

Universidade do Minho

Escola de Engenharia

Daniel Nascimento Cadete

From Natural Language Requirements to
Formal Descriptions in Alloy through
Boilerplates

Janeiro de 2012

Universidade do Minho

Escola de Engenharia

Daniel Nascimento Cadete

From Natural Language Requirements to
Formal Descriptions in Alloy through
Boilerplates

Dissertação de Mestrado em Engenharia de Informática

Trabalho efectuado sob a orientação do
Professor Doutor José Nuno Fonseca Oliveira

Janeiro de 2012

University of Minho
School of Engineering

From Natural Language Requirements to Formal
Descriptions in Alloy through Boilerplates

Daniel Nascimento Cadete
Informatics Department - University of Minho

January 31, 2012

b

Acknowledgements

I would like to thank my supervisor, José Nuno Oliveira, for all the help, guidance and inspiration,
for all the time spending discussing ideas for this dissertation and for allowing me to see software
development in a different perspective. Working with him was an inspiring task and something
that I will never forget. I strongly believe that his vision of software and mathematics together, can
shape the future of software development.

To my colleagues from Braga, João Martins, André Pedro, Manuel Costa, Nelson Gonçalves,
João Bordalo, Raquel Ribeiro, and Francisco Ribeiro, I would like to thank for all the relaxing
moments and for all the chats which greatly inspired this dissertation.

To my friends João Vieira, Nuno Santos, Bruno Almeida, Ana Sequeira, Samuel Martins,
Cátia Conceição, João Palma, Cristel Domingos, Cátia Esteves I would like to thank for all the
support, hours of laughing and the countless times you have made me move forward to complete
this dissertation.

To Critical Software and particularly José Miguel Faria I would like to thank for ideas, back-
ground and support which significantly improved this dissertation. Thanks are also due to the
Educed team and particularly André Passos, for their support and interest on the results of this
dissertation. Seeing one’s research absorbed by industry makes the work extremely fulfilling. To
EVOLVE/QREN project I would like to thank for the financial support which partially funded this
research through a research grant.

Many thanks to all my family who put expectations on me and always helped me move forward.
Specially to my beautiful niece Matilde, whose smile and those big hugs make me want to be near
her all the time.

To my father, mother and sister, I dedicate this dissertation. During all my life, you have been
my inspiration and my idols, you have taught me how to overcome challenges and work hard to
get the things I want in life.

c

d

Resumo

Os métodos formais são normalmente aplicados por especialistas nas fases finais do desen-
volvimento de software. A sua aplicação visa identificar erros de programação, reduzindo assim
a probabilidade de uma falha futura. Tipicamente, os erros que se encontram prendem-se com
má interpretação de requisitos e não má programação. Cada vez mais os documentos de req-
uisitos tratam de termos complexos e fora do conhecimento do programador, o que leva a mais
erros de interpretação e consequentemente a um aumento dos custos de execução de um pro-
jeto de software. A utilização de métodos formais poderia minimizar estes custos, caso eles
fossem utilizados não para verificar código, mas sim para verificar requisitos. No entanto, muitas
empresas evitam a utilização de métodos formais, devido ao custo elevado da sua aplicação.
Os programadores ou engenheiros de requisitos não conseguem aplicar métodos formais de
forma eficiente sem terem formação prévia e específica na área, o que implica a contratação de
especialistas em métodos formais.

Nesta dissertação são apresentados métodos que visam aproximar os métodos formais da
escrita dos requisitos. Para tal, a modelação formal é utilizada não para verificar código, mas
para verificar a escrita de requisitos. Inicialmente é apresentado um standard para a criação de
modelos, que faz uma correspondência direta entre cada requisito e o seu modelo formal. Este
standard é suportado por uma ferramenta que, entre outras coisas, gera de forma automática
representações gráficas dos requisitos através dos seus modelos. Posteriormente é apresentada
uma conexão entre templates de requisitos (requirements boilerplates) e modelos Alloy. Esta
conexão permite a criação de modelos formais de forma automática, sem necessidade de um
especialista. Isto reduz drasticamente o custo de utilização de métodos formais. Apresenta-se
igualmente o começo de uma álgebra que permite agregar estes templates. Esta agregação
permite que um engenheiro de requisitos escreva o seu documento de requisitos através de
templates e no fim tenha de forma automática o modelo formal de todos os requisitos.

Quando se está a modelar um documento de requisitos em Alloy e a certo ponto aparecem
requisitos com restrições temporais explícitas, é necessário recriar todo o modelo numa ferra-
menta que permita essa modelação (ex: Uppaal). Este processo está sujeito a erros, porque
esta transformação é manual e altamente dependente da interpretação de quem está a modelar.
Nesta dissertação é apresentado um método que permite a geração automática de um modelo
Uppaal a partir de um modelo Alloy. Esta transformação permite que a qualquer ponto da mod-
elação em Alloy, se crie o modelo Uppaal correspondente e se especifiquem as propriedades
temporais.

e

f

Abstract

Formal Methods are usually applied by specialists in the final phases of software development.
They aim to identify programming errors, and through that reduce the probability of a future failure.
Usually, errors are more related with misinterpretation of requirements than with bad program-
ming. More than ever, requirements documents deal with complex terms, which programmers
aren’t familiar with, resulting in an increase of misinterpretation of requirements and increasing
the costs of the execution of a software project. The use of formal methods could reduce these
costs, if properly used to verify requirements and not source code. However, most companies
avoid using formal methods due to high costs associated with formal methods application. Pro-
grammers or requirements engineers can’t apply formal methods efficiently without previously
having specific training, which implies hiring expensive specialists in formal methods.

This dissertation presents methods which aim to bring formal methods closer to requirements
descriptions. For such, formal modeling is used to verify and validate the descriptions of require-
ments, and not source code. Initially it’s presented a standard to create formal models, which
makes a direct correspondence between each requirement and its model. This standard is sup-
ported by a tool which, among other things, automatically generates graphics representations
of requirements using its models. Afterwards it’s presented a connection between requirements
boilerplates and Alloy models. This connection allows to generate formal models in an auto-
matic fashion, without the need of a specialist. This drastically reduces the costs of using formal
methods in software projects. It’s also presented the beginning of an algebra which allows to
aggregate these templates. This aggregation allows one to write its requirements documents
throught boilerplates and at the end have the complete model of all requirements, for free.

When one is modeling a requirements document in Alloy and at some point appears require-
ments with explicit temporal restrictions, it’s necessary to recreate the whole model in a tool which
allows that kind of specification (eg. Uppaal). This process is highly error prone, because it’s a
manual transformation and highly dependent on the interpretation of who is modeling. In this
dissertation it’s presented a method which allows to automatically generate an Uppaal model
from an Alloy model. This transformation allows that at any point in the requirements document,
the requirements engineer can generate the correspondent Uppaal model and there specify the
temporal properties.

g

h

Contents

List of Acronyms k

List of Figures m

List of Tables o

1 Introduction 1
1.1 Requirements Engineering . 2
1.2 Formal Methods . 5
1.3 Formal Methods and Requirements Engineering 6
1.4 Aims of the dissertation . 7
1.5 Document Structure . 7

2 Formal Methods Tools 9
2.1 Alloy . 9

2.1.1 Modeling Idioms . 17
2.1.2 Alloy and Relational Calculus . 19

2.2 Uppaal . 23
2.2.1 Specification . 23
2.2.2 Verification . 24

2.3 Summary . 25

3 Requirements Engineering Assisted by Formal Methods 27
3.1 Introduction . 27
3.2 Methodology . 30
3.3 Tool Support . 35
3.4 Summary . 39

4 Case Study : Partitioning Microkernel 41
4.1 Document Structure . 41
4.2 Requirements Modeling . 43
4.3 Summary . 54

5 From Boilerplated Requirements to Abstract Models 55
5.1 Introduction . 55
5.2 Boilerplates meets Alloy . 56
5.3 Boilerplates Repository . 58
5.4 Summary . 61

i

6 From Alloy to free Uppaal models 63
6.1 Introduction . 63
6.2 Methodology . 64
6.3 Tool Support . 72
6.4 Final Considerations . 76
6.5 Summary . 81

7 Conclusions and Future Work 83

Bibliography 87

Index 92

A Partitioning Kernel Modeling 95
A.1 Scheduling Instance . 109

j

Acronyms

API Application Programming Interface.

CC Common Criteria.

CMS Configuration Management System.

DFA Deterministic Finite Automaton.

FMTR Formal Methods Tool Repository.

GUI Graphical User Interface.

IFIP International Federation for Information Processing.

LCS Life-Critical System.

LHS Left Hand Side.

NATO North Atlantic Treaty Organization.

NL Natural Language.

OOP Object Oriented Programming.

PIFP Partition Information Flow Policy.

RB Requirements Boilerplates.

RE Requirements Engineering.

RHS Right Hand Side.

SAT Boolean satisfiability problem.

SPK Secure Partitioned Kernel.

UML Unified Modeling Language.

VSR Verified Software Repository.

XML Extensible Markup Language.

k

l

List of Figures

2.1 Make directory operation . 17
2.2 Running the LightBulb model in global state idiom. 19

3.1 A Requirements Document . 36
3.2 Tool Pipeline . 36
3.3 Macros for writing models . 37

4.1 Partitioning Microkernel . 42
4.2 Partition Model . 44
4.3 A model instance . 44
4.4 Partition Model . 45
4.5 Partitions Evolution over Time . 46
4.6 Partitions Evolution over Time . 48
4.7 Process Model . 50
4.8 Partitions Evolution over Time . 53

6.1 Traces of the River Crossing Puzzle . 66
6.2 A Set of Alloy instances. 67
6.3 A DFA from a set of instances. 68
6.4 The minimum DFA from a set of instances. 71
6.5 The minimum DFA of the river-crossing problem. 72
6.6 Tool Interface . 73
6.7 Alloy Instance. 74
6.8 Graph from an instance. 75
6.9 Trace of execution. 78
6.10 DFA Generated without abstract interpretation. 78
6.11 Correct DFA Generated with the tool. 79
6.12 River Crossing with Real-Time Restrictions. 81

A.-1 Partitions Evolution over Time . 111

m

http://alloy.mit.edu/

n

List of Tables

1.1 Why software projects fail . 3

3.1 Missile Launcher Requirements . 27

6.1 Table of distinguishable pairs of states. 70

o

p

Chapter 1

Introduction

Software has gained a prominent place in mankind history. It is today an essential part of ev-
ery service, business process or research activity. Software usage has proliferated and is om-
nipresent not only in companies and universities but also in the every day life of the anonymous
citizen: in cars, mobile phones, bank ATM systems, home computers, TV sets, houses, and so
on.

Since the first computer program by Ada Lovelace to the highly complex software systems
of today which control nuclear power-stations, maintain airplanes flying or coordinate complex
financial operations across the globe, the process of software construction has undergone an
impressive evolution. However, under such rapid growth in both complexity and demand for soft-
ware, programmers have become unable to deliver 100% safe software systems, meaning that
quality is hard to achieve both in the development process and in the end product.

Such an embarrassing situation dates back to the 1960s, when the world first witnessed what
became known as the Software Crisis. This was the first evidence that the archaic development
methods of those times were inefficient and resulted in poor quality, highly error prone software
often offering more costs than benefits. Under the urgent need to change this situation, the North
Atlantic Treaty Organization (NATO) organized a Software Engineering Conference in 1968 at
Garmisch, Germany where academics from several universities, staff from software companies
and other contributors from the civil sector addressed issues such that the design, production,
implementation, distribution and service of software [65]. In this conference the phrase “Soft-
ware Engineering” was coined to reflect the need for software manufacture being based on solid
foundations:

In late 1967 the Study Group recommended the holding of a working conference on Software
Engineering. The phrase ‘software engineering’ was deliberately chosen as being provoca-
tive, in implying the need for software manufacture to be based on the types of theoretical
foundations and practical disciplines, that are traditional in the established branches of engi-
neering. (Quoted from [65].)

Provocative or not, the need for sound theoretical foundations has clearly been under concern
since the very beginning of the discipline.

The NATO Conference of 1968 triggered the development of a series of methods and guide-
lines which significantly improved software quality. Business could now rely on machine support
without fear that at any moment the software would start to fail with consequent massive losses.
Software development was structured in a sequence of formal phases, usually starting with in-
formal meetings where clients exposed their needs and requirement engineers tried to gather a

1

sketch of what the system should be able to do and in which conditions. The outcome of such
meetings would be grouped and refined until all requirements were written in Natural Language
(NL) and put together into a so-called requirements document. These requirements documents
could then be passed to the development team who would be charged thereupon with developing
a system that should meet the requirements written in the document.

In this way, requirements engineering emerged as one of the most important areas in the
software industry. After the NATO conference further investigation was carried out by an ever
larger number of researchers, industry and universities. In 1995, the International Federation for
Information Processing (IFIP) Working Group 2.9 was established, aiming at providing insights on
requirements specification, interpretation and documentation. This group encompasses a num-
ber of different areas in requirement engineering: formal representation and requirements mod-
eling, requirement elicitation and further analysis, tools and environments to support requirement
engineering, requirements for safety-critical, real-time and embedded systems, etc.

The area of IFIP 2.9 which studies requirements on safety-critical and real-time systems is
intrinsically related to the scope of this dissertation. Many software systems of today are systems
whose failure does not result in life or money loss: one may have to restart the computer or lose a
day of hard work, but hopefully one will live another day to work out the problem. However, there
are software systems which cannot fail in any circumstance. A system of this kind is usually called
a Life-Critical System (LCS). LCS failure or malfunction can result in death or injury to people,
environmental harm or loss of great amounts of money [7].

Preventing LCSs from failure or malfunction has became extremely important and the history
of 20th and 21th century is full of catastrophes caused by LCS malfunction. On 4 June 1996 the
Ariane rocket crashed 37 seconds after launch. According to [57] the cause for its crash was an
integer overflow arising from bad software design practice. The Denver International Airport main
advance would be its top technology in an automated baggage handler, but software problems
delayed the airport opening by 16 months [66]. All these events (and many others found in
literature [32, 60, 12]) have resulted in millions of dollars spent to resolve failures and sometimes
in human life losses.

As the software industry started to face new challenges, universities and software companies
started to invest in new approaches to maintain the strict requirements of LCS. Some invested in
methods in the area of software engineering, trying to improve existing methods. Others discov-
ered new methods ensuring that systems wouldn’t fail or that the probability of failure is residual
[64, 52, 11]. Other invested in mathematical theories to prove or increase the confidence that soft-
ware system won’t fail based on sound mathematical proofs. This is what the scientific community
recognizes as Formal methods [14].

1.1 Requirements Engineering

Ian Sommerville presents a widely accepted definition for software engineering in [78]:

Software Engineering is an engineering discipline that is concerned with all aspects of soft-
ware production from the early stages of system specification to maintaining the system after
it has gone into use.

Software engineering thus appears across all phases of software development. Software engi-
neers try and improve this discipline every day so as to discover new methods of analysis. In
order to improve software quality one needs to know first and foremost why systems fail or don’t

2

do what they are supposed to do. The Standish Group present in [79] a number of factors for
software failure, given in Table 1.1.

Table 1.1: Why software projects fail

Factors %

Incomplete Requirements 13.1
Lack of User Involvement 12.4
Lack of Resources 10.6
Unrealistic Expectations 9.9
Lack of Executive Support 9.3
Changing Requirements & Specifications 8.7
Lack of Planning 8.1
Didn’t Need it Any Longer 7.5
Lack of IT Management 6.2
Technology Illiteracy 4.3
Other 9.9

Inspection of this table shows that poor use of technologies is not a main factor for software
project failure, but rather incomplete requirements, which is the factor standing at the top. So soft-
ware engineering had to find “new engineering” inside itself: requirements engineering. Laplant
defines requirements engineering in [58] as:

Requirements engineering is the process of eliciting, documenting, analyzing, validating, and
managing requirements.

The term requirement usually means a service the system should provide. Clearly, by improv-
ing the quality of requirements one not only improves the quality of target software system but
also does so at a much lower cost when compared to improving the other phases in development
and maintenance, where (bad) design decisions have been committed into the system already.

According to [78], requirements can be divided into:

• User Requirements - Statements in NL telling what services the system is expected to
provide and under which circumstances.

• System Requirements - System’s functions, services and operational constraints in detail.

Both system and user requirements shouldn’t be directly delivered to the development team
without passing through a series of stages which aim to improve the quality and understanding of
requirements. First of all, they should be elicited through a number of different techniques such as
group elicitation, prototyping, model-driven techniques, etc. This elicitation phase 1 aims to find
out which main problems need to be solved, how the system will fit with the existing organization
and the stakeholders [33] and so on.

After the elicitation phase, requirements should be modeled and analyzed. Typically in this
phase, the requirements are represented in some abstract form. One finds in [67] find different
types of modeling that one submit requirements to:

1 The word “elicitation”, which comes from the Latin “elicit” (‘draw out by trickery or magic’) means drawing forth
something that is latent or potential into existence.

3

• Enterprise Modeling - Organization structure and how the system will interact with it.

• Data Modeling - Analyze how the system data will be manipulated and kept.

• Behavioral Modeling - Interactions of the stakeholders with the system.

• Domain Modeling - How the system will interact with the world around it.

• Non-Functional Requirements Modeling - Quality objectives that the system should meet.

It is important to define from the early stages of the project who will use and read require-
ments. In most projects, requirements are used by several people:

• User - Someone who uses and tests the final system.

• Systems Engineer - Someone who focuses on the design and management of the project
life cycle.

• System Designer - Someone who designs the architecture, components, modules, inter-
faces of the software.

• Programmer - Someone who writes the software.

• Tester - Someone who writes and performs software tests.

Requirements are usually written in NL and they hardly can be written in other format due to
the fact that all people mentioned above, and participates in the software development should be
able to easily understand any requirement [1]. Because NL is ambiguous and imprecise, require-
ments engineers have tried to find ways to improve the quality of requirements without writing
them in other (eg. formal) way. A major advance in achieving higher quality requirement textual
descriptions is to consistently write each requirement following a Requirements Boilerplates (RB).

Requirements boilerplates are textual templates of the form:

The <Stakeholder> shall be able to <Capability>

The idea is to cast arbitrary requirements into such templates, as a means to ensure that one is
not writing possibly ill-formed or difficult to understand free text, but rather a piece of text which as
been used by others and proved effective and implementable before. Faced with a requirement
such as ”The Operating System can schedule processes“, one can write the requirement by
instantiating the above boilerplate: The Operating System shall be able to Schedule Processes.

Requirements boilerplates play a major role in the approach to requirements engineering
put forward in this dissertation. A detailed account of requirements boilerplates will be given in
Chapter 5.

Another important concept in requirements engineering is traceability. Traceability is de-
scribed in [34] as

”Requirements traceability refers to the ability to describe and follow the life of a requirement,
in both a forwards and backwards direction (i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through all periods of on-going
refinement and iteration in any of these phases).”

4

Requirement traceability is important because requirements change all over the development cy-
cle of a software project. Keeping track of those changes helps bringing up requirement quality
and justifies why clients want particular requirements. In design process, traceability helps in justi-
fying design options, with a complete history of the design process and its changes. It is essential
for testers, because test cases are designed to test specific sets of requirements. Whenever a
requirement changes, testers know exactly which changes need to be made in their test suites in
order to cover the changed requirements [74].

Requirements traceability is usually achieved using frameworks. Researchers have put to-
gether several frameworks which aim to improve traceability using both manual an automatic
tasks. However, there is today an increasing need for automatic frameworks catering for au-
tomatic requirement traceability [15]. Chapter 3 will present a method and a tool which helps
in requirement traceability using formal models and a standard layout for writing and analyzing
requirements.

1.2 Formal Methods

Above it was mentioned that, after the elicitation phase, requirements should somehow be mod-
eled and analyzed. Formal Methods are techniques that use mathematics in the modeling, mak-
ing it possible not only to specify but also to verify the design, be this hardware or software. A
method is formal if it has precise mathematical foundations that enable the definition of proper-
ties like consistency, completeness, specification, implementation and correctness [81]. Formal
methods usage in software systems can be divided into specification and verification.

Specification is the process whereby a system and its desired properties are formally de-
scribed. Usually, the important properties of a system are the behavioral ones. To specify a
system one needs to write such properties in a precise manner, allowing one to gain a deeper
understanding of the system and to discover design flaws, inconsistencies, ambiguities and in-
completeness. The specification also provides a useful communication between the client, de-
signer, programmer and tester [35].

