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Resumo 

 

Um biofilme é uma comunidade de microrganismos envoltos por uma matriz extracelular 

produzida pelos próprios, que lhes garante proteção. Os biofilmes representam um problema para 

a saúde pública pois facilmente encontram-se em dispositivos médicos, podendo causar 

problemas graves para os pacientes. 

Estudos prévios indicam algumas alterações observáveis do aspeto físico e bioquímico das 

comunidades microbianas na resposta à resistência e à virulência. Assim a morfologia da 

comunidade pode ser um indicativo da reação regulatória associada com fenómenos de 

patogenicidade microbiana. 

O objetivo deste trabalho é por um lado a criação de um novo sistema de classificação de 

morfologia de colonia com medidas extraídas de softwares de imagem por outro lado, o estudo da 

classificação morfológica existente e do novo sistema de classificação, através de técnicas de 

mineração de dados com o objetivo de ajudar nestas classificações. Apresentamos vários 

softwares como solução que vão desde a caraterização da estrutura dos biofilmes até a 

caraterização de morfologia de colonia  

 

 

Palavras-chave: Biofilmes, morfologia de colonia, processamento de imagens, mineração de 

dados 
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Abstract 

 

Biofilms are communities of microorganisms embedded in a self -produced extracellular matrix, 

adherent to an inanimate, biotic surface that provides them with protection. Biofilms are a 

healthcare problem since they can be found in several medical devices and end up causing 

problems for the patients. 

Previous studies have reported observable physical and biochemical changes of microbial 

communities associated with resistance and virulence response. This suggests that the morphology 

of a biofilm is a marker for regulatory interplays associated with the microbial phenomenon of 

pathogenicity. 

The aims of this work are on the one hand, create a novel system of colony morphological 

classification with measurements extract from image software on the other hand study the current 

manual morphological classification and the novel one through data mining techniques. Here we 

present several software solutions to facilitate the process, from the determination of biofilm 

structure to the characterisation of colony morphology. 
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Chapter 1. Introduction 

 

1.1 Context and Motivation 

Biofilms can be defined as aggregates of microorganisms embedded in a self -produced 

extracellular matrix and adhering to inanimate and biotic surfaces. Biofilms can be composed by 

one or more microbial species, but polymicrobial biofilms composed of several bacterial species 

are the most common [1]. Biofilms can also be formed by fungi microorganisms like Candida 

albicans. Besides the microorganisms, biofilms are also composed by interconnecting compounds 

which keep the microorganisms stuck to each other and to the surface. These compounds can be 

self-produced (such as polysaccharides, proteins, extracellular DNA and cell lysis products), 

substances derived from the immediate surrounding environment, or even dead cells [2]. 

Microorganisms within a biofilm can form long-term relationships, interacting with each other and 

establishing metabolic cooperation and/or antagonistic interactions. In a biofilm community, 

microorganisms tend to express different genes and proteins depending on the specific needs of 

particular biofilm region [3]. The genotype and phenotype alterations tend to be reflected in the 

morphology of the biofilm, i.e., the physical structure of the biofilm is somewhat reflective of how 

the biofilm cells interact with the environment [4]. Therefore, the capturing of images from different 

sections of the biofilm, with the corresponding quantification of the biofilm structure, is used to 

obtain insights about the biological processes that are taking place.  

Furthermore, it is normal to culture microorganisms derived from biofilms onto solid media to 

characterize their growth patterns and to investigate their response to stimuli, such as their 

susceptibility profiles to antibiotic treatments. Culture onto solid media is a way to estimate the 

number of the biofilm-associated cells and their ability to grow. Theoretically, one viable biofilm-

associated cell can give rise to a visible colony through multiplication. The morphology adopted by 

the biofilm-derived colonies formed on the solid media can also provide important insights about 

biofilm resistance, virulence and pathogenicity. For that reason, the studies related to the 
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observable physical and biochemical traits of both microbial aggregates, i.e. biofilms and colonies, 

are often associated. 

Colony morphotyping is an emerging topic of research due to its potential implication in 

antimicrobial resistance and increased microbial virulence. Indeed, the collection and 

characterisation of morphotypes of colonies such as the ones derived from multi -drug resistant 

pathogens, is envisioned as a key in supporting clinical decision-making. Therefore, any 

computational developments in support of automatic morphotype characterisation are seen as 

highly desirable and somewhat pressing.  

 

1.2 Thesis contribution 

Usually, the morphological features of a biofilm or a colony can be visualized with the help of a 

magnifier or a microscope. Depending on the specific characteristics of the aggregate under 

observation, different types of microscopes can be used, as well as different staining techniques. 

Despite this diversity, the comprehensiveness and accuracy of characterisation depends mostly on 

the expertise of the observer/annotator. Currently there are some software tools addressing the 

extraction of morphological features from biofilm-derived images, but this tools are usually designed 

to extract characteristics obtained under very specific conditions, namely produced under specific 

protocols. 

A comprehensive evaluation of existing software is considered relevant as means to: (i) improve 

the computational tools at the researcher's disposal and (ii) standardize the characterisation of 

microcolony among the research community. It is also interesting to evaluate the viability of 

combining the measurements extracted by different computational tools to create a novel tool 

capable of classifying the morphological characteristics of a microcolony. Such a tool could be of 

tremendous value in (i) reducing the errors associated with the subjectivity inherent to human 

characterisation, (ii) reducing the time spent on this exhausting task, (iii) improving standards for 

morphological classification, and (iv) assisting research and clinical decision-making. 

So far, morphotyping has been completely manual, relying on specialised curation. Yet, there is a 

portfolio of image processing tools that may be put into use here, with the benefit of alleviating 

manual curation as well as controlling annotation discrepancies (e.g., due to the degree of expertise 
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of the curators). The goal is to seek a tool or combination of tools, and thus acquire a number of 

different morphological measurements. It would be important to equip researchers and clinicians 

with the means to reliably classify new images into well-studied colony morphology clusters. By 

doing so, therapeutic strategies and other decisions could be issued more promptly, assisted by 

the background of morphotype clusters meanwhile acquired.  

 

1.3 Dissertation outline 

The rest of this dissertation is structured as follows: chapter 2 provides an overview of related 

topics that were used as background to this work, while chapter 3 provides the study of the software 

available to since the biofilms structure analylis to the colony couting. In chapter 4 will be presented 

our study case. The results will be presented and discussed in chapter 5 and chapter 6 will closes 

this work with some conclusion and ideas to future work. 
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Chapter 2. Context 

 

In this chapter, we aimed to go through the major concepts behind the subject being discussed in 

this dissertation. We address some key features like basic concepts behind biofilms, some of the 

observation techniques used in biofilms studies and a description of the morphological 

characteristics. It is also presented some image pre-processing techniques. 

 

2.1 Biofilms 

Microorganisms are the most successful form of life considering their habitats, their number, and 

their phylogenetic diversity. Microorganisms can exist in planktonic, in free suspension form, or 

associated in microcolonies. Biofilms can be considered a particular type of this latter form of living 

[1,3]. In fact, biofilms can be defined as communities of microorganisms immobilised on a solid 

surface and protected by a polymeric matrix produced by the microbial cells themselves [5,6]. 

These types of communities can be formed by one (single biofilms) or more microbial species 

(polymicrobial or mixed biofilms). In general, bacterial species predominate in biofilms, but fungi 

microorganisms, such as C. albicans, are often found in these living structures.  Besides bacteria 

and fungi, algae and protozoa species can also be found in natural biofilms [7]. 

In a biofilm, the microorganisms are protected by a self -produced extracellular polymeric (EPS) 

matrix, which can have different densities and compositions[8]. This matrix may also encompass 

noncellular material such as mineral crystals, corrosion particles, clay, silt particles, blood 

components or cellular material, like extracellular DNA, proteins and cell lysis products. The 

presence of noncellular material depends on where the biofilm has developed. The diversity of the 

components that may exist in a biofilm makes the chemical analyses very challenging, especially 

in environmental biofilm samples [2,9].   

The EPS matrix secreted by the biofilm-associated microorganisms protects them from hostile 

environments. Indeed, cells within a biofilm have a better chance of survival [10] than planktonic 
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cells. Moreover, the matrix allows the cells to form long-term relationships with each other and to 

establish metabolic cooperation. The microorganisms that are closer to the surrounding 

environment appear to have an advantage, since they can easily acquire the metabolites needed, 

whereas those in the centre of the biofilm have more difficulty to obtain them [2].  

The biofilm-associated microorganisms are different from the planktonic forms, because they can 

specialise, i.e., they can display special phenotypes and express different genes and proteins, 

depending on what is necessary in their biofilm region [1,3], as those involved in metabolism or 

starvation responses and in the reduced susceptibility of microorganisms.  

 As complex three-dimensional structures, biofilms may have internal channels through which 

nutrients and water can circulate. Due to high cell densities in the EPS matrix and limitations in 

the diffusion of metabolites, nutrient gradients arise readily in a biofilm community. Therefore, 

distinct chemical niches exist at different depths in biofilms. In fact, a biofilm often has areas with 

more oxygen than others, giving rise to aerobic and anaerobic zones at the same time [3,11]. 

Microbiologists have agreed on a model (see Figure 1) for the formation of biofilms. Biofilm 

establishment often starts with an attachment of planktonic cells to a surface, followed by the 

formation of cell clusters – microcolonies. Then, microcolony development and stabilisation occurs 

through the EPS matrix, which will provide protection from the surrounding environment. Bacterial 

cells can detach from the biofilm, due to, for example, lack of nutrients or high shear stresses. 

These bacterial cells can contaminate other surfaces, multiply and form a new biofilm in a more 

suitable environment [4,6]. 
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Figure 1: The Biofilm Life Cycle. 

1. Planktonic bacteria encounter a submerged surface and within minutes can become attached. Cells begin to 
produce a slimy EPS matrix and to colonise the surface. 2. The EPS production allows the emerging biofilm community 
to develop a complex, three-dimensional structure that is influenced by a variety of environmental factors. Biofilm 
communities can develop within hours. 3. Biofilms can propagate through the detachment of small or large clumps of 
cells, or by a type of “seeding dispersal” that releases individual cells. Either type of detachment allows bacteria to 
attach to a surface or to a biofilm downstream of the original community [11] 

 

Biofilms can form on just about any imaginable surface (Figure 2). In nature, biofilms can be 

encountered on hydrous solid or semi-solid surfaces, such as soil, rock material, animals, and 

plants. In areas related to human activities, biofilms may also be found on metals, plastics, kitchen 

counters, contact lenses, the walls of a hot tub or swimming pool, human tissue, indwelling medical 

devices, and industrial or potable water system piping. Indeed, wherever the combination of 

moisture, nutrients, and a surface exists, biofilms will likely be found as well [2,11]. 

 

 
Figure 2: Biofilms on different surfaces. 

A. Dental plaque is a biofilm B. Biofilm in pipe section C. Biofilm scraped from reverse osmosis membrane D. Biofilm in a stream in 
Yellowstone National Park [12]. 

 

Due to the several external and internal factors influencing biofilm formation, the biofilms can adopt 

a huge variety of sizes and shapes. Some of the most common biofilm structures are mushroom-

shaped, pillar-shaped, or flat. Several authors claim that the morphological structure of a biofilm is 

influenced by the surrounding environment, i.e., the adhesion surface, the hydrodynamic 

conditions, the substrate available, and of course, the microorganisms that started the 

establishment of a biofilm as well as those further included in the biofilm consortia [2,11]. 

C D 
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For example, in Heydorn, A., et al (2000), the authors describe the phenotypes of several biofilms 

formed by different bacterial species. Pseudomonas putida started with single cells on the 

substratum, and after growing into microcolonies, formed long filaments and elongated cell 

clusters. In turn, Pseudomonas aeruginosa colonised the entire substratum, and then formed flat, 

uniform biofilms. Pseudomonas aureofaciens, which is similar to Pseudomonas aeruginosa, had a 

stronger tendency to form micro-colonies. Finally, the biofilm structure of Pseudomonas 

fluorescens had a phenotype intermediate between those of Pseudomonas putida and 

Pseudomonas aureofaciens. They concluded that despite all the microorganisms described 

belonging to the family Pseudomonadaceae and being tested in the same experimental conditions, 

they form biofilms with different phenotypes[13].  

Biofilms have an impact on human life, either directly by influencing human development, health, 

and disease, or indirectly by being involved in processes in natural or man-made environments [2]. 

This impact can be either beneficial or noxious. One of the beneficial effects of biofilms is in water 

treatment, where biofilm-associated microorganisms can degrade undesirable compounds and 

purify the water. On the other hand, biofilms can grow on ship hulls, causing increased friction and 

thus increasing energy consumption costs. Biofilm study is also important in industrial settings, as 

biofilms can develop inside industrial equipment, causing corrosion and equipment failure, which 

also results in increased costs [11]. 

There are several microbial aggregates in the human body, normally in mucous membranes and 

epithelial surfaces like the gastrointestinal tract, oral cavity, and skin. In normal conditions, the 

existence of these microorganisms is beneficial, for example degrading nutrients, synthesising 

vitamins, or helping the immune system [2]. 
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Figure 3: Common sites of biofilm infection in humans. 

Once biofilms reach the bloodstream, they can spread to any moist surface of the human body [12]. 

 

The balance between the human body and the human body's microorganisms is complex. If the 

balance changes, this can result in infectious diseases. Biofilms also have a major importance in 

medicine (Figure 3), as they can be found, for instance, in medical devices, causing infections in 

patients, or in periodontal diseases, causing progressive destruction of the tooth-support tissues 

[14]. Moreover, biofilms are also related to infectious diseases, such as cystic fibrosis, where 

biofilms augment the severity of the disease [15]. These diseases can be caused either by 

members of the indigenous human microbial community or by microorganisms from the 

environment. If, for instance, the host is immunocompromised, injured, or suffering from cancer, 

harmful biofilms can develop in different organs and cause persistent infections. Bacteria which 

have been found to be involved in human biofilm-related infections are, for example, Pseudomonas 

aeruginosa, Staphylococcus aureus, Escherichia coli, and Dolosigranulum pigrum [2]. 

As biofilms play a major role in human infections, are often encountered in biomaterial -related 

infections, and are associated with many nosocomial infections in medical units, one of the focuses 

of biofilms research is centred on biofilms that affect human health. 

It is commonly accepted that the physical structure of biofilms determines how they interact with 

the environment (and the environment also determines the morphology of the biofilm). Mass-

transport dynamics, hydrodynamics, and microbial community distribution are all factors known to 

influence biofilm structure. Also, as previously mentioned, the microorganisms in a biofilm are able 

to adapt to the surrounding environment by altering their gene expression that in turn affects the 

physical appearance of the biofilm [13]. Moreover, biofilms are always adapting, since they can be 
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formed by several different microorganisms and the self-produced matrix can be different 

depending on several factors whereby the morphological structure is constantly altered. The study 

of the physiology and structure of bacterial biofilms is also important to understand their 

susceptibility to antibiotics. Therefore, it is important to study the morphology and spatial 

architecture of the biofilm in all these circumstances.  

