ASE ’05, pages 124–133.
ACM. 7, 8, 11, 13, 15, 25, 69

Engels, G. and Groenewegen, L. (2000). Object-Oriented Modeling: A Roadmap. In
Proceedings of the 20th IEEE/ACM international Conference on Automated Software Engi-
neering, ICSE’00, pages 103–116. ACM. 11

Erwig, M., Abraham, R., Cooperstein, I., and Kollmansberger, S. (2005). Automatic Gen-
eration and Maintenance of Correct Spreadsheets. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 136–145. ACM. 7

EuSpRiG. European Spreadsheet Risks Interest Group. http://www.eusprig.org/ (last
retrieved: 19-09-2013). 6

Gogolla, M., Büttner, F., and Richters, M. Use: A UML-based specification environment
for validating UML and OCL. 17

75

http://www.eusprig.org/

Hermans, F., Pinzger, M., and van Deursen, A. (2010). Automatically Extracting Class
Diagrams from Spreadsheets. In Proceedings of the 24th European Conference on Object-
Oriented Programming, ECOOP ’10, pages 52–75. Springer-Verlag. 8

Ireson-Paine, J. (1997). Model Master: an Object-Oriented Spreadsheet Front-End.
In Computer-Aided Learning using Technology in Economies and Business Education,
CALECO ’97. 7

Kleppe, A., W. J. (2003). MDA Explained: The Model Driven Architecture Practice and
Promise. Addison-Wesley. 11

Mendes, J. (2011). Classsheet-driven Spreadsheet Environments. In Proceedings of the
2011 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC ’11,
pages 235–236. 18, 19, 20

Panko, R. R. (2008). Spreadsheet errors: What we know. what we think we can do. CoRR,
abs/0802.3457. 6

Panko, R. R. and Ordway, N. (2008). Sarbanes-Oxley: What About all the Spreadsheets?
CoRR, abs/0804.0797. 5, 6

Powell, S. and Baker, K. (2011). Management Science: The Art of Modeling with Spread-
sheets. John Wiley & Sons. 6

Register, T. (2003). Excel snafu costs firm$24M. http://www.theregister.co.uk/2003/
06/19/excel_snafu_costs_firm_24m/ (last retrieved: 19-09-2013). 6

Robson, E. (2007). Tables and tabular formatting in Sumer, Babylonia, and Assyria, 2500
BCE-50 CE. In The History of Mathematical Tables From Summer to Spreadsheets, pages
19–48. Oxford University Press. 1, 2

Telegraph, T. (2012). London 2012 Olympics: lucky few to get 100m final tickets
after synchronised swimming was overbooked by 10,000. http://www.telegraph.
co.uk/sport/olympics/8992490/London-2012-Olympics-lucky-few-to-get-100m-
final-tickets-after-synchronised-swimming-was-overbooked-by-10000.html
(last retrieved: 19-09-2013). 6

76

http://www.theregister.co.uk/2003/06/19/excel_snafu_costs_firm_24m/
http://www.theregister.co.uk/2003/06/19/excel_snafu_costs_firm_24m/
http://www.telegraph.co.uk/sport/olympics/8992490/London-2012-Olympics-lucky-few-to-get-100m-
http://www.telegraph.co.uk/sport/olympics/8992490/London-2012-Olympics-lucky-few-to-get-100m-
final-tickets- after-synchronised-swimming-was-overbooked-by-10000.html

	Introduction
	Spreadsheets
	Motivation
	Model-Driven Spreadsheet Engineering
	Model-Driven Evolution
	Research Questions
	Document Structure

	Model-Driven Spreadsheets
	Templates
	ClassSheets
	Relational ClassSheets to UML+OCL
	Embedding of ClassSheet Models Within Spreadsheets
	Bidirectional Transformation of Spreadsheets
	Summary

	Operations Over ClassSheet Automata
	ClassSheets as Automata
	Basic Operations over Automata
	ClassSheet Automata Operations
	Summary

	Directed Evolution of Model-Driven Spreadsheets
	Model-Driven ClassSheet Evolution
	Summary

	Directed Evolution of Model-Driven Spreadsheets in Practice
	Integration with MDSheet
	Evolution Scenarios
	Limitations
	Summary

	Conclusion
	Answers To The Research Questions
	Future Work

	 References