There are several methods such as Z [82], VDM [49] and Larch [35] which cater for the formal
specification of sequential systems. In such methods the system (machine) states are mathe-
matical entities like sets, relations and functions; state transitions are specified by pre and post
conditions. Other methods, such as CCS [63] and Temporal Logic [61], enable the specification
of concurrent systems where states are defined over domains and the behavior is represented
through sequences, trees, traces or events.

Verification is the process of ensuring that a system satisfies the properties described in its
specification. Formal Verification used maths for this, the verification consisting in proving that all
properties are met. In a sense, every property rises a theorem — the assertion of its preservation
in the implementation — which is discharged by proof. As already mentioned, this is common
practice in safety-critical systems, which include protocols, cryptographic algorithms, software
programs and kernel hardware devices [81]. This class of verification techniques is known as
Theorem Proving.

Verification can still be approached by incomplete techniques such as Model Checking. Model
checking is the process of building a finite model of the system and checking if a desired property
holds in that model. Because such a model is a finite approximation of the final system one
can never be sure that a property is valid; but can show that the property is invalid by means of
counter-examples. Model checking has been widely used to verify hardware specifications and is

5

now being used to verify software [3].
In theorem proving both the system and its properties are expressed as formulæ in some

formal system with axioms and inference rules. In order to verify a system, one has to discharge
the proof of a property using the axioms of the formal system. Although theorem proving can
be carried out manually, it is usually done using a computer assisted program (Theorem Prover)
helping discharge the proof. This prover can be automatic [25] or semi-automatic [4], where the
user guides the program in the proof process.

Model Checking. Later in this dissertation, model checking will be shown to be at the epicenter
of the approach put forward for requirement engineering in this dissertation. It therefore deserves
a more detailed account. The technique invented separately by E.M. Clarke, E.A. Emerson and
J. Sifakis who earned the 2007 Turing Award. The great disadvantage of model checking is the
state space explosion 2 and the impossibility to specify and verify systems with infinite states.
There are two approaches to the model checking problem, the Explicit State Model Checking and
Symbolic Model Checking [76].

In Explicit State Model Checking the system is modeled as a finite automaton and the proper-
ties are expressed in a temporal logic. An efficient algorithm is used to determine if the property is
true in the automaton. With this approach, the automaton usually consists of several spaces and
the verification of properties in useful time is highly related to the user’s ability to model a system
with fewer state variables [62]. Symbolic Model Checking tries to overcome this weakness by us-
ing Boolean formulæ to represent sets and relations that are manipulated using so-called ordered
binary decision diagrams (OBDD) [62]. With this approach, systems with up to 1020 system can
be verified, resulting in a wider range of verifiable systems.

1.3 Formal Methods and Requirements Engineering

Formal Methods (F.M) have been used in several phases of the software development with differ-
ent objectives and results [50]. In the literature one finds research aiming at using F.M in the early
phases of software development, namely in areas related with requirements engineering.

The approaches followed by [72, 38, 75] use formal methods to model the requirement spec-
ifications and find some ambiguities in them. Although these approaches are valuable and in-
teresting, little is done in order to clear up the textual descriptions of the requirements. Their
main focus is on identifying ambiguous requirements and fixing them before implementation. For
a requirement engineer it is not enough to identify all requirements which are bad specified, for
she/he also needs to have some kind of tips or guidelines on how to re-write them, making them
more clear and suitable to be implemented.

Elsewhere researchers have tried to focus on the descriptions of requirements and methods
which could improve them. References [9] and [83] put forward two approaches which try and
identify bad descriptions of requirements. With methods like these, requirements engineers al-
ready have the possibility to identify and re-write requirements using a set of guidelines. The main
disadvantage of these approaches is their lack of mathematical formalism which doesn’t shorten
the gap between requirements descriptions and implementation.

2State space explosion usually means that the number of states needed to represent the system doesn’t fit into
computer memory.

6

Requirements engineers would much benefit from a mathematical formalism able to provide
guidelines, methods or techniques that could help in rewriting the requirement’s descriptions that
are ambiguous. Through mathematics, the distance from description to implementation of re-
quirements would be shorter, which would be helpful in projects where requirements are con-
stantly changing.

1.4 Aims of the dissertation

The software industry must use tools and techniques to prevent disasters caused by LCS failures.
Formal Methods appeared in the late 1980s as a good solution to detect and prevent software
bugs [14] in such systems. Although these methods have shown significant improvement on
LCS, they are often criticized because of its difficult adoption and the high costs they purport by
requiring highly specialized software engineers. This happens mainly because they are applied
when the system is already developed or in an advanced state of development. As Daniel Jackson
puts it [42]:

Almost all grave software problems can be traced to conceptual mistakes made before pro-
gramming started.

Further to applying formal methods to code analysis and synthesis, these methods should
be applied to requirements. Find a serious flaw at requirement phase in an expensive project
in eg. the aerospace industry, well before any development has started, much can be saved in
code refactoring and bug correction. It is widely accepted that one of the main reasons for such
mistakes is the use of poorly written NL requirements descriptions [1, 23]. Following this idea,
researchers started to develop techniques and tools that help software engineers to detect and
correct flaws in the early phases of software development [73, 48].

This dissertation aims to improve the use of Formal Methods in requirements documents with
the objective to identify mistakes in such an early phase — when actually writing them (earlier
than this is not possible!). F.M will be applied in order to create a mathematical foundation for
requirements documents which otherwise would not exist. This mathematical foundation may be
hidden from readers of requirements documents but, if used, will provide valuable contribution to
the quality of the final system through the use of mathematical meaningful boilerplates.

Through F.M it is possible to achieve not only a mathematical model which is meaningful in
further phases of development but also an insight on the quality of textual descriptions of require-
ments. Requirements description are bound to be written in NL because this is the language
easily understood by everyone (hopefully). But it suffers from major disadvantages: it is impre-
cise, ambiguous and could lead to different interpretations in the same design. A combined use of
Requirement Boilerplates (RB) with the Alloy model checker will be eventually proposed in order
to add to structure and clearance of such textual descriptions.

1.5 Document Structure

The following Chapter will present the tools used throughout the dissertation and explain why
they where chosen. Chapter 3 presents a method which helps requirements engineers to write
better requirements documents while creating formal models for them. This method is supported
by a tool developed on purpose, which is also explained in the chapter. The method is illustrated

7

http://alloy.mit.edu/

using a small example which evolves into a larger case study in Chapter 4, concerning a .Secure
Partitioned Kernel (SPK)

The ideas presented in these chapters are refined into Chapter 5, where a connection be-
tween requirement patterns and formal models is presented. This chapter presents an interesting
connection between Alloy and commonly used patterns to write requirements. In Chapter 6, Alloy
is integrated into Upppal, creating an automated method which connects the two worlds (relational
calculus and first order logic to networks of timed automata). Finally, Chapter 7 concludes and
presents suggestions for future work, showing new possibilities while stressing on the industrial
adoption of the ideas put forward in earlier chapters.

8

http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/

Chapter 2

Formal Methods Tools

The formal methods community offers today several tools which support different notation styles
and purposes. In the Formal Methods Tool Repository (FMTR) 1 one can see a categorized
account of formal methods tools by their different features. Which such features should a tool offer
in case one wishes to adopt it to support an efficient and fast method to analyze requirements
descriptions and quickly provided insights on inconsistencies and ambiguities? Such a tool should
be able to identify flaws (eg. by providing counterexamples), should be versatile (making it easy
to re-factor specifications) and offer a good visual representation of models and use cases. The
last point is important because it will allow the user to present results to non-technical staff, that
is, engineers with no deep knowledge in F.M.

Looking at the FMTR table one finds such criteria in columns ”Model Checking“,”Animation
/ Execution”, “Graphical User Interface (GUI)‘̀ and ”Refinement“. In the following section we will
present Alloy, a tool which meets most of such criteria. This tool will play an important role in the
method presented in Chapter 3, allowing for a quick way to analyze requirement descriptions. In
Section 2.2 we will introduce Uppaal, another tool offering excellent support to model real-time
constraint systems. Chapter 6 will show how to transform Alloy models into Uppaal and then
apply real-time constraints in an efficient fashion.

2.1 Alloy

Alloy was created by a team in the Software Design Group at MIT lead by Daniel Jackson. The
main aim was bringing the benefits of model checking and the power of abstraction to the soft-
ware development world. |Alloy is a language (widely inspired by Z and object modeling notions)
together with an analyzer which performs automatic verification of model properties. Alloy’s math-
ematical foundation is set theory (sets, relations, etc) allowing one to easily model structures like
file systems, naming schemes, architectures, etc. With sets and relations, primitive data types
like records or arrays can easily be expressed and analyzed efficiently [31].

Alloy’s lemma is In Alloy everything is a relation. The tool which comes with the language is
called Alloy Analyzer and it is atypical as a model checker. What it does is the following: given
a specification of the some system or problem, it transforms it into a Boolean formula and then
sends this to an off-the-shelf Boolean satisfiability problem (SAT) solver 2 which tries to find some

1See http://fmtoolsrepository.di.uminho.pt .
2SAT is the problem of determining if the variables of a given Boolean formula can be assigned in such a way as to

make the formula evaluate to true.

9

http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://fmtoolsrepository.di.uminho.pt

model that makes the formula true.[44]
Let us illustrate the Alloy approach to software modeling through the following example: sup-

pose one wishes to model a mini file system with some basic file management operations. The
fictional requirements call for an operation which allows the user to navigate through the file sys-
tem and two operations for creating and removing directories. The following is also required: the
root directory doesn’t have a parent directory, files and directories don’t have names and one can
remove any empty directory as long as the directory isn’t the root.

Below we will go through all the steps in using the Alloy language and analyzer. The reader
will see how easy it is to model a system and how the Alloy approach is a lightweight one, proving
effective in a wide range of problems in the software development world.

Signatures. A signature in Alloy represents a set of atoms. A signature can be interpreted as
a class (in Object Oriented Programming (OOP) terms) and (like a class) it can declare relations
associated to its atoms and the creation of implicit types. In our example three signatures are
readily identified:

sig File{}

sig Dir{}

sig FileSystem{}

These offer files and directories in the file system and the atoms of the signature FileSystem will
represent the file system at different points in time. A real file system has a parent relation among
files and directories. Knowing that both directories and files have parent directories suggests that
both File and Dir be subsets of an abstract signature called (file-system) Object :

abstract sig Object {}

sig File, Dir extends Object {}

Note the two keywords in creating signatures, extends and abstract. Where declaring a sig-
nature as extends of a top-level signature, this means that it will be a subset of the top-level
signature (in the above: File and Dir are subsets of Object). The sets created by signatures File
and Dir are completely disjoint. By declaring a signature as abstract, it will have no further atoms
except those belonging to its extensions.

The FileSystem signature as given above doesn’t tell much about what a file system is. If we
interpret each atom of FileSystem as a ”picture“ of the file system in each moment in time, such
atoms should have a root, a parent relation, a print working directory (pwd) and a set of files and
directories:

sig FileSystem {

root : one Dir,

pwd : one Dir,

objects : set Object,

parent : Object → lone Dir

}

10

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

This already shows some interesting aspects of Alloy language. The new FileSystem signa-
ture now has three new relations between atoms from FileSystem and atoms from Dir and File.
The relation root declares that each atom of FileSystem has only one root and it is a member of
Dir. The same happens for relation pwd. The relation objects declares that an atom of FileSys-
tem has a set of files and directories. The parent relation is a little bit richer than the previous
one, as it is a ternary relation between a FileSystem, a Object and a Dir and introduces the new
word lone. This reserved is a multiplicity operator which represents zero or exactly one atom. So
one can read the parent relation as follows: a particular file system has objects which may have
directories as parents. Recall that the root directory has no parent (as required), entailing that the
signature doesn’t force all objects to have a parent directory. Later on we will show how correctly
express this assumption in the model through the declaration of an invariant.

Multiplicities, Operators and Constants. Before moving forward in the mini file system ex-
ample attention should be paid to the operators, multiplicities and constants available in Alloy.
Alloy provides a rich set of operators allowing for easy manipulation of both sets and relations to
express properties in several ways. In general, when wishing to declare a relation r from a set A
to a set B one writes r as:

r : A m -> n B

This will force relation r to map each member of set A into n members of set B, and map m
members of setA into each member of setB. Instances of ”m“ and ”n“ are called set multiplicities.
In Alloy multiplicities can be as in the following table:

Multiplicity Word Meaning
some one or more
one exactly one
lone zero or one
set any number

Multiplicities some, one and lone are also used when wishing to quantify some variable (examples
of this will be given later concerning the mini file system example).

Concerning Alloy’s operators, these can be separated into two categories: the set operators
and the relation operators. Set operators are, as expected: + (union), - (difference), in (inclusion)
and = (equality). These operators can also be applied to two relations as long they have the same
arity 3.

What really makes the difference is the rich (yet small) set of relational operators which allow
one to manipulate, combine and construct all kind of relations. The most relevant operators are: -
> (product), . (join, composition),~ (transpose) and ^ (transitive closure or closure). For a detailed
explanation of each operator available in Alloy it is highly recommended to see Daniel Jackson’s
book [43]. 4 Alloy offers not only a rich set of operators and multiplicities but also three important
and time saving constants:

3The arity of a relation, is the number of sets that it relates. A relation with arity two relates objects from two
domains, and is often called a binary relation. A relation with arity three relates objects from three domains and is
usually called a ternary relation. Relations can have an arbitrary arity.

4The operator of closure it is a little more complicate than others. A relation r it is said transitive if: when it contains
the tuples (a, b) and (b, c) then also contains (a, c). The transitive closure ^r of a binary relation r it is the smallest
relation which contains r and is transitive.

11

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Constant Meaning
univ universal set
none empty set
iden identity

The best way to visualize what these constants mean in Alloy is through a small example. Sup-
pose we have a model with the following sets:

File = {(F1),(F2),(F3)}

Dir = {(D1),(D2)}

For these Alloy computes the following sets:

univ = {(F1),(F2),(F3),(D1),(D2)}

none = {}

iden = {(F1,F1),(F2,F2),(F3,F3),(D1,D1),(D2,D2)}

These constants can be used together with the operators presented above to construct elegant

relational properties. Suppose we have a relation Dir
R // File :

R = {(D1,F1),(D2,F3)}

By resorting to composition and transposition, one can specify that ”R is injective“ as R.~ R in

iden. We have:

~R = {(F1,D1),(F3,D2)}

R.~R = {(D1,F1),(D2,F3)}.{(F1,D1),(F3,D2)}

R.~R = {(D1,D1),(D2,D2)}

Clearly, R.~ R in iden is true for relation R. Constructs of this kind are useful in writing
properties which are easily understandable and memorable, which is important when we need to
understand models with several lines and rich properties.

Constraints. The syntax for signatures allows the definition of structural restrictions on their
inhabitants. However, this kind of restriction is not enough to create realistic models. Most of the
time we need to impose restrictions in the model’s overall behavior, which isn’t easy to do through
signatures. Therefore, besides signatures Alloy offers the definition of predicates, functions, facts
and assertions which altogether create new ways of defining restrictions.

Restrictions which one wants to hold universally at any time can be written as facts. A fact
is written using the keyword fact and the expressions defined inside it are always true for every
instance of the model. We can have an arbitrary number of facts in the same model and Alloy
interprets them all in the same way. When a model has facts, Alloy only shows instances of the
model which entirely verify all facts defined.

In the mini file system example we could define as fact the assumption that the root never has
a father:

fact RootOrphan{

all f:FileSystem | no (f·root)·f·parent
}

12

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

This fact begins by quantifying a variable f with keyword ”all“ meaning that the expression on the
right hand side (after the vertical bar “|”) will hold for every atom in set FileSystem. Expression
no (f.root).f.parent calls for additional explanation. Where writing f.root one refers to the
root atom of the f file system. Then one states that there can be no directory related with such
root by relation parent. Altogether, fact RootOrphan says that no file system exists whose root
has a parent. Later we will see why sometimes it is better to express properties of this kind using
predicates rather than facts.

When wishing to analyze the behavior of a model with different restrictions for different situa-
tions in the model, one has to use Alloy predicates. A predicate (defined using the keyword pred)
is a restriction with a name and zero or more arguments. The predicate must be always true to
the arguments passed in. Predicates are very useful to analyze and model the behavior of the
system’s operations.

In the mini file system example there should be operations for changing directory (cd), cre-
ating a new directory (mkdir) and removing an empty directory (rmdir). To define a predicate
modeling the cd operation, it should have as a parameter the new directory and two instances
of FileSystem, one staying for the state before the operation and the other for the one after the
operation — respectively f and f' in:

pred cd[f,f' : FileSystem, d : Dir] {

d in f·objects
f'·pwd = d

f'·root = f·root
f'·objects = f·objects
f'·parent = f·parent

}

Clearly, the directory which one will change to must exist as a file system object before the op-
eration takes place (restrictions of this kind are known as pre-conditions). The post-condition will
maintain all properties of the file system except pwd, which will change to the new directory.

The predicate which models the removal of a directory has more elaborate pre- and post-
conditions:

pred rmdir[f,f' : FileSystem, d : Dir] {

d in f·objects
d 6= f·root
d 6= f·pwd
no (f·parent)·d
f'·objects = f·objects - d

f'·parent = f·parent - (d → Dir)

f'·pwd = f·pwd
f'·root = f·root

}

Again interpreting f,f' as the before and after states of the operation, respectively, we see
that now we have more clauses in the pre-condition which need to be verified for f in order to
ensure the success of the operation. First, the directory to be removed must exist in the system

13

http://alloy.mit.edu/

before the operation (d in f.objects). By convention, the root cannot be removed (so d !=

f.root). Another clause (d != f.pwd) prevents from removing the working directory. To express
the property ”the directory must be empty“ one writes no (f.parent).d and this property
concludes the set of clauses of the pre-condition.

The operation must ensure two things in the new file system: the argument directory must
disappear from the objects relation (f.objects - d) and the parent relation cannot relate that
directory with any other object. The definition of parent relation was given as parent : Object

-> lone Dir. As seen above, the operator − > represents the product, ie the parent relation
relates a file system with pairs (Object,Dir). Where writing f'.parent = f.parent - (d ->

Dir) one is forcing that the new parent relation will have all pairs in the old one except the ones
in which d appears as the first element of the pair.

To complete the illustration, we give below the dual operation which creates an empty direc-
tory:

pred mkdir[f,f':FileSystem, d:Dir]{

d not in f·objects
f'·objects = f·objects + d

f'·parent = f·parent + (d → f·pwd)
f'·pwd = f·pwd
f'·root = f·root

}

The details of this operation are similar to the ones present in rmkdir. Instead of removing a
directory, we add it to the objects and parent relation, maintaining all that is static (pwd and root).

Assertions. Assertions are Boolean expressions which express desirable properties of the
model which one wishes to check using the Alloy analyzer. Invalid assertions mean faults in
the design, unless there is some misspecification in the assertion. Assertions are automatically
verified by the Alloy analyzer, for the given scopes. In the mini file system example one could
write an assertion saying that all objects in the file system are accessible from the root directory:

assert RootReachable{

all f:FileSystem | all o:f·objects | f·root in o·^(f·parent)
}

To correctly write this property one has to use the transitive closure operator. The expression
^o.parent gives us all directories above the object o in the parent relation (”above“ in the sense
of a file system hierarchy). One only has to ensure that the root directory is present in that set of
directories for every object.

Automatic verification of assertions by the Alloy analyzer offers an interesting possibility. Ev-
ery model has a set of properties which must always verify in the model (such properties are
called invariant). As shown above, one can write such properties using facts and Alloy will guar-
antee those properties verify for every instance of the model. Actually, Alloy doesn’t prove such
properties for every instance of the model. What it actually does is to show only instances of the
model which absolutely verifies all the facts.