The diseases caused by polymicrobial biofilm infections are the most difficult to treat as they are 

often characterised by multiple and opportunistic pathogens whose interactions as a community 

increase the virulence [14]. The in vivo role of each microorganism in a mixed biofilm is still under 

discussion. The biofilm network is very complex and allows for mutual interactions that are just 

begun to be understood through in vitro studies. 

It is normal in in vitro studies to culture microorganisms derived from biofilms onto solid media to 

characterise their growth patterns and to investigate their response to stimuli, such as their 

susceptibility profiles to antibiotic treatments. This type of culture is a way to estimate the number 

of the biofilm-associated cells and their ability to grow. Theoretically, one viable biofilm-associated 

cell can give rise to a visible colony through multiplication. The morphology adopted by the biofilm -

derived colonies formed on the solid media can also provide important insights about biofilm 

resistance to antibiotics, virulence, and pathogenicity. For that reason, the studies related to the 

observable physical and biochemical traits of both microbial aggregates, i.e. biofilms and colonies, 

are often associated. 

To study biofilms in vitro, it is necessary to identify and control the main factors that influence 

biofilm formation, such as flow rate, temperature, or nutrient composition. However, the 

development of bacterial biofilms is to a certain extent a stochastic process, and independent 

rounds of biofilm experiments do not always produce the same results even if the experimental 

conditions are kept constant. Therefore, it is necessary to make several replicas for the study to be 

valid. This fact increases the data produced in every study [13].  

As mentioned above, a biofilm's genotype and phenotype is always changing. These constant 

changes tend to be reflected in the biofilm morphology. Under this assumption, researchers 

capture images from different sections of the biofilm and quantify its structure in order to obtain 

representative insights about the biological processes taking place. 
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The study of microbial communities is considered pivotal to help researchers understand how the 

social interplay between microorganisms enhances their ability to face and overcome 

environmental changes of various nature [16–23].  

Physical and biochemical traits of microbial communities associated with resistance and virulence 

responses have also been reported [24]. Notably, the morphology of the community could be 

indicative of regulatory interplays associated with the microbial phenomenon of pathogenicity [24–

27].  

 

 

Figure 4:  Several images relevant to the study of diseases associated with biofilms. 

(A-C) Biofilm images obtained with a Scanning Electron Microscope (SEM). (D-F) Biofilm colonies. (G-I) Distinct biofilm 
colony for a more accurate inside view of a particular colony, obtained by a magnifier. 

 

Figure 4 shows different types of images that can be studied to assess the degree of pathogenicity 

of biofilms. Images (A to C) have noticeably different characteristics. Taken with CLSM, this image 

type is normally used to study the structure of the biofilm. The images (D to F) are from an 

intermediate study. Researchers in the lab grow cultures in solid media and then quantify the 

number of colonies that grow in a specific period of time to assess the microorganism growth rate. 
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Afterwards colony morphology is often studied to evaluate the degree of pathogenicity. Images G 

to I are examples of a single colony. 

In terms of decision-making, the ability to profile (at least, to a certain extent) the response expected 

from a community by observing its morphology could become a major breakthrough. Morphological 

measurements can be viewed as part of a signature. If such a signature is detailed in terms of 

genome and proteome, correlating particular morphological manifestations with regulatory 

responses, then one could query known signatures in assistance of decision-making. However, for 

these signatures to be a reliable reference, morphological characterisation should be 

comprehensive, accurate and unambiguous. The set of measurements to be considered should be 

well-established and described, and preferably quantifiable. Measurements should not depend on 

the ability of the researcher to describe the visual interpretation of the observation through common 

words [2,4,14,23,28,29].  

Manual observation is a labour- and time-consuming task, and it is quite demanding in terms of 

expertise. The familiarity of the researcher with the type of microbial community under observation, 

namely the morphological switches of the organisms involved, is important. Technical skills, such 

as the ones related to image focus (i.e. the section of the community in display) and image quality 

(e.g. colour and resolution), are also required. Still, different interpretations of common 

morphological measurements may affect image annotation and further interpretation.  

If, however, researchers could rely on data extraction tools for images to automatically characterise 

the morphology of microbial communities, expressing measurements such as size, form or 

roughness in numerical terms, the time consumed by the process would be reduced and the quality 

of image annotations would improve significantly. Image annotations could be effectively compared 

and thus, morphotyping could take a part in the decision making.  

It is impracticable to analyse and classify every image produced in a single study by manual 

curation alone. Therefore, the use computational tools for this job is essential, thus also reducing 

the error potential and the time spent. 
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2.2 Microscopy - observation techniques 

Biofilms are intriguing societies of microorganisms, and it is of general interest to unravel the 

processes involved in their development, physiology, and adaptation. However, due to their 

complexity, natural microbial communities have been challenging objects of investigation. In 

addition, biofilms are often located in places that are difficult to access, which makes direct and 

continuous examinations difficult. To reduce complexity and facilitate investigations in the 

laboratory under controlled and reproducible conditions, a number of biofilm model systems have 

been established. These include flow-cell-grown biofilms, colony biofilms, microtiter dish grown 

biofilms, and pellicle biofilms [30–32]. Combined with different staining techniques and different 

microscopes, these models help researchers acquire a better understanding of biofilms. In the 

following, this thesis will present some staining techniques as well as types of microscopy used in 

biofilms studies.  

 

2.2.1 Staining Techniques 

Biofilms are complex three-dimensional structures, which makes their analysis not trivial. While a 

single microorganism can be easily monitored using a conventional microscope, biofilms require, 

for example, additional resolution in the direction vertical to the substratum (the z-axis) [2]. 

Early biofilm studies by the Caldwell group employed a simple, yet efficient way of detecting the 

biomass in flow cells: the void volume, that is, the liquid phase, was supplemented with a solution 

of fluorescein iso-thiocyanate (FITC), leaving the biomass unstained. The resulting images were 

“negatives” and the biofilm could be rendered as the dark portions of the images. This gave 

sufficiently high resolution to determine, for example, cell sizes and spatial relations [5]. 

Staining techniques targeting the extracellular matrix such as lectins1 or calcofluor white2 can also 

be employed to visualise the surroundings of the biofilm cells. In addition, the extracellular DNA 

included in the matrix can be visualised by the use of different DNA-binding fluorophores3. Thus, 

                                                 
1Sugar-binding proteins 
2 Fluorescent stain that binds to structures containing cellulose 
3 Fluorescent chemical compound that can re-emit light upon light excitation 
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the employment of different staining techniques can help laboratories with fewer microscopy 

resources [2].  

Syto series is one of the most used stain techniques. Syto series (Invitrogen, Carlsbad, CA) is a 

cell-impermeable dye with different excitations and emissions. These dyes are not harmful to the 

microorganisms, and can be used both in biofilms and microcolonies [33]. 

The combination of two types of stains has made the distinction of live and dead cells possible. 

The dye Syto 9 (green fluorescent) will stain all cells green regardless of whether they are dead or 

alive, while it is generally assumed that only cells with a damaged membrane will be stained by PI 

— propidium iodide dye (red fluorescent), indicating dead cells. Thus, the dead cells (cells with 

compromised membranes) will be stained red and the live cells (intact membranes) green [5,9,33]. 

Another way to distinguish live and dead cells is using the BacLight kit (Molecular Probes, Eugene, 

OR). In principle, bacteria that have been stained using the BacLight kit will result in red fragments 

for dead bacteria and green for live ones. Cells that contain both dyes appear yellow and should 

be treated as cells with damaged membranes. In case of computational tools, current quantification 

software treats co-localised pixels as both live and dead cells, thereby counting them twice during 

quantification. Visual distinction between green and yellow pixels can also be challenging [5]. 

The green fluorescent protein (GFP) has proven to be especially useful as a cell marker for 

ecological and environmental studies. GFP may also be used in order to investigate the protein 

location within bacterial cells. The applicability of various GFP types with different excitation and 

emission characteristics for specific labelling of different bacterial strains has been discussed in 

the literature. By combining GFP labelling of bacteria and Laser scanning microscope examination 

of the communities, major progress in the structure function of microbial biofilm systems has been 

achieved [9,13]. 

If genetic manipulation of the biofilm cells is possible, chromosomal tagging of cells with a gene 

cassette encoding the GFP can be a useful option. Alternatively, plasmids encoding for the GFP 

might be introduced into the cells prior to biofilm examinations. Depending on the construct, this 

fluorescent tagging can be used as simple labelling to verify the location of the cells in a biofilm, 

or, by selecting suitable variants of GFP genes and promoters, it can be used for monitoring gene 

expression in biofilms. Such tagging of biofilm cells has been done to monitor 

metabolic/physiological activity. Further, by using GFP variants with different emission spectra, 
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such as the CFP (cyan fluorescent protein), YFP (yellow fluorescent protein), and RFP (red 

fluorescent protein), the spatial distribution of different species in a multi-species biofilm can be 

determined [2]. 

Another way of fluorescently labelling biofilm cells is through the use of fluorescent in situ 

hybridization — FISH, where specific probes hybridise to the 16S rRNA (Ribosomal RNA) in the 

cells. Because it involves probes with larger conjugates, this technique is preferentially applied on 

thin sections of thick biofilms. The number of ribosomes present in a given cell is proportional to 

the growth potential of the cell, and FISH labelling can consequently also be used to determine the 

growth status of a cell [2,14,34]. 

 

2.2.2 Microscopy 

In the literature, the most used microscopes for the study of biofilms are confocal laser scanning 

microscopes (CLSM). CLSM is the method of choice for the monitoring of structure formation of 

living biofilms. As a result of its non-invasiveness and non-destructive character, CLSM enables the 

in vivo reconstitution of the three dimensional structure of microbial biofilms in their naturally 

hydrated form. CLSM can use a multi-channel modus where the different channels map individual 

biofilm components [35,36]. 

CLSM is an important method for the study of biofilm structure. Since its first application, CLSM 

has become widely used to improve the understanding of biofilm architecture. Multiple fluorescent 

channels can be recorded simultaneously, which offers the possibility to directly observe the 

development of individual biofilm components. Analysis of CLSM images has shown that biofilm 

communities form highly structured microbial assemblies. Studies using CLSM have further 

confirmed that the development of biofilms depends on various factors including mass transport 

properties, and have shown the importance of metabolic interactions within the microbial 

communities themselves [36]. 

The CLSM images can then be used for both qualitative and quantitative comparison and analysis. 

Confocal microscopy and derived methods require the specimen to be fluorescent. The biofilm 

must therefore either be auto fluorescent by means of indigenous fluorescent molecules, or the 
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biofilm cells must express a fluorescent protein (e.g., GFP), or individual biofilm cells or other 

components of the multicellular structure must be stained [13,15]. 

The use of the confocal laser scanning microscope has helped overcome the apparent 

shortcomings of the conventional light microscope (the presence of out-of-focus light) by introducing 

point illumination and a pinhole, which allows optical sectioning of the specimen. The individual 

optical sections are subsequently assembled by aid of advanced computer software. Typically a 

biofilm with a thickness of more than 150 µm cannot be rendered with reasonable detail due to 

physical factors. The implementation of multiphoton excitation is a major step forward. Using a 

pulsed laser, it is possible to guide two (or more) photons to excite a fluorophore simultaneously. 

This means that the energy of the photons is combined to excite the target molecule. Using this 

technique, the depth resolution (i.e., the minimum distance to resolve two points) is increased 

manifold [2,14,15]. 

The successful analysis of microbiological samples with these advanced imaging techniques 

requires a number of considerations regarding the size and shape, preparation and mounting, 

necessity for probes, as well as the resolution and electromagnetic energy necessary for imaging 

and analysis. Ideally, the sample should be examined in situ in the fully hydrated state. This means 

that the fresh, living sample is directly used for imaging without chemical fixation. CLSM fully 

matches this necessity. In CLSM with an upright microscope, water-immersible (dipping) lenses 

proved to be ideal for imaging microbial communities. Restrictions in terms of sample size and 

mounting are the next issue. CLSM analyses only have restrictions in terms of the geometry (cm) 

of either the objective lens – microscope stage dimension. Another important point is the necessity 

for stains, fluorochromes and other probes. CLSM can take advantage of the intrinsic sample 

properties including reflection and autofluorescence. The photosynthetic pigments of algae and 

cyanobacteria are especially useful markers for differentiation of the two groups. If microorganisms 

can be labelled by reporter gene technology such as GFP or variations, then staining is not 

necessary. Nevertheless, in many cases, fluorochromes or fluor conjugated probes have to be 

applied for imaging of specific constituents and structures. This, of course, is a disadvantage as it 

may have an effect on the vitality of microorganisms. A further issue is the resolution at which the 

samples can be imaged and analysed. CLSM represents one of the most versatile tools for studying 

microbial biofilm systems. Its popularity is based on the current broad availability of CLSM 

instruments, the flexibility in terms of sample mounting and staining as well as the option for 
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quantitative analysis of digital data. It is also a method of choice due to acquisition of three-

dimensional data of the biofilm structure, used in a multi-channel modus where the different 

channels map individual biofilm components [2,36].  

 

2.3. Image pre-processing 

After obtaining an image of a biofilm or a microcolony that is going to be the object of computational 

analysis, it is necessary to pre-process it. Some of the visualisation software tools that are normally 

part of the microscope set-up have the tools to perform this pre-processing work. 

The obtained images can be in different image file formats with different colour scales, sizes, etc. 

It is therefore necessary to process the image so that it is possible to apply the algorithms already 

developed. The most common, and normally the first methods to be applied, are those based on 

thresholding. Thresholding is a subjective operation, where the operator attempts to find the value 

on the grey scale that best represents the distinction between biomass and void space. There are 

biomass components that may be too transparent to be detected, which introduces some potential 

error into the measurements. Also, there is inherent error in the shadows and image noise that 

cannot be directly compensated for [37]. 

 

Figure 5 : Thresholding Algorithm Flowchart. 

According to Comstat algorithm implementation, described in [13], if the pixel value is lower than the threshold value 
defined, the pixel is set to 1 which in this case denotes the biomass, otherwise the pixel value is set to 0, representing 
the background. 

 



2. Context 

18 
 

Although the algorithm is the same as the one described above (Figure 5) the thresholding 

algorithm defined by Yang et al., 2001 converts all pixel values lower than the threshold value into 

zero and all pixels values higher than the threshold value into one. Despite this discrepancy, the 

final image is similar. The only difference is whether the biomass is represented by the white pixels 

or the black ones. 

The selection of a threshold level is therefore an important step in the quantitative analysis of an 

image of a biofilm. In fact, altering the threshold value will change the volume and morphology 

assigned to a given biofilm component. There is no consensus on the best method of thresholding 

nor on the best threshold value. In addition, no automated threshold procedure is guaranteed to 

work correctly with every image set since the characteristics of images from different samples, e.g. 

in terms of image histograms or spatial distribution of measurements within the samples, are 

widely changeable, so normally the user defines the threshold value [36]. 

The most described threshold method in the literature is the Otsu threshold. The Otsu threshold 

maximises the variance between the microorganism fluorescence and the background noise 

fluorescence, i.e. allowing for the separation of bacteria fluorescence from the background noise. 

