
Universidade do Minho
Escola de Engenharia

Jorge Cunha Mendes
Evolution of Model-Driven Spreadsheets

Setembro de 2012

This work is funded by the ERDF through the Programme COMPETE and by the Portuguese Government
through FCT - Foundation for Science and Technology, project ref. PTDC/EIA-CCO/108613/2008, grant
ref. BI4-2011_PTDC/EIA-CCO/108613/2008.

Universidade do Minho
Escola de Engenharia

Jorge Cunha Mendes
Evolution of Model-Driven Spreadsheets

Setembro de 2012

Tese de MestradoMestrado em Engenharia Informática
Trabalho realizado sob orientação deDoutor João Alexandre SaraivaDoutor Jácome Miguel Cunha

DECLARAÇÃO

Nome

Endereço electrónico: Telefone: /

Número do Bilhete de Identidade:

T́ıtulo dissertação � / tese �

Orientador(es):

Ano de conclusão:

Designação do Mestrado ou do Ramo de Conhecimento do Doutoramento:

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS

DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE COM-

PROMETE.

Universidade do Minho, / /

Assinatura:

Acknowledgements

I would like to thank my supervisors Prof. Dr. João Saraiva and Dr. Jácome Cunha for the opportunity

to develop interesting and relevant work which led to a great start for my scientific career, and for the

availability and constant support during the development of this thesis. I would also like to thank Dr. João

Paulo Fernandes for being like a supervisor to me and for providing me with insightful and supportive

comments when needed.

Other people helped me during this work and they are not forgotten, namely Hugo Pacheco with insights

on bidirectional transformations and my laboratory colleagues that distracted me enough so I would not

go insane. But this work would not have started if it was not for the great support that I had from many

teachers during my undergraduate and master’s course, and I thank them for that.

Moreover, during this project I was awarded a Research Grant within the SSaaPP – Spreadsheets as

a Programming Paradigm project funded by the ERDF through the Programme COMPETE and by the

Portuguese Government through FCT – Foundation for Science and Technology (project ref.: PTDC/EIA-

CCO/108613/2008, grant ref.: BI4-2011_PTDC/EIA-CCO/108613/2008).

iii

iv

Abstract

Evolution of Model-Driven Spreadsheets

Spreadsheets are likely to be one of the most widely used programming environments in the world. Spread-

sheet popularity is due to characteristics such as their low entry barrier, their availability on almost any

computer, their simple visual interface but mainly due to their flexibility. This flexibility, however, comes

with a cost: spreadsheets are extremely error prone, as indicated by several studies.

The work presented in this thesis aims at tackling the problem of spreadsheet errors. The strategy de-

scribed is based on a model-driven approach, and is achieved by embedding spreadsheet models within

spreadsheets themselves. This embedding enables users to create models in the same environment that

they use for spreadsheet development which is precisely the environment that they are familiar with.

Moreover, a set of evolution operations that can be performed on these models and respective instances

is defined. In this setting, users interact and evolve both models and spreadsheets in the same coherent

environment. This facilitates the establishment and maintenance of a consistency relationship between

models and instances throughout the spreadsheet development life cycle, and by this it is expected the

reduction of the number of errors that are made and the improvement of productivity in using spreadsheets.

Resulting from this work, a prototype was created and is also discussed in this dissertation. This tool can

be used to validate the approach followed in this thesis and to provide a foundational framework for future

developments.

Keywords: Spreadsheet; Model-Driven Engineering; Embedded Domain Specific Languages; Bidirectional

Transformations; Prototype.

v

vi

Resumo

Evolução de Folhas de Cálculo Orientadas por Modelos

Folhas de cálculo são provavelmente o ambiente de programação mais usado no mundo inteiro. A sua

popularidade advém principalmente da facilidade com que se começa a usá-las, da sua disponibilidade

em quase qualquer computador, da sua simples interface visual, mas principalmente da sua flexibilidade.

Isto deve-se à falta de restrições impostas por este tipo de sistema, o que pode levar a numerosos erros

na maioria das folhas de cálculo, como indicado por numerosos estudos.

O trabalho apresentado nesta tese visa combater o problema de erros em folhas de cálculo. A estratégia

descrita baseia-se no uso de modelos e é alcançada embutindo modelos de folhas de cálculo dentro das

folhas de cálculo em si. Esta embutidura possibilita aos utilizadores criar modelos no mesmo ambiente

em que desenvolvem as suas folhas de cálculo, com o qual já estão habituados.

Mais, um conjunto de operações sobre esses modelos e respectivas instâncias também foi definido. Deste

modo, utilizadores podem interagir com modelos e folhas de cálculo dentro do mesmo ambiente. Isto

facilita o estabelecimento e manutenção de uma relação de consistência entre modelos e dados durante

o ciclo de vida de folhas de cálculo, esperando-se que se reduza o número de erros cometidos e que se

aumente a produtividade usando folhas de cálculo.

Um protótipo foi criado como resultado deste trabalho, e também é discutido nesta dissertação. Esta

ferramenta pode ser usada para validar a abordagem escolhida nesta tese e também fornece uma base

de trabalho para desenvolvimentos futuros.

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 5

1.2 Model-Driven Spreadsheet Engineering . 8

1.3 Terminology . 10

1.4 Main Contributions . 11

1.5 Document Structure . 13

2 Embedding Spreadsheet Models within Spreadsheets 15
2.1 Spreadsheet Templates and ClassSheets . 16

2.2 Embedding ClassSheets within Spreadsheets . 21

2.3 Instance Generation from Models . 24

2.4 Summary . 25

3 Model-Driven Spreadsheet Evolution 27
3.1 Model Operations . 31

3.2 Data Operations . 34

3.3 Bidirectional Transformation Functions . 37

3.4 Summary . 39

4 Model-Driven Spreadsheet Engineering with MDSheet 41
4.1 Architecture . 41

4.2 Usage . 44

4.3 Advantage in the Use of MDSheet . 45

4.4 Summary . 46

5 Conclusion 47

References 51

ix

x

Acronyms

API Application Programming Interface

DSL Domain-Specific Language

FFI Foreign Function Interface

IDE Integrated Development Environment

MDE Model-Driven Engineering

MDSE Model-Driven Spreadsheet Engineering

MDSD Model-Driven Software Development

SSRB Spreadsheet Standards Review Board

USA United States of America

WYSIWYG What You See Is What You Get

xi

xii

List of Figures

1.1 Tablet from around 1800 BC . 1

1.2 Representation of several table dimensions . 2

1.3 Tabular layout of a chess board . 2

1.4 Paper spreadsheet for a multiplication table . 3

1.5 Electronic spreadsheet for a multiplication table . 5

1.6 Screenshot of the ViTSL editor . 8

1.7 ViTSL-based environment for spreadsheet development 9

2.1 Syntax of the textual representation of spreadsheet templates 17

2.2 Example of a template that expands vertically . 17

2.3 Example of a template that expands horizontally . 18

2.4 Example of a template that expands horizontally, with two columns being repeated . . . 18

2.5 Template for budgeting purposes . 19

2.6 Syntax of the textual representation of ClassSheets 20

2.7 ClassSheet modeling a budget spreadsheet . 20

2.8 Plain ClassSheet versus embedded one for a budgeting spreadsheet 22

2.9 Budget spreadsheet, with an embedded model and a conforming instance 23

3.1 Adding a column to only one class instance, evolving the model and coevolving the data. 29

3.2 Adding a column to only one year, evolving the data and coevolving the model. 30

3.3 Bidirectional evolution diagram . 31

3.4 addColumnM . 32

3.5 delColumnM . 32

3.6 addRowM . 32

3.7 delRowM . 33

3.8 setCellM . 33

3.9 addClassExpM . 33

xiii

3.10 replicate↓M . 34

3.11 AddColumnD . 34

3.12 DelColumnD . 35

3.13 AddRowD . 35

3.14 delRowD, DelRowD . 36

3.15 SetCellD . 36

3.16 addInstanceD . 37

3.17 replicate→D . 37

4.1 MDSheet architecture . 41

4.2 MDSheet toolbar in the OpenOffice Calc user interface 42

4.3 MDSheet dialogs . 42

4.4 Spreadsheet data with focus on an expansion button 45

xiv

List of Tables

2.1 Types of references . 18

3.1 Model transformations and corresponding transformations on the respective instances . 38

3.2 Instance transformations and corresponding transformations on the respective model . . 38

xv

xvi

Chapter 1

Introduction

People recognize the importance of structuring data in a tabular-like interface using them for many years.

The Plimpton 322 tablet (figure 1.1), dated from around 1800 BC [Robson, 2001], is a case of a table

containing four columns and fifteen rows with numerical data. For each column there is a descriptive

header, and the fourth column contains a numbering of the rows from one to fifteen. This tablet contains

Pythagorean triples [Bruins, 1949], but was more likely built as a list of regular reciprocal pairs [Robson,

2001].

Figure 1.1: Plimpton 322 – a tablet from around 1800 BC.1

1Source: http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html. (2012-09-01)

1

http://www.math.ubc.ca/~cass/courses/m446-03/pl322/pl322.html

Tables provide an easy way to visualize and organize data, which can be unidimensional (figure 1.2a), two-

dimensional (figure 1.2b) or multidimensional (figure 1.2c). The tabular layout allows a systematic analysis

Name Age
John 43
Mary 36
Will 39

(a) Unidimensional
data table with a list
of persons and re-
spective ages.

2010 2011
John 1 3
Mary 3 2
Will 3 3

(b) Two-dimensional data table
showing the number of publications
for a pair of author/year
(rows/columns, respectively).

2010 2011

John
long 0 2
short 1 1

Mary
long 2 1
short 1 1

Will
long 1 3
short 2 0

(c) Multidimensional data table
(three dimensions in this case) simi-
lar to figure 1.2b but with additional
information about the paper (long
or short).

Figure 1.2: Representation of several table dimensions.

of the information displayed and helps to structure values in order to perform calculations. These benefits

make tables applicable to a great variety of domains, e.g., mathematics, finance, and even games (see

figure 1.3).
8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1SNAQJBMR

a b c d e f g h

Figure 1.3: Chess boards
have a tabular layout, with
letters identifying columns
and numbers identifying
rows.

A widely used table-like structure is the spreadsheet. The term spread-
sheet originated before computers from the use of tables that were

spread across two pages (e.g., records in a ledger). This term came

to mean table of data arranged in columns and rows often used
in business and financial applications [Spreadsheet, 2012].

Even on paper, spreadsheets are useful for many purposes: student in-

quiries or exams, taxes submission, budgeting, gathering and analysis of

sport statistics, or any purpose that requires input of data and/or per-

forming calculations. Moreover, the use of spreadsheets can be for both

personal and professional purposes.