14

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

When modeling a system, it is important to somehow prove that an operation never breaks the
set of invariant properties declared. Writing invariant properties as facts, proving that an operation
doesn’t violate the invariant for a given scope is impossible. Why? Because Alloy only creates
atoms which verify all facts, and therefore the operation will always be applied on instances of
the model which already verify the invariant. A complete proof that some operation maintains an
invariant needs to check it for every possible instance of the model and show that if the invariant
verifies before the operation, it will also verify after the operation. To show this method, let us
start by defining our set of invariant properties in the mini file system example using a predicate:

pred Inv[f : FileSystem] {

f·root in f·objects
f·pwd in f·objects
f·parent in f·objects → f·objects
no o : f·objects | o in o·^(f·parent)
no f·root·(f·parent)
all o : f·objects - f·root | some o·(f·parent)

}

The predicate forces a set of restrictions into a certain element of FileSystem. Note that some
properties captured by the predicate haven’t been addressed before. For instance f.parent in

f.objects -> f.objects ensuring that the parent relation only relates objects existing in the
file system. Another property, all o : f.objects - f.root | some o.(f.parent) states
that every object (except the root directory) must have a father. Finally, a clause stating that no
object can be father of itself: no o : f.objects | o in o.^(f.parent).

Assertion

assert rmkdirOk{

all f,f':FileSystem | all d:Dir | Inv[f] && rmdir[f,f',d] ⇒ Inv[f']

}

will check whether predicate rmdir maintains the invariant defined above. This assertion can
be read as follows: if the invariant property verifies in the system before the operation rmdir is
performed, then the invariant property must verify after the same operation takes place. The Alloy
analyzer can be used to check this assertion. Using assertions in this form we can check that all
operations in a certain model don’t violate the invariant properties, which wouldn’t make sense if
invariants were specified as facts.

Commands and Scope. Having shown how to declare entities in models (signatures), how to
specify the operation behavior (predicates and facts) and how to check some property in the
model (assertions), it is time to show how Alloy animates models by showing models instances.

There are two types of commands in Alloy: run (animation) and check (verification). Com-
mand run uses the analyzer to retrieve model instances which verify some predicate. Command
check searches for counter-examples to a certain assertion:

run rmdir

check rmkdirOk

15

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Using commands in this way, the analyzer executes them to a maximum of three atoms in each
signature (by default). One can explicit tell how many such atoms are wanted (scope) per signa-
ture:

run rmdir for 4 but 2 Dir

check rmdirOk for 5 but exactly 4 FileSystem

Increasing the size of assertions’ scopes slows down verification but it is required as a means
to achieve a reasonable degree of trust in the model. Alloyś underlying logic is first order logic,
which is undecidable 5. This means that there is no algorithm able to determine whether arbi-
trary infinite formulæ are logically valid. To overcome this problem Alloy presents this notion of
scope, which bounds a number of objects to each type. This procedure transforms the infinite
propositional formulæ of first order logic into finite ones that can be validated with a SAT solver
[43].

By executing a run command Alloy shows instances of its argument predicate. Suppose one
wants to observe the mkdir predicate running on some file system. One starts by defining another
predicate,

pred mkdirTst[f,f':FileSystem, d:Dir]{

Inv[f]

mkdir[f,f',d]

}

which guarantees that mkdir will run on states which are valid file systems, as prescribed by the
invariant property. By running

run mkdirTst for 4 but exactly 2 FileSystem

Alloy will show the creation of empty directories in all possible file system instances with at most
four objects. One such instance is given in Figure 2.1.

Figure 2.1 shows how a directory Dir3 is created inside the pwd directory Dir2. Such a visual
representation of models is a winning factor of Alloy. Representing atoms as boxes and relations
between them as arrows recalls the Unified Modeling Language (UML) notation style. Because
Alloy can show models in this way, people with different background can understand and evaluate
models (this is particularly important if one is using Alloy to do Requirements Engineering (RE)
and needs to show use-cases to clients). This visual representation of models is also used to
show counter-examples of invalid assertions. Thanks to such counter-examples, one can easily
find which invariant property the predicates are violating.

Alloy is a versatile tool which doesn’t force one to model in a fixed manner. Sometimes, prob-
lems are easily modeled with different approaches than the one presented thus far, particularly
if one has dynamic relations which evolve over time. Below we will see how to efficiently specify
and model-check problems of this kind.

5A decision problem is a yes-or-no question. The problem is undecidable if is impossible to construct a algorithm
that always stops and outputs the correct yes-or-no answer.

16

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

(a) File System before the operation (b) File System after the operation

Figure 2.1: Make directory operation

2.1.1 Modeling Idioms

Today programmers don’t need to solve from scratch every problem they are faced with. There
are some common problems which appear so often that a solution is available which has already
been widely studied and applied. These common solutions are usually called Design Pattens
[27]. A pattern is a reusable solution to a commonly occurring problem which programmers have
to solve. When the programmer is faced with a problem which has already been studied, he just
need to search for the pattern solution and adapt it to the specific situation. When design patterns
are to be applied in a OOP context, they often refer relational properties between classes and
objects. This leads one to wonder if there are such patterns in Alloy modeling. In fact they exist
and are called Modeling Idioms.

In Alloy there are two ways of specifying a state of a model: globally or locally [43]. These
two ways of representing models states are called idioms and result in different models for the
same problem. When modeling a problem using the global state idiom, the state of the model
is represented by a signature which contains all relations of the model. On the other hand, if
one chooses to model the problem using the local state idiom, the state of the model will be the
set of all signatures which contain all relations present in the problem. As example, consider for
example a colored light bulb:

abstract sig State{}

sig On, Off extends State{}

one sig Color{}

sig LightBulb{

color : one Color,

state : one State

}

It has a color and it is always in one of two states (either On or Off).

17

http://alloy.mit.edu/
http://alloy.mit.edu/

As the state of the light bulb changes over time, at some point in time it can be on or off. The
following piece of Alloy models the dynamic behaviour of the light bulb in the global state idiom:

sig Time{

s : LightBulb

}

The Time signature allows one to see how the color of a light bulb evolves over time. Using this
global state idiom we can see clearly which relations are static and which don’t.

This idiom opens an interesting possibility: it can be used to generate traces of execution of
an Alloy model as presented in [47]. A trace of a state machine is a finite sequence of transitions
starting from a initial state and evolving by a series of constraints. To simulate a trace using Alloy
we just have to define a global state like the Time signature and then restrict its evolution by
adequate predicates:

open util/ordering[Time]

fact{

(first·s)·state=Off
all t:Time, t':t·next | LightOn[t,t'] || LightOff[t,t']

}

pred LightOn[t,t':Time]{

t·s·state = On

t·s·state = Off

}

pred LightOff[t,t':Time]{

t·s·state = Off

t·s·state = On

}

If one asks Alloy to give instances of the model a LightBulb will turn up whose state is changing
over time, but its color remains constant, as shown in in Figure 2.2.

The other options is to model the light bulb using the local state idiom. In this option, each
dynamic relation is added with a new column to represent its evolution over time:

sig Time{}

sig LightBulb{

color : one Color,

state : one State → Time

}

The local state idiom is the natural approach to specify dynamic relations because when
a relation is dynamic this is represented in the signature it belongs to and not in some other

18

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

(a) Time 0 (b) Time 1

(c) Time 2 (d) Time 3

Figure 2.2: Running the LightBulb model in global state idiom.

signature, mixed with completely different relations. The local state idiom allows for an easy
conversion between Alloy models and the UML [28].

These two idioms give some flexibility in choosing one idiom or another according to the user
intuition. In addition, converting models in one idiom to another is very simple. In [30] we can
find some formal reasoning about both idioms and a simple refactoring technique for changing
the idiom of a model.

2.1.2 Alloy and Relational Calculus

The Alloy lemma “In Alloy everything is a relation” has already been quoted. It is this characteristic
of Alloy which allows us to relate its constructions to well known operators and entities of the
relational calculus [6]. In Chapter 5 we will see how such a mapping between relational calculus
and the Alloy language allow us to connect two different approaches for analyzing requirements.

Studying relational calculus is important to every programmer or system modeler. A program
is nothing else than an agglomerate of several types of relations combined together to achieve a
clear purpose. Sometimes programmers mistakenly call functions to relations and vice versa. Be-
cause functions are only a particular case of relations, their properties are more specific. Thus a
careful study of the relational calculus will definitely represent a quality improvement in a program-
mer’s work allowing for a deeper knowledge of code properties and behavior. This combination
of relational calculus and system modeling usually results in an clearly understanding of system’s
requirements and their restrictions [5].

Binary relations. Relations are everywhere, eg. whenever we refer to people addresses or
phone numbers, colors of objects, etc. As an example take the following phrase ”John lives at
767 Fifth Avenue“. In this phrase we have a relation lives at which is binary and relates people with
their addresses. In this particular example, relation lives at relates John with 767 Fifth Avenue. A
binary relation always relates objects from two domains. If two objects a and b are related by a
relation R this is formally asserted by writing aRb.

As seen above, the specification of binary relation lives at in Alloy is easy to achieve:

sig Person{

19

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

livesAt : set Address

}

sig Address{}

In relation algebra all relations are binary and can therefore be represented as arrows between
domains. Relation livesAt above is one such relation, relating elements from set Person with

elements from set Address. In arrow notation: Person
livesAt// Address . Alloy allows for different

ways of representing relations, either using quantifiers and bound variables or the point-free style
there are no variables or quantifications in formulæ [2]. The latter style is more terse but far more
economic and elegant. The change between the two is referred to as the pointfree transform in
[70]. Quoting this reference:

”The pointfree transform offers to the predicate calculus what the Laplace transform offers
to the differential/integral calculus: the possibility of changing the underlying mathematical
space so as to enable agile algebraic calculation.“

Pointfree notation is grounded on the composition operator (.) of relations. Given two relations

A
R // B and B

S // C , one will say that a is related with c by the composition of R and S iff
∃b ∈ B :: aRb ∧ bSc. This is written as a(R.S)b. This corresponds to Alloy’s “dot join” operator,
which coincides with relation composition for binary relations. Together with converse (see below),
this provides much of what is required for writing models in Alloy using the pointfree style.

In order to see how pointfree notation is useful to express relational properties suppose one

wishes to say that a relation A
R // B is simple (or functional). Using the usual pointwise style,

one would write this property as

∀x ∈ A,∀y, z ∈ B :: xRy ∧ xRz⇒ y = z (2.1)

and encode this in pointwise Alloy, leading to predicate:

pred SimpleWise{

all x:A, y,z:B | x in r·y and x in r·z ⇒ y==z

}

To write the same in the pointfree style we need to introduce some important, generic notions.

The first is the notion of converse of a relation. Every relation A
R // B has a converse R◦

defined as:
〈∀a ∈ A,∀b ∈ B : aRb : b(R◦)a〉 (2.2)

Thanks to converse, one can define the so-called kernel of a relation as: ker R = R.R◦ and its
image as: img R = R◦.R. Kernel and image are converse-dual definitions:

ker(R◦) = img(R) (2.3)

img(R◦) = ker(R) (2.4)

Finally defining the identity relation as a id b iff a = b, one can now easily write the pointfree
counterpart of (2.1) as follows:

ker R ⊆ id (2.5)

The economy of this definition contrasts with definition 2.1. Interestingly, Alloy is able to
encode this pointfree definition as well as the pointwise one, in this case:

20

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

pred SimpleFree{

~r·r in iden:>B
}

Where id is represented as iden:>B and the composition is written backwards in Alloy. The pred-
icate SimpleFree is simpler and more elegant than SimpleWise, allowing for easier calculations.

Alloy supports the full range of relations, including functions. In relational calculus a function
f is regarded as a relation which is both simple and entire,

f.f◦ ⊆ id ∧ id ⊆ f◦.f

(In the pointfree notation, a relation f is said to be entire iff id ⊆ f◦.f). As learned in elementary
school, “a function assigns exactly one output to each input”. Declaring functions in Alloy is
straightforward using multiplicity one:

sig A{

f : one B

}

What about combining functions? Functional composition is derived from the relational one:
given functions f, g, their composition is (f.g)x , f(g(x)). So, in Alloy we compose functions in
exactly the same way as relations.

Pairing and disjoint union. In [6] we find two important relational combinators for gluing func-
tions which do not compose: the split and either combinators (also called products and coprod-
ucts, respectively).

Suppose we have two functions which share the same source: A
f // B and A

g // C .
There must be a function 〈f, g〉 which pairs both outputs, that is, such that

〈f, g〉 : A // B × C
〈f, g〉a , (f(a), g(a))

(2.6)

holds. The relational calculus provides a precise mathematical foundation to study relations and
visual representations of them. Relation arrows allow us to draw diagrams showing relational
types and restrictions [24]. For example, the split transformation can be displayed in the following
diagram,

B B × C
π2 //π2oo C

A

f

ccGGGGGGGGGG
〈f,g〉

OO

g

;;wwwwwwwwww

where π1 and π2 are projections such that π1(a, b) = a and π2(a, b) = b.
Functional splits allow us to join two functions with same domain into a single one. To see

how we can encode this combinator in Alloy let us first define projections π1 and π2:

fun p1 [R : univ → one univ] : univ {

21

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

R·univ
}

fun p2 [R : univ → one univ] : univ {

univ·R
}

We can implement the projection through the composition operator. With this projections, the split
of two function f, g can be simulated as:

sig K{

f : A → one B,

g : A → one C

}

fun split[R: A] : B→ C{

R·(K·f)→ R·(K·g)
}

where B → C is the product operator making 〈f, g〉 typed as: 〈f, g〉 : A // B × C . This
operator will be used in Chapter 5 to construct the kernel of algebra for combining different sig-
natures from different Alloy models.

The split combinator glues functions with the same domain. The dual operator in relational
algebra is referred to as either. To defined it we need the two injections

B
i1 // B + C C

i2oo

which tag elements as they belong to A or B and inject them into the disjoint union A+B:

i1b = (t1, b) and i2c = (t2, c)

In literature the function i1 and i2 are usually called ”injections“ [69]. This injections can be easily
mapped to Alloy using the extends and abstract keywords:

abstract sig D{}

sig B extends D{}

sig C extends D{}

This declares D = B ∪ C and C ∩B = ∅. Because injection functions are just tagging functions,
i.e, they decide if a value is in B or C we can implement them as:

pred i1[d:D]{

d in B

}

pred i2[d:D]{

d in C

}

22

http://alloy.mit.edu/
http://alloy.mit.edu/

Finally, given functions B
f // A and C

g // A , the either function [f, g] (either f or g) is
defined by:

[f, g] : B + C // A

[f, g]x ,

{
x = i1b => f(b)

x = i1c => g(c)

(2.7)

If we use the previous Alloy mapping for functions i1, i2 and the disjoint union B + C, this
function can be easily mapped to Alloy as:

sig K{

f : B → A,

g: C → A

}

pred either[d: D, k:K]{

i1[d] ⇒ one d·(k·f)
i2[d] ⇒ one d·(k·g)

}

As happens with splits, the either construction will be used in Chapter 5 to develop interesting
operators which combine Alloy models.

2.2 Uppaal

Uppaal is a toolbox developed in the universities of Uppsala and Aalborg. It is useful to model real-
time and concurrent systems whose models can be created using a collection of non deterministic
processes with real-time restrictions. Uppaal has been widely adopted to model such systems
since its creation [41, 37, 36, 8].

In Uppaal these processes are represented as a collection of timed automata 6 which com-
municate using shared variables. One can model a system through a timed automaton together
with a background language allowing the definition of data structures and functions (which can be
called when the automaton transits). Uppaal not only provides time automata support and such
a language but also has a verifier allowing for the verification of properties in a logic which is a
subset of Computation Tree Logic (CTL) [59]. Below we will present a more detailed explanation
of the modeling and verification language of Uppaal.

2.2.1 Specification

Models in Uppaal are timed automata together with data structures and functions which operates
on bounded variables. The clock variables in Uppaal are represented through real-time values
and all clock variables progress synchronously. The system state is no longer the current location
of all automata but also the value of all clock variables and the value of all other variables.

Let us see an example to clearly understand the ingredients of Uppaal. The behavior of a
door is to be modeled where the user has at his disposal a button which opens, closes and locks

6A timed automaton is a finite state machine with clock variables.

23

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/

the door. When the door is open, a clique in the button will close the door. When a door is closed,
a click in a button will open the door and two quick clicks will lock the door. To model this door we
create two timed automata:

Idle

press!

(a) User

OpenClose

Lock

c>2
press?

press?

c<=2
press? press?

(b) Door

As expected, the doors automaton has three states: Open, Close and Lock. The transitions
between these states are made according to the shared variable press. Notations ! and ? are
used to represent an output and an input, following the CSP style. Each time the user presses the
button, the doors automaton reacts and transits according to the specification. This automaton
differs from a usual automaton with the appearance of the clock variable c. This variable is used
as a guard to the transitions from state Close. If we interpret this variable as a clock we can
see that the guard c<=2 represents exactly the requirement ”when the door is closed, two quick
clicks will close it“, ie. if the user presses the button in less then 2 time units the door will close,
otherwise the door will open again.

2.2.2 Verification

Uppaal also provides a model-checker that checks properties expressed in a subset of Compu-
tation Tree Logic (CTL). This model checker is designed for interactive and automated analysis
of system behavior and provides counterexamples when system models fail to verify their prop-
erties. The subset of CTL used in Uppaal allows the specification of path formulæ (reachability,
safety and liveness) and state formulas.

State Formulas. State formulæ are expressions whose evaluation depends only on the current
state and not on the model’s behavior (eg: i>0, x==15, x==15 and i>0, etc). Moreover, if P is a
process and l a location, P.l is a state formula which verifies if process P is in location l. Another
useful state formula in Uppaal is the deadlock. The deadlock state formula verifies for some state
if there is no possible transition from that state. This state formula can be combined into a safety
property to verify that a given model is deadlock free.

24

http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/

Reachability Properties. Given a state formula ϕ, reachability properties ask whether there
exists a path starting from the initial state where ϕ is eventually verified along that path. To specify
such a formula in Uppaal one writes E <> ϕ. Properties of this kind help to verify that something
desirable can eventually happen. Suppose we have a model of a mutual exclusion zone. We
could write a reachability property asking if there is a path such that the mutual exclusion zone
has some process inside.

Reachability properties alone don’t prove model correctness but they can give insight on their
behavior.

Safety Properties. These properties express that something bad will never happen. Given a
state formula ϕ we have two ways of express safety properties in Uppaal. Wishing to express
that ϕ must verify in every state, one writes A[]ϕ; wishing to express that there is a maximal path
such that ϕ always verifies in every state, one writes E[]ϕ instead.

Safety properties represent behavior invariants in models and guarantee that something catas-
trophic will never happen. In the mutual exclusion zone model, a safety property might be that
there is no state whether two processes are inside the mutual exclusion zone.

Liveness Properties. Liveness properties are of the form: ”Something good will eventually
happen“. Again thinking in a model of a mutual exclusion zone, a liveness property could be
”Every process eventually enters in the mutual exclusion zone“. Given a formula ϕ, a liveness
property in Uppaal is written as A <> ϕ. Liveness properties are often expressed in the following
way: given the state formulæ ϕ and ψ, when ϕ verifies then eventually ψ will verify. Liveness
properties of this kind are written in Uppaal as ϕ→ ψ.

Uppaal includes several other ingredients (state invariants, definition of new data types, pa-
rameterized templates, etc) which make this tool widely used to verify concurrent and real-time
systems. For a detailed explanation of all the features of the Uppaal toolbox please see [29].

2.3 Summary

This chapter presented two tools — Alloy and Uppaal — which allow for different ways to do
formal modeling. Alloy is a versatile tool with a simple, yet powerful language which welcomes
abstraction skills. The language is usually well received by programmers because of its similarity
with OOP concepts and its simple mathematical underpinning. However, Alloy isn’t suitable for
everything. When one needs to model a system restricted by temporal constraints and show
which behaviors such a system have (in terms of its states and transition), Uppaal is a better
choice. Because the mathematics underlying Uppaal are more difficult to understand than Alloy,
programmers tend to avoid tools like this.

Stressing on complementary aspects of these tools, the following chapters will show how
they can be used together to improve requirement analysis by allowing a requirement engineer to
find inconsistencies and improve requirements quality. Tools of this kind offer features which are
particularly interesting in requirement analysis. They allow for defining versatile models, without
restriction on problem domains and both produce visual models which help in applying them in
industry.

25

http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://http://www.uppaal.com/

26

Chapter 3

Requirements Engineering Assisted by
Formal Methods

3.1 Introduction

Requirements for software systems appear when clients present their needs related to expecta-
tions for the solution of a particular problem. The job of a requirement engineer is gather client
needs and put them together into what is called a ”requirements document“. Usually require-
ments are elicited through a set of meetings with clients and the requirements engineer uses
these meetings to write what is required in NL. Although NL presents several disadvantages, it
is after all the “natural” way to express one’s thoughts in order to allow both clients and technical
personnel read them. It is absolutely mandatory that requirements documents be understood by
clients, because they need to validate them before the system starts to be developed.