This method does not constitute a significant computational burden for the image processing as a 

whole. This renders the method particularly suitable for image analysis systems, which will most 

likely be installed on personal computers [5,36]. Despite the Otsu threshold being the most widely 

used method, there are others mentioned in the literature, for example luminance thresholding 

where white pixels represent biomass and black pixels represent the background [14]. 

Following the binarisation of the image by thresholding methods, biofilm parameters are calculated 

from the binary image stacks, and a segmentation process known as connected volume filtration 

(CVF) is often performed [13]. CVF is a common method used to separate CLSM image pixels into 

connected biofilm and unconnected bacteria. After performing this algorithm, the bacteria that 

remain are the ones connected to the substratum (connected-biofilm bacteria). The bacteria 

eliminated in this algorithm are not connected to the substratum and presumed to be outside of 

the biofilm. The resulting matrix is a binary matrix where the connected-biofilm bacteria are 

represented. It is stored for calculations. This matrix is then used to quantify biofilm features, such 

as biomass, average thickness, roughness coefficient, and substratum coverage. Application of the 

CVF is optional, as users may prefer to include relevant floating material in their quantitative 

analysis depending on the characteristics of the system being analysed [5]. 
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Segmentation comprises the two processes described previously: the thresholding process and the 

CVF process, and can be defined as the process of assigning pixels to distinct structural elements 

in the image, e.g., biomass, liquid media [35]. 

The other often used function is the pair cross-correlation function (PCC). This function quantifies 

the spatial arrangement patterns. The generated PCC curve allows for the determination of co-

localisation, random distribution, or rejection (mutual avoidance) of two bacterial populations. This 

concept has successfully been applied to environmental biofilms and to in vitro-grown biofilm 

bacteria. The linear Dipole algorithm is also used to perform spatial arrangement analysis [14]. 

 

2.4 Morphological characteristics  

Biofilm-associated organisms are able to adapt to environmental changes by altering their gene 

expression and general physiology, including increased resistance to antibiotics [38–44]. One of 

the ways in which microbial communities adjust to environmental changes is by changing the 

structural organisation of the biofilm [41,45,46]. Therefore, is necessary to proceed with a 

morphological characterisation of a biofilm. With the primary help of different staining techniques 

and CLSM, it is possible to achieve insight into the developmental process, spatial organisation, 

and function of a biofilm [2]. 

Numerous characteristics are used to describe the morphology of biofilms, which are then used in 

the development of software for biofilm image processing algorithms and tools. Each parameter 

measures a unique characteristic of either the cell cluster or interstitial space in the biofilm [37]. 

Depending on the number of dimensions considered, the parameters are divided into areal or 

textural for 2D images, or volumetric and textural in the case of 3D images. Textural parameters 

are calculated from greyscale images, and the areal/volumetric parameters are converted to binary 

images obtained after applying thresholding algorithms to the initial images. Areal parameters 

describe the morphological relationship between the size, and the shape of the surface 

measurements:  

 Areal porosity, defined as the ratio of void area to total area. 

 The average horizontal run length is the average number of consecutive pixels with a value 

of one (cell cluster) in a row (horizontal). Similarly, the average vertical run length is the 
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average number of consecutive pixels with value of 1 in a column (vertical). The average 

run lengths measure the expected dimension of a cluster of cells in each direction and are 

therefore a measure of the cluster size. 

 The diffusion distance of a cluster is a measure of the distance (usually the Euclidean 

distance) from the cells in the cluster to the interstitial space. Diffusion distance is related 

to both the size of the clusters and their general shape. The diffusion distance is defined 

as the minimum distance from a cluster pixel to the nearest void pixel in an image, i.e. the 

minimum distance to a source of nutrients for the cell. A larger diffusion distance indicates 

a higher distance that the substrate has to diffuse in the cell cluster. 

 Fractal geometry is used to quantify the roughness of an object. It is a mathematical 

system that allows objects to have a non-integral dimensionality, which is called the fractal 

dimension. In fractal geometry, the two-dimensional fractal dimension varies between 1 

and 2. The higher the fractal dimension value, the more irregular the perimeter  of the 

object. For the purposes of the analysis, the rougher the biofilm boundary, the higher the 

fractal dimension. For a more thorough description, see [37]. 

 Perimeter is the total number of pixels on the cluster boundary, which also relates to the 

accessibility of the nutrients [4]. 

 

From the grey level co-occurrence matrix (GLCM), it is possible to calculate the textural parameters 

[47]. Textural parameters have been less popular in quantifying biofilm structure to some extent 

because their relationship to biofilm processes is less intuitive. They measure the microscale 

heterogeneity in the biofilm by comparing the size, position, and/or orientation of the biofilm 

constituents: 

 Textural entropy is a measure of randomness in the greyscale of the image. The higher 

the textural entropy, the more heterogeneous the image is. 

 Energy measures the regularity in patterns of pixels and it is sensitive to the orientation of 

the pixel clusters and the similarity of their shapes. Smaller energy values mean frequent 

and repeated patterns of pixel clusters, and a higher energy means a more homogeneous 

image structure. 

 Homogeneity measures the similarity of spatially close image structures: a higher 

homogeneity indicates a more homogeneous image structure. Homogeneity is normalised 
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with respect to the distance between changes in texture, but it is independent of the 

locations of the pixel clusters in the image [4,48]. 

 The angular second moment and inverse difference moment are similar measurements, 

but normalised for direction or distance respectively. Higher angular second moment 

values indicate more directional uniformity in the image, and inverse difference moment 

values indicate more or less variation in image contrast [47]. 

Volumetric parameters describe the morphology of the biomass in a biofilm. They are calculated 

with pixels representing biomass in the image. Each parameter quantifies a unique measure of the 

three dimensional image. In the literature, the parameters average run lengths, aspect ratio, 

diffusion distances and fractal dimension are also considered volumetric parameters. The other 

parameters are: 

 Biovolume can be described as the number of biomass pixels in all images of a stack 

multiplied by the voxel size and divided by the substratum area of the image stack. The 

resulting value is biomass volume divided by substratum area. Biovolume represents the 

overall volume of the biofilm, and also provides an estimate of the biomass in the biofilm 

[4,13,36]. 

 The area of microbial colonisation defines the profiles of the fraction occupied by biofilm 

at the longitudinal plane, e.g. along the direction perpendicular to the solid substratum 

surface. This parameter can be related to the biofilm porosity profile. 

 Colonisation fraction at the substratum, as the name suggests, is the fraction of the 

substratum surface colonised by the biofilm. 

 Average height of microcolonies is the average height at which biofilm clusters rise from 

the solid substratum. This value is computed as the ratio between biovolume and the 

colonised substratum area. 

 Interfacial area is measured as the area of the interface between voxels representing 

biofilm and those of the culture medium [35]. 

 Substratum coverage represents the fraction of pixels occupied by biofilm material for each 

image cross section. The fraction is defined as the ratio of foreground pixels to the total 

number of pixels for a given cross section and is then reported as a percentage. 
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 Area to volume ratio of an image stack is the number of foreground pixels which are 

connected to at least one neighbouring background pixel. The final value is then obtained 

by calculating the ratio area to volume ratio to biovolume[36]. 

 Thickness is calculated by a function that locates the highest point above each (x, y) pixel 

in the bottom layer containing biomass. Hence, thickness is defined as the maximum 

thickness over a given location, ignoring pores and voids inside the biofilm. The thickness 

distribution can be used to calculate a range of variables, including biofilm roughness. 

Mean biofilm thickness provides a measure of the spatial size of the biofilm and indicates 

the spatial dimensions of the biofilm.  

 Roughness represents a measure of biofilm heterogeneity. The roughness coefficient is 

calculated from the thickness distribution of the biofilm. Biofilm roughness provides a 

measure of how much the thickness of the biofilm varies[13,36]. 

 Identification and area of distribution of microcolonies at the substratum is a function that 

locates microcolonies at the substratum, i.e. in the first image of the stack. Individual 

microcolonies are identified by 8-connected component labelling. Only microcolonies 

larger than a certain area size (determined by the user) are identified. The function 

calculates the total number of identified microcolonies, the area size of each microcolony 

and the mean microcolony area. The number and area sizes of microcolonies at the 

substratum provide valuable information about the organisation of the biofilm community. 

Substratum coverage reflects how efficiently the strain colonises the substratum. 

 Surface to volume ratio is defined by the collection of pixels having at least one background 

pixel as a neighbour. In this case, the borders around the image stacks are all defined as 

biomass except for the top border, which is defined as background. In this way, only 

surfaces exposed to the nutrient flow are included in the surface area calculation. The 

surface to volume ratio reflects what fraction of the biofilm is in fact exposed to the nutrient 

flow, and thus may indicate how the biofilm adapts to the environment. For example, it 

could be speculated that in environments of low nutrient concentration, the surface to 

volume ratio would increase in order to optimise access to the limited supply of nutrients. 

Surface to volume ratio indicates how large a portion of the biofilm is exposed to the 

nutrient flow [35]. 

 The area occupied by bacteria in each layer is the fraction of the area occupied by biomass 

in each image of a stack. The substratum coverage is the area coverage in the first image 
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of the stack, i.e. at the substratum. Substratum coverage reflects how efficiently the 

substratum is colonised by bacteria of the population [13].
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Chapter 3. Computational tools available for biofilm 

analysis 

 

In many studies, such as [49,50] the analysis of CLSM data has been of qualitative rather than 

quantitative nature and consisted entirely of a visual image inspection. However, this approach is 

subjective, and not feasible when large quantities of data have to be analysed, which is often 

necessary to ensure the significance of the outcome of the analyses. For quantitative analysis of 

images of microorganism aggregates, computer software tools with different functionalities ranging 

from cell number counting to the classification of colonies morphotypes are currently available . 

Next, we will present a list (Table 1) several software tools for structural analysis that were reviewed. 

 



3. Computational tools 

25 
 

Table 1: Publicly available image analysis software tools for structural analysis of microorganism aggregates. 

In the column “Characteristics” is presented the number of morphology biofilm characteristics described in the previously chapter 

 
Software 

licence 
Source 

code 
Programing 

language 
Operative 

system 
Third-party 

dependencies  

Graphical 

user 

interface 

Biological 

context 
Characteristics 

ImageJ [51,52] 
http://rsb.info.nih.gov/ij 

Free Available Java 
Linux 
OSX 
Windows 

-- Yes Generic Not applicable 

CellProfiler [53] 
http://www.cellprofiler.org 

Free Available Python 
Windows 
Linux 
Mac OS 

-- Yes 
Cell 
Yeast 
Colony 

Not applicable 

PHLIP- Phobia Laser scanning microscopy Imaging 

Processor [36] 
http://sourceforge.net/projects/phlip/ 

Free Available  Matlab 
Linux 
OSX 
Windows 

Matlab license Yes Biofilms 10 

DAIME- digital image analysis in microbial ecology 

[54] 
http://www.microbial-ecology.net/daime/daime 

Free Available C++ 
Windows 
Linux 

-- Yes Biofilms 1 

ISA3D - Image Structure Analyzer software [4,55] 
www.erc.montana.edu 

Proprietary 
Not 

Available 
Matlab  Windows 

Matlab license + 

toolbooxes 
 Biofilms 14 

Comstat2 [13,56] 
http://www.comstat.dk/ 

Free(*) 
Not 

Available 
Java 

Linux 
Windows 

ImageJ Yes Biofilms 9 

bioImage_L [33] 
http://bioimagel.com/ 

Free(*) 
Not 

Available 
Matlab Windows MCR MATLAB Yes Biofilms 2 

http://rsb.info.nih.gov/ij/
http://www.cellprofiler.org/
http://sourceforge.net/projects/phlip/
http://www.microbial-ecology.net/daime/daime
http://www.erc.montana.edu/
http://www.comstat.dk/
http://bioimagel.com/
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3.1 Morphology description software 

These programs are very different in terms of their runtime environment, file format acceptance, 

thresholding procedures, pixel/voxel/object recognition, subject of analysis, volumetric 

quantification, co-localization analysis, determination of structural parameters, and automation. 

ImageJ (http://rsb.info.nih.gov/ij/) is a free, open source, and extensive scientific image 

processing software, developed by Wayne Rasban in 1987, and designed to handle various types 

of imaging data. Over the years it underwent several changes, keeping however the main ideas: (i) 

a biological image software that runs on any operative system, with the help of Java Runtime 

Environment; (ii) has a simple, user-friendly interface, with a single toolbar (see Figure 6); and (iii) 

extensibility via user-designed macros and plugins. Rasban chose a flexible approach to his 

software that allows the user to add functionality on their own, but in a manner that would allow 

sharing with others through macros and plug-ins. Macros are simple custom programming scripts 

that automate a task inside a large piece of software. The user does not need to have any 

programming skills to create a macro: in fact, with the help of a “macro record”, it is possible to 

record any action manually, and thereby create a work flow that one can use repeatedly and share 

with others. Over 325 macros are currently available at http://rsbweb.nih.gov/ij/macros/. There 

are also over 500 plug-ins developed by users and available at 

http://rsbweb.nih.gov/ij/plugins/index.html. Since these plug-ins were developed to solve specific 

problems one can expect the continuous increase of this database. The plug-ins are designed to, 

for instance, count particles or enable the input of more specific instrument file formats — Bio-

formats plug-in [51].  

 

 

Figure 6: ImageJ interface. 

 

http://rsb.info.nih.gov/ij/
http://rsbweb.nih.gov/ij/macros/
http://rsbweb.nih.gov/ij/plugins/index.html
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ImageJ is extremely versatile. It can display, edit, analyse, process, save, and print 8-bit, 16-bit, 

and 32-bit grayscale and 8-bit and 24-bit colour images. Image formats including TIFF, GIF, JPEG, 

and BMP can be imported and read as single images or stacks. ImageJ incorporates a number of 

useful tools for image processing. ImageJ can easily perform background subtraction routines and 

calculate the area, pixel value statistics, distances, and angles of user-defined selections (with 

several tools to select a Region of interest). It can also create density histograms and line profile 

plots. Standard image processing functions such as contrast enhancement, sharpening, 

smoothing, edge detection, and median filtering are supported as well [51,55,57].  The use of the 

ImageJ software is reported in [34] for the “Assessment of three-dimensional biofilm structure 

using an optical microscope”. Hope and collaborators [58], used ImageJ to measure the thickness, 

and in, Barraud et al. [59] used it to calculate the percentage of the glass surface covered with 

biofilm. 

CellProfiler (http://www.cellprofiler.org) is another good example of a generic yet, extensive image 

processing software. Due to the pipelining philosophy, it is possible to count colonies and classify 

them, for example according to the size, automatically identify objects, count them, and record a 

full spectrum of measurements for each object, including location within the image, size, shape, 

colour intensity, degree of correlation between colours, texture (smoothness), and number of 

neighbours [53]. 