An example of a simple spreadsheet on a sheet of paper for students to have a multiplication table is

displayed in figure 1.4. This spreadsheet has eleven columns and eleven rows, and the students should fill

the empty cells (except the top-left one) with the result of multiplying the value of the topmost cell of that

column and the value of the leftmost one of that row.

2

Figure 1.4: Paper spreadsheet for a multiplication table.

With the advent of personal computers, spreadsheets began to be used electronically. This allowed users

to use a familiar environment to save data and to perform calculations automatically. Many spreadsheet

host systems (programs to edit electronic spreadsheets) appeared, starting with batch spreadsheet report

generators as a method to bring budgeting to computers [Mattessich, 1961]. Most of those systems were

targeted to timesharing systems, which were too expensive for some companies and had not much use for

individuals.

In 1979, VisiCal [Bricklin] was shown to the public targeting the Apple II microcomputer with a later version

for IBM PC in 1981. This made spreadsheets available to a wider audience, but also led to make personal

computers more popular by introducing them to the financial and business communities and others. VisiCal

consisted of a column/row tabulation program with an What You See Is What You Get (WYSIWYG) interface.

It provided cell references (format A1, A3..A6; very similar with the one used for chess boards as the

one depicted in figure 1.3) and instant automatic recalculation of formulas, among other novel features still

present in current spreadsheet host systems.

After VisiCal, many spreadsheet host systems were developed, but not many obtained huge success among

competitors. One commercial spreadsheet system that is still successful is Microsoft Excel2, first released

in 1985 for Macintosh, but other commercial spreadsheets are available (e.g., Corel Quattro Pro and Ap-

ple Numbers). However, free open source alternatives can be used, namely Gnumeric3, OpenOffice Calc4

and derivatives like LibreOffice Calc5. Moreover, web-based spreadsheet host systems have recently been

developed, e.g., Google Drive6, Microsoft Office 3657, and ZoHo Sheet8. These systems are not dependent

on any particular operating system, allow to create and edit spreadsheets in an online collaborative envi-

ronment, and provide import/export of spreadsheet files for offline use. There are many other spreadsheet

2Microsoft Excel: http://office.microsoft.com/en-us/excel/
3Gnumeric: http://projects.gnome.org/gnumeric/
4OpenOffice: http://www.openoffice.org
5LibreOffice: http://www.libreoffice.org
6Google Drive: http://drive.google.com
7Microsoft Office 365: http://www.microsoft.com/en-us/office365/online-software.aspx
8ZoHo Sheet: http://sheet.zoho.com/

3

http://office.microsoft.com/en-us/excel/
http://projects.gnome.org/gnumeric/
http://www.openoffice.org
http://www.libreoffice.org
http://drive.google.com
http://www.microsoft.com/en-us/office365/online-software.aspx
http://sheet.zoho.com/

host systems, either for desktop, mobile devices or online use, open source or proprietary, each one with

their own particularities9.

Spreadsheet systems have evolved into powerful systems. However, the basic features provided by spread-

sheet host systems remain roughly the same:

• a spreadsheet is a tabular structure composed by cells, where the columns are referenced by letters

and the rows by numbers;

• cells can contain either values or formulas;

• formulas can have references for other cells (e.g., A1 for the individual cell in column A and row 1
or A3:B5 for the range of cells starting in cell A3 and ending in cell B5);

• instant automatic recalculation of formulas when cells are modified;

• ease to copy/paste values, with references being updated automatically.

This last feature can help spreadsheet users if well used as demonstrated below. Further more advanced

features are also available in many of those systems, but other features that are relevant for this work are

discussed later.

Revisiting the multiplication spreadsheet example from figure 1.4, one can easily represent it in an electronic

spreadsheet as shown in figure 1.5, where the cells to be filled in have a formula to compute automatically

the result. The formula was created carefully in a way that copy/pasting it would refer to the correct cells

in the column and row. To fill in the formulas, cell B2 was set with formula B$1*$A2 fixing the row for

the first reference (using character $) and fixing the column for the second reference. This allowed to

copy/paste the formula on the remaining empty cells, where the non-fixed elements of the references were

set to the column and row of the pasted formula (e.g., formula in D7 is D$1*$A7 and the one in I4 is

I$1*$A4). Moreover, cell D3 is selected displaying the formula for that cell (D$1*$A3) instead of the

respective result (6).

When creating from scratch a filled spreadsheet for a multiplication table like the one mentioned earlier

(figure 1.4), one can notice that the electronic version (figure 1.5) is easier, faster, and with a nicer and

more versatile result than the paper one, but almost as intuitive.

9List of spreadsheet host systems: http://en.wikipedia.org/wiki/List_of_spreadsheet_software

4

http://en.wikipedia.org/wiki/List_of_spreadsheet_software

Figure 1.5: Electronic spreadsheet for a multiplication table.

1.1 Motivation

Electronic spreadsheets (just spreadsheets from now on) are easy to use for non-professional programmers,

the so-called end users [Nardi, 1993], providing a tool which do not impose too restrictive barriers, and

allowing a rapid development of large systems by single users.

The freedom that users find in spreadsheets is an advantage, but also a disadvantage: users can do almost

everything, even make mistakes that can lead to errors with huge expenses. Several cases of spreadsheet

errors have been reported, some leading to financial losses or staff dismissal (see below).

Many studies show that spreadsheets are heavily used by companies, and that they are used to make

important decisions. For example, financial intelligence firm CODA reports that 95% of United States of

America (USA) firms use spreadsheets for financial reporting according to its experience [Panko and Ordway,

2008]. Another example is brought by RevenueRecognition.com (now Softrax), that had the International

Data Corporation interview 118 business leaders in 2004, finding that 85% were using spreadsheets in

financial reporting and forecasting [RevenueRecognition.com, 2004]. Moreover, a survey to a company

shows that 50% of all spreadsheets are the basis for decisions [Hermans et al., 2011].

From several audit studies to real-world operational spreadsheets, errors were found in more than 94% of the

audited spreadsheets, with many errors found in the spreadsheets [Panko and Ordway, 2008]. Moreover,

many cases of spreadsheet errors with impact on critical components of businesses and reputation damage

have been reported, e.g.:

5

• A Florida construction company underbid a project by a quarter of a million dollars due to not updating

range after items were added [Ditlea, 1987];

• A type error caused an operating fund of the Colorado Student Loan Program to be understated by

$36,131 [U.S. Department of Education, 2003];

• A reference error caused a hospital to overclame its Medicare reimbursement by $38,240 [U.S.

Department of Health and Human Services, 2003];

• An accounting error resulted in a firm expecting an income higher £4,300,000, which led to the

resignation of its chief executive [Daily Express Reporter, 2011];

• A bad link caused a $6,000,000 reporting error, made by the Knox County Trustee’s Office, costs

taxpayers $12,500 [Donila, 2011];

• A bad formula led West Baraboo officials to calculate borrowing interest low by $400,000 [Bridgeford,

2011].

A large source of information about spreadsheets and risk management associated with them is available

at the EuSpRIG website [EuSpRiG, a], where other cases of spreadsheet errors like the ones above can be

found in their horror stories [EuSpRiG, b].

In the last years, the research community has been working to improve this scenario. In order to minimize

spreadsheet errors, several techniques can be used:

• usage of best practices;

• spreadsheet testing; or,

• spreadsheet modeling.

The use of best practices in spreadsheet engineering helps to create spreadsheets that are less error prone,

that are easier to understand and that make work more efficient. In 2002, Grossman presented guidelines

for spreadsheet engineering, based on previous software engineering research and practice [Grossman,

2002]. Moreover, several entities have published standardized processes for spreadsheet engineering,

e.g., FAST [FAST, 2010] and Spreadsheet Standards Review Board [SSRB, 2010]. A comparison of three

of these spreadsheet engineering methodologies has been made by Grossman and Ozluk 2010, including

the ones from FAST and SSRB. This last one has an accompanying tool (as a Microsoft Excel add-in) to

help develop spreadsheets following it [BPM].

6

Best practices can help build a spreadsheet, but it applies mainly to the creation of new spreadsheets.

To apply best practices to legacy spreadsheets, one needs to convert them, which can be toilsome and

migration errors can be made. An alternative is to correct only parts of the spreadsheet, applying some

best practices without any major changes (depending on the complexity and condition of the spreadsheet).

This can be done by detecting spreadsheet smells [Hermans et al., 2012; Cunha et al., 2012b], a con-

cept deriving from software smells [Fowler, 1999], which are a characteristic that may cause problems

understanding, updating or evolving a software artifact. It is possible to remove some of these problems

refactoring the spreadsheets to eliminate the smell that they contain.

Nevertheless, best practices do not ensure an error-free spreadsheet and other techniques can be used to

check if the input and the result of the formulas is correct doing some testing. Spreadsheet testing [Rother-

mel et al., 2001; Pryor, 2008; Abraham and Erwig, 2008] provides a way to check the semantics of the

spreadsheet, checking if the contents of the cells correspond to the expected values, either in input cells

(e.g., check bounds of an integer number) or in the result of formulas (e.g., compare the result against the

expected one for the given input). Tests for spreadsheet formatting can also be performed, but that only

ensures that the spreadsheet follows a predetermined set of best practices.

Another verification that can be done is spreadsheet auditing, but it usually means to manually inspect the

spreadsheets and their values and formulas. This technique does not verify results of the formulas per se,

but the computation that they perform, which can be a laborious and tedious task.

Another approach that one can undertake is the use of concrete models, in contrary to the theoretical

ones from best practices. Model-Driven Engineering (MDE) is a development methodology in software

development that uses abstraction through modeling to specify a piece of software. Domain-Specific

Languages (DSLs) for modeling can be used to formalize the application structure, behavior, and require-

ments within a particular domain, imposing domain-specific constraints and performing model checking

that can detect and prevent many errors in early stages of the development process [Schmidt, 2006].

The same concepts have already been proposed for spreadsheet development, like spreadsheet tem-

plates [Abraham et al., 2005], ClassSheets [Engels and Erwig, 2005] and class diagrams for spreadsheet

specification [Hermans et al., 2010].

MDE can be used to restrict spreadsheets in ways to prevent mistakes and also to provide better under-

standing of large spreadsheets in a small, precise and concise model. Using ClassSheets, the errors stated

above could have been prevented since: ranges are automatically updated using expandable classes; a

basic type system is provided; and, references are always named, preventing basic mistakes.

7

The spreadsheet modeling approach is taken as basis for this thesis, since it has solid principles in software

engineering with some already applied to spreadsheets. Moreover, it has the potential to be very benefi-

cial for end users, preventing them to make mistakes, improving their performance and documenting the

spreadsheets.