Once requirements are compiled in some document, software companies invest in building
models from them, often using visual languages. These models present several advantages: they
provide a deeper insight on the problem and sometimes help to discover inconsistencies in the
document. They may also help in generating the source code.

When one wants to construct a model from a set of requirements, the usual approach is to
incrementally add to the model while reading requirement items one after the other. If a new set
of requirements is found necessary of missing, the requirement analyst looks at the model and
re-factors it in order to take them into account.

As starting example consider the set of requirements for a missile launcher acting in some
battlefield given in Table 3.1. In a set of requirements like the example there can be several
inconsistencies which pass undetected using NL. A good choice for a modeling tool which finds
such kind of inconsistencies is the Alloy model checker, as seen in the previous chapter. Let

Requirement Number Description
01 The missile launcher shall be able to fire missiles.
02 The missile launcher fires missiles if and only if a warning sig-

nal is received.
03 Warning signals are launched when an enemy is spotted by an

ally.

Table 3.1: Missile Launcher Requirements

27

http://alloy.mit.edu/

us simulate the reaction of a requirement analyst to these requirements. She/he will start by
identifying the structural components of the model: entities and relations between them. Entities
Enemies, Warning Signals and Missile don’t exhibit any apparent relation between them:

sig Enemy{}

sig WarningSignal{}

sig Missile{}

Further inspection of the requirements will identify two other entities: Ally and Missile Launcher.
Because an Ally can spot Enemies, it must have a relation which represents this:

sig Ally{

spoted : set Enemy

}

Finally, a Missile Launcher can launch missiles and issue warning signals:

sig MissileLauncher{

launched: set Missile,

warning: lone WarningSignal

}

Warning Signal reception is represented by the relation warning which relates a Missile

Launcher with zero or one Warning Signal.
The next step in the modeling is to consider the actions which can take place. First, there

must be an action which emits a warning signal:

pred EmitWarningSignal[a:Ally, ml,ml':MissileLauncher]{

some a·spoted
no ml·warning
no ml·launched
one ml'·warning

}

This predicate has a pre-condition which states that there must be some Enemy spotted. If the
pre-condition verifies, a warning signal is launched. The launching of warning signals is another
operation present in the model:

pred LaunchMissile[ml,ml':MissileLauncher, m:Missile]{

one ml·warning
ml'·warning = ml·warning
ml'·launched = ml·launched + m

}

This operation has a pre-condition which ensures that a warning signal has been launched. It
relates a missile launcher with a fresh new missile. Finally, one can declare the overall invariant
property as a predicate:

28

pred Inv[ml:MissileLauncher]{

some ml·launched <=> one ml·warning
}

This invariant is derived from the requirement that a missile can be launched if and only if a
warning signal has been emitted.

With predicates representing actions and the model invariant represented in the predicate Inv,
we can check that none of the operations breaks the invariant by asserting:

assert EmitWarningSignalOK{

all a:Ally, ml,ml':MissileLauncher |

Inv[ml] && EmitWarningSignal[a,ml,ml'] ⇒ Inv[ml']

}

assert LaunchMissileOK{

all ml,ml':MissileLauncher, m:Missile |

Inv[ml] && LaunchMissile[ml,ml',m] ⇒ Inv[ml']

}

Although mathematical models such as the above provide help for developers and all people
involved in a software project, creating only one model of the whole set of requirements doesn’t
benefit from all advantages they can give. A recent declaration of David Parnas in [71] expresses
the approach that requirements engineers should follow when create mathematical models of
requirement documents:

”One of the most important roles that mathematics could play in software development would
be to provide precise, provably complete, easy-to-use, testable documents.“

Requirements documents should be handled in one-to-one correspondence with models, i.e., one
should be able to easily identify which model parts correspond to which specific requirements.
Recall from Section 1.1 that this is known as traceability . Such easy correspondence allows
requirement engineers who later have to change some requirement to immediately spot where is
the impact of the changes in the model of the whole system. A good requirement analysis method
should not only provide this correspondence but also provide techniques, tools and guidelines
helping the requirement analyst to create models in a fast but paced way, thus answering to
critics who say that formal methods are too slow and difficult to use.

From an implementation point of view, it makes sense to have both formal specifications
and NL in the requirements documentation. A requirement is usually a description of what the
machine or software should do in order to satisfy some useful purpose. Documenting and pro-
cessing requirements is an informal task, but the machine or software that requirements call for
are completely formal [45, 46]. Methods which bring requirement descriptions closer to their for-
mal specification are welcome by developers and usually result in significant improvements on
end-product quality [68].

Below we will see a method to analyze requirements which provides such a one-to-one map-
ping between requirements and models, techniques to re-write requirement descriptions based
on conclusions gathered from the model and automatic generation of the whole system model
from each requirement step contribution. The method will be supported by a tool-set.

29

3.2 Methodology

This section will present in detail a methodology to analyze requirements using formal methods
tools such as Alloy and Uppaal. The tool-set which supports the methodology is described in
Section 3.3.

Binding models to requirements. The overall methodology consists in enriching the original
requirements document which the corresponding formal model. The first principle to ensure cor-
respondence between a requirement and its formal model is to write the model right after the
particular requirement text and bind both together in the document. As an example, suppose we
want to model requirement 01 from the set of requirements presented in Table 3.1. We could write
this requirement and its model as:

Structured Requirement 1 Requirement and Model

Requirement :
The missile launcher shall be able to fire missiles.

Model :

sig Missile{}

sig MissileLauncher{

launched: set Missile,

}

pred LaunchMissile[ml,ml':MissileLauncher, m:Missile]{

ml'·launched = ml·launched + m

}

Binding models to requirements provides in-place evidence of the mathematical meaning of
each requirement. Clearly, models of requirements are dependent on each other. In general,
requirements talk about things mentioned in other requirements. As requirements do, models
rely on entities modeled in previous steps.

We need to define a method which not only binds models to requirements but also creates
a formal relation between models, allowing the user to obtain at each modeling step (one per
requirement) what the system model thus far is. An obvious solution to this problem would consist
of forcing requirement analysts to write the whole model at each requirement step. This would
also give a mathematical basis to each requirement and show the system model until that point in
the document to the reader. Although this solution would work for small requirements documents,
it is impracticable for medium and large size documents consisting of dozens of requirements (the
later in the text the more unreadable models, due to their sizes).

Our approach is based on a particular standardization of model writing. Suppose the require-
ment engineer wants to model requirement 02 from the example presented in Table 3.1. Having
already written the model of requirement 01, the user is asked to write only what is new in require-
ment 02 (new predicates or entities) and likely changes to what has been written in the previous

30

http://alloy.mit.edu/
http://http://www.uppaal.com/

steps. This is because requirement engineers quite often write later what they should have written
in the first place.

Bearing this principle in mind, we can write the structural part of the requirement 02 model as:

sig WarningSignal{}

sig MissileLauncher{

launched: set Missile,

warning: lone WarningSignal

}

The requirement text mentions a new entity model as WarningSignal and a new constraint for
launching a missile. This new constraint imposes changes in signature MissileLauncher and
LaunchMissile. Thus the enrichment of MissileLauncher coming from the previous step with
a new warning relation.

By applying the same standard we can derive the set of predicates which complete the model
of requirement 02:

pred EmitWarningSignal[ml,ml':MissileLauncher]{

no ml·warning
no ml·launched
one ml'·warning

}

pred LaunchMissile[ml,ml':MissileLauncher, m:Missile]{

one ml·warning
ml'·warning = ml·warning
ml'·launched = ml·launched + m

}

pred Inv[ml:MissileLauncher]{

some ml·launched <=> one ml·warning
}

Predicate EmitWarningSignal models the emission of a warning signal and the predicate Inv
verifies the condition that missile launcher should only fire missiles when there is a warning signal.

Note how the predicates considered at this point are the ones induced by requirement 02 and
another one which had to be quoted from requirement 01 and changed (LaunchMissile). At
this point one can resort to Alloy to prove the consistency of the operations with respect to the
invariant property stating that a missile shall be launched if and only if a warning signal appears.
In order to verify that predicates LaunchMissile and EmitWarningSignal don’t break the invariant
one adds assertions EmitWarningSignalOK and LaunchMissileOK:

assert EmitWarningSignalOK{

all ml,ml':MissileLauncher |

Inv[ml] && EmitWarningSignal[ml,ml'] ⇒ Inv[ml']

31

http://alloy.mit.edu/

}

assert LaunchMissileOK{

all ml,ml':MissileLauncher, m:Missile |

Inv[ml] && LaunchMissile[ml,ml',m] ⇒ Inv[ml']

}

Writing the model in this stepwise manner is far readable than pasting the whole model of
the system at each step. In this way the user can easily see what changes and new additions
requirements bring to the system model thus far, adding to traceability.

Tool support relies on requirement documents available in LATEX format in which new environ-
ments have been added to support the embedding of Alloy models in a literate programming style
[51]. The tool processes text files and extracts the models from them, chaining the changes in
order to derive the current model, up to a given requirement. When the tool finds a predicate,
signature or fact, it searches for it in the previous models: if it is already there, it replaces it with
the new definition, otherwise it is new and is added directly to the model. Summing up, the ap-
proach allows one to incrementally create a model of the requirements through a series of small
”dif-models“ written at each requirement analysis step.

Requirement refactoring through formal modeling. The same standard can be helpful also
in actually suggesting changes into the requirements descriptions themselves as consequence
of finding inconsistencies in the text unveiled by the formal modeling. In fact, by looking at the
model we often finds the opportunity for re-writing the original requirements text in order to make
the text less ambiguous and closer to what the model actually prescribes while meeting the client
expectations at the same time.

Let us see an example. Requirement 02 in the Missile Launcher running example reads: “The
missile launcher fires missiles if and only if a warning signal is received.". This text suggests the
invariant of the system as:

pred Inv[ml:MissileLauncher]{

some ml·launched <=> one ml·warning
}

Alloy finds no counter-example for this invariant giving confidence that at least the requirement is
consistent with the specification. Although there isn’t any counter-example, predicate Inv shows
us something interesting: the condition says that a missile is launched if and only if a warning
signal appears. This is indeed what the requirement says; however, requirement 03 from Table
3.1 tell us that this equivalence should be an implication, i.e, The missile launcher fires missiles if
a warning signal is received., resulting in a new version of the invariant :

pred Inv[ml:MissileLauncher]{

some ml·launched ⇒ one ml·warning
}

This invariant makes the model closer to what the text says. If we now check our assertions
with this invariant, Alloy continues to find no counter-examples for our assertions, as expected

32

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

(because the equivalence is stronger than the implication), but we clearly come with a model
which is closer to reality and found a misleading requirement description.

This example shows that requirement models should not only be integrated in requirements
documents but also their analysis could have immediate impact on requirements. A good re-
quirement analysis method should end with a revised, clean set of requirements and a model
supporting all of them.

Requirement layout standard. Below we give the formal, textual structure which is recom-
mended for laying out each requirement item so as to cater for all that has been advocated
before:

• Requirement : Quotes verbatim the requirement text block as written in the original re-
quirements document.

• Model : The formal model educed by the analyst from the requirement text block. This
model should be as “small” (unbiased) as possible, that is, it should not contain details
which are not referred to by the requirement text.

• Meta-model : A graphic representation of the model.

• Questions and Suggestions : Questions and suggestions which were raised while model-
ing the requirement text; these should be discussed among the requirement engineer team
in order to validate or disprove them.

• New Requirement : The improved requirement text resulting from the above discussion;
both versions to be kept for traceability reasons.

• New Model: The model of the improved requirement. This model is written following the
standard presented above: only differences and new predicates, facts or signatures are
written.

• New Meta-model : A graphic representation of the improved model.

By writing requirement documents in this manner requirement traceability is ensured. Items
Questions and Suggestions, New Requirement, New Model and New Meta-model keep track of
the changes occurred throughout the requirement analysis process. This process can even be
extended if a requirement need more changes (creating new models and meta-models for the
changed requirement).

Usually, the Meta-model component of the layout is automatically generated by the formal tool
associated to the notation used for modeling. It thus requires no intervention from the user. In
the case of Alloy, this graphic representation is obtained using Alloy’s Application Programming
Interface (API), which delivers a diagram with all signatures and relations between them. Readers
with little knowledge of Alloy can use these diagrams to better understand requirements.

The following page shows the layout of requirement 02 once written in the proposed format.

33

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Structured Requirement 2 Standard to write models

Requirement :
The missile launcher fires missiles if and only if a warning signal is received.

Model :
Model remains equal to model derived for requirement 02 of table 3.1.

Meta-model :

Questions and Suggestions :
Reading the requirement we model it as : a missile is launched if and only if a warning signal appears.
Although this is exactly what we see in the requirement description, when we read requirement 03 we see
that warning signals are launched when enemies are spotted. This tell us this equivalence should be an
implication, i.e, The missile launcher only fires missiles after the receipt of warning signal..

New Requirement :
The missile launcher only fires missiles after the receipt of warning signal.

New Model:

pred EmitWarningSignal[ml,ml':MissileLauncher]{

no ml·warning
no ml·launched
one ml'·warning
some ml'·launched

}

pred Inv[ml:MissileLauncher]{

some ml·launched <=> one ml·warning
}

New Meta-model :
No Changes.

34

The tool reads this requirement and aggregates the New Model part with the Model, i.e, re-
places predicate Inv written in Model part with the predicate Inv of New Model part. In the follow-
ing section we will see in detail how the tool is implemented in order to support this requirement
analysis method.

3.3 Tool Support

The method described above helps the user to develop a formal model of a system from its re-
quirements in a stepwise manner. Without proper tool support, to follow the methodology the user
would have to retrieve each model of the requirements at each step and aggregate everything in
the document in a cut & paste manner — obviously a painful task.

The tool developed to support the methodology creates a running model at each requirement
analysis step. This is helpful wherever the client drops some requirement for the system or if the
requirement analyst needs to see the model of the whole system but a particular requirement.
The tool also generates the meta-models assembled up to each requirement step, automatically
creating the diagrams with the meta-data. To relief the user from using the Alloy GUI every
time she/he wants to check a property or run a command the tool uses the Alloy API to run the
commands without any user intervention.

Global Architecture. The tool is built in Java and uses the Alloy API to perform all tasks related
with the Alloy modeling. Requirements are written using the document preparation system LATEX
[55]. Having the requirements in LATEX allows us to process documents without using an external
API, because in LATEX the documents are written into plain text files. The tool scans the documents
and searches for a set of macros defined which contains specific data (models, commands, etc).

For each requirement a folder is created and inside it the requirement is written into a .tex
containing the same structure as presented in Section 3.2. Figure 3.1 shows how all requirements
are included by a main one in order to create a complete requirements document. This is how
the tool currently supports requirements documents, but no restriction is made on the format of
how the requirements are written. The tool is developed in a modular manner, allowing the user
to easily construct a different module to support document preparation systems other than LATEX.

Requirement document processing is carried out through a series of stages shown in Figure
3.2. Below we will see each step of the pipeline in detail. Although a complete processing of the
requirements document consists of all phases in the pipeline, the tool allows the user to use part
of the pipeline if she/he wishes so.

LATEX Preprocessing. The tool starts by extracting models and commands from the LATEX files.
This phase is responsible for obtaining every model and Alloy commands written in the .tex files.
The environments (tags) listed in Figure 3.3 are available for embedding models in LATEX sources.

The comment %**check_mark** is used to extract models from .tex files. Commands should
be written using the macro runners, allowing the requirement analyst to hide commands from the
reader of the document (readers usually only have interest in the models) and at the same time
leaving commands hidden in the document and ready to be called at any time. Macro moduleutil
can be used to call pre-defined modules of Alloy, e.g., open util/ordering[Missile]. Alloy imposes
that the opening of modules must be written before any signature, predicate or facts. Using macro

35

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Figure 3.1: A Requirements Document

Figure 3.2: Tool Pipeline

36

Models :

%∗∗check_mark∗∗

\begin{lstlisting}[frame=single]

Alloy model

\end{lstlisting}

Commands :

\begin{runners}

Alloy commands

\end{runners}

Utils (ordering, sequence, etc):

\begin{moduleutil}

Open modules

\end{moduleutil}

Figure 3.3: Macros for writing models

37

moduleutil, the tool can easily control this and the requirement analyst has a possibility to write a
complete Alloy inside .tex files.

Recall from Section 3.2 that a requirement may have two Alloy models, the first reflecting the
original requirement text block and possibly a second, revised alternative trying to improve the
original. For each %**check_mark**, the LATEX Preprocessor creates a folder inside the folder of
requirement it appears and inside each new folder the tex processor creates a dif-model. A dif
model consists of open commands of Alloy modules (macro moduleutil), followed by the Alloy
model of the requirement and finally all commands the user defined with the macro runners.

This component of the tool pipeline can be changed to support other formats than LATEX. What
this component must provide to the Dif Aggregation block is a collection of dif-models, one per
each Alloy model of the requirement. Any component which successfully extracts models from
requirements can be used in the pipeline without any other changes in other components.

Dif Aggregation. The Dif Aggregation component is responsible for creating a complete, run-
ning model for each %**check_mark**. It starts by reading the first and second dif-model and
applying the following algorithm to combine them:

Algorithm 1 DiffModels(D1,D2)

Require: Two partial Alloy models D1 and D2
Ensure: An Alloy model which is the evolution of D1 through D2

1: Preds⇐ GetPreds(D1) +GetPreds(D2)
2: Sigs⇐ GetSigs(D1) +GetSigs(D2)
3: Facts⇐ GetFacts(D1) +GetFacts(D2)
4: Asserts⇐ GetAsserts(D1) +GetAsserts(D2)
5: for all Pred P1 : GetPreds(D1) do
6: for all Pred P2 : GetPreds(D2) do
7: if P2.name = P1.name then
8: Preds⇐ Preds− P1
9: for all Sig S1 : GetSigs(D1) do

10: for all Sig S2 : GetSigs(D2) do
11: if S2.name = S1.name then
12: Sigs⇐ Sigs− S1
13: for all Fact F1 : GetFacts(D1) do
14: for all Fact F2 : GetFacts(D2) do
15: if F2.name = F1.name then
16: Facts⇐ Facts− F1
17: for all Assert A1 : GetAsserts(D1) do
18: for all Assert A2 : GetAsserts(D2) do
19: if A2.name = A1.name then
20: Asserts⇐ Asserts−A1

The outcome of applying this algorithm to dif-models D1, D2 respectively, is a complete Alloy
model FinalModel2.als. This model will be saved in the D2 directory. To obtain the system
model for D3, we apply the previous algorithm on FinalModel2.als and in the dif-model D3, re-
sulting in a FinalModel3.als which will be saved in directory D3. Repeating the same procedure
for all dif-models will result in all complete models for every %**check_mark**.

38

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

At this phase the requirement analyst can get the complete evolution of the system, without
having to manually combine all Alloy models written throughout the document.

Type-Checker. The Alloy GUI is an excellent combination of a friendly user interface and a
powerful API. This API is open source and can be used to completely manipulate an Alloy model
without using the GUIȮur tool-set makes ample use of the Alloy APIto relieve the requirement
analyst from going through the Alloy GUI every time she/he wants to check some property or
see if the working model is correct. In the Type-Checking phase the tool reads all FinalModel.als
produced by the Dif Aggregation and performs two tasks: type-checking and command running.

Type-checking models through the tool provides immediately feedback to the requirement
analyst. If the tool finds any error or warning provided by Alloy, this is reported to the requirement
analyst by showing precisely where the error is. This error can result from a real error in the
model (caused by some misinterpretation of requirement analyst) or from a real inconsistency in
model. Either way, requirement analysts have the opportunity to draw conclusions from the error
without going to the Alloy GUI for every requirement.

The command running feature of this phase is also very useful to the requirement analyst.
When we are modeling requirements with this methodology we can leave commands in our re-
quirements in order to prove that our predicates are consistent. These commands run every time
we use the tool, proving confidence that previous models are still valuable and correct.