The main purpose of bioImage_L (http://bioimagel.com/) is to allow easy interaction with the 

implemented image analysis tools, which primarily support input file preparation and output file 

display, as well as fast data pre-processing and processing, structural calculations of biofilm 

populations, and graphical displays of individual colour-based subpopulations with graphic outputs 

of the results. BioImage_L applies an in situ colour segmentation routine that automatically 

segments the colour image into individual pseudo-channels, and the areas and percentages of 

each identified colour subpopulation are calculated and presented. The principle of colour 

segmentation routine relies on the colour addition theory and classif ies each pixel of the image into 

a predefined colour class, resulting in the generation of pseudo channels. Using one of the main 

advantages of CLSM biofilm images, the z-axis scans, it is possible to reconstruct 3D profiles, and  

using bioImage_L, calculate the surface and volume distribution of independent subpopulations of 

cells [4,33]. 

http://www.cellprofiler.org/
http://bioimagel.com/
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The Open Source software Daime (http://www.microbial-ecology.net/daime/daime) automatically 

recognizes 2D and 3D objects in single images and confocal image stacks, and offers special 

functions for quantifying microbial populations. Of note is the quantification of spatial localization 

patterns of microorganisms in complex samples like biofilms. It also offers many tools for analysing 

2D and 3D microscopy datasets of microorganisms stained by FISH with rRNA-targeted probes or 

other fluorescence labelling techniques. The best quality of Daime is its visualization capabilities, 

which makes it possible to perform 3D visualization. Other features of this software are biofilm 

sectioning, spatial arrangement, abundance quantification, image segmentation and object editor 

[10,14,54]. 

Comstat (http://www.comstat.dk/) for flow cell biofilm microcolonies, PHLIP 

(http://sourceforge.net/projects/phlip/) for phototrophic biofilms, ISA-3D (www.erc.montana.edu) 

for structural as well as DAIME for fluorescence in situ hybridization (FISH) - stained sample 

analysis are examples of software tools that were  especially  designed to solve a specific problem 

in the lab group.  

Xavier et al. (2003) developed software to quantify the area of microbial colonization profiles, 

biovolume, the colonization fraction at the substratum, the average height of microcolonies and 

interfacial area of morphology of a biofilm for single channel 3D image for CLSM [35]. PHLIP, 

Phobia Laser scanning microscopy Imaging Processor, extends the functions of the previous 

version of this software by including a new set of tools to perform quantitative analysis of large 

amounts of multichannel CLSM data in an automated way, a process necessary to produce 

statistically meaningful results [36]. PHLIP is also able to quantify ten different biofilm features: 

biovolume, substratum coverage, area to volume ratio, spatial spreading, mean thickness and 

roughness, fractal dimension in 2D and co-localization in 2D or 3D [2,33,36,60].  

PHLIP was implemented as a MATLAB package and does not require additional toolboxes. The 

program was developed with flexibility and extensibility in mind, and its functionality can be easily 

expanded with new features. PHLIP therefore represents a platform for the integration of novel 

image processing operations without the need to code for import, export, or pre-processing 

functions. One example of the use of PHILIP to study biofilms is the description of the dynamic 

spatial and temporal separation of diatoms, bacteria and organic and inorganic matter during the 

shift from a bacteria-dominated to a diatom-dominated phototrophic biofilm [36]. 

http://www.microbial-ecology.net/daime/daime
http://www.comstat.dk/
http://sourceforge.net/projects/phlip/
http://www.erc.montana.edu/
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The web-based PHLIP is a program that has a higher level of automation than the ISA and 

COMSTAT packages, also developed to quantitatively analyse single channel 3D CLSM data of 

biofilm imaging by determining a set of morphological parameters.  

Similarly to PHLIP, ISA3D also has a previous version, called ISA - Image Structure Analyzer 

software [37]. It was initially developed for the UNIX/Motif environment in C++ with all calculations 

done in double precision arithmetic, and was able to analyse microscopy images of a biofilm. It 

was able to compute four areal and three textural parameters: porosity, run length, fractal 

dimension, diffusion distance and textural entropy, angular second moment inverse difference 

moment, respectively [2,55]. ISA3D on the other hand, was written using Matlab 7 and can 

calculate the same parameters as COMSTAT and Xavier et al.’s software. These parameters are: 

biovolume, volume to surface area ratio, porosity, surface area between biomass and voids, mean 

thickness, maximum thickness, and roughness coefficient. In addition, with the previous ISA 

capabilities, the user can now also analyse textural entropy, homogeneity, energy, areal porosity, 

average horizontal and vertical run lengths, diffusion distance, fractal dimension in two-dimensional 

image layers, and quantify their distributions with biofilm thickness. ISA3D is menu-controlled, user-

friendly, and requires no prior knowledge in programming or image analysis but Matlab need to be 

equipped with the Image Processing Toolbox.  

The measurements available in Comstat are: biovolume, area occupied by bacteria in each layer, 

thickness distribution and mean thickness, identification and area distribution of microcolonies at 

the substratum, volumes of microcolonies identified at the substratum, fractal dimension, 

roughness coefficient, distribution of diffusion distances, average and maximum diffusion distance 

and surface to volume ratio. All these measurements can be extracted from 3D stack of CLSM 

biofilm images [13,56].  

Examples of analyses which could advantageously be made by Comstat include: (1) analysis of 

temporal structure development in single-species or community biofilms; (2) comparison of biofilm 

structures to different organisms or communities under steady-state conditions; (3) determination 

of the impact of specific mutations on biofilm structure; (4) analysis of the influence of different 

carbon sources or carbon source concentrations on temporal structure development in single -

species or community biofilms; (5) analysis of the influence of antibiotic treatment on the biofilm 

structure [13]. 
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3.2 Counting softwares 

Research involving biofilm microorganisms often requires counting of bacteria colonies - an essential measurement in many widely used assays, such as biomedical 

assays. Bacterial colony counting is a low throughput, time-consuming, and labour-intensive process, since hundreds or thousands of colonies might exist in one 

Petri dish. Due to these difficulties, the process is often manually performed by well -trained technicians. There are also several automatic methods for the 

enumeration of bacterial colonies, Table 2.  

 
Table 2: Publicly Available Image Analysis Software Tools for counting. 

 Licence 
Source 
Code 

Language 
Operative 
System 

Third-party 
dependencies  

Graphical User 
Interface 

Biological 
Type 

ImageJ [51,52] 

http://rsb.info.nih.gov/ij/ 
Free Available Java 

Linux 
OSX 
Windows 

None  Yes Generic 

CellProfiler [53] 

http://www.cellprofiler.org 
Free Available Python 

Windows 
Linux 
Mac OS 

-- Yes 
Cell 
Yeast 
Colony 

OpenCFU [61]  

http://opencfu.sourceforge.net/ 
Free Available C++ 

Windows 
Linux 

-- Yes  Colony 

CellC – Cell Counting [62] 

https://sites.google.com/site/cellcsoftware/download 
Free Available 

Matlab 
R2007a 

Windows -- Yes  Cell 

Colony Counter [63] 

http://people.duke.edu/~kec30/colony.html 
Free Available Matlab7 Windows MCR MATLAB Yes  Colony 

CellNote [64] 

http://cellnote.up.pt/ 
Free(*) Not Available Java 

Windows 
Linux 
Mac OS 

-- Yes  Cell 

(*)Open request 

http://rsb.info.nih.gov/ij/
http://www.cellprofiler.org/
http://opencfu.sourceforge.net/
https://sites.google.com/site/cellcsoftware/download
http://people.duke.edu/~kec30/colony.html
http://cellnote.up.pt/
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The number of software tools dedicated to colony enumeration has been increasing. One problem 

found in a quick research is that these software tools are linked to the hardware, i.e., the company 

that produces the microscopes/magnifiers also offers the software.  However, with the global 

financial crises and the cuts in research funding, laboratories no longer have the funds to acquire 

them. Therefore, a free solution to reduce the time and the human labour is required. It is possible 

to find several (free) solutions in the literature, but they often need a special type of image and thus 

cannot be easily used, retrospectively, in images from studies not designed with these 

specifications in mind. To optimize the results for OpenCFU, for instance, 

(http://opencfu.sourceforge.net/) an image with the border of the petri dish is required [61]. 

CellNote is a novel software designed to count cells or subcellular structures in images and to help 

users to keep track of their annotated data, available at http://cellnote.up.pt/ [64]. Unfortunately, 

it was designed for cells, and its performance with colonies is not satisfactory. 

There is a ImageJ plug-in, colony counter, for this problem 

http://rsb.info.nih.gov/ij/plugins/colony-counter.html [51,52,57]. This plug-in can improve the 

results with additional thresholding. Furthermore, it is possible to count colonies with the basic tool 

in ImageJ, “Analyse Particles”, after pre-processing a few with other tools, such as “Find edge”, to 

improve the results. 

Colony Counter (http://people.duke.edu/~kec30/colony.html) is a hardware + software 

combination, but the software is available separately, and like the OpenCFU it needs the border of 

the petri dish [63].  

Other software packages have their own limitations: CellC 

(https://sites.google.com/site/cellcsoftware/download) has difficulties handling outliers [62], and 

the well-known Cellprofiler (http://www.cellprofiler.org) makes it hard to configure a new pipeline. 

 

  

http://opencfu.sourceforge.net/
http://cellnote.up.pt/
http://rsb.info.nih.gov/ij/plugins/colony-counter.html
http://people.duke.edu/~kec30/colony.html
https://sites.google.com/site/cellcsoftware/download
http://www.cellprofiler.org/
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Chapter 4. Computational morphological 

characterization of single microbial aggregates 

 

As mentioned previously, it is normal when studying biofilms to determine their structural 

architecture as well as performing in vitro tests with microorganism derived from biofilms. One of 

the tests is to culture these microorganisms onto solid medium, with the purpose of characterizing 

their growth patterns and the appearance of the resulting colonies — colony morphology (see Figure 

7). 

 

 
Figure 7: Generic workflow of biofilm characterization with the end goal but not yet created of clinical decision making. 

A similar workflow was used to obtain the images that are used in this thesis. 

 

Several studies report that changes in colony morphology are a sign of increased bacterial 

resistance to antimicrobial agents (i.e. antibiotics and disinfectants) and altered virulence and 

persistence [24,26,65,66]. It is therefore clinically relevant to study the colony morphology. 

Currently, the morphological characterization of a colony is performed manually by experts. This is 
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a time consuming task and prone to inconsistencies due to the subjectivity inherent to qualitative 

measure performed by humans.  

For these reasons, here it is presented the of manual curation and also the study of a possible 

group of measurements acquired with image processing software that try to morphological 

characterise morphologically the colonies. In this chapter we, also presented, an image processing 

workflow to acquire the measurements, using image processing software,   

 

4.1 Description of the biological data  

The images used in this thesis were previously curated manually by an expert of Biofilm Group.  Its 

pathogenic morphotypes are previously described and publicly available on the online bacterial 

colony morphology database MorphoCol (http://morphocol.org/) [66]. The dataset consists of 111 

images of the following colonies: 3 images of Escherichia coli colonies, 68 images of Pseudomonas 

aeruginosa colonies, 30 images of Dolosigranulum pigrum colonies and 10 images of 

Staphylococcus aureus colonies. 

An Olympus SZ-CTV magnifier was used to enlarge and visualize the colonies, and the images were 

acquired via a CCD camera (AVC, D5CE; Sony, Tokio, Japan) and saved in the PNG format. The 

full image dataset is displayed in Figure 10. 

The colony morphology used here is described in the Biofilms community Minimum Information 

about a Biofilm Experiment (MIABiE) portal (http://miabie.org/cmo.php). These guidelines 

consider two types of features to describe the morphology of a colony: the qualitative and 

quantitative (Figure 11). For this study quantitative features were ruled out, since was impossible 

to determine the age of the colony and the frequency purely by image analyses. Therefore only 

qualitative features were analysed, with the exception of colour of the colonies, as the images 

acquired are in greyscale. 

  

http://morphocol.org/
http://miabie.org/cmo.php


4. Computational morphological characterization of single microbial aggregates 

35 
 

 

     

     

     

     

     

     

     

     

Figure 8: Full dataset of images used in this thesis work.  

The scale of the image is represented by the bar in the image, the black bar represents 1mm and the white bar 0,5 
mm (Cont.). 
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Figure 9: Full dataset of images used in this thesis work. 

The scale of the image is represented by the bar in the image, the black bar represents 1mm and the white bar 0,5 
mm (Cont.). 
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Figure 10: Full dataset of images used in this thesis work.  

The scale of the image is represented by the bar in the image, the black bar represents 1mm and the white bar 0,5 
mm(Cont.). 
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Figure 11: Colony Morphology according to http://miabie.org. 

This morphology have to group of features, to this more the most important one is the qualitative measure group. 
 

In summary, the manual image annotations considered cover the nine main morphological 

features: form, margin, surface, texture, sheath, opacity, elevation, consistency and size. The 

measurement units are nominal, based on common descriptions found in scientific literature. For 

example, the colony can be classified as erose, entire, irregular or undulate in terms of margin, 

and small or large regarding size. The manual classifications are present in Figure 12 and were 

based on the descriptions in http://morphocol.org/ and in MIABiE. Further information on the 

experimental setup available in the MorphoCol database and may be considered useful to 

understand some of the dissimilarities of annotation between computational tools and human 

observers. The manually curated annotations, for all images, are listed in Table 3, and will be 

referred to as “ManualC dataset” throughout the text. 

http://miabie.org/
http://morphocol.org/
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Figure 12: Detail of the manual curation measurements  

 

Table 3: Classification of all the colonies used in this study according to manual curation measurements - ManualC 

dataset (see images in Figure 10). 