1.2 Model-Driven Spreadsheet Engineering

Modeling of spreadsheets was already proposed by several researchers. Ireson-Paine introduced in 1997

Model Master [Ireson-Paine, 1997], a compiler and an object-oriented textual language to specify spread-

sheets. The idea is that a textual representation of spreadsheets and the specification of formulas using

named references instead of cell references (e.g., A1) is less error-prone than just editing the spread-

sheet. Then, the compiler would generate a spreadsheet conforming to the given model. However, these

models cover a limited kind of spreadsheets, namely database-like tables (a header and a set of rows).

Erwig et al. developed in 2005 a tool dubbed Gencel [Erwig et al., 2005]. This tool takes a template

as input and generates a spreadsheet with machinery to restrict some user operations to only those that

are logically and technically correct for that template. Along with the restrictions, new operations are also

added to perform some repetitive tasks like the repetition of a set of columns with some default values.This

method has the disadvantage that when a template is modified, a new spreadsheet is generated and the

user has to migrate the data manually.

Abraham et al. introduced a visual specification language for spreadsheets called ViTSL [Abraham et al.,

2005]. This language is visually similar to spreadsheets and it has also a formal textual representation.

A tool was developed to design ViTSL templates (see figure 1.6) to be given as input to Gencel presented

Figure 1.6: Screenshot of the ViTSL editor, taken from [Abraham et al., 2005].

above, but the architecture of this system (ViTSL template editor + Gencel + spreadsheet system, see

8

Model Development Spreadsheet Use

Spreadsheet TemplateSpreadsheet TemplateViTSL EditorViTSL Editor GencelGencel Spreadsheet FileSpreadsheet File

Microsoft Excel / Gencel add-inMicrosoft Excel / Gencel add-in

Figure 1.7: ViTSL-based environment for spreadsheet development.

figure 1.7) is not evolution friendly since after editing the template a new spreadsheet is created and the

user needs to populate it again.

Based on ViTSL templates, Engels and Erwig introduced ClassSheets [Engels and Erwig, 2005], a higher-

level object-oriented model. This model has both visual and (formal) textual representations. It allows

end users to express the business logic and the structure of spreadsheets. However, it still has the same

drawbacks as the system ViTSL-based replacing the ViTSL editor by a ClassSheet editor.

Hermans et al. also use MDE concepts, not to create spreadsheets from models, but to derive models from

spreadsheets, using the model to extract knowledge about the spreadsheets [Hermans et al., 2010]. This

work is based on patterns commonly available in spreadsheets, which are used to identify classes and then

extract class diagrams. The techniques developed were implemented in a tool called Gyro.

Cunha adopted some techniques from MDE, using relational models to perform spreadsheet improve-

ments, namely refactoring, migration and generation of edit assistance [Cunha, 2011]. The author applied

reverse engineering techniques to derive various models from legacy spreadsheets and used functional

dependencies as building blocks for those relational models.

As a result from Cunha’s work, the HaExcel framework was developed. From a survey with several end

users, the author obtained an indication that the models used can bring benefits to spreadsheet engineering,

helping user to commit less errors and to work faster. Nevertheless, it has a severe drawback: it is mostly

tailored to database-like spreadsheets.

Later, Cunha et al. developed a technique to solve the problem of spreadsheet evolution using ClassSheets

[Cunha et al., 2011b]. The authors used the 2LT framework [Cunha et al., 2006; Cunha and Visser, 2007]

to define a coupled transformation system that operates on spreadsheet models and respective instances.

This work was implemented in the HaExcel framework.

A commercial solution namedModelSheet Authoring was created by ModelSheet Software LLC, providing

some kind of Model-Driven Spreadsheet Engineering (MDSE). ModelSheet Authoring is a web-based tool

9

to build and maintain model-based spreadsheets, delivering then Microsoft Excel spreadsheets conforming

to the developed models. A drawback of this tool is that one has to upload the spreadsheet so it can

be coevolved. ModelSheet Software LLC also provides customized spreadsheet templates and custom

consulting services, backed by model-based spreadsheets.

Another commercial application is Data Manager, which was designed to manipulate spreadsheets pro-

viding a set of wizard-like dialogs to edit the data. This tool provides several methods to ensure that the

data is inserted correctly, preventing end users to make mistakes restricting their input. However, this tool

does not use any kind of MDSE and the spreadsheets are database like, i.e., they consist in data organized

by records, where each record is stored in a row.

In spite of all this work to achieve MDSE, many issues are still unresolved. Unlike other programming lan-

guages, spreadsheets do not have an Integrated Development Environment (IDE)10. This kind of environ-

ment is widely used by professional programmers and they provide great features to improve programmers’

performance. Creating an integrated environment for MDSE brings the benefits of MDE together with the

ones provided by IDEs.

The work presented in this dissertation provides a similar integrated environment that was achieved by

embedding ClassSheet models within spreadsheets themselves and providing operations to evolve both

model and respective instances. This resulted in the contributions described in section 1.4.

1.3 Terminology

Throughout this dissertation, some terms are used which are explained in this section for clarity’s sake.

The goal is to dismiss ambiguous meanings that can arise since many of the terms are used every day, but

without the accuracy needed in a scientific work.

spreadsheet — computer application, with an interactive interface, that provides sheets with tables. A

spreadsheet is normally composed by a spreadsheet host system (e.g., Gnumeric, Microsoft

Excel, OpenOffice Calc, etc.) and a spreadsheet file, where the data is stored along with the

description of the embedded computations.

worksheet — sheet of a spreadsheet. A spreadsheet contains one or more worksheets. The words

worksheet and sheet are both used interchangeably in this document to refer to a worksheet.
10Examples of IDEs: Eclipse (http://www.eclipse.org/) and Microsoft Visual Studio (http://www.microsoft.

com/visualstudio/en-us).

10

http://www.eclipse.org/
http://www.microsoft.com/visualstudio/en-us
http://www.microsoft.com/visualstudio/en-us

range — set of one ore more cells.

cell — element of a table. A table contains several cells, displayed in a two-dimensional layout. Cells may

contain values or formulas, and may reference other cells.

input cell — cell that should be filled by an end user, with the intent to be stored and/or to be used as

input for a computation.

reference — link to another cell. It can be to a cell in the same worksheet, or a different worksheet

in the same spreadsheet or another spreadsheet. In some contexts, to disambiguate terms, cell

reference can be used to indicate a reference to a cell. Cell references are usually written like A1.

range reference — link to a range, like a cell reference is a link to another cell. They can be defined

using the notation A1:B2.

value — content of a cell, i.e., a number, a date or time, or a string. In the case the value is in an input

cell, it is dynamic (i.e., can be modified over time) and may be referred as input value; otherwise,

it is static (i.e., it is not meant to be changed).

formula — expression that, when evaluated, returns a result that may depend on several inputs, which

are usually set in other cells referred in the formula.

1.4 Main Contributions

This work builds upon the previous work on ClassSheets, focusing in providing a user-friendly environment

for ClassSheet/spreadsheet coevolution, allowing end users to benefit from a model-driven environment.

To achieve the proposed goal, the following work was realized:

i. ClassSheets were embedded in spreadsheets, with the results presented at the 2011 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC 2011) as a long paper and a research

abstract at the Graduate Consortium:

• Embedding and Evolution of Spreadsheet Models in Spreadsheet Systems, Jácome

Cunha, Jorge Mendes, João Paulo Fernandes, and João Saraiva (VL/HCC 2011);

11

• ClassSheet-driven Spreadsheet Environments, Jorge Mendes (VL/HCC 2011 – Graduate

Consortium);

and a prototype tool was also demonstrated.

ii. A set of transformations were defined forming a bidirectional spreadsheet evolution environment to allow

a precise evolution of both spreadsheet models and respective instances, with the results presented at

the 5th International Conference on Model Transformation (ICMT 2012) as a research paper, and at

the 34th International Conference on Software Engineering (ICSE 2012) as a formal demonstration, a

poster, a paper for the USER workshop and an extended abstract for the Student Research Competition:

• Bidirectional Transformation of Model-Driven Spreadsheets, Jácome Cunha, João Paulo

Fernandes, Jorge Mendes, Hugo Pacheco, and João Saraiva (ICMT 2012);

• A Bidirectional Model-Driven Spreadsheet Environment, Jácome Cunha, João Paulo Fer-

nandes, Jorge Mendes, and João Saraiva (ICSE 2012 – Poster);

• Coupled Evolution of Model-Driven Spreadsheets, Jorge Mendes (ICSE 2012 – Student

Research Competition).

iii. A prototype implementing the embedding of ClassSheet models and the bidirectional spreadsheet evo-

lution environment was developed, resulting in an extension for OpenOffice/LibreOffice Calc, presented

at ICSE 2012:

• MDSheet: A Framework for Model-Driven Spreadsheet Engineering, Jácome Cunha,

João Paulo Fernandes, Jorge Mendes, and João Saraiva (ICSE 2012);

iv. A comparison of the evolution of spreadsheets using the approach in this work with the evolution of plain

spreadsheets was also made. A proposal for an empirical study with real-world users was presented

in:

• Towards an Evaluation of Bidirectional Model-Driven Spreadsheets, Jácome Cunha,

João Paulo Fernandes, Jorge Mendes, and João Saraiva (ICSE 2012 – USER workshop);

12

1.5 Document Structure

This dissertation is organized as follows:

Chapter 2 contains the description of the embedding of ClassSheet models within spreadsheets and the

effects that it has on spreadsheet data. It focuses contribution i.

Chapter 3 contains the list of operations that can be made on spreadsheet models and the ones that

can be made on spreadsheet data. A relation between model operations and data ones is made,

presenting the bidirectional spreadsheet evolution environment. This chapter focuses contribution ii.

Chapter 4 describes the prototype tool developed, dubbed MDSheet, which implements the techniques

presented in chapters 2 and 3, focusing contributions iii and iv.

Chapter 5 concludes this dissertation with remarks on the work done and exposing directions for future

work.

13

14

Chapter 2

Embedding Spreadsheet Models within

Spreadsheets

Model-Driven Spreadsheet Engineering (MDSE) has so far been realized with the construction and use of

stand alone tools to design an create spreadsheet models. This is also the case of the ViTSL editor [Abraham

et al., 2005], a tool that has been described in chapter 1. This approach requires a significant effort to

integrate the model creation with the spreadsheet development, since the spreadsheets that are generated

by such tools are manipulated under a different environment, the traditional spreadsheet environment.