Meta-Model Printer. Meta-models are visual representations of Alloy models. They provide
quick insight on the system entities and relations between them. The requirement analyst can
use these diagrams to show the model to anyone without any knowledge of Alloy. A tool that
does all previous steps without users intervention but requires them to print meta-models one by
one would behave against the objectives presented above, for two reasons: first the user would
have to use the Alloy GUI and manually print the meta-models; and second, as we don’t want to
show the whole system model in every requirement, we also don’t want to show the whole system
meta-model in every requirement.

To solve this, the tool uses the set of functions which in the Alloy API manipulate meta-models.
In this phase we know that our models are correctly typed and wish to extract correct meta-models
from them. The tool goes to every FinalModel generated by Dif Aggregation and previously type
checked in the Type-Checker phase, and uses the Alloy API to extract the meta-model. This meta-
model isn’t enough for our purposes because it contains all signatures and relations of the whole
system. The Meta-Model Printer step in the pipeline projects this meta-model in every signature
which appeared in the dif-model of the requirement, resulting in visual diagrams showing only the
entities related to requirements.

3.4 Summary

This chapter presented an approach which invites requirements engineers to write a model in a
stepwise manner, as long as they read requirements text chunks. One doesn’t need the write
the whole model but only what each requirement exactly mentions because a tool will gather all
these models and create a complete, running model up to each requirement block. Using a text
standard presented in this chapter, requirements engineers can enjoy requirements traceability
and model traceability at the same time. This is useful because at any moment one can go back

39

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

to a requirement and see how its model has evolved. This direct correspondence between models
and requirements allows one to check which changes a particular requirement introduced in the
model and (together with Alloy) have a graphical representation of each requirement. Thanks to
the modeling, requirements engineers can gain insights on the quality of the original text and, if
necessary, introduce improvements removing ambiguities or inconsistencies.

In the following chapter we will go through a case study where requirements are brought
closer to formal models. The case study was developed using this method and shows that writing
models immediately after requirements makes requirements and models easier to understand
and analyze.

40

http://alloy.mit.edu/

Chapter 4

Case Study : Partitioning Microkernel

Formal Methods are mostly applied in life critical systems (LCS) in order to ensure safe behaviour.
Thus the the techniques described in Chapter 3 must prove effective in coping with requirements
documents in the LCS domain. One such system is taken in this chapter as case study.

The starting requirements document, proposed by Critical Software 1, describes a Partition-
ing Kernel enforcing the Partition Information Flow Policy (PIFP) of a Secure Partitioning Kernel
(SPK) described in [17]. Partitioning by criticality class has been applied since long ago in LCS,
whereby functions with different criticality levels are deployed into different computer boards. This
kind of system partitioning is hardware implemented and presents some disadvantages: physical
(power, weight and space increase with the number of boards), testability (systems running in a
single board are far easier to test) and reuse (because functions are distributed across several
boards, some simpler functionalities must be replicated to each board).

In order to overcome this disadvantages other approaches have emerged such as eg. the
ARINC 653 [40] together with DO-297 (Integrated Modular Avionics, IMA). ARINC 653 introduced
the concept of partitioning microkernel which allows to separate functions deployed into different
real-time operating systems (RTOS) as shown in Figure 4.1.

A consistent and reliable partitioning kernel must be certified under the Common Criteria (CC).
CC is an international standard which specifies security and assurance requirements which guar-
antee that systems are developed and verified certain ways ensuring confidence and reliability
[80].

4.1 Document Structure

The requirements document specifies not only functions that the system must perform, but also
a numbers of assurance requirements which allow the system to be certified under the CC. The
requirements are thus divided into:

• Functional Requirements: Requirements concerning the kernel functionalities.

• Assurance Requirements: Requirements which the system must present in order to be
verifiable under the CC.

1See: http://www.criticalsoftware.com.

41

http://www.criticalsoftware.com

Figure 4.1: Partitioning Microkernel

Altogether, these two types of requirements sum up to 158 requirements, 84 from assurance
and 74 from functional requirements. In order to better see the outcome of the methodologies
presented in Chapter 3, emphasis is put on functionality rather than assurance requirements.

A partitioning kernel is a system composed of several ingredients and requirements indicating
how processes and partitions communicate, which real-time constrains there are, how to recover
from errors, etc. Functional requirements are thus divided into:

• Configuration Management System (CMS): A set of parameters that must be defined
before systems start.

• Health Monitor (HM): Monitoring and reporting of hardware and software failures.

• System Errors and Faults (SEF): Definition of all error types and who is in charge of
handling them.

• Recovery Actions (REC): How the system should act in the presence of errors.

• System Tables (SYT): Requirements concerning some information tables of the kernel.

• Partition (PRT): Partition attributes, rules on how to schedule partitions, partitions modes,
etc.

• Process (PRC): Processes behaviors, attributes and scheduling rules.

• Partition Information Flow (PIFP): Requirements on how processes from different parti-
tions (can) communicate with each other.

Requirements Selection. Looking only at functional requirements only, there are 74 require-
ments to account for. After a careful analysis of these requirements became clear that most of
requirement are structural: they say which attributes some kind of entity should have. If all func-
tional requirements were considered, would lead to a large model model with very few operations
and interesting aspects.

42

Having no operations this model would be uninteresting because we can see none or little
animation and proving invariant properties would be impossible. In order to overcome this draw-
back, let us try to capture the important operations of a partitioning kernel. Looking at Figure
4.1 we see that a partitioning kernel performs scheduling at two levels: partitions and processes.
Scheduling is a highly important operation in any operating system whose, and it is properties can
be modeled, animated and checked. To select the requirements which talk about Scheduling, we
proceed as follow:

1. Select partition and process requirements which talk about the scheduling characteristic:
Requirements PRT007 and PRC013.

2. Select all requirements needed to understand requirements PRT007 and PRC013: Re-
quirements PRT001, PRT004 and PRC004.

This criteria leave us five requirements which allow for modeling of the system scheduler and
all constraints associated, resulting in an interesting model where important conclusions can be
draw.

4.2 Requirements Modeling

Having selected the relevant requirements, the techniques described in Chapter 3 could now be
applied to them. Requirements and models where gather into a document with the same structure
presented in Chapter 3. When a temporal requirement need to model the requirements, and the
model associated to. The reader can find the complete document in Chapter A of the Appendices.

Each requirement model will be followed by an explanation of the modeling options.

PRT001 - Partition Attributes.

Requirement Number PRT#001
Title Partition Attributes
Description Each Partition shall have the following attributes:

• Duration: the amount of processor time (minimum and max-
imum quotas) given to the partition every period of the parti-
tion.

• Period: defines the activation period of the partition, and is
used to determine the partition’s runtime placement within the
core module’s overall time frame.

Rationale N/A.

This requirement defines the structure of a partition. In Alloy, this is achieved by representing a partition
as a signature:

sig Partition {
minimum : one Int,
maximum : one Int,
period : one Int

}

43

http://alloy.mit.edu/

Using the Int construction of Alloy, we can easily model the duration and period requirements for a
given partition. This defines the structure of the partition, but alone, allow for negative periods or maximum
duration quotas. Let us add a fact which bounds the previous attributes to the correct values:

fact Constraints{
all p:Partition | gt[p·minimum,0]
all p:Partition | gt[p·maximum,0]
all p:Partition | gt[p·period,0]
all p:Partition | gt[p·maximum,p·minimum]
all p:Partition | gte[p·period,p·maximum]

}

Now, the partition in the model correspond to the partition described in the requirement. It has all the
attributes specified and their values are in the correct range. As explained in Chapter 3, this method has
a tool support which automatically generates a visual representation of the requirement. This requirement
induces the following diagram:

Figure 4.2: Partition Model

These diagrams are a visual representation of requirements and can be shown to non-technical people
(eg: Clients). We can use Alloy to instantiate the model and get some examples of valid partitions in a
partitioning kernel:

Figure 4.3: A model instance

In this model instance we have a system composed of two partitions, each one with its own attribute
values, as described by the requirement.

PRT004 - Partition Modes.

44

http://alloy.mit.edu/
http://alloy.mit.edu/

Requirement Number PRT#004
Title Partition Modes
Description The Partition shall have the following modes:

• IDLE: In this mode, the partition is not executing any pro-
cesses within its allocated partition windows. The partition is
not initialized (e.g., none of the ports associated to the parti-
tion are initialized), no processes are executing, but the time
windows allocated to the partition are unchanged.

• NORMAL: In this mode, the process scheduler is active. All
processes have been created and those that are in the ready
state are able to run. The system is in an operational mode.

Rationale N/A.

This requirement tell us that partitions have pre-defines modes, and they change over time. This adds
a new ingredient to partitions: a new attribute which changes over time. Because this attribute will change
over time for a given partition, a good modeling idiom to model it is the Local State idiom presented in
Section 2.1.1:

open util/ordering[Time]

sig Time {}
sig Mode {}
sig Normal, Idle extends Mode {}

sig Partition {
minimum : one Int,
maximum : one Int,
period : one Int,
mode : Mode one→ Time,

}

We’ve represented partition modes Idle and Normal as extends of a Mode signature together with a
new attribute to partition which maps a mode into a specific point of time. This allow us to model and
represent the evolution of partitions modes as the scheduling proceeds. Alloy now gives us the following
visual representation of the model:

Figure 4.4: Partition Model

This model has two different characteristics from the one in Figure 4.2. First, there is a new signa-

45

http://alloy.mit.edu/

ture Mode with two sub-signatures Idle and Normal, then we clearly see that now each partition mode is
mapped into a atom of the ordered signature Time. At each model instance, will be possible to see how
the partitions modes are changing over time. Figure 4.5 shows us two partitions changing over time (this
kind of visualization can be achieved by projecting signature Time in Alloy):

(a) Time 0 (b) Time 1

(c) Time 2 (d) Time 3

Figure 4.5: Partitions Evolution over Time

In Figure 4.5 shows two partitions where all attributes are fixed in every instant of time (except partitions
modes). The next requirement will introduce the rules which control the change of a particular partition
mode.

PRT007 - Partition Scheduling Characteristics.

Requirement Number PRT#007
Title Partition Scheduling Characteristics
Description The main characteristics of the partition scheduling model shall be:

• The scheduling unit is a partition.

• Partitions have no priority.

• The scheduling algorithm is predetermined, repetitive with a
fixed periodicity, and is configurable by the system configura-
tion only. At least one partition window is allocated to each
partition during each cycle.

• The core module level O/S exclusively controls the allocation
of the resources to the partition.

Rationale N/A.

This is where the scheduling of partition is specified. This requirement tell us that at this level, partitions
have no priority, both periodicity and duration quotas need to be respected and there must always exists a
partition scheduled (i.e in the NORMAL mode).

46

http://alloy.mit.edu/

What this scheduling requirement tell to the model, is how to partitions can evolve over time. We’ll
represent this using a fact, which restricts the evolution of the partitions modes. Before defining that fact,
lets us define some functions and predicates which will be useful:

fun prox : Time→ Time {
ordering/next +last→ first

}

fun diff [t,t’ : Time] : Int {
#(t’ in (t·nexts +t)⇒(t·nexts & (t’ +t’·prevs)) else (t·nexts +t’·prevs +t))

}

pred i2n [p : Partition, t : Time] {
p·mode·t = Normal
p·mode·(t·~prox) = Idle

}

pred n2i [p : Partition, t : Time] {
p·mode·t = Idle
p·mode·(t·~prox) = Normal

}

The function prox will allow us to see time in a circular fashion. This is important because the problem
of scheduling must be modeled using infinite traces (the system is supposed to schedule for ever), and
allow us to abstract from the special cases of initialization and end of the execution traces.

The function diff count how many time instants are between two points in time. This function will be
used to respect the requirements of period and duration of partitions. Remember that Alloy doesn’t have
an explicit representation of time, in order to achieve same behavior of time, we represent it as clicks (much
like Leslie Lamport reasons about time [54, 56]).

Predicates i2n and n2i model the partition mode at a given time instant t and guarantee that it changes
in the following instant.

With this predicates and functions, the fact which will restrict the scheduling of partitions can now be
defined:

fact Scheduler{
all t : Time | lone (mode·t)·Normal
all p : Partition | some t : Time | p·mode·t = Normal
all p : Partition, t : Time | i2n[p,t]⇒
{

(some t’ : Time | eq[diff[t,t’],p·period] and i2n[p,t’]) &&
(all t’ : Time | lte[diff[t,t’],p·minimum]⇒p·mode·t’ = Normal) &&
(all t’ : Time | gt[diff[t,t’],p·maximum] and lt[diff[t,t’], p·period]⇒p·mode·t’ = Idle) &&
(all t’ : Time | gt[diff[t,t’],0] and lt[diff[t,t’],p·period]⇒not i2n[p,t’])

}
}

The fact start by stating that can’t be more than one partition executing at the same time (this is a fair
assumption, because requirement doesn’t talk about the number of processors, so it’s assumed that only
one processor is available) and all partition must execute at some point in time.

Then it continues to restrict what happens when a partition is IDLE and will execute in the following
instance. To guarantee a correct scheduling of these partitions a number of conditions must verify:

1. The period condition of the partition must verify: The difference between the current time and
the last time the partition executed must be equal to the partitions period: some t’ : Time |
eq[diff[t,t’],p.period] and i2n[p,t’]

47

http://alloy.mit.edu/

2. The partition execution time must always be higher or equal to the minimum duration : all t’ : Time
| lte[diff[t,t’],p.minimum] => p.mode.t’ = Normal

3. If the partition is running and its maximum duration time has bean achieved, it must be in the IDLE
mode: all t’ : Time | gt[diff[t,t’],p.maximum] and lt[diff[t,t’], p.period] => p.mode.t’ = Idle.

4. At all points in time, a partition cannot go to a NORMAL state if its period hasn’t been respected:
all t’ : Time | gt[diff[t,t’],0] and lt[diff[t,t’],p.period] => not i2n[p,t’]

The structure of the model (metamodel) remains equal to the one in Figure 4.4 because this require-
ment doesn’t introduced any structural changes in signatures. Figure 4.6 shows an instance where two
partitions are correctly scheduled according to this requirement:

(a) Time 0 (b) Time 1

(c) Time 2 (d) Time 3

(e) Time 4 (f) Time 5

(g) Time 6 (h) Time 7

Figure 4.6: Partitions Evolution over Time

48

In this instance, two partitions are being scheduled accordingly to their attributes. Figure 4.6a shows
us that at the time instant 0, Partition 0 is in the Normal mode and Partition 1 is in Idle mode. Partition
0 cannot be more than 4 instances in the Normal mode (the minimum attribute has value 4). Figure 4.6c
shows that at instant 2 Partition 0 goes Idle and Partition 1 goes Normal. Because Partition 1 has the
maximum attribute with value 2, it cannot stay in Normal mode more than two instants. In Figure 4.6f
shows us that Partition 1 changes its mode to Idle at instant 5, respecting its maximum attribute. In further
instants, partitions continue to be scheduled, always respecting its real-time values.

PRC004 - Processes Attributes.

Requirement Number PRC#004
Title Processes Attributes
Description A set of unique attributes shall be defined for each process within

the system. These attributes differentiate between unique charac-
teristics of each process as well as define resource allocation re-
quirements. The following attributes a process shall have:

• Base Priority - Denotes the capability of the process to ma-
nipulate other processes.

• Period - Identifies the period of activation for a periodic pro-
cess. A distinct and unique value should be specified to des-
ignate the process as aperiodic.

• Time Capacity - Defines the elapsed time within which the
process should complete its execution.

• Current Priority - Defines the priority with which the process
may access and receive resources. It is set to base priority at
initialization time and is dynamic at runtime.

• Process State - Identifies the current scheduling state of the
process. The state of the process could be either dormant,
ready, running or waiting.

Rationale N/A.

This requirement introduces the second most important concept in a partitioning kernel: the process. It
states which attributes the process must have and give us some information about them. Process attributes
are modeled in the following signature:

sig State {}
sig Ready, Running extends State {}

sig Process{
prt : one Partition,
p_period : one Int,
time_capacity : one Int,
base_priority : one Int,
curr_priority : Int one→ Time,
state : State one→ Time,

}

The state of a process was modeled as the state of partitions: every process as a Ready or Running
state at some point in time. This is again the application of the local trace idiom presented in Section
2.1.1. A new attribute was added to connect processes and partitions. This attribute is justified by our

49

common knowledge of the partitioning kernel architecture which is reflected in Figure 4.1, and tell us that
each process is associated with a partition.

The attributes of processes must be scoped and restricted in order to reflect what the requirement is
telling us:

fact ProcessConstraints{
gt[Process·p_period,0]
gt[Process·time_capacity,0]
all p:Process | gt[p·base_priority, 0]
all p:Process, t:Time | gt[p·curr_priority·t,0]
all p:Process | eq[p·base_priority, p·curr_priority·first]
all p:Process | gte[p·p_period,p·time_capacity]
all p:Process | gt[p·p_period, p·prt·period]
all p:Partition | some p’:Process | p’·prt = p

}

Fact ProcessConstraints starts by specifying which attributes must have positive values. Then it obli-
gates that for all processes the base priority is equal to the current priority in the initial time instant, following
the property that processes periods must be greater than its time capacities (otherwise the process period
requirement could not be respected). The last property of the fact states that all partitions must have at
least one process associated with it.

Using Alloy, we can see the model of the process. Remember that as explained in Section 3.3,
the tool which support this requirement analysis method automatically generates the visual model of the
requirement, allowing the user to see only what changes the requirement induced. Figure 4.7 shows a
visual representation of a Process and states Ready and Running:

Figure 4.7: Process Model

In the following requirement the reader will be able to see model instances of the whole partitioning
kernel, containing partitions and processes.

PRC013 - Processes Scheduling Model.

50

http://alloy.mit.edu/

Requirement Number PRC#013
Title Processes Scheduling Model
Description The main characteristics of the scheduling model used at the parti-

tion level shall be:

• One of the main activities of the O/S is to arbitrate the com-
petition that results in a partition when several processes of
the partition each want exclusive control over the processor.

• Each process has a priority.

• The scheduling algorithm is priority preemptive. If several
processes have the same current priority, the O/S selects the
oldest one.

• Periodic and aperiodic scheduling of processes are both sup-
ported.

• All the processes within a partition share the resources allo-
cated to the partition.

Rationale

The scheduler of a partitioning works in two levels, this requirement introduces the restrictions to schedul-
ing processes in a partitioning kernel (the second level). This will inevitably lead to changes where the
previous rules for the scheduler are defined: the fact ”Scheduler ”.

Like we did to partitions, let us start by defining some auxiliary predicates:

pred re2ru[p : Process, t:Time]{
p·state·t = Running
p·state·(t·~prox) = Ready

}

pred ru2re[p : Process, t:Time]{
p·state·t = Ready
p·state·(t·~prox) = Running

}

pred HasMaxPriority[p:Process, t:Time]{
all p’:Process | p’·prt=p·prt⇒lte[p’·curr_priority·t,p·curr_priority·t]

}

The predicates re2ru and ru2re are similar to predicates i2n and n2i used to check partitions states.
One significant difference between scheduling of partitions and processes, is the fact that processes
scheduling must respect the processes priority. To check if a process has top priority within a partition,
the HasMaxPriority predicate check if a process has the maximum current priority of all processes within
a partition at a time instant t.

With this auxiliary predicates the fact Scheduler can now be re-factored in order to reflect this new
requirement:

fact Scheduler{
//Partition
all t : Time | lone (mode·t)·Normal
all p : Partition | some t : Time | p·mode·t = Normal
all p : Partition, t : Time | i2n[p,t]⇒
{

(some t’ : Time | eq[diff[t,t’],p·period] and i2n[p,t’]) &&

51

(all t’ : Time | lte[diff[t,t’],p·minimum]⇒p·mode·t’ = Normal) &&
(all t’ : Time | gt[diff[t,t’],p·maximum] and lt[diff[t,t’], p·period]⇒p·mode·t’ = Idle) &&
(all t’ : Time | gt[diff[t,t’],0] and lt[diff[t,t’],p·period]⇒not i2n[p,t’])

}

//Process
all t: Time | lone p:Process | (p·state·t)=Running
all p : Process | some t:Time | p·state·t = Running
all p : Process, t:Time | p·state·t = Running⇒{

p·prt·mode·t=Normal && HasMaxPriority[p,t]
}
all p : Process, t:Time | re2ru[p,t]⇒{

(some t’:Time | eq[diff[t,t’],p·p_period] && re2ru[p,t’]) &&
(all t’:Time| gt[diff[t,t’],p·time_capacity] && lt[diff[t,t’],p·p_period]⇒p·state·t’ = Ready) &&
(all t’:Time | gt[diff[t,t’],0] && lt[diff[t,t’],p·p_period]⇒ not re2ru[p,t’])

}
}

This fact now has two distinct sections: partitions scheduling (already explained) and the processes
scheduling. The explanations here are referring to the process scheduling section of the fact.