ID Form Margin Surface Texture Sheath Opacity Elevation Consistency Size 

1 circular entire homogeneous rough absence opaque flat dry large 

2 circular entire homogeneous rough absence opaque flat dry large 

3 circular entire heterogeneous rough and wrinkled absence opaque flat dry small 

4 circular curled homogeneous wrinkled absence opaque flat dry small 

5 circular undulate heterogeneous rough absence opaque flat dry small 

6 circular entire homogeneous smooth absence opaque flat dry small 

7 circular entire homogeneous smooth absence opaque flat dry small 

8 circular entire homogeneous smooth absence opaque flat dry small 

9 circular irregular homogeneous rough present opaque flat dry small 

10 circular irregular homogeneous rough present opaque flat dry large 

11 circular entire homogeneous smooth absence opaque flat dry small 

12 circular entire homogeneous smooth absence opaque flat dry small 
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ID Form Margin Surface Texture Sheath Opacity Elevation Consistency Size 

13 circular entire homogeneous smooth absence opaque flat dry small 

14 circular entire homogeneous smooth absence opaque flat dry small 

15 circular entire homogeneous smooth absence opaque flat dry small 

16 circular entire homogeneous smooth absence opaque flat dry small 

17 circular entire homogeneous smooth absence opaque flat dry small 

18 circular entire homogeneous smooth absence opaque flat dry small 

19 circular entire homogeneous smooth absence opaque flat dry small 

20 circular entire homogeneous smooth absence opaque flat dry small 

21 circular entire homogeneous smooth absence opaque flat dry small 

22 circular entire homogeneous smooth absence opaque flat dry small 

23 circular entire homogeneous smooth absence opaque flat dry small 

24 circular entire homogeneous smooth absence opaque flat dry small 

25 circular entire homogeneous smooth absence opaque flat dry small 

26 circular entire homogeneous smooth absence opaque flat dry small 

27 circular entire homogeneous smooth absence opaque flat dry small 

28 circular entire homogeneous smooth absence opaque flat dry small 

29 circular entire homogeneous smooth absence opaque flat dry small 

30 circular entire homogeneous smooth absence opaque flat dry small 

31 circular entire homogeneous smooth absence opaque flat dry small 

32 circular entire homogeneous smooth absence opaque flat dry small 

33 circular entire homogeneous smooth absence opaque flat dry small 

34 circular entire homogeneous smooth absence opaque flat dry small 

35 circular entire homogeneous smooth absence opaque flat dry small 

36 circular entire homogeneous smooth absence opaque flat dry small 

37 circular entire homogeneous smooth absence opaque flat dry small 

38 circular lobulated homogeneous rough present opaque flat dry small 

39 circular entire homogeneous smooth absence opaque flat dry small 

40 circular entire homogeneous smooth absence opaque flat dry large 

41 circular entire homogeneous smooth present opaque flat dry small 

42 circular entire homogeneous smooth absence opaque flat dry large 

43 circular entire homogeneous smooth absence opaque flat dry large 

44 circular undulate homogeneous rough present opaque flat dry small 

45 circular entire homogeneous rough absence opaque flat dry large 

46 circular entire homogeneous smooth absence opaque flat dry large 

47 circular lobulated homogeneous rough present opaque flat dry small 

48 circular undulate homogeneous rough absence opaque flat dry large 

49 circular entire homogeneous smooth absence opaque flat dry large 

50 circular undulate homogeneous rough present opaque flat dry small 

51 circular undulate homogeneous rough present opaque flat dry large 

52 circular undulate homogeneous smooth present opaque flat dry large 

53 circular lobulated homogeneous rough present opaque flat dry small 

54 circular undulate homogeneous rough absence opaque flat dry large 

55 circular entire homogeneous smooth absence opaque flat dry large 

56 circular undulate homogeneous rough absence opaque flat dry large 

57 circular undulate homogeneous rough absence transparent flat dry small 

58 circular entire heterogeneous smooth and wrinkled absence opaque flat dry large 

59 circular entire heterogeneous smooth and wrinkled absence opaque flat dry large 

60 circular undulate heterogeneous rough and wrinkled absence opaque flat dry small 

61 circular entire heterogeneous rough and wrinkled absence opaque flat dry large 

62 circular undulate homogeneous rough absence opaque flat dry small 

63 circular erose homogeneous rough absence opaque flat dry large 

64 circular erose homogeneous wrinkled absence opaque flat dry small 

65 circular undulate homogeneous rough absence opaque flat dry small 

66 circular undulate heterogeneous smooth and wrinkled absence opaque flat dry small 

67 circular undulate homogeneous rough present opaque flat dry large 

68 circular undulate homogeneous rough present opaque flat dry large 

69 circular undulate homogeneous rough absence opaque flat dry large 

70 circular undulate heterogeneous rough and wrinkled present opaque flat dry large 
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ID Form Margin Surface Texture Sheath Opacity Elevation Consistency Size 

71 circular entire homogeneous smooth absence opaque flat dry large 

72 circular entire homogeneous smooth absence opaque flat dry large 

73 circular entire homogeneous smooth absence opaque flat dry large 

74 circular entire homogeneous smooth absence opaque flat dry large 

75 circular entire homogeneous smooth absence opaque flat dry large 

76 circular entire homogeneous smooth absence opaque flat dry large 

77 circular entire homogeneous smooth absence opaque flat dry large 

78 circular entire homogeneous smooth absence opaque flat dry large 

79 circular entire homogeneous smooth absence opaque flat dry large 

80 circular entire homogeneous smooth absence opaque flat dry large 

81 circular entire homogeneous smooth absence opaque flat dry large 

82 circular undulate heterogeneous rough and wrinkled absence opaque flat dry large 

83 circular undulate homogeneous smooth present opaque flat mucoid large 

84 circular undulate homogeneous rough present opaque flat dry large 

85 circular undulate heterogeneous smooth and wrinkled absence opaque flat dry large 

86 circular undulate homogeneous rough present opaque flat dry large 

87 circular undulate heterogeneous rough and wrinkled absence opaque flat dry large 

88 circular undulate heterogeneous smooth and wrinkled absence opaque flat dry small 

89 circular undulate heterogeneous rough and wrinkled absence opaque flat dry large 

90 circular undulate homogeneous smooth present opaque flat mucoid large 

91 circular undulate homogeneous rough present opaque flat dry large 

92 circular undulate homogeneous rough absence opaque flat dry large 

93 circular undulate homogeneous smooth present opaque flat mucoid large 

94 circular entire homogeneous rough absence opaque flat dry small 

95 circular undulate heterogeneous rough and wrinkled absence opaque flat dry small 

96 circular undulate heterogeneous smooth and wrinkled absence opaque flat dry large 

97 circular undulate heterogeneous smooth and wrinkled absence opaque flat dry large 

98 circular entire homogeneous rough absence opaque flat dry small 

99 circular entire homogeneous smooth absence opaque flat dry small 

100 circular undulate homogeneous rough absence opaque flat dry small 

101 circular undulate homogeneous rough present opaque flat dry small 

102 circular undulate homogeneous rough absence opaque flat dry large 

103 circular entire homogeneous smooth absence opaque flat dry small 

104 circular entire homogeneous rough absence opaque flat dry small 

105 irregular undulate homogeneous rough absence opaque flat dry small 

106 circular undulate heterogeneous rough and wrinkled absence opaque flat dry large 

107 circular undulate homogeneous rough absence opaque flat dry small 

108 irregular undulate homogeneous rough absence opaque flat dry small 

109 circular undulate homogeneous rough present opaque flat dry large 

110 circular undulate homogeneous rough absence opaque flat dry large 

111 irregular undulate homogeneous rough present opaque flat dry large 

 

4.2 Computing morphological measurements 

To decide which tool to choose for the comparison between manual and automated curation, we 

compared the measurements available in several image analyses tool (see Table 1), and in 

particular the modules whose output measurements are similar to the manual annotations. Both 

commercial and freely available software was compared, and there is a set of measurements 

common to most of them. Notably, ImageJ the free Java coded image tool developed at the National 
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Institutes of Health provides for them all [52]. Thus, this was the tool of choice for all image 

analyses. 

 

4.2.1. Image pre-processing 

Before proceeding with the extraction of measurements from the image, it was necessary to 

perform a few pre-processing steps presented in Figure 13 to improve the quality of the 

measurements extract and also to find the region of interest, i.e., the colony, in the image. 

 

Figure 13: Analysis pipeline in ImageJ, emphasising the pre-processing steps. 

 

The first pre-processing step is setting the colour scale. Despite all the images being saved by the 

experimentalist as grey colour palette, not all the images were defined as 8-bit colour scale - grey 

scale. Setting this informs ImageJ that pixel values are between 0 and 255 (in other software it 

could be from 1 to 256), as set out in the formula: 

0 ≤ 𝑃(𝑥, 𝑦) ≤ 255, 

where P(x,y) are the pixel coordinates in the image. 
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Next, it is necessary to find the border of the colony with the maximum precision possible, since 

there are measurements in ManualC that classify the border of the colony, such as margin, and it 

is also important to accurately measure the size of the colony. For this task, we used the function 

“Find Edge”, that emphasis the edge in the image, by sharp changes in intensity in the ROI [57]. 

This sharp change occurs near to the limit of the background and the object of interest (see Figure 

14). 

 

Figure 14: Description of the two regions in an image of the data set. 

 

Find Edge is the first of two operations to separate the ROI from the background. The second 

operation is thresholding. As described previously, this operation sets the pixels that have lower 

and upper threshold values, segmenting greyscale images into objects of interest and background. 

Although this is a widely used operation, it is a complex one. It is necessary to be careful with the 

thresholding algorithm chosen and also with the threshold value, as it can change the shape of the 

object of interest [67].  

The threshold value is different for each image and the algorithm chosen may also change. When 

the object of interest identified was not satisfactory, it was therefore necessary to try different 

methods available in ImageJ. The most frequently used were the Triangle algorithm and the Yen 

algorithm.  

After thresholding it is possible to select only the colony, using the Wand Tool. This tool creates a 

selection by tracing thresholding objects [57]. In this process, a Mask was created and saved. The 

mask is an 8-bit image where the pixel value inside the selection is 255 (white) and on outside is 

0 (black) [57]. This step is necessary to maintain the selection of the object of interest for another 

operation in the future, without losing the original image. 

Once the region of interest has been selected, the image is ready for the measurement operations.  
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4.2.2. Extraction of colony automatic features from images 

After pre-processing the image, and studying the manually curated features, it was necessary to 

study the features, here referred to as measurements, which best represent colony morphology. 

ImageJ with its many available plugins, can provide many measurements to describe an object. 

The approach used in this work was to try to use the ImageJ measurements that are more similar 

to those used in manual curation. Therefore we explored ImageJ tools and selected 4 groups of 

measurements: 

 Basic shape; 

 Basic pixel value; 

 Textural; 

 Roughness; 

The basic shape measurements seeks to describe numerically the profile of the colonies and is 

related with ManualC features, Form and Size (see Table 4).  

  



4. Computational morphological characterization of single microbial aggregates 

45 
 

Table 4: Description of basic shape measurements obtained from ImageJ. 

Basic Shape Measurements in ImageJ 

Area Area of selection in square pixels. 

Centroid 
The center point of the selection. This is the average of the x and y coordinates 
of all of the pixels in ROI. 

Center of Mass  The brightness-weighted average of the x and y coordinates all pixels in the ROI.  

Fit ellipse 
Fits an ellipse to the ROI. Major and Minor are the primary and secondary axis of 
the best fitting ellipse. Angle is the angle between the primary axis and a line 
parallel to the x-axis of the image. 

Feret's Diameter 
The longest distance between any two points along the ROI boundary, also 
known as maximum caliper. 

Feret Angle The angle (0-180 degrees) of the Feret's diameter.  

MinFeret The minimum caliper diameter. 

Skewness The third order moment about the mean.  

Kurtosis The fourth order moment about the mean. 

Area Fraction 
For thresholding images, this is the percentage of pixels in the ROI that have 
been highlighted in red during the thresholding. For non-threshold images, this is 
the percentage of non-zero pixels. 

Perimeter The length of the outside boundary of the ROI. 

Bounding rectangle  The smallest rectangle enclosing the ROI. 

Aspect ratio The aspect ratio of the particle’s fitted ellipse. 

Circularity Indicate how near ROI is from a perfect circle (1.0). 

Roundness Similar to circularity, largest value 1.0 for a circular object. 

Solidity Whether one object has an irregular border or not. 

 

The basic pixel value, Table 5 is comparable with the ManualC “Surface”. As the name indicates, 

the basic pixel values describe the values of the pixels in the ROI. Both basic groups of 

measurements are accessible in the default ImageJ installation, and this was one of the reasons 

to incorporate these measurements in the automatic analysis. 

 

Table 5: Description of basic pixel value measurements from ImageJ. 

Basic Pixel Value Measurements in ImageJ 

Mean  Average grey value within the ROI. 

Modal 
Most frequently grey value occurring within the ROI. Corresponds to the highest peak 
in the histogram. 

Median The median value of the pixels in the ROI. 

Min The lower value of the pixel intensity in the ROI. 

Max The upper value of the pixel intensity in the ROI. 

Standard Deviation The standard deviation of the grey values used to generate the mean grey value. 

Integrated Density The sum of the values of the pixels in the ROI. 
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Textural measurements are metrics designed to quantify the perceived texture, i.e. the spatial 

arrangement of intensities ROI. The textural metrics evaluated are described in Table 6.Textural 

measurements result from an Image plugin. It should be noted that the term textural as used in 

ImageJ and texture from the ManualC are different. In the former, texture is something touchable 

allied with the surface, and in the latter textural is associated with the variation of the pixel intensity.  

 
Table 6: Examples of textural metrics provided by ImageJ. 

Where 𝑝(𝑖, 𝑗) are the (𝑖, 𝑗)𝑡ℎ entry in a grey-tone spatial dependence matrix, 𝑝𝑥 (𝑖) is the (𝑖)𝑡ℎ entry in the marginal-
probability matrix obtained by summing the rows of 𝑝(𝑖, 𝑗). 𝑝𝑦 (𝑗) is the (𝑗)𝑡ℎ entry in the marginal-probability matrix 

obtained by summing the column of 𝑝(𝑖, 𝑗). 𝑁𝑔  is the number of distinct grey levels in the quantized image. At last, 

𝜇𝑥, 𝜇𝑦 ,𝜎𝑥 and 𝜎𝑦 are the means and the standard deviations of 𝑝𝑥  and 𝑝𝑦 . 

Textural 

Angular Second 
Moment (ASM) 

Assessment of homogeneity of the 
image. 
High values of ASM occur when the 
image is very orderly and contains 
only a few grey levels. 

𝑓𝐴𝑆𝑀 = ∑ ∑(𝑝(𝑖, 𝑗))
2

𝑗𝑖

 

 

Contrast 

Quantification of contrast or local 
intensity variation. 
Higher the values of the contrast 
correspond to more variation in the 
pixel intensity. 

,

𝑓𝐶𝑜𝑛𝑡 = ∑ 𝑛2 (∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

)

𝑁𝑔−1

𝑛=0

 

 
𝑤ℎ𝑒𝑟𝑒 |𝑖 − 𝑗| = 𝑛 

Correlation 

Measurement of grey level linear 
dependence between the pixels at the 
specified positions relative to each 

other. 

𝑓𝐶𝑜𝑟 =
∑ ∑ (𝑖𝑗) 𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦

 

 

Inverse Difference 
Moment (IDM) 

Distribution of the grey-level in the 
image. It is high when local grey level 
is uniform. 

𝑓𝐼𝐷𝑀 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑗𝑖

𝑝(𝑖, 𝑗) 

 

Entropy 

Entropy indicates the degree of 
“chaos” in the system. Non-
homogeneous scenes have low first 

order entropy, while homogeneous 
scenes have high entropy.  

𝑓𝐸 = − ∑ ∑ 𝑝(𝑖 , 𝑗)

𝑗𝑖

𝑙𝑜𝑔(𝑝(𝑖, 𝑗)) 

 

 

Roughness consists of surface irregularities. The input is an image in which the pixel values 

represent distance, z, to a surface. These irregularities are combined to form a surface texture that 

can be also quantified [68,69]. In simplified terms, each pixel in the image has 3 values, x, y and 

the colour intensity, so it is possible to transform a 2D in a 3D graphic where the colour intensity 

is now represented in the z-axis, and if the process is repeated for all the pixels in an image we 

obtain a surface in a 3D graphic (Figure 15). After this step, all the variation on this surface is 
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calculated with the roughness calculation plugin. The ImageJ roughness metrics evaluated are 

described in Table 7. 