Moreover, it has several other drawbacks:

• one has to create a new tool from scratch;

• having learned the modeling language, end users need to learn how to use the tool that enables

model design;

• several steps are needed to generate a spreadsheet; and,

• when a model for which a spreadsheet has been derived needs to evolve over time, it is easy to

transform it into one that does not respect the structure of the previously derived spreadsheet.

On the other end, the use of a tool specifically for the purpose of spreadsheet model design has some

advantages:

• there is virtually no syntax limitation for the modeling language that one wants to use;

15

• there are no distractions from other features that are not directly related to modeling, as it happens

with many generic purpose tools (e.g., a spreadsheet host system can provide statistical tools, which

are not needed if one wants to create a calendar).

The use of a complex system with many computer programs with different purposes is not ideal to promote

MDSE. In some cases, end users would have to intervene in operations not related to either the model

evolution or the data edition (e.g., migrate the data after a some evolution step in the model).

A solution to overcome these difficulties allowing end users to focus only about the data (and possibly the

model) is to include spreadsheet modeling inside the spreadsheet environment that end users are already

used to. This approach eliminates the need to create a separate tool, the need for users to learn how to

use a completely new tool, and the generation of a spreadsheet from the model and the coevolution of the

data is facilitated since the model is in the same environment as the data.

To implement the proposed solution, one can:

• do major changes to the spreadsheet host system to include a model editor, which is almost like

creating a new tool; or,

• include the model directly inside a sheet of the spreadsheet.

The second option is the one adopted in this work, since it permits to focus on the modeling language

instead of the tool, but its implementation depends on the chosen modeling language.

The spreadsheet models that have received wider acceptance from the community have been ClassSheet

models, which have a visual language that is very similar to spreadsheets themselves. The combination

of these factors makes the ClassSheet language the ideal candidate to be embedded within spreadsheets.

This language is described in the next section, presenting the motivation to use it as the modeling language

in this thesis.

2.1 Spreadsheet Templates and ClassSheets

The spreadsheet templates defined in [Erwig et al., 2005; Abraham et al., 2005] are a formalism to define

the structure and contents of a spreadsheet. Templates (t) are composed by blocks (b), which in turn can

contain formulas (f). A template block can represent in its basic form a spreadsheet cell, or it can be

a composition of other blocks, possibly forming columns (c). Moreover, template blocks (b or c) can be

16

expandable, i.e., their instances can be repeated either horizontally (c→) or vertically (b↓). When a block

represents a cell, it contains a basic value (ϕ, e.g., a string or an integer), a reference (ρ), or an expression

built by applying functions to a varying number of arguments given by a formula (ϕ(f, . . . , f)).

Templates can be represented textually [Erwig et al., 2005] (see figure 2.1), or visually using the ViTSL

language [Abraham et al., 2005].

f ∈ Fml ::= ϕ | ρ | ϕ(f, . . . , f) (formulas)
b ∈ Block ::= f | b|b | bˆb (blocks, tables)
c ∈ Col ::= b | b↓ | cˆc (columns)
t ∈ Template ::= c | c→ | t|t (templates)

Figure 2.1: Syntax of the textual representation of spreadsheet templates [Abraham et al.,
2005].

To generate a spreadsheet corresponding to a template, a spreadsheet of the size of the template is created,

where the contents of the cells in the template indicate the default content and the type of that cell in the

spreadsheet. If a block is in an expandable area (either horizontally, vertically, or both), then users can

repeat it in the corresponding direction(s) (see figures 2.2 and 2.3). Moreover, one can impose expansion

(a) Template for a list of
values.

(b) A spreadsheet generated
from the template.

(c) A spreadsheet generated from
the template, with some values.

Figure 2.2: Example of a template that expands vertically.

limits, identifying the number of columns or rows that should be repeated in each instance. This can be

done removing the column or row separators as depicted in figure 2.4.

The construction of spreadsheet templates is restricted by a set of rules that are imposed by a type system.

This type system has two distinguished sets of types: one for formulas and an other for templates. The

former enforces the correct use of references within formulas, while the latter constraints the composition

of template elements in addition to the ones imposed by the syntax of the language.

Simplistically, the formula typing ensures that range references are not used where a cell reference is

expected. When using a reference in a template, the corresponding reference in the data can be either a

17

(a) Template for a list of values.

(b) A spreadsheet generated from the template.

(c) A spreadsheet generated from the template, with some values.

Figure 2.3: Example of a template that expands horizontally.

(a) Template for a list of values. Notice the missing column separator between columns B and C.

(b) A spreadsheet generated from the template.

(c) A spreadsheet generated from the template, with some values.

Figure 2.4: Example of a template that expands horizontally, with two columns being repeated.

Table 2.1: Types of references [Abraham et al., 2005].

Source cell Target cell Type of reference
non-repeating non-repeating cell
non-repeating repeating range

repeating non-repeating cell
repeating repeating (same group) cell
repeating repeating (different group) range

cell reference or a range one depending on the location of the source cell containing the formula with the

reference and the target cell referenced in the formula (see table 2.1).

The template typing ensures that:

• when composing vertically two blocks, they have the same width;

• when composing horizontally two blocks, they have the same height;

• when composing vertically two columns, they have the same width; and,

18

• when composing horizontally two templates, they have the same height and the same block pattern

(i.e., expandable blocks in one template match the position and size of the adjacent blocks in the

other template).

With this information about spreadsheet templates, it is possible to create, for instance, a spreadsheet for

budgeting (see figure 2.5), listing vertically the categories and horizontally the years. For each intersection

Figure 2.5: Template for budgeting purposes.

of the year columns with the category rows, there is the quantity, cost and sub-total for the corresponding

category in that particular year. Moreover, sub-totals are also provided for each category (cell F4) and

for each year (cell E5), and a grand total for all expenses is defined in cell F5. Also, there is no column

separators between columns C and D, neither between columns D and E, which makes those three columns

(C, D and E) to be repeated whenever one wants to add information about a new year. For the expansion

used to add new categories, there is a separator between rows 3 and 4, implying that that expansion repeats

only one row per category.

Spreadsheet templates provide a way to ensure that spreadsheets follow a specific layout, and allow to fill

in cells more easily, having the user only to insert input values since the formulas are automatically inserted

with the correct references. However, spreadsheet templates still use non-user-friendly references with the

format that is usual in spreadsheets, and the contents of the template have no semantics related to the

business model associated with them. To remove some of disadvantages of spreadsheet templates, a new

kind of models was developed, namely ClassSheet models [Engels and Erwig, 2005].

ClassSheet models are build upon spreadsheet templates, and are a high-level, object-oriented formalism to

specify the business logic of spreadsheets [Engels and Erwig, 2005]. They are very similar to spreadsheet

templates, but with more information about the classes used in the model, and with named attributes that

can be used to reference cells by name, removing the need to use the usual format of references (i.e.,

references like A1 and B3:D6).

Some improvements were made in the textual language to describe ClassSheets (see figure 2.6), namely

the use of named references (n.a, where n is the name of the class and a the name of the formula), the

naming of formulas (a = f), and the definition of classes (c) with the use of labels (l) to name them.

19

f ∈ Fml ::= ϕ | n.a | ϕ(f, . . . , f) (formulas)
b ∈ Block ::= ϕ | a = f | b|b | bˆb (blocks)
l ∈ Lab ::= h | v | .n (class labels)
h ∈ Hor ::= n | |n (horizontal)
v ∈ V er ::= |n | |n (vertical)
c ∈ Class ::= l : b | l : b↓ | cˆc (classes)
s ∈ Sheet ::= c | c→ | s|s (sheets)

Figure 2.6: Syntax of the textual representation of ClassSheets [Engels and Erwig, 2005], with
the differences from the template language in red.1

The visual representation of ClassSheets also has some improvements relatively to the one for spreadsheet

templates. The content of the cells can now have named references and named formulas, borders with

different colors are used to specify the area of the classes, and bold-formatted labels identify the name of

the classes.

These alterations are presented in the ClassSheet that models the budget system (figure 2.7) described

above as a template in figure 2.5. This budget system (represented by class Budget) is composed by three

Figure 2.7: ClassSheet modeling a budget spreadsheet.

other classes: Year, Category, and a class that relates Year and Category (similar to a relationship in

a relational schema) that will be called Year_Category for the remaining of this dissertation. The budget

system groups its data by year (class Year) and by category (class Category).

Year can be expanded horizontally to include several years and contains an attribute year that has de-

fault value 2005. The default value is used when a new instance of the class is added so it is populated

automatically with some data.

Category can be expanded vertically to set several items using the attribute name, that has default value

the string abc.

Year_Category relates a year with a category, since each instance is used to store information for all the

categories of a year, and all the years of a category. The information contained in this class is the quantity

(qnty) of a category, its cost (cost) and a sub-total (total).
1It is assumed that the colors are visible through the use of the electronic version of this dissertation.

20

The attribute total in Year_Category is used to calculate sub-totals for each category (cell G4 of the

embedded model) and also for each year (cell E6). This last sub-total is in turn used to calculate the grand

total of the budget (cell G6).

2.2 Embedding ClassSheets within Spreadsheets

The ClassSheet language is a DSL to represent the business model of spreadsheet data. The visual repre-

sentation of ClassSheets very much resemble spreadsheets (see previous section). As a consequence, it

is only natural to use the latter for creating ClassSheet models. Thus, the well-known techniques to embed

DSLs in a host general purpose language [Swierstra et al., 1999] are adopted so that the visual ClassSheet

is embedded in a spreadsheets host system. In this way, both the model and the spreadsheet can be stored

in the same file, and model creation along with data edition can be handled in the same environment that

end users are familiar with.

The embedding of ClassSheets within spreadsheets is not direct, since ClassSheets were not meant to

be embedded inside spreadsheets. Their resemblance helps, but some limitations arise due to syntactic

restrictions imposed by spreadsheet host systems. Several options are available to overcome the syntactic

restrictions:

• write a new spreadsheet host system from start;

• modify an existing spreadsheet host system; or,

• adapt the ClassSheet visual language.

The two first options are not viable to distribute MDSE widely, since both require end users to switch their

system, which can be inconvenient. Also, the first option takes too much work and removes some focus on

the modeling part.

The solution adopted modifies lightly the ClassSheet visual language so it can be embedded in a worksheet

without doing major changes on a spreadsheet host system (see figure 2.8). The modifications are:

i. draw an expansion limitation line in the spreadsheet instead of it being in the column/row indices

(letters and numbers respectively);

ii. identify expansion using cells (in the ClassSheet language, this identification is between columns/rows);

and,

21

iii. fill classes with a background color instead of using lines (which are used for the expansion).

The last change (iii) is not mandatory, but it is easier to identify the classes and, along with the first change

(i), eases the identification of the classes’ parts. This way, users do not need to think which role the line is

playing (expansion limitation or class identification).