The first two lines states that at some point in time there can be no more than one process executing
and all processes will eventually execute. Again, it is assumed that there is only one CPU available and
therefore only one process can be in the state Running. The following line states that if a process is running
then its partition must be in the Normal state and the process must have top priority in the whole system.
This restriction comes directly from the requirement.

Let us see in detail the rules which must verify in order to a process pass from a Ready to Running
state:

1. The period of the process must be respected, i.e. the difference of the present time and the last time
the process was executing must be equal to the process period: some t’:Time | eq[diff[t,t’],p.p_period]
&& re2ru[p,t’].

2. The process must be in a ready state if its period time has not pass and if the time capacity of
the process has exceeded: all t’:Time| gt[diff[t,t’],p.time_capacity] && lt[diff[t,t’],p.p_period] =>
p.state.t’ = Ready.

3. If the period of the process is not respected at time instant t’, the process cannot be in a run-
ning state in the next time instant: all t’:Time | gt[diff[t,t’],0] && lt[diff[t,t’],p.p_period]=> not
re2ru[p,t’].

52

(a) Time 0

(b) Time 1

(c) Time 2

(d) Time 3

(e) Time 4

Figure 4.8: Partitions Evolution over Time

At this point we are able to see how the model respects all constraints in the model and tries to
schedule the process with the higher current priority inside the scheduled partition. Figure 4.8 shows us
two partitions and three processes. Process 0 belongs to partition 1 and processes 1 and 2 belong to
partition 0. The scheduler schedules partition 0 at instant 1 and the process with the higher priority inside
it: process 2. Process 2 continues to be scheduled at instant 2 and at instant 3 the scheduler decides
to put the process 2 into Ready state to schedule Process 0 at the instant 4. This is a demonstration of
how Alloy can be used to correctly model a partitioning kernel scheduler with some real-time constraints.

53

http://alloy.mit.edu/

The reader can find the whole execution of these three processes and two partitions at Section A.1 of the
Appendix.

4.3 Summary

This Chapter showed how the method presented in Chapter 3 can be effectively used into requirements
documents of LCS. We’ve seen how writting a model imediatly after the appearance of the requirement,
can improve readability and comprehension of its formal model. This readability improvement is gained
mainly due the fact that we don’t have to write the complete model but only a portion of it, justifying with
the requirement the appearance of each model.

This Case Study showed the beginning of a process of requirements traceability, obligating the re-
quirement engineer to write every model for all requirements considered. This approach is completely
different from creating one model for the whole requirement, which is against the principles of requirement
traceability.

The following Chapter will present an evolution from what we’ve seen so far. Chapter 3 still calls for
an expert to create formal models for each requirement. Below we will see that there is a correspondence
between common ways of describe requirements and formal models. This correspondence will allow
requirements engineers to have free formal models for theirs requirements, without having to write a single
specification into some formal language.

54

Chapter 5

From Boilerplated Requirements to
Abstract Models

5.1 Introduction

Today requirements for software are usually written using NL and that won’t change in the near future, do
to the many advantages which NL brings. It is accepted that the gap between requirements and the final
code:

Requirements // Code

is too wide, despite the many attempts to shorten it and automate the whole process. Re-
search has come to the conclusion that such gap must be splinted in shorter paths. One way to
split the gap between requirements and cfode, is to add an Abstract Model between them:

Requirements // Abstract model // Code

Such Abstract Model is used to improve the knowledge of the software requirements and
to easily the life of programmers when they need to write the code (sometimes the code can
be partially generated from such abstract model). Those abstract models can be constructed
using Formal methods like the ones we’ve seen in Chapters 1 and 2. In order to construct these
models, one must be have abstraction skills and good mathematical background. The problem
with the construction of abstract model, is that abstraction is the accepted as the hardest part of
programming and the skill which programmers lack most [53].

Programming is usually learn as a repetitive task: one apply common solutions to common
problems. That is reflected to requirements descriptions, similar texts patterns are used to de-
scribe tasks or functions which the system must have. Such patterns in requirements documents,
can be used to standardize and generalize the writing of requirements using boilerplates [22]. The
use of boilerplates, is another split in the path between Requirements and Code and it appears
immediately after requirements are written and before the abstract model is constructed:

Requirements // Boilerplates // Abstract model // Code (5.1)

But what is a boilerplate? A boilerplate is nothing else than parametric text, with place holders
to be filled in. An example of a boilerplate is:

55

The <STAKEHOLDER> shall be able to <CAPABILITY> (5.2)

The above boilerplate can be used to write requirements which describe that some entity shall
have a certain capability. Using boilerplates as a standard to write requirements descriptions,
boilerplates are classified according to their characteristics and then use that classification to
group requirements which have the same structure [22].

Boilerplates can be used to shorten the gap between requirements and their abstract models,
reliving programmers from having sophisticated abstract skills. However there are a number of
challenges to be addressed in order to use boilerplates effectively in this manner. The alternative
which is followed in the following sections, is to find requirement boilerplates not in text, but in
formal models:

Requirements
(free text)

// Boilerplates
(constrained text)

��

Code
(or UML/OCL, etc)

Formal models
(eg. Alloy)

jjU U U U U U U

44iiiiiiiiiiiiii

OO�

�

We’ll see how to gather boilerplates from common patterns in modeling languages. This
method of finding the boilerplates, requires expertise in formal methods and requirement engi-
neer, but once a boilerplate is found we can added it a boilerplate repository and we have three
guarantees:

• A new boilerplate which can be used to write requirements in a standard manner.

• We can assume that the boilerplate has a subsequent abstract model, which has been
proved useful.

• A free abstract model, retrieved by construction.

Alloy was adopted as a formal language to construct the abstract models. Using Alloy, allow
us to incorporate this use of boilerplates in the methods described in Chapter 3. Also, Alloy
language is highly invites the user to model using the composition operator, which is closer to the
way sentences appear in NL.

5.2 Boilerplates meets Alloy

Let us consider the following requirement concerning a Partition Information Flow Policy (PIFP)
of a SPK addressed in Chapter 4:

Req. PIFP#009: Partitions shall have access to channels via defined access points
called ports.

If we look at the boilerplate repository:

56

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

http://freespace.virgin.net/gbjedi/books/re/boilerplates/repository.htm

it’s clear that doesn’t exist any boilerplate which is applicable for this requirement. Let us start
by defining our Alloy model of such requirement:

sig Channel{}

sig Partition{ port: one Channel }

Looking at the model of the requirement, we can infer the following boilerplate:

A <PARTITION> is linked to one and only one <CHANNEL> through a <PORT> (5.3)

This boilerplate has a subsequent formal model associated within and can be used in any
other problem domain. Boilerplate 5.3 can be used in requirements concerning keyboards and
computers:

A <KEYBOARD> is linked to one and only one <COMPUTER> through a <USB-CABLE> (5.4)

Boilerplate 5.3 is nothing else than a manner of stating that one entity is related by only one
other entity, through some device. Boilerplate 5.3 can be generalized as:

A <ENTITY1> is linked to one and only one <ENTITY2> through a <DEVICE> (5.5)

Technically, what we did was to instance boilerplate 5.5 placeholders with different values. In
the first under substitutions:

<ENTITY1> := <PARTITION>,
<ENTITY2> := <CHANNEL>,
<DEVICE> := <PORT>

and the latter under substitutions

<ENTITY1> := <KEYBOARD>,
<ENTITY2> := <COMPUTER>,
<DEVICE> := <USB-CABLE>.

The generic boilerplate 5.5 results in the Alloy model:

sig Entity2{}

sig Entity1{ device: one Entity2 }

It is possible that two completely different boilerplates, generate the same abstract model.
Consider a requirement concerning a Configuration Management System (CMS) of the SPK
addressed in Chapter 4:

Req. CMS#001: The system shall have a Configuration Management System (CMS)

An appropriate boilerplate for this requirement could be:

A <SYSTEM> shall have a SubSystem (5.6)

The corresponding Alloy model for this boilerplate is similar to the one of boilerplate 5.5:

57

http://freespace.virgin.net/gbjedi/books/re/boilerplates/repository.htm
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

sig SubSystem{}

sig System{ subsystem: one SubSystem }

In Verified Software Repository (VSR) 1, we can find a set of commonly occurring patterns
in formal specification. Such repositories like VSR can be used to construct a repository of
boilerplates and then be applied into requirement from different problem domains. In the following
section, will be shown a set of rules which specify the translation from boilerplates to Alloy.

5.3 Boilerplates Repository

Boilerplates can be either structural or behavioral. Structural boilerplates are the ones which
declares entities and relations between them. The boilerplates we’ve seen so far, are structural
boilerplates. Behavioral boilerplates define how entities evolve over time, and usually introduces
actions and restrictions on the model.

Structural boilerplates follow the grammar:

structural ::= every entity shall have [mult] [fixed] [attribute] entity
| quantifier entity shall contain [mult] [fixed] [attribute] entity
| quantifier entity is a entity
| quantifier entity shall be able to action entity

mult ::= one | at most one | some
entity ::= noun, attribute ::= adjective | noun, action ::= verb

The structural boilerplates which one may derive from the grammar above, has the follow-
ing relationships: association (shall have); composition (shall contain); generalization (is a).
Associations and compositions can optionally be declared as immutable (fixed), and be given
an explicit attribute name and multiplicity. In addition to this relationships, the grammar allows one
to define boilerplates with the notion of capability (shall be able to), meaning that an entity can
act somehow on another entity.

This set of boilerplates have a direct correspondence with Alloy model. In order to translate
structural boilerplates to Alloy, one should use the following rules:

Jevery e1 shall have m fixed a e2K ≡ sig e1 { a : JmK e2 }
sig e2 { }

Jevery e1 shall have m a e2K ≡ sig e1 { a : e2 JmK→ Time}
sig e2 { }

Jevery e1 shall contain m fixed a e2K ≡ sig e1 { a : JmK e2 }
sig e2 { e1 : lone e1 }
fact { e1 = ~e2 }

Jevery e1 shall contain m a e2K ≡ sig e1 { a : e2 JmK→ Time}
sig e2 { e1 : e1 lone→ Time}
fact { all t : Time | e1.t = ~(a.t) }

Jq e1 is a e2K ≡ sig e1 extends e2 { }
sig e2 { }

Jevery e1 shall be able to a e2K ≡ sig e1 { a : e2 lone→ Time}
sig e2 { }

1See http://vsr.sourceforge.net.

58

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://vsr.sourceforge.net

To translate the multiplicities, one just have to replace at most one by lone, the other two are
equal (one an some). This translation rules only consider boilerplates which impose a name on
the relation (like boilerplate 5.3 where Device is the name of the relationship). When a boilerplate
doesn’t define the nome for the relationship, the name of the entity can be used. In boilerplate
5.5 relation subsystem was renamed with the name of the entity in lowercases.

Some of these rules are defined using the local state modeling idiom described in Section
2.1.1 which allow us to model in terms of traces of execution (Please See [47]). When a relation
is dynamic, an extra column Time is added, allowing us to visualize evolution over time.

As an example consider the composition boilerplate:

Jevery e1 shall contain m a e2K ≡ sig e1 { a : e2 JmK→ Time}
sig e2 { e1 : e1 lone→ Time}
fact { all t : Time | e1.t = ~(a.t) }

Besides the relation between a component and its part, its added a contained relation from
the part to its component with the name of the former. This relation must be simple, i.e. have
multiplicity lone, since a part cannot be shared between components, and should be symmetric in
relation to the contains relation. In this particular case, the composition is mutable and both these
relations are extended with Time and the aforementioned constraints become invariants over
execution traces. As an example of composition consider the following requirement on channels:

JEvery Channel shall contain MessagesK ≡
sig Channel { message : Message set→ Time }
sig Message { channel : Message lone→ Time }
fact { all t : Time | channel .t = ~(message.t) }

Because a channel can contain different messages over time, relations message and channel
are considered mutable and the Time column is added to them.

These rules can be applied to translate boilerplate individually. In requirements documents,
entities are mentioned more than once and if we use boilerplates to write requirements, the same
entity will appear in different boilerplates. This raises the challenge of combining different Alloy
models from different boilerplates, in order to gather in the same model all that has been said
about an entity or set of entities. The case of adding new information to an entity and reflect that
in a final Alloy model, can be solved using a coalesced sum operator :

 sig B {}

sig A { rs1: B }

⊕
 sig C {}

sig A { rs2: C }

 =

sig B {}

sig C {}

sig A { rs1: B,

rs2: C

}

This operation is well know in relation algebra known as ”split“ [6] or ”fork“ [26] and its pre-

sented in Section 2.1.2. Another case arises when we instantiate the same boilerplate and
change only some entities. For example, suppose boilerplate 5.3 is instantiated as:

A <A> is linked to one and only one through a <D> (5.7)

59

http://alloy.mit.edu/
http://alloy.mit.edu/

A <A> is linked to one and only one <C> through a <D> (5.8)

If the above boilerplates were translated to Alloy, they would originate similar models. The
former would be:

sig B{}

sig A{ D: one B }

and later:

sig C{}

sig A{ D: one C }

Those models need to be combined and reflect both information in only one signature A. This
leads to the following rule:

sig B {}

sig A {

D: B

}

⊕

sig C {}

sig A {

D: C

}

 =

sig B {}

sig C {}

sig A {

D: B + C

}

This operation is nothing else then the Either operator described in Section 2.1.2.

Behavioral boilerplates are inspired by the navigational style of Alloy, where constraints en-
force cardinality or inclusion of sets resulting from applying the relational composition operator
defined in Section 2.1.2. This navigational style is captured in English by the use of possessive
form, which lead to the behavioral boilerplates described in the following grammar:

behavioral ::= lset shall [not] be ([in] the rset | empty)
lset ::= every (entity | attribute) {attribute}

| the attribute {attribute} of the lset
rset ::= the (entity | attribute) {attribute}

| the attribute {attribute} of the rset
entity ::= noun, attribute ::= adjective | noun | verb

Possessive forms can be constructed both with the possessive apostrophe or preposition of.
To improve readability, we can write an attribute which is then followed by its target entity. This
behavioral boilerplates can be translated to Alloy using the following rules:

60

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Jl shall be rK ≡ fact { all t : Time, JlKε = JrK}
Jl shall be in rK ≡ fact { all t : Time, JlKε in JrK}

Jl shall not be rK ≡ fact { all t : Time, JlKε ! = JrK}
Jl shall not be in rK ≡ fact { all t : Time, JlKε not in JrK}

Jl shall be emptyK ≡ fact { all t : Time, JlKno}
Jl shall not be emptyK ≡ fact { all t : Time, JlKsome}

Jthe a1 . . . al of every lKm ≡ Jevery l a1 . . . alKm

Jthe b1 . . . bn of the rK ≡ Jthe r b1 . . . bnK
Jevery e a1 . . . alKm ≡ x : e , y : x.Ja1K.Jal−1K | m y.JalK
Jevery a a1 . . . alKm ≡ y : univ.JaK.Ja1K.Jal−1K | m y.JalK

Jthe e b1 . . . brK ≡ x.Jb1K.JbrK
Jthe b b1 . . . brK ≡ univ.JbK.Jb1K.JbrK

JaK ≡
{
a if a immutable
a.t otherwise

In this translation only the definition of invariant properties is considered, which justifies why
all facts start with quantification over Time. Mutable relations are mapped into Time events. When
behavioral boilerplates are constructed with the word of, they are reduced to the case of attributes
separated by the possessive apostrophe. If the Left Hand Side (LHS) starts with an Entity, a new
universally quantified variable x is introduced to be reused in the translation of the Right Hand
Side (RHS) if the entity is again referred to. Such an example is the requirement:

JThe destination of every Channel ′s messages shall be

the partition of the Channel ′s destinationK ≡
all t : Time | all x : Channel , y : x.(message.t) |

y.destination = x.destination.partition

If the LHS does not begin with an entity, the relation is composed with the universal set
univ and saved in a universally quantified variable x . This variable is used forward to apply the
multiplicity test. An example of such requirement is:

JThe channel of every sent Message shall be emptyK ≡
all t : Time | all x : univ.(send .t) | no x.(channel .t)

Boilerplates repositories like this one, can be used to construct tools which automatically
translates requirement boilerplates to abstract model in Alloy. In [10] a sketch of the tool PROVA
is presented. PROVA is a tool that automatically generates Alloy models from the boilerplates
present in presented repository, enabling early detection of ambiguities and inconsistencies through
model checking. PROVA receives requirements in boilerplates generated by the above grammars
and then using the translation rules, reaches to the correct Alloy model of each boilerplate instan-
tiation.

5.4 Summary

This Chapter shown that there is a shorter gap between requirements and theirs specification.
Boilerplates shorten this gap and present an opportunity for requirements engineers to model
their requirements without knowing a formal language. This is an evolution from what we saw in

61

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Chapter 3, where requirements engineers still need to know formal languages and have expertise
on the field.

Such as in requirements descriptions, formal models also present commonly used patterns.
Identifying this patterns and mapping them to boilerplates, allow one to construct a repository of
boilerplates and formal models. These repositories are independent and can be reused in other
requirements documents.

This Chapter presented an initial construction for an algebra of boilerplates. This algebra will
allow one to combine different boilerplates and models and throught that create complete models
for requirements documents.

62

Chapter 6

From Alloy to free Uppaal models

6.1 Introduction

Alloy it is a useful tool to express behavior and complex constraints for systems without explicit
real-time requirements. Sometimes, we can even model with time constraints using idioms like
the one explained in Section 2.1.1, allowing the user to express some properties related with time
events using the powerful abstraction characteristic of Alloy. However, in some systems, real-time
properties can’t be expressed with Alloy and this lack of real-time supports requires us to change
our models to tools which present better support for real-time and concurrent systems.

We could try to introduce time in Alloy because technical Alloy is a SAT based model-finder,
and several authors proposed solutions to encode time in this kind of tools [13, 77]. Another
approach would be to encode Lamport’s temporal logic [54] in Alloy and through that specify
properties with time constraints associated. Both of these approaches lack of the possibility of
representing real-time constrains and check systems with those properties (they are focused on
specifying casual constraints of time and not on the real-time issues). Another disadvantage is
that we would have to re-create another , supporting those methods.

What if there is a connection between Alloy and a tool which efficiently verifies real-time
systems? The Uppaal model checker presented in Section 2.2 is an example of such a great
tool. If one wants to use these tools together, would probably follow the following process: start to
model a system in Alloy and at some point, where the requirements don’t allow us to go any further
with the Alloy specification (because they impose some real-time constraints, hard to specify in
Alloy), we would have to re-create the whole model in the Uppaal idiom. Alloy and Uppaal are
tools with different logics for specify models, Alloy comes from the culture Z, Object-Z and Object
Oriented Programming and Uppaal uses networks of timed-automata to specify concurrent and
real-time systems. This re-creation of the model would be a highly error prone and an arduous
task. Ideally we would like to somehow use the Alloy specification to generate our Uppaal model,
with the less user intervention possible.

Suppose one wants to model a set of requirements, rich in behavior constraints but also
with some real-time impositions. If one had to choose between Alloy and Uppaal, a non Alloy
user would probably choose Uppaal right away because it perfectly support real-time and the
requirements have real-time constraints. However, if the user has already crated a model in
Alloy he would certainly choose it again to model the requirements, using the far more powerful
abstraction of Alloy, saving many hours of work. The problem with the second type of users, is
that at some point they just can’t go any further or will develop a model which doesn’t perfectly

63

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/

reflect the requirements. If they can’t go any further with Alloy, they must re-crate the model in
Uppaal based on what they learn with the Alloy model.

Because Alloy language is based on Object-Z notation, we could try to use the work pre-
sented in [19, 20, 18, 21]. The authors presented a technique called OZTA which is described
as “An integrated an integrated formal modeling technique for specifying real-time complex sys-
tems, which combines Object and Timed Automata.”. The authors identified a set of commonly
used timed automata patterns to specify real-time systems and added them to the Object-Z no-
tation. This work shows us that a connection between Alloy and timed automata can be built, but
obligates the user to model systems using only those identified patterns.