 

 

Figure 15: Surface profile plot of image1 (see also Figure 10 and Table 3). 

Where z axis represent the colour value for each pixel. A visual plot, that helps to understand the basic notion of surface 
roughness. 

 

Table 7: Examples of metrics outputted by the surface roughness in ImageJ. 
Where M × N are the rectangular image,  𝑍(𝑥𝑘,𝑦𝑖

) is the point that represents the vertical distance from the mean 

line to data point(𝑥𝑘,𝑦𝑖
). 

Roughness Calculation 

Roughness 
Average 

Arithmetic average of absolute values in the 
image. 

𝑅𝑎 =
1

𝑀𝑁
∑ ∑|𝑧(𝑥𝑘,𝑦𝑖

)|

𝑁−1

𝑖=0

𝑀 −1

𝑘=0

 

Root Mean 
Square  

Root mean squared of the pixel values within 
the image. 

𝑅𝑞 = √
1

𝑀𝑁
∑ ∑[𝑧(𝑥𝑘,𝑦𝑖

)]2

𝑁−1

𝑖=0

𝑀−1

𝑘=0

 

Skewness  

Describes the asymmetry of the height 
distribution histogram.  
If Rsk =0 a symmetric height distribution of the 
pixel values is indicated. If R sk<0, it can be a 
bearing surface with holes and if R sk >0 it can 
be a flat surface with peaks. Values 
numerically greater than 1.0 may indicate 
extreme holes or peaks on the surface. 

𝑅𝑠𝑘 =
1

𝑀𝑁𝑅𝑞
3

∑ ∑ [𝑧(𝑥𝑘, 𝑦𝑖
)]3

𝑁−1

𝑖=0

𝑀 −1

𝑘=0

 

Kurtosis  
Describes the “peakedness” of the surface 
topography. It is a descriptor of the shape of 
the probability distribution. 

𝑅𝑠𝑢 =
1

𝑀𝑁𝑅𝑞
4

∑ ∑ [𝑧(𝑥𝑘, 𝑦𝑖
)]4

𝑁−1

𝑖 =0

𝑀 −1

𝑘=0

 

Lowest valley 
The largest valley depth value of the surface 
form with the pixel intensity of the image 

𝑅𝑣 = 𝑚𝑖𝑛
𝑧

𝑧(𝑥𝑘, 𝑦𝑖
) 

Highest peak  
The largest peak height value. of the surface 
form with the pixel intensity of the image 

𝑅𝑝 = 𝑚𝑎𝑥
𝑧

𝑧(𝑥𝑘,𝑦𝑖
) 

Total height 
Defined as the height difference between the 
highest and lowest pixel in the image. 

𝑅𝑡 = 𝑅𝑝 − 𝑅𝑣  
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All the measurements presented in this sub chapter were used to extract information about the 

colonies, composing the ImageJ dataset and were used to infer the accuracy of these 

measurements.  

 

4.3 Data mining 

Data mining is the science of discovering insightful, interesting, and novel patterns, as well as 

descriptive, understandable and predictive models from large-scale data [70]. Image mining can 

the considered as a sub-section of data mining that deals with the extraction of implicit knowledge, 

image data relationship, or other patterns not explicitly stored in images. Images have always been 

used in biological studies. Nowadays, with the capacity to acquire and store biological images, the 

number of image is growing incessantly. Image mining is one of the great challenges of data mining 

which connects image processing with data mining [71].  

A challenge in image processing is that knowledge cannot be easily transferred from one domain 

to another, since each image is linked with a specific field. Knowledge designates data 

classification, clustering or prediction. Some of the bioinformatic’s goals are organizing, storing 

and processing information on molecular and cellular, processes, tissues and organs, individuals, 

population and society to support the definition of suitable decision making strategies in health 

care [72–74]. In this thesis, the goal is to extract patterns from experimental data, stored at 

http://morphocol.org/, using not only the morphology ontology available (ManualC), but also data 

extracted through image processing. Ultimately, this body of knowledge will improve the existing 

ontology and thus the information available to design a clinical-decision making system. 

 

4.3.1 Selection of relevant image measurements  

After image processing it was necessary to study if all the acquired metrics were relevant to this 

study. To infer that the data mining software Weka http://www.cs.waikato.ac.nz/ml/weka/ was 

used [75]. This software provides several methods for identifying those subsets of attributes 

(measurements) that are predictive of another (target) attribute in the data. The results presented 

http://morphocol.org/
http://www.cs.waikato.ac.nz/ml/weka/
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in Table 8 were obtained with a full dataset of images comparing the values of all the features 

extract using ImageJ.  

Table 8: The top 15 ImageJ measurements selected by different algorithms in Weka. 
The all measurements extract in ImageJ were submitted to four attribute selection algorithm. 

GainInfo ChiSquared ReliefF SVM 

Area Area Angle Contrast 

Height Height FeretAngle Round 

Entropy Rq InverseDifferenceMoment HighestPeak 

Perim Ra Entropy Rq 

Contrast Angle Max Skew 

FeretAngle Entropy Circ Kurt 

Rq IntDen Mode LowestValley 

Ra Contrast XM Mean 

Angle FeretAngle YM YM 

Major Mean Correlation Height 

Mean Major Height Rsk 

StdDev StdDev LowestValley AR 

Perim Perim Ra FeretAngle 

Kurt Kurt Feret XM 

XM MinFeret MinFeret Width 

 

4.3.2 K-means clustering 

Clustering is a technique for unsupervised learning, where data with class labels are not available. 

Clustering is the task of partitioning the data points into natural groups called clusters, such that 

points within a group are very similar, whereas points across clusters are as dissimilar as possible. 

Depending on the data and desired cluster characteristics, there are different types of clustering 

paradigms such as representative-based, hierarchical, density-based, graph-based and spectral 

clustering [71,72,76].  

Here the k-means algorithm was used to perform clustering of the two datasets — ManualC and 

ImageJ, where k is the number of clusters (groups). Clustering was performed with the data mining 

software RapidMiner [71,77]. Considering that the datasets contain 111 images, k was set to 17. 

The maximum number of runs was set to 100 and the max optimization steps taken within each 

run was set to 1000. 
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4.3.3 Clustering evaluation metrics 

After performing clustering it is necessary to evaluate the quality of the resulting clusters. To do 

that there are several metrics available in [78]. The metrics used in this work are detailed bellow.  

Intra-cluster distance and similarity measurements 

The Euclidean distance and the cosine similarity are used to estimate the similarity between 

instances in the same cluster.  

Given two n-dimension instances 𝑥 = (𝑥1,… ,𝑥𝑛) and 𝑦 = (𝑦1, … , 𝑦𝑛), the Euclidean distance 

between them is: 

𝑑(𝑥𝑖 ,𝑥𝑗) = √(𝑥1 − 𝑦1 )2 + (𝑥2 − 𝑦2 )2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2, 

and the average distance for each cluster is given by the arithmetic mean of the distance calculated 

for every pair of instances in the cluster. In turn, the cosine similarity compares images according 

to the angle established by their sets of measurements as follows: 

𝑠(𝑥𝑖 ,𝑥𝑗) =
𝑥𝑖

𝑇 .𝑥𝑗

‖𝑥𝑖‖.‖𝑥𝑗‖
. 

The score ranges between [0, 1] such that the more similar the vectors are, the higher the value. 

Individual Clustering Quality 

The sum of squared error (SSE) computes the combined effect of intra-cluster homogeneity and 

separation between clusters. Its calculation is as follows: 

𝑆𝑆𝐸 = ∑ ∑ ‖𝑥𝑖 − 𝜇𝑘‖2
∀𝑥𝑖∈𝐶𝑘

𝐾
𝑘 =1 , 

where Ck is the set of instances in cluster k, xi is one instance in the cluster (i.e. an image with a 

set of measurements), and µk is the vector mean of cluster k calculated such that: 

𝜇𝑘,𝑗 =
1

𝑁𝑘

∑ 𝑥𝑖,𝑗∀𝑥𝑖∈𝐶𝑘
, 

where 𝑁𝑘 = |𝐶𝑘|  is the number of instances belonging to cluster k. 
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Inter-annotation Clustering Agreement  

To quantify the inter-annotation agreement between ImageJ and Manual datasets, we calculate the 

precision, recall and F-score, common metrics in inter-annotation evaluations, originated in 

Information Retrieval theory [77]. 

The precision-recall measure can be used as an external measure for evaluating clusters. The 

cluster is viewed as the results of a query for a specific class. Precision is the fraction of correctly 

retrieved instances, while recall is the fraction of correctly retrieved instances out of all matching 

instances. A combined F-measure can be useful for evaluating a clustering structure [79]. We have 

adapted the original formulas to our needs. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝐼𝑚𝑎𝑔𝑒  𝑀𝑎𝑛𝑢𝑎𝑙C} ∩ {𝐼𝑚𝑎𝑔𝑒  𝐼𝑚𝑎𝑔𝑒𝐽 }|

|𝐼𝑚𝑎𝑔𝑒 𝑀𝑎𝑛𝑢𝑎𝑙𝐶|
 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{𝐼𝑚𝑎𝑔𝑒 𝑀𝑎𝑛𝑢𝑎𝑙𝐶} ∩ {𝐼𝑚𝑎𝑔𝑒 𝐼𝑚𝑎𝑔𝑒𝐽  }|

|𝐼𝑚𝑎𝑔𝑒 𝐼𝑚𝑎𝑔𝑒𝐽 |
 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Chapter 5. Results and discussion 

 

This chapter is organized as follows: first the filtering of the measurements followed by the 

description of the data transformation perform on the two datasets, then we compared the datasets 

and to finalize we present and discussed the clustering results and the inter-annotation agreement. 

 

5.1 Filtering of measurements 

From the original dataset of 111 images of colonies, two types of information were extracted and 

separated in two classes or datasets: (i) ManualC referring to the manual annotation and (ii) ImageJ 

referring to the measurements obtained through ImageJ (Figure 16). The Results are divided into: 

(i) evaluation of individual datasets and (ii) comparison of annotations between those datasets. 

These results are reported according to the overall similarity between images and biological context, 

notably the species identified, and the comparison with the features most frequently reported in 

studies of microbial colonies. 

 

Figure 16: Diagram of the datasets that will be discussed during this chapter. 

From the original set of images, two datasets were created depending on how the images were characterized: one was 
created with the manual annotation features – ManualC; and the other from the measurements obtained from image 
processing software – ImageJ. 
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Before any meaningful comparative analysis between ManualC and ImageJ could be made, it was 

necessary to determine and select measurements extracted from ImageJ that were consistent with 

the goal of this project. That is, test whether a particular measurement is useful for colony 

morphology characterization. For this selection, several attribute tests were performed in Weka. 

The four tests that were ran and the results are available in Table 8 and summarized in Table 9. It 

is possible to observe that all the groups of measurements are well represented, and indeed some 

are over-represented. Therefore, a decision was made to exclude measurements that are 

redundant, for example, those that represent only the position of the ROI in the image. Thus, of Y, 

X and XM and YM, only XM and YM were kept (classified as important in Weka tests – see (Table 

9). Another decision was to exclude measurements such as RawIntDen (sum of the pixel values in 

the colony), that only brought confusion to the data set. Ultimately, we try to kept only non-

redundant, non-ambiguous metrics, for furthers analysis. 

 
Table 9: Measurement most frequently after performing analysis for attribute selection in Weka. 
It is also present the number of frequency of each measurements 

Measurements Frequencies after Weka tests 

Height 4 YM 2 

FeretAngle 4 LowestValley 2 

Entropy 3 IntDen 2 

Contrast 3 InverseDifferenceMoment 1 

Rq 3 Max 1 

Ra 3 Circ 1 

Angle 3 Mode 1 

Mean 3 Correlation 1 

Kurt 3 Feret 1 

XM 3 Round 1 

Perim 2 HighestPeak 1 

Area 2 Skew 1 

Major 2 AR 1 

StdDev 2 Width 1 

MinFeret 2 Rsk 1 

 

It was also necessary to have in consideration if the type of image and the type of information that 

was be extracted from it were consistent. The selection of ImageJ measurements was based on 
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those two assumptions, and with the help of information drawn from the attribute selection tests, 

37 measurements were selected to create the ImageJ dataset. 

 

5.2 Data transformation 

Due to the different order of magnitude of the measurement’s values in the ImageJ dataset (Figure 

17), it was necessary to normalize the data. The RapidMiner “Data Transformation” “Normalize” 

operator was used to normalize the dataset through the Z- transformation method. This 

transformation increasing the accuracy of the clustering. An important data transformation step 

was also done to the ManualC dataset. As previously mentioned the manualC features are nominal 

and needed to be transformed into numerical values. Thus, these nominal values were transformed 

into binary data using RapidMiner’s “Data Transformation” “Nominal to numerical” operator.  
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Figure 17: Average value of each ImageJ measurement.  

It is visible the range of orders of magnitude between the measurements. 

 

5.3 Visual comparison of datasets 

Before proceeding to cluster the data, a preliminary empirical analysis was done to have some 

assurances about the validity of our comparisons. With that goal, the following questions were 

posed: is there any measure from ImageJ dataset that can describe a feature from ManualC 

dataset? Is there any relation between ImageJ dataset measurements and ManualC dataset 
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features? Is there any relationship between this measurements/feature and the species? Following 

this line of thoughts we tried to find out if for each of the outliers of the ManualC features there 

was a corresponding value in the ImageJ measurements. The outliers were chosen because there 

are fewer images for each category, and with more striking features, and thus it was easier to make 

a visual comparison. This analysis was not performed for to the feature “elevation” due to the lack 

of variability: all the images are classified as “flat”. Similarly, for the feature “Opacity”, there was 

only one image with the classification “transparent” whereas the rest of the images are “opaque”, 

and thus this feature was not analysed.  

For the feature “form”, the classification of “irregular” was considered an outlier, because only 

tree images classified as such. The colonies in these images are formed by the bacteria 

Pseudomonas aeruginosa. This manual classification relates to the ImageJ measurements “cir”, 

“ar”, “round”, “solidity”, for example. In the case of “ar” (aspect ratio – see Table 4), the 

“irregular” images have the highest values for this measurement, and the smallest “round” values. 

In other words, the colonies classified as “irregular” are the ones with worst circularity (see 

definition in Table 4). The values for “solidity”, a measurement that classifies whether an object is 

irregular or not, also confirmed that the manualC and the ImageJ classification are consistent. 

The feature “sheath” has six different classifications: “entire” (61 images), “undulate” (42 images), 

“lobulated” (tree images), “erose” (two images), “irregular” (two images) and “curled” (one 

image). Comparing species vs classification, is possible to deduce that all the S. aureus, E. coli 

and D. pigrum are “entire”. The only variability for this feature is observed in P. Aeruginosa 

colonies. Focusing on these colonies, and the ImageJ measurements, for “Perim” the “undulate” 

colonies had the largest values, and the smallest for “circ”. This indicates that these are the 

colonies with the least perfect circle (see Table 4). In term of “Feret” this images had the biggest 

values. 