(a) Original ClassSheet.

(b) Embedded ClassSheet.

Figure 2.8: Comparison between a plain ClassSheet to model a budget spreadsheet and an
equivalent embedded one.

Using as example the budget ClassSheet from [Engels and Erwig, 2005] described previously and repro-

duced in figure 2.8a, one can see the differences between the original ClassSheet visual representation and

the embedded one (figure 2.8b). The differences between the original ClassSheet and the embedded one

are described next.

• In the original ClassSheet (figure 2.8a), there are two expansions denoted by the column between

columns E and F for the horizontal expansion, and the row between rows 4 and 5 for the vertical

one. Applying change ii to the original model, in the embedding (figure 2.8b) an extra column (F)

and an extra row (5) are used to identify the expansions.

• To define the expansion limits in the original ClassSheet, there are no lines between the column

headers of columns C, D and E which makes the horizontal expansion to use three columns and the

vertical expansion only uses one row. This translates to a line between columns B and C and another

line between rows 3 and 4 in the embedded ClassSheet as per change i.

• To identify the classes, background colors are used (change iii), so that the class Budget is identified

by the yellow background, the class Year by the blue background, the class Category by the green

background, and the class that relates the Year with the Category by the violet background.

22

To complete the embedding, the sheet containing the embedded ClassSheet should be alongside with the

sheet containing its instance (i.e., the data), forming a spreadsheet with a sheet for the model and another

one (or more) for the data (see figure 2.9). This way, users may evolve either model or data having the

(a) Model on the first sheet of the spreadsheet.

(b) Data on the second sheet of the spreadsheet.

Figure 2.9: Budget spreadsheet, with an embedded model and a conforming instance.

corresponding artifact automatically coevolved. Also, having the model near the data helps to document

the latter, so that end users identify clearly the structure of the logic behind the spreadsheet.

To be noted that the data also is colored in the same manner as the model. This allows a correspondence

between the data and the model to be made quickly, relating parts of the data to the respective parts in the

model. This feature is not mandatory to implement the embedding, but can help the end users. One can

23

provide this coloring as an optional feature that could be activated on demand.

2.3 Instance Generation from Models

The envisioned MDSE environment is iterative, where when an operation is performed on the model, another

operation is performed in the data (its instance) in order to coevolve the data accordingly with the model.

This approach promotes an environment where the data is always conforming to the model.

ClassSheet models define a set of operations to evolve it, which can be used to create the models. Some ba-

sic operations available on ClassSheet models correspond to layout and cell content modifications: addition

and deletion of columns and rows, and cell edition.

Moreover, since ClassSheets are an object-oriented formalism, one can also modify the classes within a

model. A class is the description of an object which, within the context of this work, corresponds to a range

of cells in the model instance. One specific operation is available to add a class to a model, but the deletion

of a class is performed using basic spreadsheet operations, namely the deletion of either the columns or

the rows corresponding to that class.

Like in the deletion operation, other more complex operations can be performed on models by using the

operations previously described. A detailed description of the possible operations for model evolution is

present in section 3.1:

To create, for example, the budget spreadsheet, one can:

1. add a class for the budget, selecting the range A1:G6 and choosing the yellow color for its back-

ground;

2. add a class for the years, selecting the range C1:F6, choosing the blue color for its background,

and setting the class to expand horizontally;

3. add a class for the categories, selecting the range A3:G5, choosing the green color for its back-

ground, and setting the class to expand vertically; and,

4. set the missing labels and formulas for the cells.

24

The addition of the relation class is not needed since it is added automatically when the environment

detects superposing classes at the same level (Year is within Budget, as is Category, which leads to the

automatic insertion of the relation class when the class Category is added after class Year).

After each step of the model creation, it is possible to visualize the result of the data coevolution, so the

user creating the model has a precise idea of the effects resulting from is actions.

2.4 Summary

In this chapter, the advantages of using an integrated environment for MDSE are presented. The approach

taken involves embedding ClassSheet models within spreadsheets, using a spreadsheet host system as the

only tool that users need to develop spreadsheets. This work is also presented in [Cunha et al., 2011a;

Mendes, 2011].

Only the embedding of ClassSheets is detailed in this chapter, which is not enough for spreadsheets that

rely on a business logic that needs evolution over time. To address this concern, a set of model and data

operations is presented in the next chapter.

25

26

Chapter 3

Model-Driven Spreadsheet Evolution

Creating a spreadsheet can take several steps, starting with an empty spreadsheet and modifying it until

the wanted one is obtained. Moreover, spreadsheets, like many software artifacts, need to be updated over

the time to meet the needs of the latest characteristics of businesses (e.g., billings and taxes).

Current spreadsheet host systems already provide several kinds of operations used to evolve spreadsheets:

edit cell and add or remove columns or rows. Also, several other features help to create or modify spread-

sheets: copying and pasting cell values, filters, cell sorting, etc., along with other more advanced features

like the support for macros to perform repetitive tasks. However, these operations do not take into account

the business logic behind the spreadsheet.

In order to evolve spreadsheets correctly regarding their business logic, a set of operations was created on

ClassSheets, defining generic transformations over the models and the behavior of their modification on

the data.

The usual process to evolve a system with some model and a corresponding instance is to evolve the model

and then coevolve the instance accordingly in an unidirectional approach. However, it is possible to provide

the ability to modify an instance in a way that it does not conform to the model anymore and then find

a model to which the evolved instance conforms to. This can be done by inferring a new model or by

modifying the original model.

Merging both model and instance evolution approaches we obtain a bidirectional coevolution environment

where, when one artifact is evolved (model or instance), the respective artifact (instance or model) is auto-

matically coevolved. This environment is especially directed to users which are responsible of the model.

27

It allows the user to edit the model having a clear idea of the changes performed on the data. Also, some

operations are easier and faster performed using this kind of environment.

An example of an operation easier done in the data than in the model is the addition of a column in only

one instance of the class Year of the ClassSheet introduced in chapter 2 (figure 2.8). This new column

could store the information of a tax for that particular year, or be used to add some observation about a

category. This operation can be realized either in the model or in the data:

In the model (figure 3.1): Replicate class Year, or add a new class with four columns, since the change

is to be applied to one year only. Choosing the replication option, one has to replicate the class and

then add one column to the new class. After having the new class with the wanted specification, the

data of the year to be modified needs to be migrated manually to the new class.

In the data (figure 3.2): Select the column in the instance of the year to be modified and add a column.

From this overall instructions, it is clearly simpler to do the operation in the data rather than in the model.

Also, some sorting problems may arise if the operation is done in the model, so more steps would be

needed to complete the operation. The operation in the data creates automatically the necessary classes

and there is no need to migrate any data.

(a) Original budget spreadsheet model.

(b) Original budget spreadsheet data, conforming to model in figure a.

⇓Model evolution step: replicate class Year

28

(c) Evolved budget spreadsheet model.

(d) Coevolved budget spreadsheet data, conforming to model in figure c.

⇓Model evolution step: add column to the new class, before column I

(e) Evolved budget spreadsheet model, with a new column at index I.

(f) Coevolved budget spreadsheet data, with a new column at index L, conforming to model in figure g.

⇓ Data evolution step: migrate Year instance for year 2006, copying that instance’s data to the new

class and removing the old instance.

(g) Budget spreadsheet model, where a new class similar to Year has an additional column.

(h) Budget spreadsheet data, where Year instance for 2006 has a new column, conforming to model
in figure g.

Figure 3.1: Adding a column to only one class instance, evolving the model and coevolving the
data.

29

(a) Original budget spreadsheet model.

(b) Original budget spreadsheet data, conforming to model in figure .

⇓ Data evolution step: add a new column before column M

(c) Coevolved budget spreadsheet model, with a new class similar to Year but with an additional
column at index I.

(d) Evolved budget spreadsheet data, where Year instance for 2006 has an additional column at
index L.

Figure 3.2: Adding a column to only one year, evolving the data and coevolving the model.

The model/data coevolution is accomplished defining a set of transformations on ClassSheets (OpM , see

section 3.1) and another set of transformations on the data (OpD, see section 3.2). Then, both sets of

transformations are related so that any transformation on either artifact has a sequence of one or more

transformations on the other artifact (see section 3.3). The relation between the two sets is designed so

that a valid transformation in one artifact corresponds to a valid sequence of transformations on the other

artifact and that the instance conforms to the model (figure 3.3).

An operation is a sequence of one or more transformations that are made available for the users to evolve

model and data. Operations for model and data are presented in the next section. Model operations are

indexed with an M and data ones by a D.

The specification of the parameters of the operations are given by their types. The ones used are:

30

conforms to conforms to

Op

Op

to
from

M

D

ClassSheet

Spreadsheet

ClassSheet'

Spreadsheet'

Figure 3.3: Bidirectional evolution diagram: operations on each artifact maintain conformity.
The relation of model operations and data ones are represented by the functions to and from.

Model — type of a model;

Data — type of a model instance;

Index — integer that represents a zero-based index of a column or row;

Point — pair of integers used to identify a point using two indices, with Point def= (Index, Index);
Range — pair of points that for a rectangular range, with Range def= (Point, Point);
Where — position relative to an index, with the possible values being Before or After;
Color — type of a color;

String — type of a string;

ClassName — type of a class name, which is basically a string but with values that follow a specific

grammar, being ClassName def= String.

Moreover, to simplify the type signatures of the operations,

OpM :: Model →Model

is used to represent an operation that has no parameters but the model, and

OpD :: Data→ Data

is used to represent an operation that has no parameters but the data.

3.1 Model Operations

To evolve models, some basic operations are needed. A simple description of these operations follows, with

their respective types and examples where the operation is applied to the budget spreadsheet (figure 2.8b),

31

unless specified otherwise.

addColumnM — Adds a column to the model. To perform this operation, one has to select a column in

the model and choose to add the new column before or after that column.

addColumnM :: Where→ Index→ OpM

Figure 3.4: addColumnM Before 4, resulting in the new column E.

delColumnM — Removes a column from the model. One just needs to select the column to remove to

perform this operation.

delColumnM :: Index→ OpM

Figure 3.5: delColumnM 1, resulting in the deletion of column B from the original model.

addRowM — Adds a row to the model. To perform this operation, one has to select a row in the model

and choose to add the new row before or after that row.

addRowM :: Where→ Index→ OpM

Figure 3.6: addRowM After 3, resulting in the new row 5.

delRowM — Removes a row from the model. One just needs to select the row to remove to perform this

operation.

delRowM :: Index→ OpM

32

Figure 3.7: delRowM 1, resulting in the deletion of row 2 from the original model.

setCellM — Sets the content of a cell. To perform this operation, one has to select the cell to modify and

give a new value (label or formula).

setCellM :: Point→ String → OpM

Figure 3.8: setCellM (0, 3) “id=0 ”, resulting in a new content for cell A4.

addClassM , addClassExpM — Adds a class to the model. The class can either be static (i.e., not

expandable; addClassM) or expandable (addClassExpM). To perform this operation, one has

to select a range in the model, a name and a color for the new class. For the expandable form, one

has also to select the direction of the expansion (horizontal or vertical).

addClassM :: ClassName→ Color → Range→ OpM

addClassExpM :: ClassName→ Color → Range→ Direction→ OpM

(e) Before the operation. (f) After the operation.