In the following Sections will be shown a method and tool which allows the user to generate
a Uppaal model from an Alloy model. This method was implemented directly in the GUI and
creates a Uppaal automata from a Alloy model. The method allows the user to specify real-time
problems in an interactive fashion and releases him of having to be constrained to a set of timed
automata patterns.

6.2 Methodology

Apparently Alloy and Uppaal models are in two completely different modeling idioms, but we will
see a re-factor which can be applied to every Alloy model, which makes a connection between
both idioms of specification.

Suppose one needed to transform a Alloy model into a Uppaal one. The problem which arises
is: given a Alloy model of a system, how can be generated a correspondent automata which have
the same system states and respects the allowed transitions expressed in Alloy?

Declaring a signature is essentially declaring a set of items which are populating when we
run a certain command. Alloy has several modeling idioms, one highly used is the Trace idiom
[47]. This idiom allow us to see the evolution of atoms from a particular signature. The idea is to
create a ordering on the signature and then allow the atoms to evolute by the application of the
predicates defined in the model.

As an example let us use model of the known river crossing puzzle: A farmer needs to bring
a wolf, a goat and a cabbage from the right side of the river to the left side. The boat can only
carry the farmer and other passenger at a time. If the farmer leaves the wolf with the goat, wolf
eats the goat. If the farmer leaves the goat with the cabbage, the goat will eat the cabbage. We
need to find a series of steps which the farmer must takes in order to transport all three without
they eating each other. The following model is a solution for this puzzle (the model was inspired
by the one which comes with Alloy):

64

http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Alloy Code Display 1 River Crossing Model. Model adapted from river crossing model example
which comes with Alloy.

open util/ordering[State]

abstract sig Object { eats: set Object }

one sig Farmer, Cabbage, Goat, Wolf extends Object {}

fact eating { eats = Wolf→ Goat + Goat→ Cabbage }

sig State {

right: set Object,

left: set Object

}

fact initialState { first·right = Object && no first·left }

pred crossRiver [from, from', to, to': set Object] {

// either the Farmer takes no items

(from' = from - Farmer && to' = to - to·eats + Farmer) ||

// or the Farmer takes one item

(some item: from - Farmer {

from' = from - Farmer - item

to' = to - to·eats + Farmer + item

})

}

fact stateTransition {

all s: State, s': next[s] { Farmer in s·right ⇒
crossRiver[s·right, s'·right, s·left, s'·left] else

crossRiver[s·left, s'·left, s·right, s'·right]
}

}

fact{ last·left = Object }

65

http://alloy.mit.edu/

In this model the state of the river is encoded into as a order. The evolution of the element
in this order is constrained by the fact stateTransition which states that can cross the river if
the predicate crossRiver can be evaluated as true. The predicate crossRiver changes things
(cabbage, wolf and goat) only if there is no possibility of two things that eat each other can stay
in the same side (relation eats is defined in fact eating).

This puzzle is modeled using the Trace idiom. Each instance of this model is called an Exe-
cution Trace. The execution traces of this model will show us possible solutions to the problem,
i.e, traces where the state starts by having all things in the right side and end by having all things
on the left side of the river.

Each instance of the model is a valid evolution of the signature in the ordering (in this case
of signature State). When we run the command run for 8 State, Alloygives us instances of the
model with at most 8 States. We can get several of this instances by pressing the button Next in
the Alloy GUIİf we want instances with more than 8 states, just need to change it in the command.

The Trace idiom doesn’t gives us the automata of the problem, but gives us something closer
to it: a series of words from a language of that automata (each instance of the model is a valid
word of that language). Even if the language is unknown, Alloycan obtain several words from that
language.

As an example suppose we have the following instances retrieved through Alloy:

Figure 6.1: Traces of the River Crossing Puzzle

Each circle represents the state configuration: right and left margins of the river and where
is each thing (F=Farmer, C=Cabbage, G=Goat, W=Wolf). Figure 6.1 shows how the margins
evolves in different situations. If we had a Deterministic Finite Automaton (DFA) with the possible
states of the river, this automaton would accept each of this traces (assuming the Alloy model is
correct). Would be useful if one could automatically generate a DFA that at least accept a set of
this traces. With Alloy one could continually ask for more instances of the system (more within
a fixed set of river states but also more with a larger number of river states), and thus enrich the
language the DFA accepts.

Let us carefully look at the definition of a DFA to see if we can transform instances like the
ones presented in figure 6.1 into some DFA:

Definition 1 A Deterministic finite automaton A consists of:

• A finite set Q of states.

66

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

• A finite set Σ of input symbols.

• A transition function δ : Q× (Σ∪ ε)→ Q, i.e. the transition function δ takes a state p ∈ Q,
a symbol a ∈ (Σ ∪ ε) and returns a state δ(p, a) = q such that q ∈ Q. The empty string ε
cannot be a member of the alphabet Σ.

• One start state q0 ∈ Q.

• A set of final states F ⊆ Q.

Usually the DFA A is written as A = (Q,Σ, δ, q0, F).

To construct a DFAA = (Q,Σ, δ, q0, F) from a set of Alloy instances of model written in the
Trace Idiom one should take the following steps:

1. The set Σ is input symbols is equal to the sum of all states configuration given by Alloy.

2. Create a new state q0 and connect that state with the empty transition ε to all initial states
in instances given by Alloy. The set Q of states are now q0 plus all states give by the Alloy
instances.

3. The initial state of A is state q0.

4. The transition function δ is such that: if p, q ∈ Q, a ∈ Σ and δ(p, a) = q then state q in the
Alloy instance have the configuration a and p was a previous state of q in that instance.

As an example consider the following set of Alloy instances from some arbitrary model (the
name of states follows the same notation used in Figure 6.1: each name represents the relations
configuration in that state):

r() r(a) r(a) r(ab) r(ab)

r() r(a) r(ab) r(ab) r(ab)

r() r(a) r(a) r(aa) r(ab)

Figure 6.2: A Set of Alloy instances.

With these instances we can apply the previous algorithm to obtain a DFA. This DFA accepts
the language created by the states configuration provided through Alloy:

67

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

q4

q7

q10

q13

q16

q2

q5

q8

q11

q14

q3

q6

q9

q12

q1

r() r() r()

r(a) r(a) r(a)

r(ab) r(a) r(a)

r(ab) r(aa)
r(ab)

r(ab) r(ab) r(ab)

q15

Figure 6.3: A DFA from a set of instances.

Although we obtain a DFA which accepts the language induced through Alloy models, this
DFA have a lot of states which makes it useless to transfer to a tool like Uppaal. Ideally we want
the smallest DFA (smallest in the number of states) which accepts the language induced by Alloy.
This can be achieved through the application of a DFA minimization algorithm. The tool described
in Section 6.3 implements the DFA minimization algorithm presented in [39].

In order to minimize a DFA we need to find equivalent states and then group them somehow
in a new DFA that recognizes the same language. The definition of equivalent states requires the
notion of the transition function extended to a word from the alphabet and not only a symbol. This
extended function determines where the automaton ends when starting at some state and the
input is a sequence of symbols from the alphabet Σ. The definition is of the extended transition
function δ̂ is made by induction:

68

http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/

Basis If we are in a state q and read the empty string ε, remain in state q: δ̂(q, ε) = q.

Induction Let w ∈ Σ be a string of the form xa, where a is the last symbol of w and x is
the string consisted of all but the last symbol. The transition function applies recursively:
δ̂(q, w) = δ(δ̂(q, x), a).

The idea of the extended transition function is to incrementally compute each symbol with the
transition function δ as usual.

We are now ready to test the equivalence of two states in a DFA A.

Definition 2 Let p, q be two states of a DFAA. States p and q are said to be equivalent if: for all
input strings w consisted of symbols from set Σ, δ̂(p, w) is an accepting state if and only if δ̂(q, w)
is an accepting state.

From this definition follows that the equivalence of states is recursive:

Theorem 1 If in some DFAA = (Q,Σ, δ, q0, F) two states p, q ∈ Q are equivalent and state
r ∈ Q are equivalent to q, then states p, r are also equivalent.

The proof of this theorem is straightforward. A detailed proof can be found in [39].

If two states are not equivalent, they said to be distinguishable. In [39] authors present an
algorithm, based on this definition of state equivalence, that allows one to find all equivalent
states, this algorithm is called Table-Filling Algorithm and is implemented in the tool described
in Section 6.3.

The Table-Filling Algorithm is a recursive discovery of all distinguishable pairs of states in
a DFAA = (Q,Σ, δ, q0, F). After the applying the algorithm, all pairs which are not marked as
distinguishable, are equivalent:

Basis For all two states p, q ∈ Q, if p is an accepting state and q is a non-accepting one, the pair
p, q is distinguishable.

Induction Let p, q ∈ Q be states. If for some symbol a ∈ Σ the states δ(p, a) and δ(q, a) are
distinguishable, then also p, q are distinguishable.

This algorithm not only finds all pairs of distinguishable states, but all pairs which this algorithm
doesn’t mark as distinguishable, are equivalent. For a proof of this please consult [39].

If one applies the Table-Filling algorithm to the automaton of Figure 6.2, would get the fol-
lowing table where a square with a x indicates that states are distinguishable, a blank square
indicates that states are equivalent:

69

q2 x
q3 x x
q4 x x x
q5 x x x x
q6 x x x x x
q7 x x x x x x
q8 x x x x x x x
q9 x x x x x x x x
q10 x x x x x x x x
q11 x x x x x x x x x
q12 x x x x x x x x x x
q13 x x x x x x x x x x
q14 x x x x x x x x x x x x x
q15 x x x x x x x x x x x x x
q16 x x x x x x x x x x x x x

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15

Table 6.1: Table of distinguishable pairs of states.

First we mark all pairs of states which contains a accepting and a non-accepting state (in
our examples the accepting states are q16, q15, q14. Then we proceed recursively starting with
state q13. The state q13 transits for q16 on input ”r(ab)“ and because q16 is final, we can mark
immediately all states which transits by ”r(ab)“ to non-final states. This leave-us with the states
q11 and q12 which both go to final states by the same symbol ”r(a,b)“. This is applied recursively
to all states until we reached state q2 where all pairs are distinguishable or equivalent unless the
pair with state q1 that is also distinguishable.

The Table-Filling algorithm can’t construct a minimum DFA, but already partitions the states
into equivalent classes. This allow us to put together all states which present the same behavior,
in the sense of our state equivalence definition. A simple algorithm to construct blocks of equiv-
alent states is for every state p, add in the same set all equivalent states to it. Although blocks
of equivalent states can be built, we still don’t know if all the states of the DFA will be present in
some block of this partitioning. In [39] the author presented a theorem which proves that all states
will be present in some set of equivalent states:

Theorem 2 If we crate for each state q a block of equivalent states, all blocks together form a
partition of the set of states. Each state is in exactly one block, all states within the same block
are equivalent and states from different blocks are distinguishable.

Knowing that blocks of equivalent states form a partition, we can pass to the algorithm which
transforms a DFA A = (Q,Σ, δ, q0, F) into a minimum DFA B = (Qb,Σb, δb, qb, Fb):

70

1. Apply the Table-Filling algorithm to find the pairs of equivalent states.

2. Create blocks of equivalent states.

3. The set Qb of states are the blocks created in the previous step.

4. The transition function δb computes as follows: Let S be a block of equivalent states of DFA
A and a ∈ Σ a input symbol. Because all states in S are equivalent, there must be a block
T of equivalent states in DFA A such that for all q ∈ S, σ(q, a) ∈ T .

5. The start state qb of DFA B is the block containing the start state of A.

6. The set of accepting states Fb is the set of blocks containing at least one accepting state
of DFA A.

7. The input symbols remain the same: Σb = Σ.

Now one can use this algorithm to construct a minimum DFA from a set of Alloy instances.
This DFA can be used by the system modeler to express real-time properties in some real-time
model checker as Uppaal or use the DFA to gain a deeper insight on the system states and
transitions between them.

Using the previous algorithm, we can get the minimum DFA from the DFA of Figure 6.3:

Figure 6.4: The minimum DFA from a set of instances.

71

http://alloy.mit.edu/
http://http://www.uppaal.com/

The DFA A constructed with the previous algorithm are guaranteed to be minimal, i.e. there
isn’t other DFA which accepts the same language and has less states. If we apply this method to
our model of the river crossing problem, we will get all possible states of the problem:

Figure 6.5: The minimum DFA of the river-crossing problem.

Looking at the description of the river-crossing problem, this is exactly what we expected as
its DFA. The farmer can always cross alone from one side to the other, this is what makes that
every state in the DFA has an arrow to the previous state. The DFA shows all the solutions to the
problem (which consists in every path starting in the initial state and ending in the final state).

We’ve presented a method that allows the transformation of Alloy models into a DFA. The
following sections will show how to use this method as a bridge between Alloy and Uppaal models.
This is possible due to the fact that Uppaal models are networks of timed-automata, which are
mathematical structures with great similarity with DFA’s.

6.3 Tool Support

The method described in Section 6.2 was implemented in a tool which fully supports the transfor-
mation of a Alloy model to a DFA. The DFA is showed in a graphic representation in both Graphviz
and Alloy and then converted automatically to a Uppaal model. In this section we will see in de-
tail how the tool was integrated in the Alloy GUI how to extract model instances from Alloy to a
external format which is easier to process and how all this is combined to retrieve a DFA of the
model.

Integration with Alloy. This tool was integrated in the Alloy GUI to improve usability and relief
the user from changing to other tool when he wants to see the a DFA of the system. The tool
assumes the user has applied the trace idiom where he created a ordering in some signature and
a fact which constraints the evolution of the model by a set of predicates.

The DFA can only be generated after we’ve retrieved a set of instances, as explained in
Section 6.2. Remember that each instance in the local state is interpreted as a computation of a
hidden automaton with length n (n being the number of atoms of the ordering). To extract a set
of instances we need three parameters:

72

http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://www.graphviz.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

• S : The signature name that is suppose to be expanded. Because a model may contain
several orderings, we need to ask the user which one is suppose to evolute.

• W : The maximum number of instances for signatures not in the ordering.

• N : The maximum length of the computation we want.

• K : The maximum number of model instances we want to have for each trace size.

The user can set the parameters W , N and K using the following interface:

(a) S Parameter (b) M , N and K Parameters

Figure 6.6: Tool Interface

The user can set parameter M , K and S (Max Scope Sig, Max Runs Automaton and Max
Scope Automaton, respectively) in the options menu. Then he presses the new button ”Au-
tomaton“ (at the right side of the ”Show“ button) and after entering the signature which is to be
expanded, presses the generate button to create the DFA.

After the tool processing is complete complete, the DFA is shown to the user in the Alloy
usually way of representing model. This user has all the usual features at his disposal (zoom in
and out, moving the states, etc).

73

http://alloy.mit.edu/

Model Extraction. Alloy has a powerful API which allow an external program to perform multiple
actions in some model. Usually when one wants to visualize an instance, Alloyshows a visual
representation with boxes for atoms and arrows for relations. Then each of these instances
needed to be processed and save them somehow for further processing (application of DFA
construction and minimization).

To easily process each instance, the tool developed uses a Extensible Markup Language
(XML) representation of models. In addition to the visual representation of Alloy, we also have
the XML representation of models. As an example, consider the following Alloy instance:

Figure 6.7: Alloy Instance.

This instance shows two atoms A and B and a relation r relating them. Alloy also represents
this instance in the following XML:

< sig label="this/B" ID="4" parentID="2">
< atom label="B$0"/>

< /sig>

< sig label="this/A" ID="5" parentID="2">
< atom label="A$0"/>

< /sig>

< field label="r" ID="6" parentID="5">
< tuple> < atom label="A$0"/> < atom label="B$0"/> < /tuple>
< types> < type ID="5"/> < type ID="4"/> < /types>

< /field>

< sig label="univ" ID="2" builtin="yes">
< /sig>

Signatures are represent by <sig> tags and relations are represented by <label> tags. Inside
a <label> table multiple tuples can appear as the relation relations the atoms. In this example,

74

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

relation r relates atom A with atom B.
The tool then process these XML files and save each instance in a data structure to be further

processed. Looking at the XML representation and knowing which signature is in the ordering of
the Trace Idiom we can identify the order of the atoms solely looking at their lexicographic order
([43]). Each instance is saved as a graph and the atoms which comes from the ordering are
represented are nodes in the graph. Their names is equal to the relations configuration. As an
example consider the following instance where the signature A is the ordering:

< sig label="this/B" ID="4" parentID="2">
< atom label="B$0"/>
< atom label="B$1"/>

< /sig>

< sig label="this/A" ID="5" parentID="2">
< atom label="A$0"/>
< atom label="A$1"/>

< /sig>

< field label="r" ID="6" parentID="5">
< tuple> < atom label="A$0"/> < atom label="B$0"/> < /tuple>
< tuple> < atom label="A$0"/> < atom label="B$1"/> < /tuple>
< tuple> < atom label="A$1"/> < atom label="B$1"/> < /tuple>
< types> < type ID="5"/> < type ID="4"/> < /types>

< /field>

Just with this XML we know that atomA0 is previous toA1 and we can infer their names in the
graph looking at all relations which relates A’s to any other signature. In this case, only relation r
relates A’s to B’s. When the tool read a instance like this, creates the following graph:

r:B1r:B0B1

Figure 6.8: Graph from an instance.

Using this kind of instance extraction, the tool can easily retrieve a instance from a model in
local state to a graph representation which can be further processed. The tool uses the following
algorithm to get all possible instances within the parameters N , K and S (maximum length of the
computation, maximum number of instances for each trace size and the signature in the ordering):

75

Algorithm 2 Get All Instances from a Alloy model

Require: S ← signature in the ordering
Require: W ← maximum number of instances for signatures not in the ordering.
Require: N ← maximum length of the computation
Require: K ← maximum number of instances for each trace

for i = 1→ N do
j = 1
instance←execute (run {} for W but exactly i S)
saveInstance(instance)
while instantece.hasNext and j <= K do
saveInstance(instance)
j ← j + 1

i← i+ 1

The saveInstance function proceeds as explained before, firstly gets the XML of the instance
and secondly transform that XML into a graph. The .hasNext predicate is provided by Alloy and
indicates if there is more instances of the model withing the same scope. This algorithm allow us
to find multiple instances of the model, which will result in richer DFA’s.

Complete Cycle. When the user presses the Generate button in the interface, several steps
are taken to create the minimum DFA of the system. Firstly all instances are read into XML files
and saved into a temporary folder. When all instances are retrieved, the tool iterates throught the
XML files and for each one, creates its DFA and minimize it with the existing DFA so far.

When all XML files are processed, the tool has a minimum DFA of system saved in an internal
data structure. This data structure is then printed in three formats: A image created through
Graphviz, a projection of the graph directly in Alloy and more important, a Uppaal model with all
states and pre-defined transitions of the system.

6.4 Final Considerations

Until now we’ve seen method and subsequent tool support which transform a Alloy model into
a correspondent DFAȦll the user has to do is to introduce the Trace Idiom and then he has a
free DFA at a distance of a button press. This DFA isn’t developed by intuition or any mean
of human intervention, it is constructed based on a formal model (Alloy model), where several
characteristics of the system have already been considered.

This approach is far distant from the usual one, where the user has two options when a model
of a real-time system is needed: he may choose to model the entire real-time system into a
tool which effectively supports real-time constraints but lacks of a good support for a behavior
specification, or he choses to model the system in a tool with excellent support for behavior
specification but lacks of a good real-time support and at some point need to re-model the whole
system in a real-time tool, practically giving away all the previous work he made.

Although this conversion may prove valuable to a requirement analysis or a systems modeler,
it should be used wisely. Below we will see a technique which help us to retrieve the correct DFA
of the models. Without the following techniques, in some models the DFA we get isn’t exactly the
correct one.

76

http://alloy.mit.edu/
http://alloy.mit.edu/
http://www.graphviz.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/

Abstract Interpretation. When models have relations with multiplicity as set, sometimes the
DFA constructed isn’t appropriated to real-time modeling. In such the cases, the should perform
a simple re-factor in the model, making the DFA better suited to specify real-time constraints.