The next analysis is dedicated to the feature “Surface”. “Heterogeneous” is an outlier classification 

of this manualC feature with 17 colonies classified as such. All these colonies are P. aeruginosa, 

but since there are in total 68 P. aeruginosa colonies, it is very unlikely that there is a correlation 

between species and “Surface”. This feature is linked to pixel value measurements (Table 5) but 

it did not correlate with the values in our ImageJ dataset. However, when comparing “Surface” 

with entropy, it was notable that all the “heterogeneous” images had entropy values larger than 

the average (5,64). Also, the “InverseDifferenceMoment” was inferior to the average value of the 
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measurements of the “heterogeneous” images. The above observations lead us to speculate 

whether there is a relationship between the feature “Surface” and textural measurements.  

From the beginning it was assumed that “texture” was the ImageJ analogue to textural 

measurements (Table 6). The feature “texture” also had outliers for “rough and wrinkled” (eight 

images), “smooth and wrinkled” (seven images) and “wrinkled” (two images). In terms of textural 

measurements, for instance, the “correlation” values for the “smooth and wrinkled” colonies were 

superior to the observed average value (0,16). In the case of “InverseDifferenceMoment” all the 

“rough and wrinkled” and “smooth and wrinkled” colonies have values inferior to the average 

(0,59). Also for this measurement, the “smooth” colonies had usually the largest values. The same 

pattern was observed for “entropy”, for which all of the outliers had higher values than the average. 

All the colonies from S. aureus and D. pigrum were classified as having a “smooth” texture. Two 

of the tree images of E.coli colonies were classed as “rough” and once again the largest variability 

in this feature comes from P. aeruginosa colonies. 

The feature “sheath” is one of the most complicated to relate to the manually extracted 

measurements. Margin is described as being “a morphological quality inhering in a colony by virtue 

of having a closely enveloping part or structure after the margin and around the colony”[80]. Since 

it is unlikely to have measurements in our ImageJ dataset, we ignored the existence of a 

relationship between “sheath” from ManualC with any ImageJ measurement. When relating 

species with “sheath”, it was possible to infer that for all the S. aureus, E. coli and D. pigrum this 

feature was noted as “absence” and therefore the variability was observed only for P. aeruginosa. 

In terms of the feature “consistency”, there are only tree colonies classified as “mucoid” and all 

from P. aeruginosa. There were à priori no measurements related with this feature, so to this 

analysis is necessary to go over all the measurements in the ImageJ dataset. For the 

measurements “area”, “stdDev”, “max”,”Perim”, “width”, “heigth”, “Major”, “Minor”, “Feret”, 

“contrast”, “entropy”, “Rsk”, “Rku” and “HighestPeak” this type of colonies have the largest values 

and the lowest values of “mode”, “min”, “cir” and “median. The “Correlation” values, are very 

similar between them. 

For the feature “size”, the images are well distributed: 59 are “small”, and 52 are “large”. All the 

S. aureus and E. coli are “large” and all of the D. pigrum small and once again the variability occurs 

for the the P. aeruginosa colonies. In general this feature is well correlated with the measurements: 

“Area”, “Perim” and “Feret”. 
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5.4 Clustering 

Evaluation of the datasets is based on k-means clustering, which partitions the instances (i.e. 

images with features) into a pre-defined number of clusters (k), reaching for the best compromise 

between intra-cluster homogeneity and inter-cluster dissimilarity [81–83]. 

Clustering results are presented in Table 10 showing the number of images per cluster, the internal 

homogeneity of the clusters (Euclidean distance and cosine similarity) and the sum of squared 

error (SSE), i.e. overall performance. Then, the inter-annotation agreement between ImageJ and 

manually observed features was assessed. 
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Table 10: Results of k-means partitioning for the ImageJ dataset.  

Number of images per cluster and the SSE of each algorithm used. Cluster identifiers are generated by RapidMiner 
and have no correspondence across similarity metrics. 

 ImageJ ManualC 

 Euclidean Cosine Euclidean Cosine 

Cluster 1 8 11 33 33 

Cluster 2 1 1 5 5 

Cluster 3 2 4 3 3 

Cluster 4 4 9 1 1 

Cluster 5 14 2 1 1 

Cluster 6 1 6 6 6 

Cluster 7 18 4 5 5 

Cluster 8 3 13 5 5 

Cluster 9 6 14 4 4 

Cluster 10 6 5 3 3 

Cluster 11 8 9 5 5 

Cluster 12 8 8 17 17 

Cluster 13 18 3 14 14 

Cluster 14 1 6 1 1 

Cluster 15 4 6 5 5 

Cluster 16 1 3 1 1 

Cluster 17 8 7 2 2 

SSE 0,099 0,077 0,144 0,144 

 

The results of the k-means clustering are presented in Table 10. SSE values are fairly similar, the 

"average within distance" for cosine similarity (-32.582) is nearer to zero than the Euclidian 

distance (-42.276), and in terms of the Davies-Bouldin index the clustering performed with 

Euclidian distance is equal to -1,046 and -1.195 for cosine similarity clustering. We repeated the 

same exercise to the ManualC dataset.  Interestingly, the results are the same despite the different 

algorithm chosen to perform the k-means clustering. On both tests, the Davies-Bouldin index equals 

to -0.708 and the avg. within cluster distance is -5.409. In Table 11 we present the clustering 

results per images. 
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Table 11: All the clustering results performed on the 2 datasets, with 2 different k-means algorithms. 

Where K=17 and ID is the images identification number.  

ID Euclidean_ManualC Euclidean_ImageJ Cosine_ManualC Cosine_ImageJ 

1 cluster_13 cluster_13 cluster_13 cluster_16 

2 cluster_13 cluster_15 cluster_13 cluster_16 

3 cluster_4 cluster_4 cluster_4 cluster_6 

4 cluster_5 cluster_4 cluster_5 cluster_6 

5 cluster_8 cluster_4 cluster_8 cluster_6 

6 cluster_9 cluster_7 cluster_9 cluster_1 

7 cluster_9 cluster_5 cluster_9 cluster_9 

8 cluster_9 cluster_7 cluster_9 cluster_1 

9 cluster_10 cluster_17 cluster_10 cluster_10 

10 cluster_10 cluster_15 cluster_10 cluster_14 

11 cluster_1 cluster_5 cluster_1 cluster_9 

12 cluster_1 cluster_7 cluster_1 cluster_17 

13 cluster_1 cluster_7 cluster_1 cluster_1 

14 cluster_1 cluster_5 cluster_1 cluster_9 

15 cluster_1 cluster_7 cluster_1 cluster_17 

16 cluster_1 cluster_7 cluster_1 cluster_1 

17 cluster_1 cluster_5 cluster_1 cluster_9 

18 cluster_1 cluster_7 cluster_1 cluster_17 

19 cluster_1 cluster_7 cluster_1 cluster_1 

20 cluster_1 cluster_5 cluster_1 cluster_9 

21 cluster_1 cluster_7 cluster_1 cluster_17 

22 cluster_1 cluster_7 cluster_1 cluster_1 

23 cluster_1 cluster_5 cluster_1 cluster_9 

24 cluster_1 cluster_5 cluster_1 cluster_9 

25 cluster_1 cluster_7 cluster_1 cluster_1 

26 cluster_1 cluster_5 cluster_1 cluster_9 

27 cluster_1 cluster_7 cluster_1 cluster_17 

28 cluster_1 cluster_7 cluster_1 cluster_1 

29 cluster_1 cluster_5 cluster_1 cluster_9 

30 cluster_1 cluster_7 cluster_1 cluster_17 

31 cluster_1 cluster_7 cluster_1 cluster_1 

32 cluster_1 cluster_5 cluster_1 cluster_9 

33 cluster_1 cluster_5 cluster_1 cluster_9 

34 cluster_1 cluster_7 cluster_1 cluster_1 

35 cluster_1 cluster_5 cluster_1 cluster_9 

36 cluster_1 cluster_7 cluster_1 cluster_17 

37 cluster_1 cluster_7 cluster_1 cluster_1 

38 cluster_11 cluster_17 cluster_11 cluster_3 

39 cluster_1 cluster_13 cluster_1 cluster_11 

40 cluster_12 cluster_13 cluster_12 cluster_11 

41 cluster_9 cluster_17 cluster_9 cluster_10 

42 cluster_12 cluster_13 cluster_12 cluster_11 

43 cluster_12 cluster_13 cluster_12 cluster_11 
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ID Euclidean_ManualC Euclidean_ImageJ Cosine_ManualC Cosine_ImageJ 

44 cluster_11 cluster_17 cluster_11 cluster_10 

45 cluster_13 cluster_13 cluster_13 cluster_16 

46 cluster_12 cluster_13 cluster_12 cluster_11 

47 cluster_11 cluster_17 cluster_11 cluster_10 

48 cluster_13 cluster_10 cluster_13 cluster_4 

49 cluster_12 cluster_16 cluster_12 cluster_4 

50 cluster_11 cluster_17 cluster_11 cluster_10 

51 cluster_13 cluster_13 cluster_13 cluster_11 

52 cluster_14 cluster_13 cluster_14 cluster_11 

53 cluster_11 cluster_17 cluster_11 cluster_3 

54 cluster_13 cluster_13 cluster_13 cluster_11 

55 cluster_12 cluster_13 cluster_12 cluster_11 

56 cluster_13 cluster_13 cluster_13 cluster_14 

57 cluster_15 cluster_2 cluster_15 cluster_7 

58 cluster_6 cluster_13 cluster_6 cluster_14 

59 cluster_6 cluster_13 cluster_6 cluster_14 

60 cluster_8 cluster_13 cluster_8 cluster_7 

61 cluster_6 cluster_1 cluster_6 cluster_14 

62 cluster_15 cluster_13 cluster_15 cluster_7 

63 cluster_13 cluster_6 cluster_13 cluster_3 

64 cluster_16 cluster_5 cluster_16 cluster_9 

65 cluster_15 cluster_5 cluster_15 cluster_9 

66 cluster_8 cluster_17 cluster_8 cluster_3 

67 cluster_13 cluster_13 cluster_13 cluster_14 

68 cluster_13 cluster_10 cluster_13 cluster_4 

69 cluster_13 cluster_13 cluster_13 cluster_7 

70 cluster_2 cluster_10 cluster_2 cluster_4 

71 cluster_12 cluster_15 cluster_12 cluster_12 

72 cluster_12 cluster_11 cluster_12 cluster_12 

73 cluster_12 cluster_11 cluster_12 cluster_12 

74 cluster_12 cluster_11 cluster_12 cluster_12 

75 cluster_12 cluster_15 cluster_12 cluster_6 

76 cluster_12 cluster_4 cluster_12 cluster_6 

77 cluster_12 cluster_11 cluster_12 cluster_12 

78 cluster_12 cluster_11 cluster_12 cluster_12 

79 cluster_12 cluster_11 cluster_12 cluster_6 

80 cluster_12 cluster_11 cluster_12 cluster_12 

81 cluster_12 cluster_11 cluster_12 cluster_12 

82 cluster_2 cluster_9 cluster_2 cluster_8 

83 cluster_3 cluster_3 cluster_3 cluster_4 

84 cluster_7 cluster_9 cluster_7 cluster_8 

85 cluster_6 cluster_9 cluster_6 cluster_8 

86 cluster_7 cluster_10 cluster_7 cluster_4 

87 cluster_2 cluster_9 cluster_2 cluster_8 

88 cluster_8 cluster_12 cluster_8 cluster_15 
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ID Euclidean_ManualC Euclidean_ImageJ Cosine_ManualC Cosine_ImageJ 

89 cluster_2 cluster_1 cluster_2 cluster_8 

90 cluster_3 cluster_10 cluster_3 cluster_4 

91 cluster_7 cluster_1 cluster_7 cluster_8 

92 cluster_13 cluster_1 cluster_13 cluster_8 

93 cluster_3 cluster_3 cluster_3 cluster_4 

94 cluster_1 cluster_12 cluster_1 cluster_15 

95 cluster_8 cluster_12 cluster_8 cluster_5 

96 cluster_6 cluster_9 cluster_6 cluster_8 

97 cluster_6 cluster_1 cluster_6 cluster_8 

98 cluster_1 cluster_12 cluster_1 cluster_15 

99 cluster_1 cluster_12 cluster_1 cluster_15 

100 cluster_15 cluster_8 cluster_15 cluster_13 

101 cluster_10 cluster_14 cluster_10 cluster_2 

102 cluster_13 cluster_1 cluster_13 cluster_8 

103 cluster_1 cluster_12 cluster_1 cluster_15 

104 cluster_1 cluster_12 cluster_1 cluster_5 

105 cluster_17 cluster_8 cluster_17 cluster_13 

106 cluster_2 cluster_1 cluster_2 cluster_8 

107 cluster_15 cluster_12 cluster_15 cluster_15 

108 cluster_17 cluster_8 cluster_17 cluster_13 

109 cluster_7 cluster_10 cluster_7 cluster_4 

110 cluster_13 cluster_9 cluster_13 cluster_8 

111 cluster_7 cluster_1 cluster_7 cluster_8 

 

The algorithm of k-means aims to achieve the best performance by committing to a trade-off 

between intra-cluster homogeneity and inter-cluster separability. As such, smaller clusters, namely 

one or two image size clusters, should identify images that detach from the common morphology 

represented in the datasets. In this case, it is interesting to inspect the images that are isolated in 

clusters 2, 6, 14 and 16, using the Euclidean distance present in    

       

Figure 18.  
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Figure 18: Images clustered in single-cluster by Euclidean K-means. 

These images belong to the clusters 2, 6, 14 and 16 respectively. 

 

To try to understand the reason why these images were isolated in their own clusters, the ImageJ 

dataset values were inspected. Image 49 was by far, the largest image in the dataset, with an 

“area” equivalent to 143,99. Image 57 is extremely bright, i. e., near to white. The selection of the 

ROI of image 57 was made by manual selection, since automatic selection of ROIs was disabled. 

Perhaps enabling it would have avoided this ROI. Due to the high brightness of the image, the 

measurements for colony form, such as “cir” and “solidity”, are not accurate and cannot be used. 

We can speculate that the high intensity of the pixels is one of the reasons for the image to appear 

in a unitary cluster. This assumption was confirmed after analysing all data from the ImageJ 

dataset, and Image 57 has, for example, the lowest “Stddev” value in the dataset, the largest 

“Mean” and “Min. Similarly, Image 63 appears to be isolated because it had higher values of pixel 

intensity such as “HighestPeak” (193) or “Stddev” (24,89). In other words, like image 57, image 

63 is a bright image. 

Image 101 is the only image that appears in a unitary cluster when clustering is performed with 

cosine similarity. It had the largest “Stddev” value in the dataset, the lower “min” and the upper 

“max”. These 3 measurements indicate that it is the image with the largest colour spectrum in the 

dataset. This image also had a lower “solitidy”, “cir”, “AR” and the biggest “Round”, indicating 

that the colony had an irregular border. Table 12 is a summary of the clustering results regarding 

only the ImageJ dataset. In general, and despite the different clusters ids, the images clustered 

similarly. The images in the Euclidean cluster 5 are the same of the Cosine cluster 9. Cluster 8 

and cluster 13, Euclidian and Cosine respectively, also share the same images. Images in that 

appear conjointly in one Euclidean cluster can also appear as separated Cosine clusters. For 

example, the images in Euclidean cluster 7, are separated in Cosine cluster 1 and cluster 17.  The 

only Euclidean cluster where the images were scattered in several Cosine clusters, is the cluster 

15 (Figure 19). 
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Table 12: Euclidean distance clustering versus Cosine Similarity clustering.  