Figure 3.9: addClassExpM “Category′′ Green ((0, 2), (6, 6)), resulting in the addition
of the class Category and the relation class Year_Category.

replicate→M , replicate↓M — Replicates a class, either horizontally (replicate→M) or vertically (replicate↓M).

This operation is useful to create a new class with the same content of the one selected. The new

class is created just after the class to be replicated.

replicate→M :: ClassName→ OpM

replicate↓M :: ClassName→ OpM

33

Figure 3.10: replicate↓M “Category ”, resulting in the duplication of class Category in
Category_1 and Category_2, with the formula in cell E9 updated accordingly.

In section 3.3, more model operations are presented. However, those operations consist in a sequence of

the operations described in this section.

3.2 Data Operations

Data operations are also available, consisting in operations already available for spreadsheet evolution (e.g.,

add a new column – addColumnD), but other operations where created to reflect some model operations

(e.g., add a new column to each instance of a class – AddColumnD). For consistency, only operations

that reflect model ones start with an uppercase letter. A simple description of these operations follows, with

their respective types and examples where the operation is applied to the budget spreadsheet (figure 2.9b).

addColumnD, AddColumnD — Adds a column to the data. To perform this operation, one has to

select a column in the data and choose to add the new column before or after that column. The first

operation (addColumnD) adds only one column, unlike the second operation (AddColumnD)

which adds a column to each instance of the class that contains that column.

addColumnD :: Where→ Index→ OpD

AddColumnD :: Where→ Index→ OpD

Figure 3.11: AddColumnD Before 4, resulting in the two news columns E and I.

delColumnD, DelColumnD — Removes a column from the data. One just needs to select the column

to remove to perform this operation. The first operation (delColumnD) removes only one column,

34

unlike the second operation (DelColumnD) which removes a column from each instance of the

class that contains that column.

delColumnD :: Index→ OpD

DelColumnD :: Index→ OpD

Figure 3.12: DelColumnD 1, resulting in the data without column B from the original
model.

addRowD, AddRowD — Adds a row to the data. To perform this operation, one has to select a row in

the data and choose to add the new row before or after that row. The first operation (addRowD)

adds only one row, unlike the second operation (AddRowD) which adds a row to each instance of

the class that contains that row.

addRowD :: Where→ Index→ OpD

AddRowD :: Where→ Index→ OpD

Figure 3.13: AddRowD After 3, resulting in three new rows at lines 5, 7, and 9, since
this is the upper case function to add a row.

delRowD, DelRowD — Removes a row from the data. One just needs to select the row to remove to

perform this operation. The first operation (delRowD) removes only one row, unlike the second

35

operation (DelRowD) which removes a row from each instance of the class that contains that row.

delRowD :: Index→ OpD

DelRowD :: Index→ OpD

Figure 3.14: delRowD 1 or DelRowD 1, having both the same result, which is the data
without row 2 from the original data.

setCellD, SetCellD — Sets the content of a cell. To perform this operation, one has to select the cell

to modify and give a new value (label or some input value). The first operation (setCellD) sets the

content of only one cell, unlike the second operation (SetCellD) which sets the content of the cell

from each instance of the class that contains that cell.

setCellD :: Point→ String → OpD

SetCellD :: Point→ String → OpD

Figure 3.15: SetCellD (0, 3) “id = 0”, resulting in having the default value 0 inserted in
cells A4, A5 and A6

addInstanceD — Adds an instance of a class. It is used to add more instances of an expandable class,

setting the cells of the new class with the default values defined in the model.

addInstanceD :: ClassName→Model → OpD

36

Figure 3.16: addInstanceD “Category” m, where m corresponds to the original
ClassSheet model, resulting in the new row 7 set with the default values defined in
the model.

replicate→D , replicate↓D — Replicates a class, either horizontally (replicate→D) or vertically (replicate↓D).

It is different from addInstanceD since this operation is equivalent to creating a new class in the

model. If a class is expandable, then the current expand button remains unchanged and a new class

instance with its own expand button is added.

replicate→D :: Index→ OpD

replicate↓D :: Index→ OpD

Figure 3.17: replicate→D 4, resulting in the coevolution corresponding to the operation
replicate→M “Y ear”

3.3 Bidirectional Transformation Functions

To create the bidirectional evolution environment, model operations where related to data ones. Having a

model and data conforming to that model, when a model operation is performed, the related data operation

must be ran to coevolve the data so that it keeps conforming to the model.

Some operations may relate to a sequence of operations in the corresponding artifact. A sequence opera-

tions is defined by a sequence of one or more individual operations separated by a semicolon (;) as per the

regular expression: Op0(;Opi)∗ , where Op represents an operation. Also, some operations in an artifact

may not have any effect on the related artifact. This is represented by the empty set (∅).

37

Model operations have at most one corresponding individual data operation (see table 3.1). Moreover,

the relation is an equivalence, where the data operation in the right-hand side corresponds to the model

operation in the left-hand side, except for the empty ones.

Table 3.1: Model transformations and corresponding transformations on the respective in-
stances.

Model Operation Data Operation

addColumnM AddColumnD

delColumnM DelColumnD

addRowM AddRowD

delRowM DelRowD

setCellM SetCellD

replicate→M replicate→D
replicate↓M replicate↓D
addClassM ∅
addClassExpM ∅

In turn, data operations relate to sequences of operations with more than one individual operation in the

model, except for addInstanceD, which has no correspondence. Also, setCellD has no effect on the

model when an input cell is edited. This relation is represented in table 3.2.

Table 3.2: Instance transformations and corresponding transformations on the respective model.

Data Operation Model Operation

addColumnD replicate→M ; addColumnM

delColumnD replicate→M ; delColumnM

addRowD replicate↓M ; addRowM

delRowD replicate↓M ; delRowM

setCellD


(replicate→M ; replicate↓M ; setLabelM)

if the cell is empty or it contains a label;

∅ otherwise, i.e., it is an input cell.

addInstanceD ∅
Note: When the operation is performed in a middle instance of an expandable class, each replication
is performed twice. These operations correspond to non-expandable classes, or to the first or last
instance of an expandable one.

38

3.4 Summary

In this chapter, the evolution of the embedded models was introduced, presenting a set of operations that

users can perform on them.

Also, a set of data operations was described. Some of these operations are common spreadsheet operations

while others has as goal to perform transformations on the data that correspond to model operations.

Moreover, a relation between model operations and data ones is presented. With this, a bidirectional

evolution environment is defined. Having a valid model and some conforming data, when performing a

valid evolution of the model and after the coevolution of the data, the latter is conform to the evolved model.

Also, having a valid model and some conforming data, when performing a valid evolution of the data and

after the coevolution of the model, the latter models the evolved data.

It is ensured by construction that the result of the coevolution is a valid artifact.

39

40

Chapter 4

Model-Driven Spreadsheet Engineering with

MDSheet

The work described in this dissertation is implemented as an extension for OpenOffice/LibreOffice Calc,

dubbed MDSheet. This implementation is a prototype to demonstrate the feasibility of the approach herein

presented. Also, it permits to evaluate the approach.

Moreover, it allows to test new theories and encourages the application of new technologies to spreadsheet

development, providing a base framework for spreadsheet analysis and transformation.

4.1 Architecture OpenOffice

MDSheet
Shared Library

User Interface

Transformation System

Integration Code

Figure 4.1: MDSheet ar-
chitecture.

The MDSheet framework was developed with modularity in mind. This mod-

ularity allows to adapt MDSheet to more spreadsheet host systems, but also

to easily extend MDSheet with more features.

MDSheet has three main components (see figure 4.1):

• user interface (≈670 lines of OpenOffice Basic code);

• transformation system (≈2700 lines of Haskell code); and,

• integration code (≈4480 lines of C/C++ and Haskell code).

41

4.1.1 User Interface

Figure 4.2: MDSheet toolbar in the LibreOffice
Calc user interface.

The user interface consists of several controls ar-

ranged in a toolbar (see figure 4.2), a set of

OpenOffice Basic macros and some dialogs (see

figure 4.3). Pressing any control in the toolbar,

an event is triggered that executes the macro de-

fined for that event. Buttons are also present in

the data to perform expansions. Moreover, an

event listener is added to the model to monitor cell

changes. This executes a macro that performs op-

eration setCellM and the corresponding coevolu-

tion of the data.

The control c+ in the toolbar is used to add a new class to the model. It uses a dialog to query the user about

the name of the class, its color and if it expands horizontally, vertically or if it does not expand (figure 4.3a).

(a) Parameters to add a new class to the
model.

(b) Parameters to add a column or a row to
the model.

(c) Parameters to add a column or a row to
the data.

(d) Parameters to delete a column or a row
from the data.

Figure 4.3: MDSheet dialogs.

Controls Col+, Col-, Row+ and Row- are used to add a new column, remove a column, add a new row

42

and remove a row, respectively. When in the model, the macros for Col+ and Row+ use a dialog to query

the user if it is to add the new item (column or row) either before or after the selected one (see figure 4.3b).

When in the data, it also queries about the kind of operation to execute, i.e., if it is only for that instance

or for all instances of the class that contains the item (see figure 4.3c). The macros for Col- and Row-
only use a dialog when in the data, to query about the kind of operation to perform: remove only one item

(column or row) or remove the item in all instances of the class that contains it (see figure 4.3d).

4.1.2 Transformation System

The transformations system consists of a set of Haskell data structures and functions on those structures

to manipulate ClassSheet models and spreadsheet data, including functions to perform the operations

described in chapter 3.

The Haskell language is used because it is a high-level language, useful to specify programs, and calcu-

lations can be performed on the source code [Cunha and Pinto, 2005]. Calculations on the source code

can be used to formally verify the correctness of the operations, or test properties of the framework like the

ones described in [Cunha et al., 2012a].

Two main data structures are used: one for ClassSheet models and another one for spreadsheet data. These

structures are similar to each other. They are composed by a list of classes and a matrix that contains the

cells forming the model (for the model structure) or the data (for the spreadsheet data structure). In Haskell,

these data structures are described as

data Model = Model [ModelClass] Grid

for the model, and

data Data = Data [DataClass] Grid

for the data, where the classes are represented by ModelClass and DataClass, and the matrix of cells is

represented by Grid. The difference between model classes (ModelClass) and data classes (DataClass)

is that the data class contains more information about the class, namely the number of instances.

The structure for the model is very different from the ClassSheet textual representation grammar defined

in [Engels and Erwig, 2005] and reproduced in previously in figure 2.6, where the cells are described by

blocks inside the specification of the classes. The structure chosen to implement ClassSheets is easier to

manipulate than if it was similar to the ClassSheet grammar.

43

Despite many functions being defined over model, instance and auxiliary data structures, only the ones

that provide the operations are needed to mentioned. All the operations over models and data have a

respective function, but they are not invoked by themselves. Another set of functions is defined, where

each function from that set invokes a model operation and a data operation, receiving a model/data pair

and other arguments (e.g., an index when removing a column) and performing the necessary conversion

between the arguments of the functions. The conversion is needed for some arguments, like indices, where

the position of a cell in the data may not be specified by the model cell at the same position (e.g., cell G6
from the spreadsheet in figure 2.9b is specified by cell J8 in the respective model).

4.1.3 Integration Code

The integration code is used to connect the user interface to the transformation system. It is important to

refer this code, since it is a great part of the MDSheet framework.

Unfortunately there is no Haskell bindings of the OpenOffice Application Programming Interface (API), which

would deprecate most of the integration code. C/C++ is used to fill this gap, connecting to Haskell using

its Foreign Function Interface (FFI) [Marlow, 2010, Chapter I.8].

Difficulties arise from doing this connection, like the conversion of the data structures, from the simple ones

(e.g., integers of several sizes [8, 16, 32 or 64 bits]) to complex ones (e.g., OpenOffice Unicode strings to

Haskell ones). Also, the Haskell strong type system and lazy evaluation need to be dealt with very carefully,

or errors related to wrong types or to not completely evaluated values might appear. Haskell concurrency

features are not used in this thesis, but they could be used to improve performance in future work to deal

with very large models/spreadsheets.

4.2 Usage

In order to use the extension, users have available the toolbar (see figure 4.2) for model evolution, and also

buttons in the data sheets to add instances of expandable classes (see figure 4.4).

In the MDSheet prototype, it is assumed that the first sheet contains the model and the second one the

data.

44

Figure 4.4: Spreadsheet data with focus on an expansion button (column I).

Starting with an empty spreadsheet, users can start creating their model. For that, an easy to use interface

is provided: the user just needs to select the area that the main class will use and press control c+
from the toolbar. After that, the Add Class dialog (figure 4.3a) is shown so that users can provide more

information about the class. Then, the new class is added, and the top-left cell of that class is set with a

label corresponding to the name provided in the dialog. At the same time, the data is coevolved and the

user can see it going to the second sheet.

From this point on, users can add more classes inside the existing one, or perform other kinds of evolution.

Also, labels and formulas can be added to the classes’ cells.

4.3 Advantage in the Use of MDSheet

Creating a spreadsheet like the one displayed in figure 2.9, one can see the advantages from using a MDE

approach. In that example, adding a new year to the spreadsheet is just as far as pressing a button. Without

a model, it would require users to insert three new columns, setting the labels, adding the default values

and inserting the formulas. With this many steps, users take longer, and may introduce errors while setting

the contents of the cells or writing formulas. Copy/pasting can help the process, but errors can still arise

(e.g., wrong references in the formulas).

Continuing with this example, having the data containing information about dozen years and about twenty

category entries, to add a column to each year, the user can go to the model, select a column from Year

and press Col+ (or execute the corresponding operation from the data side). This indeed adds a column for

each year, updating all the formulas to correct any cell reference. Without a model, the user needs to add

manually a new column to each year (i.e., add ten times a new column at the right place), and then update

the formulas. Some kind of formulas can be updated automatically and correctly by the spreadsheet host

45

system, but others not, depending on the kind of references used (direct cell reference like A1;A2;B1;B2
or range reference like A1:B2). Once more, without a model, users need more steps to obtain the wanted

result and errors can be introduced performing those steps.

The previous examples resulted in many changes on the data. But if the user only wants to add a column

to only one instance of the class Year? Without a model, the user just adds that column and update the

formulas if needed. But, with the bidirectional evolution environment, it is even simpler when having a

model: the user just needs to select where to add the column, and formulas are updated automatically, as

is the model!

Experienced users can use advanced features provided by spreadsheet host systems, like named cells,
which can help prevent some errors, but it requires more steps in the user interface to use those features.

From a technical point of view, this approach has many benefits over plain spreadsheets, and can improve

the performance of users while preventing errors. However, this method might not be intuitive enough for

most of the end users.

4.4 Summary

In this chapter, a prototype implementation of the techniques described in chapters 2 and 3 is presented.

The overall architecture of the prototype is described, with details about its user interface. A basic usage of

the prototype is shown and a example-based evaluation is made, presenting the advantages that the work

resulting from this thesis brings.

46

Chapter 5

Conclusion

Researchers are being more and more aware of the use of spreadsheets and the amount of errors that they

contain. Some work has already been done to overcome some spreadsheet deficiencies, and to prevent or

correct errors, but none has obtained a great response from end users.

MDE can be advantageous in the context of spreadsheets, improving spreadsheet end-users’ work perfor-

mance [Cunha, 2011] and preventing errors, while providing documentation capabilities.

The work in this thesis tries to fill the gap between MDE methodologies and spreadsheet development pro-

viding an integrated environment for MDSE. The approach taken consists in the embedding of spreadsheet

models, namely ClassSheets, within spreadsheets themselves in order to use many features that spread-

sheet host systems provide. For end users, this approach provides them with an environment that they are

already familiar with and, for the implementation of model support tools, it removes the necessity to create

a complex full-featured software program, focusing only on adding features related to the model.

Bringing closer ClassSheets and spreadsheets, like the embedding of the former in spreadsheets them-

selves, originates new possibilities as the easy and fluid evolution environment detailed in this dissertation.

Based on a restricted set of operations for model and respective instances, it is possible to provide a bidirec-

tional evolution environment that is built so that model/data coevolution is correct by construction, always

providing a pair of model and data, where the data conforms to the model.

The work resulting from this thesis is based on ClassSheets, which are used to model spreadsheets and

which are already accepted by the scientific community. This latter point helped to divulge the work herein

presented, and several publications resulted from it:

47

• Embedding and Evolution of Spreadsheet Models in Spreadsheet Systems, Jácome Cunha,

Jorge Mendes, João Paulo Fernandes, and João Saraiva. In proceedings of the 2011 IEEE Sympo-

sium on Visual Languages and Human-Centric Computing (VL/HCC 2011), Pittsburgh, PA, USA,

pages 179–186, IEEE Computer Society, September 2011.

• ClassSheet-driven Spreadsheet Environments, Jorge Mendes. In proceedings of the 2011

IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2011) (Graduate

Consortium), Pittsburgh, PA, USA, pages 235-236, September 2011.

• Bidirectional Transformation of Model-Driven Spreadsheets, Jácome Cunha, João Paulo

Fernandes, Jorge Mendes, Hugo Pacheco, and João Saraiva. In proceedings of the 5th International

Conference on Model Transformation (ICMT 2012), Prague, Czech Republic, May 2012.

• Coupled Evolution of Model-Driven Spreadsheets, Jorge Mendes. In proceedings of the 34th

International Conference on Software Engineering (ICSE 2012) (Extended Abstract for the Student

Research Competition), Zurich, Switzerland, pages 1616–1618, June 2012.

• MDSheet: A Framework for Model-Driven Spreadsheet Engineering, Jácome Cunha, João

Paulo Fernandes, Jorge Mendes, and João Saraiva. In proceedings of the 34th International Confer-

ence on Software Engineering (ICSE 2012), Zurich, Switzerland, pages 1395–1398, June 2012.

• A Bidirectional Model-Driven Spreadsheet Environment, Jácome Cunha, João Paulo Fer-

nandes, Jorge Mendes, and João Saraiva. In proceedings of the 34th International Conference on

Software Engineering (ICSE 2012) (Poster), Zurich, Switzerland, pages 1443–1444, June 2012.

• Towards an Evaluation of Bidirectional Model-Driven Spreadsheets, Jácome Cunha, João

Paulo Fernandes, Jorge Mendes, and João Saraiva. In proceedings of User evaluation for Software

Engineering Researchers (USER 2012), an ICSE 2012 Workshop, Zurich, Switzerland, pages 25–28,

June 2012.

• Model-Driven Spreadsheets in a Multi-User Environment, Jorge Mendes. In proceedings of

the 2012 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2012)

(Graduate Consortium), Innsbruck, Austria, September/October 2012. (to appear)

• Extension and Implementation of ClassSheet Models, Jácome Cunha, João Paulo Fernandes,

Jorge Mendes, and João Saraiva. In proceedings of the 2012 IEEE Symposium on Visual Languages

and Human-Centric Computing (VL/HCC 2012), Innsbruck, Austria, September/October 2012. (to

appear)

48

Apart from the publications, a prototype named MDSheet was also developed, and that can be used to put

in practice MDSE. It is also useful to compare the proposed spreadsheet development process with the

current techniques used and, having an implemented tool, it is possible to receive feedback from end users

and direct the development of model-driven spreadsheets to accommodate features and techniques that

are more beneficial for them.

For that, it is planed, as future work, to assess the usefulness of the approach taken and the developed

techniques with regard to common end users in an empirical study.

The work presented in this dissertation is only the beginning for a IDE for MDSE and more features are

planned to be studied, namely:

• the interaction of a ClassSheet and several complying instances, with the result from the effects

derived from their evolution;

• the control of spreadsheet versions, which is derived from the previous item;

• the concurrent use of the same spreadsheet in an online environment (e.g., Google Drive) or with

synchronization in an offline setting, using techniques that can result from the previous item; and

• the notion of views derived from databases, that can be used to implement privacy control features.

Moreover, more work needs to be done to integrate the transformation environment with OpenOffice, im-

proving the user interface in order to provide a seamless integration of MDSheet controls with OpenOffice’s

interface.