The data shows the number of images that were similarly clustered in the two clustering methods. 

Euclidean 
distance 
clusters 

Images 
Cosine 
Similarity 
clusters 

Images 
Number of 
images in 
common 

C1 
 89 ; 106 ; 92 ; 102 ; 61 ; 
97 ; 91 ; 111 

C8 
82 ; 84 ; 85 ; 87 ; 89 ; 
91 ; 92 ; 96 ; 97 ; 102 
; 106 ; 110 ; 111 

7 

C3 83 ; 93 C4 
48 ; 49 ; 68 ; 70 ; 83 ; 
86 ; 90 ; 93 ; 109 

2 

C5 
7 ; 11 ; 14 ; 17 ; 20 ; 23 ; 
24 ; 26 ; 29 ; 32 ; 33 ; 35 ; 
64 ; 65 

C9 
7 ; 11 ; 14 ; 17 ; 20 ; 
23 ; 24 ; 26 ; 29 ; 32 ; 
33 ; 35 ; 64 ; 65 

14 

C7 
12 ; 13 ; 15 ; 16 ; 18 ; 19 ; 
21 ; 22 ; 25 ; 27 ; 28 ; 30 ; 
31 ; 34 ; 36 ; 37 ; 6 ; 8 

C1  
6 ; 8 ; 13 ; 16 ; 19 ; 22 
; 25 ; 28 ; 31 ; 34 ; 37 

11 

C17 
12 ; 15 ; 18 ; 21 ; 27 ; 
30 ; 36 

7 

C8 100 ; 105 ; 108 C13 100 ; 105 ; 108 3 

C9 82 ; 87 ; 110 ; 85 ; 96 ; 84 C8 
82 ; 84 ; 85 ; 87 ; 89 ; 
91 ; 92 ; 96 ; 97 ; 102 
; 106 ; 110 ; 111 

6 

C10 70 ; 48 ; 68 ; 90 ; 86 ; 109 C4 
48 ; 49 ; 68 ; 70 ; 83 ; 
86 ; 90 ; 93 ; 109 

6 

C11 
72 ; 73 ; 74 ; 77 ; 78 ; 79 ; 
80 ; 81 

C12 
71 ; 72 ; 73 ; 74 ; 77 ; 
78 ; 80 ; 81 

7 

C12 
94 ; 98 ; 99 ; 103 ; 104 ; 
107 ; 88 ; 95 

C15 
88 ; 94 ; 98 ; 99 ; 103 
; 107 

6 

C13 
39 ; 40 ; 42 ; 43 ; 46 ; 55 ; 
1 ; 45 ; 51 ; 54 ; 56 ; 67 ; 
69 ; 52 ; 62 ; 58 ; 59 ; 60 

C11 
39 ; 40 ; 42 ; 43 ; 46 ; 
51 ; 52 ; 54 ; 55 

9 

C14 
88 ; 94 ; 98 ; 99 ; 103 
; 107 

4 

C7 57 ; 60 ; 62 ; 69 3 

C16 1 ; 2 ; 45 2 

C17 
38 ; 44 ; 47 ; 50 ; 53 ; 66 ; 
41 ; 9 

C3 38 ; 53 ; 63 ; 66 3 

C10 9 ; 41 ; 44 ; 47 ; 50 5 

 

 

 

Figure 19: Images in Euclidian Distance cluster C15 that appear in separate Cosine Similarity clusters.   

 

In turn, large size clusters could be explained by a high similarity between the images or, for some 

of the images, by a reasonable similarity that does not compromise overall performance.  The 14 

images clustered in Euclidean cluster 5 are the same as in the Cosine cluster 9. Another big 
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Euclidean cluster is the cluster C7 that in Cosine clustering are separated in two clusters – cluster 

1 and cluster 17. The biggest group in Euclidian clustering is cluster 13 with 18 images, but in 

Cosine clustering this cluster appears fragmented in four different clusters (cluster 7,  cluster11, 

cluster 14 and cluster16).  

Regarding the species in each cluster, in Euclidean cluster 7 for example, all the images are from 

D. pigrum. The other D. pigrum colonies appear in Euclidean cluster 5, along with 2 P. aeruginosa 

images (i64 and i65). In the biggest Euclidean cluster, cluster 13, all images are from P. aeruginosa 

bar one from E. Coli. Performing the same analysis to the “big” Cosine Clusters, in cluster 1 all 

the images are from D. pigrum colonies; all the images in cluster 8 and cluster 11 are P. 

aeruginosa. From these observations, it could be inferred that cosine clustering is better suited to 

separated images in terms of species. 

 

5.5 Inter-annotation agreement 

After the initial inspection of the clustering methods, the automatic quantification and manual 

annotation of colonies were compared. We speculated that the level of agreement between the two 

sets of clusters, i.e. the number of images that are grouped together, is affected by the nature of 

the features/measurements. The measurements extracted from ImageJ are context -blind (i.e. do 

not refer to any specifics on microbial colonies) and highly dependent on the image quality and 

focus (i.e. image acquisition and pre-processing). In turn, manual annotations are higher level 

descriptions of morphological features that researchers are able to visualize and consider relevant 

to describe microbial communities. Therefore, manual and automatic features are not directly 

comparable. The inter-annotation agreement evaluation refers to manual annotations as “the eye 

of the beholder”, i.e. cluster distribution is inspected in terms of the features manually observed. 

It is interesting to investigate whether the fine grained and context independent analysis provided 

by computational tools brings forward more discriminating ability, or calls attention to non-visually 

observable or unreported aspects of the colonies. 

In the Table 13 there is a comparison between the clustering (Euclidean Distance) performed with 

ManualC dataset and the clustering performed with ImageJ dataset, assuming that the ManualC 

clustering is the ground truth. The table also contains the values of clustering agreement between 
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the annotations, for each cluster. In Figure 20 there is a visualization of the distribution of images 

in the clusters of the two datasets. 

 

Table 13: Assessment of Euclidian distance clustering quality representing the level of agreement between the 

annotations 
All of presented the inter-annotation agreement metrics described in 4.3.3. 

Manual 
curation 

Number of 
images 

ImageJ cluster with more 
images in common 

Number of image 
in common 

Precision Recall 
F-
measure 

Cluster 1 33 C7 16 0,485 0,889 0,627 

Cluster 2 5 C9 2 0,400 0,333 0,364 

Cluster 3 3 C3 2 0,667 1,000 0,800 

Cluster 4 1 C4 1 1,000 0,250 0,400 

Cluster 5 1 C4 1 1,000 0,250 0,400 

Cluster 6 6 C9 2 0,333 0,333 0,333 

Cluster 7 5 C10 2 0,400 0,333 0,364 

Cluster 8 5 C12 2 0,400 0,250 0,308 

Cluster 9 4 C7 2 0,500 0,111 0,182 

Cluster 10 3 C14 1 0,333 1,000 0,500 

Cluster 11 5 C17 5 1,000 0,625 0,769 

Cluster 12 17 C11 8 0,471 1,000 0,640 

Cluster 13 14 C13 7 0,500 0,389 0,438 

Cluster 14 1 C13 1 1,000 0,056 0,105 

Cluster 15 5 C2 1 0,200 1,000 0,333 

Cluster 16 1 C5 1 1,000 0,071 0,133 

Cluster 17 2 C8 2 1,000 0,667 0,800 

 

An example of good agreement between the clusters of the datasets, are the ManualC cluster 11 

and the ImageJ cluster 17. All the images in the first cluster are in the second cluster, although 

cluster 17 has 3 more images. In terms of species composition, all the images involved are from 

P. aeruginosa, but because this is the most frequent species in the dataset (68 in 111), no 

conclusions can be made. An opposite example is the ManualC cluster 15, in which all its images 

are dispersed in different ImageJ clusters (Figure 20).  

It is also important to note the ManualC cluster 1 - the largest cluster. Despite the composing 

images being dispersed throughout several ImageJ clusters, 16 of its images are in one cluster 

(cluster 7) and eleven in other cluster (cluster 5). In addition, in ManualC cluster 1 there are two 

species, D. pigrum and P. Aeruginosa. It should also be added that, in ImageJ clusters, all the D. 

pigrum are in cluster 5 and cluster 7, whereas P. aeruginosa is disperse in other clusters. Also, all 

the images in ImageJ cluster 5 and cluster 7 have the same manualC features “circular; entire; 
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homogeneous; smooth; absence; opaque; flat; dry; small” and are all from D. Pigrum. Nonetheless, 

not all the images with these features are D. pigrum. 

 

 

Figure 20: Distribution of images in ImageJ and manualC clusters generated with Euclidian distance.  

The row on the bottom is a colour code of the ManualC clusters. The other rows each represent an ImageJ cluster and 
the distribution of images in that cluster. Clustering has performed with Euclidean distance. 

 

The comparison between manual and ImageJ was also performed for Cosine Similarity clustering. 

The results are presented in Table 14, again considering the ManualC clustering as the ground 

truth. The values of similarity between ManualC and ImageJ clusters is also present. Figure 21 is 

a visual representation of the distribution of images in the clusters generated for the two 

annotations. 
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Table 14: Assessment of Cosine Similarity clustering quality representing the level of agreement between the 

annotations 

Manual 
curation 

Number of 
images 

ImageJ cluster with more 
images in common 

Number of image 
in common 

Precision Recall 
F-
measure 

Cluster 1 33 C9 11 0,333 0,786 0,468 

Cluster 2 5 C8 4 0,800 0,308 0,444 

Cluster 3 3 C4 3 1,000 0,333 0,500 

Cluster 4 1 C6 1 1,000 0,167 0,286 

Cluster 5 1 C6 1 1,000 0,167 0,286 

Cluster 6 6 C14 3 0,500 0,500 0,500 

Cluster 7 5 C6 3 0,600 0,500 0,545 

Cluster 8 5 C5 1 0,200 0,500 0,286 

Cluster 9 4 C1 2 0,500 0,182 0,267 

Cluster 10 3 C2  1 0,333 1,000 0,500 

Cluster 11 5 C10 3 0,600 0,600 0,600 

Cluster 12 17 C12 8 0,471 1,000 0,640 

Cluster 13 14 C8 3 0,214 1,000 0,353 

Cluster 14 1 C11 1 1,000 0,111 0,200 

Cluster 15 5 C7 2 0,400 0,500 0,444 

Cluster 16 1 C9 1 1,000 0,071 0,133 

Cluster 17 2 C13 2 1,000 0,667 0,800 
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Figure 21: Distribution of images in ImageJ and manualC clusters generated with Cosine similarity.  

The row on the bottom is a colour code of the ManualC clusters. The other rows each represent an ImageJ cluster and 
the distribution of images in that cluster. Clustering has performed with Euclidean distance. 

 

The manualC clustering categorised four clusters with a single image – cluster 4, cluster 5, cluster 

14 and cluster 16. Careful inspection of the ManualC data, reveals that these four images have 

unique combinations of features (Figure 22), providing some explanation for their clustering. 

Curiously, they are all P. aeruginosa colonies. Also when clustering is performed for the ImageJ 

dataset, these images were grouped with other images, see Table 14, and analysing the ImageJ 

data, their features are consistent with those of the images with which they are clustered together.  
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Figure 22: Images in unitary ManualC clusters (Cosine similarity).  

Image 3 is in the cluster 4, Image 4 in cluster 5, image 52 in cluster 14 and image 64 in cluster 16 

 

The clusters that are more consistent between ManualC and ImageJ are, respectively, cluster 17 

and cluster 13, where the two images in cluster 17 are grouped with other in cluster 13 (Figure 

23). These are all images from P. aeruginosa. In terms of ImageJ data, the tree images have the 

same range of values for shape measurements, pixel intensity and size. 

 

Figure 23: An example of good inter-cluster agreement between ManualC and ImageJ. 

The images in cluster 17 (ManualC dataset) are in cluster 13 when the clustering is performed for the ImageJ dataset. 
Image 100 only differs from the others in the “form” feature. 

  



5. Results and discussion 

73 
 

 

 



6. Conclusion and Future work 

74 
 

Chapter 6. Conclusion and Future work 

 

All the aspects presented and discussed in this work are important for assessing whether automatic 

tools can add or substitute manual curation in the process of morphotyping. Moreover, this study 

explores the ability of image annotations to support predictions, namely for clinical decision-making.  

After studying the software tools, it is possible to conclude that despite the lack of specific software 

available for this type of colony morphology analysis, ImageJ is a good solution due to the 

extensibility provided by plugins. In case of colony counting, Cellprofiler, was the software tested 

that gave better results despite the difficulties in configuring the pipeline. In addition, it is possible 

to count the colonies by size or by pixel intensity, for example. In the case of biofilm structure 

analysis, there are several software options, and the choice depends on the “wet lab” protocol 

followed. But the majority of software tools studied have difficulties with shadows or outliers. If a 

software does not feature pre-processing tools to deal with this problem, one possible solution is 

to combine different software tools. 

Clustering of the two data sets of measurements was performed with two different methods: Cosine 

clustering and Euclidian Distance. Our analysis indicates that the clusters obtained for each did 

not differ significantly, but Cosine similarity should be used in future experiments to reduce entropy. 

In this work, it is evident that neither the clusters obtained for the manual curation features or the 

chosen set of ImageJ measurements, were able to segregate clusters with single species. It was 

notable that P. aeruginosa colonies are the ones with more morphological diversity. Some of the 

ImageJ measurements can describe well particular manual features, but in the future ImageJ 

measurements that are not necessarily related to the manual annotations should also be 

considered. Some available ImageJ plugins that could be explored are for example:  

 “Fractal Dimension and Lacunarity”, http://rsbweb.nih.gov/ij/plugins/fraclac/fraclac.html, 

 “Granulometry”,http://rsbweb.nih.gov/ij/plugins/granulometry.html,  

 “Fractal Surface Measurement”, http://rsbweb.nih.gov/ij/plugins/fractal2d/index.html.  

Another possibility is to examine the suitability of pattern recognition techniques such as the ones 

presented in [84] or the Fourier analysis [85]. 

http://rsbweb.nih.gov/ij/plugins/fraclac/fraclac.html
http://rsbweb.nih.gov/ij/plugins/granulometry.html
http://rsbweb.nih.gov/ij/plugins/fractal2d/index.html
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The work presented here provides an insight on the similarity between manual and computational 

curation of biofilms through clustering. This is an important preliminary step in the development of 

a workflow for an automated clinical decision. However, a larger, and more heterogeneous image 

dataset, would add more weight to the conclusions, a clear relationship between colony morphology 

and the degree of pathogenicity are also required before the development of a decision making 

software can be implemented in a clinical setting. 
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