The MDSheet prototype is available for download at the author’s institutional page:

http://www.di.uminho.pt/~jorgemendes
More informations about spreadsheet development is available at the SSaaPP – Spreadsheets as a Pro-

gramming Paradigm project web page:

http://ssaapp.di.uminho.pt

49

http://www.di.uminho.pt/~jorgemendes
http://ssaapp.di.uminho.pt

50

References

Abraham, R. and Erwig, M. (2008). Test-Driven Goal-Directed Debugging in Spreadsheets. In Proceedings
of the 2008 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC

’08, pages 131–138. IEEE Computer Society. 7

Abraham, R., Erwig, M., Kollmansberger, S., and Seifert, E. (2005). Visual Specifications of Correct Spread-

sheets. In Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC ’05, pages 189–196. IEEE Computer Society. 7, 8, 15, 16, 17, 18

BPM. bpmToolbox. http://www.bestpracticemodelling.com/software/bpmtoolbox (last

retrieved: 2012-09-01). 6

Bricklin, D. VisiCalc: Information from its creators, Dan Bricklin and Bob Frankston. http://www.
bricklin.com/visicalc.htm (last retrieved: 2012-09-01). 3

Bridgeford, B. D. (2011). W. Baraboo to pay more for borrowed money than believed. News
Republic. http://www.wiscnews.com/baraboonewsrepublic/news/local/article_
7672b6c6-22d5-11e1-8398-001871e3ce6c.html (last retrieved: 2012-09-01). 6

Bruins, E. (1949). On Plimpton 322. Pythagorean Numbers in Babylonian Mathematics. Koninklijke
Nederlandse Akademie van Wetenschappen, 52:629–632. 1

Cunha, A., Oliveira, J. N., and Visser, J. (2006). Type-Safe Two-Level Data Transformation. In Misra, J.,

Nipkow, T., and Sekerinski, E., editors, FM 2006: Formal Methods, volume 4085 of Lecture Notes
in Computer Science, pages 284–299. Springer-Verlag. 9

Cunha, A. and Pinto, J. S. (2005). Point-free Program Transformation. Fundamenta Informaticae,

66(4):315–352. IOS Press. 43

Cunha, A. and Visser, J. (2007). Strongly Typed Rewriting for Coupled Software Transformation. Electronic
Notes in Theoretical Computer Science, 174(1):17–34. Elsevier Science. 9

51

http://www.bestpracticemodelling.com/software/bpmtoolbox
http://www.bricklin.com/visicalc.htm
http://www.bricklin.com/visicalc.htm
http://www.wiscnews.com/baraboonewsrepublic/news/local/article_7672b6c6-22d5-11e1-8398-001871e3ce6c.html
http://www.wiscnews.com/baraboonewsrepublic/news/local/article_7672b6c6-22d5-11e1-8398-001871e3ce6c.html

Cunha, J. (2011). Model-based Spreadsheet Engineering. PhD thesis, University of Minho. 9, 47

Cunha, J., Fernandes, J. P., Mendes, J., Pacheco, H., and Saraiva, J. (2012a). Bidirectional Transformation

of Model-Driven Spreadsheets. In Hu, Z. and de Lara, J., editors, Theory and Practice of Model
Transformations – ICMT 2012, volume 7307 of Lecture Notes in Computer Science, pages

105–120. Springer-Verlag. 43

Cunha, J., Fernandes, J. P., Mendes, J., and Saraiva, J. (2011a). Embedding and Evolution of Spread-

sheet Models in Spreadsheet Systems. In Proceedings of the 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC ’11, pages 179–186. IEEE Computer Society.

25

Cunha, J., Fernandes, J. P., Ribeiro, H., and Saraiva, J. (2012b). Towards a Catalog of Spreadsheet

Smells. In Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A., Taniar, D., and Apduhan, B.,

editors, Computational Science and Its Applications – ICCSA 2012, volume 7336 of Lecture
Notes in Computer Science, pages 202–216. Springer-Verlag. 7

Cunha, J., Visser, J., Alves, T., and Saraiva, J. (2011b). Type-Safe Evolution of Spreadsheets. In Gi-

annakopoulou, D. and Orejas, F., editors, Fundamental Approaches to Software Engineering –
FASE ’11/ETAPS ’11, volume 6603 of Lecture Notes in Computer Science, pages 186–201.

Springer-Verlag. 9

Daily Express Reporter (2011). Mouchel Profits Blow. http://www.express.co.uk/posts/view/
276053/Mouchel-profits-blow (last retrieved: 2012-09-01). 6

Ditlea, S. (1987). Spreadsheets can be hazardous to your health. Personal Computing, 11(1):60–69. 6

Donila, M. (2011). Trustee’s Office mistake to cost taxpayers $12,500. www.knoxnews.com/
news/2011/dec/03/trustees-office-mistake-to-cost-taxpayers-12500/ (last re-

trieved: 2012-09-01). 6

Engels, G. and Erwig, M. (2005). Classsheets: Automatic Generation of Spreadsheet Applications from

Object-Oriented Specifications. In Proceedings of the 20th IEEE/ACM international Conference
on Automated Software Engineering, ASE ’05, pages 124–133. ACM. 7, 9, 19, 20, 22, 43

Erwig, M., Abraham, R., Cooperstein, I., and Kollmansberger, S. (2005). Automatic Generation and Mainte-

nance of Correct Spreadsheets. In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 136–145. ACM. 8, 16, 17

52

http://www.express.co.uk/posts/view/276053/Mouchel-profits-blow
http://www.express.co.uk/posts/view/276053/Mouchel-profits-blow
www.knoxnews.com/news/2011/dec/03/trustees-office-mistake-to-cost-taxpayers-12500/
www.knoxnews.com/news/2011/dec/03/trustees-office-mistake-to-cost-taxpayers-12500/

EuSpRiG. European spreadsheet risks interest group. http://www.eusprig.org/ (last retrieved:

2012-09-01). 6

EuSpRiG. Spreadsheet mistakes - news stories collated by the European Spreadsheet Risks Interest Group.

http://www.eusprig.org/horror-stories.htm (last retrieved: 2012-09-01). 6

FAST (2010). The FAST Standard. http://www.fast-standard.org/the-standard/ (last re-

trieved: 2012-09-01). 6

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley. 7

Grossman, T. A. (2002). Spreadsheet Engineering: A Research Framework. In European Spreadsheet
Risks Interest Group 3rd Annual Symposium, pages 21–34. 6

Grossman, T. A. and Ozluk, O. (2010). Spreadsheets Grow Up: Three Spreadsheet Engineering Method-

ologies for Large Financial Planning Models. CoRR, abs/1008.4174. 6

Hermans, F., Pinzger, M., and van Deursen, A. (2010). Automatically Extracting Class Diagrams from

Spreadsheets. In Proceedings of the 24th European Conference on Object-Oriented Program-
ming, ECOOP ’10, pages 52–75. Springer-Verlag. 7, 9

Hermans, F., Pinzger, M., and van Deursen, A. (2011). Supporting Professional Spreadsheet Users by

Generating Leveled Dataflow Diagrams. In Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 451–460. ACM. 5

Hermans, F., Pinzger, M., and van Deursen, A. (2012). Detecting and Visualizing Inter-Worksheet Smells in

Spreadsheets. In Proceedings of the 2012 International Conference on Software Engineering,

ICSE 2012, pages 441–451. IEEE Press. 7

Ireson-Paine, J. (1997). Model Master: an Object-Oriented Spreadsheet Front-End. In Computer-Aided
Learning using Technology in Economies and Business Education, CALECO ’97. 8

Marlow, S., editor (2010). Haskell 2010 Language Report. http://haskell.org/definition/
haskell2010.pdf (last retrieved: 2012-09-01). 44

Mattessich, R. (1961). Budgeting Models and System Simulation. The Accounting Review, 36(3):382–

397. 3

Mendes, J. (2011). Classsheet-driven Spreadsheet Environments. In Proceedings of the 2011 IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC ’11, pages 235–236.

25

53

http://www.eusprig.org/
http://www.eusprig.org/horror-stories.htm
http://www.fast-standard.org/the-standard/
http://haskell.org/definition/haskell2010.pdf
http://haskell.org/definition/haskell2010.pdf

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User Computing. MIT

Press. 5

Panko, R. R. and Ordway, N. (2008). Sarbanes-Oxley: What About all the Spreadsheets? CoRR,

abs/0804.0797. 5

Pryor, L. (2008). When, why and how to test spreadsheets. CoRR, abs/0807.3187. 7

RevenueRecognition.com (2004). The Impact of Compliance on Finance Operations. Financial Executive
Benchmarking Survey: Compliance Edition. http://www.softrax.com. 5

Robson, E. (2001). Neither Sherlock Holmes nor Babylon: A Reassessment of Plimpton 322. Historia
Mathematica, 28(3):167–206. 1

Rothermel, G., Burnett, M., Li, L., Dupuis, C., and Sheretov, A. (2001). A Methodology for Testing Spread-

sheets. ACM Transactions on Software Engineering and Methodology (TOSEM), 10(1):110–

147. 7

Schmidt, D. C. (2006). Guest Editor’s Introduction: Model-Driven Engineering. Computer, 39(2):25–31.

IEEE Computer Society. 7

Spreadsheet (2012). The American Heritage® New Dictionary of Cultural Literacy. Houghton

Mifflin Company, third edition. 2

SSRB (2010). Best Practice Spreadsheet Modelling Standards (version 6.1). http://www.ssrb.org/
best_practice_spreadsheet_modelling_standards.html (last retrieved: 2012-09-01). 6

Swierstra, S. D., Azero Alcocer, P. R., and Saraiva, J. (1999). Designing and Implementing Combinator

Languages. In Swierstra, S. D., Oliveira, J. N., and Henriques, P. R., editors, Advanced Functional
Programming, volume 1608 of Lecture Notes in Computer Science, pages 150–206. Springer-

Verlag. 21

U.S. Department of Education (2003). Audit of the Colorado Student Loan Program’s Establishment and

Use of Federal and Operating Funds for the Federal Family Education Loan Program. Technical Report

ED-OIG/A07-C0009. 6

U.S. Department of Health and Human Services (2003). Review of Medicare Bad Debts at Pitt County

Memorial Hospital. Technical Report A-04-02-02016. 6

54

http://www.softrax.com
http://www.ssrb.org/best_practice_spreadsheet_modelling_standards.html
http://www.ssrb.org/best_practice_spreadsheet_modelling_standards.html

	Introduction
	Motivation
	Model-Driven Spreadsheet Engineering
	Terminology
	Main Contributions
	Document Structure

	Embedding Spreadsheet Models within Spreadsheets
	Spreadsheet Templates and ClassSheets
	Embedding ClassSheets within Spreadsheets
	Instance Generation from Models
	Summary

	Model-Driven Spreadsheet Evolution
	Model Operations
	Data Operations
	Bidirectional Transformation Functions
	Summary

	Model-Driven Spreadsheet Engineering with MDSheet
	Architecture
	Usage
	Advantage in the Use of MDSheet
	Summary

	Conclusion
	 References