Suppose one wants to model the behavior of adding items to a Bag, with the restriction that
an item can only be added after the receipt of a trigger:

Alloy Code Display 2 Simple Model of the Bag

open util/ordering[A]

sig Item{}

sig C{}

sig A{

bag : set Item,

trigger : lone C

}

pred addItem[a,a':A, i:Item]{

some a·trigger
i not in a·bag
a'·bag = a·bag + i

no a'·trigger
}

pred addC[a,a':A, c:C]{

no a·trigger
a'·trigger = c

a'·bag = a·bag
}

fact{

no first·bag no first·trigger
all a:A, a':a·next | some i:Item,c:C | addItem[a,a',i] || addC[a,a',c]

}

The instances which Alloy gives us, clearly allow us to see that the model evolves over time
as expected:

77

http://alloy.mit.edu/

Figure 6.9: Trace of execution.

The Item1 it is only added to the bag after the appearance of a trigger and the same for
Item2. The same kind of behavior it is reproduced for larger traces. If we apply the tool presented
in Section 6.3 we will get the following DFA:

Figure 6.10: DFA Generated without abstract interpretation.

The reader might question him self: Why state bagBtriggerC transits to state bagBB instead
of state bagB? If we want a DFA of this system, it makes sense that DFA created a cycle where
the DFA add a item to the bag after the receipt of a trigger. Because Alloy doesn’t know that for
us adding one or adding 10 items to the bag is the same, it keeps adding different items to the
bag making each new item in the bag a new state in the DFA.

In order create the correct DFA, the user should apply some kind of abstract interpretation
relaxing the relation bag to represent that adding one or n items is the same. This abstract
interpretation must ensure that predicates like the addItem still are used by the model but doesn’t
infer DFA like the one in Figure 6.10. Basically what ween need to reflect in the model is that it is
insignificant if the relation bag has one or n items, what is important to distinguish is 0 items from
one or more items:

78

http://alloy.mit.edu/

Alloy Code Display 3 New predicate for adding items.

pred addItem[a,a':A, i:Item]{

some a·trigger
i not in a·bag
no a·bag ⇒ a'·bag = a·bag+ i else a'·bag=a·bag
no a'·trigger

}

Using this predicate in our model, guarantees that and item can only be added after the receipt
of a trigger and now we can generate a DFA suitable than the previous one:

Figure 6.11: Correct DFA Generated with the tool.

In this DFA the requirement analyst can easily specify a real-time constraint like ”items shall
be added at a rate of at least t time units“‘.

This kind of Abstract Interpretation can help the requirement analyst to derive suitable DFAs
to specify real-time constraints. The transformation we saw isn’t a ”must follow“, requirements
analysts can and should abstract model relations as it suits him by looking at the evolution of the
models and what kind of DFA he is getting.

River-Crossing with Time-Constraints. Suppose that adding to the river-crossing problem,
we had five more constraints:

• The farmer takes 6 minutes to load and unload the goat or the wolf.

• The farmers takes 2 minutes to load and unload the cabbage.

• After unload a being, the farmer must stay in the margin at least 1 minute.

• If the farmer will cross alone, he doesn’t have to wait before departure.

• The farmer cannot stay more than 10 minutes if he is in the same side of the wolf.

79

If the river-crossing had these time-constraints and we want create a model of the problem
we can start by creating a model of the problem in Alloy, forgetting the time constraints. When the
model gave solutions to the non-temporal problem, we could use the tool to generate the DFA of
Figure 6.5.

Now one just have to work on the Uppaal model obtained thought the Alloy to Uppaal conver-
sion. The first thing one need to do is to declare a clock variable c to represent time in Uppaal :
clock c;

With this clock variable we just need to go to every state in the timed automata previously
generated and apply the time constrains. As described in Section 2.2 every transition between
states has a guard condition, which must be true in order to the transition happen and update
statement where we can set values to variables. Every state in Uppaal also has an invariant
expression which must always be true in the automaton is in the state. Let p and q be two
states of a timed automata which have a transition between them, then the guard and the update
expression of the transition from p to q are γpq and υpq , respectively. The invariants of states p
and q will be represented as λp and λq, respectively. For all states p and q in the timed automata
previously generated for the river-crossing problem, if p and q are connected by a transition from
p to q we proceed as follow:

• If the farmer will transport a goat or wolf from p to q: υpq = c := 0, γpq = c >= 7.

• If the farmer will transport a cabbage from p to q: υpq = c := 0, γpq = c >= 3.

• If the farmer will cross alone from p to q: υpq = c := 0, γpq = c >= 0.

• If the farmer will stay in the same side of the wolf in state q: λq = c <= 10.

Applying the rules above will result in the Uppaal timed automata of Figure 6.12
In Uppaal the initial state is marked as a double circle (state rightFarmerCabbageGoatWolf),

the state where the solution is achieved is the state colored with yellow (state leftFarmerCabbage-
GoatWolf). Guards are the green expressions in the transitions, updates are the blue expressions
and the states invariants are the expressions in magenta.

This DFA transformation its a step further in the modeling of requirements. With this DFA
transformation, a requirement analyst can start by specifying a requirements document with the
approach described in Section 3.2 and then if at some point appears some real-time properties
that he can’t specify in Alloy can easily apply the Trace Execution idiom and then generate the
DFAof the system.

80

http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://alloy.mit.edu/

Figure 6.12: River Crossing with Real-Time Restrictions.

6.5 Summary

This Chapter has shown how to convert a Alloy model to Uppaal and how this can be important
when we need to model systems with explicit temporal properties. Converting Alloy to Uppaal
is achieved by first introducing the Trace Idiom in the model and then converting it to a DFA.
This transformation shows another way of seeing Alloy instances, where they represent paths in
the DFA. After the initial DFA is obtained, a minimization algorithm is applied, collapsing similar
states. Once the DFA is generated it suffices to convert it to the Uppaal format, and an Uppaal
model is created.

The work presented in this chapter can be seen as further step to be used after chapters 3
and 5. The idea is to defer requirements stating explicit real time constraints to later stages in
the modeling. In the initial phase everything can thus be handled in Alloy. When requirements
engineers feel they can’t go any further due to explicit real-time constraints they can take the
model of all requirements thus far and transform it to a Uppaal model. With the model in this
language it becomes easier to specify temporal constraints than if one has to do it with Alloy.

81

http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/

82

Chapter 7

Conclusions and Future Work

This dissertation has tried to provide evidence of the advantages of using formal method tech-
niques since the early phases of software development, namely in requirements analysis. An ap-
proach is put forward which emphasizes on traceability of requirements and mathematical models
which provide the shift from informal to formal specifications upon which subsequent development
steps should rely upon, notably code writing.

Such combined use of requirements documents and mathematical models allow requirements
engineers to early spot design flaws and timely correct them, trimming risk and saving spurious
development costs. Such a close link between text and model hopefully bends the learning curve
which requirements engineers are faced with when adopting formal methods.

Particular emphasis is put on the Alloy formal specification language which provides an easy-
to-use, lightweight approach to formal modeling. Model checking in Alloy is, in particular, an
effective and practical way of checking requirement documents. The similarity between Alloy’s
navigation-styled notation and object-oriented programming makes it attractive to the average
programmer. Its simple relational flavour makes it specially tractable in mathematical terms.

The timely adoption of formal modeling before code-writing is central to the approach put
forward in this dissertation. The idea is to provide support for semi-automatically managing the
process of distilling text into formal models, as seen in chapters 3 and 6, for instance. This is
intended to relief the requirements engineers from manual tasks which usually are highly error
prone and slow. This process linking text to formal models is captured by the following diagram:

Requirements
(free text)

//

**UUUUUUUUUUUUUU

Boilerplates
(constrained text)

��

Code
(or UML/OCL, etc)

Formal models
(eg. Alloy)

jjU U U U U U U

44iiiiiiiiiiiiii

OO�

�

The above diagram shows two options in Alloy-based requirement analysis: either one models
requirements documents using one’s own expertise in Alloy (Chapter 3) or boilerplated text can
be used (Chapter 5) in-between as a means to generate formal models for free, using a repository
of boilerplates and corresponding Alloy models.

83

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/

Chapter 3 has shown how a requirements document can be manually translated to mathemat-
ical models. For improved traceability, this translation is not performed as a whole, but rather on
a stepwise manner, showing explicitly which requirement maps into which part of the model. This
chapter can be seen as a first introduction to chapter 5, where we go a step further in showing
that some textual patterns can be related to corresponding patterns in formal modeling. Through
such boilerplated text and Alloy, we can model an entire requirement without directly writing a
single line of Alloy. This isn’t fully achieved in Chapter 3, where we still need someone to build
the models. The work presented in Chapter 5 is the subject of paper [10] and was presented to
the software industry in the Dependability Workshop at Critical Software 1.

Alloy has proved a versatile language and tool in supporting the methods presented in Chap-
ters 3 and 5 and in providing a bridge towards the world of real time constraints (Chapter 6). Such
a need for a bridged process was identified by looking at how people create models in Alloy and
how it becomes increasingly difficult to cope with real-time constraints, calling for a subsequent
modeling phase in another (more elaborate) language where such constraints are native, as is
the case of Uppaal. Such a transformation is hard and error prone and results in two models
which represent different things. Chapter 6 presents a technique and a tool support which trans-
late Alloy models in the local-trace idiom to Uppaal models, without any user intervention. This
translation can be applied both in models from chapter 3 and 5.

Future Work

This dissertation raises several issues for future work. Chapter 3 presented a method and its tool
support. This tool can evolve to an integrated tool with a GUI better supporting the requirement
engineer to write requirements and their subsequent models, including graphics representation
and assertions. One can force requirements engineers to write requirements in some standard
layout (eg: XML) and then adapt the tool to process this layout. This would decouple the tool from
LATEX or any another specific document preparation system.

Concerning Chapter 5 which relates requirements boilerplates and Alloy, there is much space
left for research and tool development. One could further investigate on the relationship between
boilerplates and formal method models and create a wider repository of boilerplates and their
models. One could develop further an algebra for boilerplates, adding new operations to the
ones presented in Chapter 5 allowing to combine different kinds of models. This algebra of
boilerplates would show how to combine different Alloy models, to represent the same problem.
This combination would be made of well defined rules and not on user intuition or experience.

Some of these ideas have already been taken for development by the Educed 2 team, where
the PROVA tool is currently under development to support the ideas presented in Chapter 5.
PROVA offers the translation from boilerplated requirements to Alloy. Ongoing work includes fur-
ther development of boilerplates for dynamic behavior, namely through boilerplates that constrain
valid traces in Alloy and correspond directly to LTL formulæ in Temporal Alloy. This is addressed
in [10].

One topic which can be improved is the relation between models and text. The intrinsic
relation between text and formal models

Requirements // Formal Modelsoo

1Please see: http://www.criticalsoftware.com/dependability-workshop.
2See: http://www.educed-emb.com.

84

http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://http://www.uppaal.com/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://alloy.mit.edu/
http://www.criticalsoftware.com/dependability-workshop
http://www.educed-emb.com

can be further extended to identify what impact a change in text has in the model. Today this
is achieved using expertise from modelers and requirement analysts. In the future such a task
could become semi-automatic. This correlation can even be further expanded to add metrics on
text quality based on formal models and through that, improve text quality.

Another point of interest for future research is to adapt the work of this dissertation to gen-
eral purpose documents used by civil society (eg: company norms, regulations, legal text etc).
Such work would be particularly interesting because it would dramatically increase the spectrum
of documents which can be analyzed with formal methods. This is important if one wants to cre-
ate a line of business using formal methods to analyze text. In fact, not only software industry
has gained interest on linguistic improvements through formal methods. The core business of
company PORTUGUÊSCLARO 3 is text-clearance, inspired in the ideas born with Plain English
[16]. They share the same aim of rewriting text in a way which removes inconsistencies and am-
biguities which can mislead readers. PORTUGUÊSCLARO has shown some interest on checking
the use of formal models in assisting their text analysis, to help them clear text on a semantic
basis, writing better English and Portuguese. This is an evidence that requirement engineering
assisted with formal methods can evolve into a wider and broader topic: documents in general
improved through formal methods, where no restriction is made on the type of documents one is
addressing.

3Please See: http://portuguesclaro.pt

85

86

Bibliography

[1] I.F. Alexander and R. Stevens. Writing Better Requirements. Pearson Education, 2002.
[cited at p. 4, 7]

[2] J. Backus. Acm turing award lectures. chapter Can programming be liberated from the von
Neumann style?: a functional style and its algebra of programs, pages 1977–. ACM, New
York, NY, USA, 2007. [cited at p. 20]

[3] C. Baier and J. Katoen. Principles of Model Checking (Representation and Mind Series).
The MIT Press, 2008. [cited at p. 6]

[4] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development, Coq’Art:
the Calculus of Inductive Constructions. Springer-Verlag, 2004. [cited at p. 6]

[5] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational calculation for software analysis.
IEEE Transactions on Software Engineering, 31:137–149, 2005. [cited at p. 19]

[6] R. Bird and O. Moor. Algebra of programming. Prentice-Hall international series in computer
science. Prentice Hall, 1997. [cited at p. 19, 21, 59]

[7] J. Bowen and V. Stavridou. Safety-Critical Systems, Formal Methods and Standards. Soft-
ware Engineering Journal, 8(4):189–209, July 1993. [cited at p. 2]

[8] H. Bowman, G. Faconti, J-P. Katoen, D. Latella, and M. Massink. Automatic verification of
a lip synchronisation algorithm using uppaal. In Proc. of the 3rd International Workshop on
Formal Methods for Industrial Critical Systems, pages 97–124, 1998. [cited at p. 23]

[9] F. Bruijn and H.L. Dekkers. Ambiguity in natural language software requirements: A case
study. In REFSQ, pages 233–247, 2010. [cited at p. 6]

[10] D. Cadete, A. Cunha, J.M. Faria, J.N. Oliveira, and A. Passos. From boilerplated require-
ments to alloy: half-way between text and formal model. December 2011. (Submitted).
[cited at p. 61, 84]

[11] T.D Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J.
ACM, 43:225–267, March 1996. [cited at p. 2]

[12] R.N. Charette. Why Software Fails. IEEE Spectrum, 2005. [cited at p. 2]

[13] P. Chauhan, E.M. Clarke, J.H. Kukula, S. Sapra, H. Veith, and D. Wang. Automated ab-
straction refinement for model checking large state spaces using sat based conflict analysis.
In Proceedings of the 4th International Conference on Formal Methods in Computer-Aided
Design, FMCAD ’02, pages 33–51, London, UK, 2002. Springer-Verlag. [cited at p. 63]

87

[14] E.M. Clarke and J.M. Wing. Formal methods: state of the art and future directions. ACM
Comput. Surv., 28:626–643, December 1996. [cited at p. 2, 7]

[15] J. Cleland-Huang, R. Settimi, E. Romanova, B. Berenbach, and S. Clark. Best practices for
automated traceability. Computer, 40:27–35, June 2007. [cited at p. 5]

[16] M. Cutts. Oxford Guide to Plain English. Oxford University Press, USA, 2007. [cited at p. 85]

[17] Information Assurance Directorate. U.S. government protection profile for separation kernels
in environments requiring high robustness — version 1.03, June 2007. [cited at p. 41]

[18] J. S. Dong, P. Hao, S. Qin, and X. Zhang. The semantics and tool support of ozta. In K.-K.
Lau and R. Banach, editors, Formal methods and software engineering : 7th International
Conference on Formal Engineering Methods, ICFEM 2005, 1-4 November, 2005, Manch-
ester, UK ; proceedings., number 3785 in Lecture notes in computer science, pages 66–80.
Springer, Berlin, November 2005. [cited at p. 64]

[19] J. S. Dong, P. Hao, X. Zhang, and S. Qin. Highspec : a tool for building and checking
ozta models. In 28th International Conference on Software Engineering, 20-28 May 2006,
Shanghai, China ; proceedings., pages 775–778. Association for Computing Machinery, May
2006. [cited at p. 64]

[20] J.S. Dong and R. Duke. Integrating object-z with timed automata. In Proceedings of the
10th IEEE International Conference on Engineering of Complex Computer Systems, pages
488–497, Washington, DC, USA, 2005. IEEE Computer Society. [cited at p. 64]

[21] J.S. Dong, P. Hao, S. Qin, J. Sun, and Y. Wang. Timed automata patterns. IEEE Trans.
Softw. Eng., 34:844–859, November 2008. [cited at p. 64]

[22] M. Elizabeth, C. Hull, K. Jackson, and J. Dick. Requirements engineering (2. ed.). Springer,
2005. [cited at p. 55, 56]

[23] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The linguistic approach to the natural language
requirements quality: Benefit of the use of an automatic tool. In Proceedings of the 26th
Annual NASA Goddard Software Engineering Workshop, SEW ’01, pages 97–, Washington,
DC, USA, 2001. IEEE Computer Society. [cited at p. 7]

[24] M.A. Ferreira and J.N. Oliveira. "relational thinking" for software engineering: a case study.
Journal paper (submitted)., 2011. [cited at p. 21]

[25] M. Fitting. First-order logic and automated theorem proving (2nd ed.). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 1996. [cited at p. 6]

[26] M.F. Frias. Fork algebras in algebra, logic and computer science, 2002. Logic and Computer
Science. World Scientific Publishing Co. [cited at p. 59]

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1995. [cited at p. 17]

[28] A. Garis, A. Cunha, and D. Riesco. Translating alloy specifications to uml class diagrams an-
notated with ocl. In Proceedings of the 9th international conference on Software engineering
and formal methods, SEFM’11, pages 221–236, Berlin, Heidelberg, 2011. Springer-Verlag.
[cited at p. 19]

88

[29] B. Gerd, A. David, and K.G. Larsen. A tutorial on UPPAAL. In Formal Methods for the
Design of Real-Time Systems: 4th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, number 3185 in LNCS, pages 200–
236. Springer–Verlag, September 2004. [cited at p. 25]

[30] R. Gheyi, T. Massoni, and P. Borba. Formally introducing alloy idioms. pages 22–37, Ouro
Preto, Brazil, 2007. [cited at p. 19]

[31] T. Giannakopoulos, D.J. Dougherty, K. Fisler, and S. Krishamurthi. Towards an operational
semantics for alloy. In Proceedings of the 2nd World Congress on Formal Methods, FM ’09,
pages 483–498, Berlin, Heidelberg, 2009. Springer-Verlag. [cited at p. 9]

[32] R.L. Glass. Software runaways: monumental software disasters. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1998. [cited at p. 2]

[33] J.A. Goguen and C. Linde. Techniques for Requirements Elicitation. In Stephen Fickas and
Anthony Finkelstein, editors, Requirements Engineering ’93, pages 152–164. IEEE, 1993.
[cited at p. 3]

[34] O.C.Z. Gotel and C.W. Finkelstein. An analysis of the requirements traceability problem. In
International Conference on Requirements Engineering, pages 94–101, 1994. [cited at p. 4]

[35] J. V. Guttag, J. J. Horning, Withs. J. Garl, K. D. Jones, A. Modet, and J. M. Wing. Larch:
Languages and tools for formal specification. In Texts and Monographs in Computer Science.
Springer-Verlag, 1993. [cited at p. 5]

[36] K. Havelund, K. Guldstr, and A. Skou. Formal verification of a power controller using the
real-time model checker uppaal. In In 5th International AMAST Workshop on Real-Time and
Probabilistic Systems, volume Lecture Notes in Computer Science, pages 277–298, 1999.
[cited at p. 23]

[37] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal modeling and analysis of an
audio/video protocol: an industrial case study using uppaal. In Proceedings of the 18th
IEEE Real-Time Systems Symposium, RTSS ’97, pages 2–, Washington, DC, USA, 1997.
IEEE Computer Society. [cited at p. 23]

[38] C.L. Heitmeyer. Formal methods for specifying validating, and verifying requirements. Jour-
nal of Universal Computer Science, pages 607–618, 2007. [cited at p. 6]

[39] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2006. [cited at p. 68, 69, 70]

[40] ARINC INC. Arinc report 653p1-3 avionics application software interface, part 1, required
services. Technical report, 2010. [cited at p. 41]

[41] T.K. Iversen, K.J. Kristoffersen, K.G. Larsen, M. Laursen, R.G. Madsen, S.K. Mortensen,
P. Petterson, and C.B. Thomasen. Model-checking real-time control programs - verifying
lego mindstorms systems using uppaal. In In Proc. of 12th Euromicro Conference on Real-
Time Systems, pages 147–155. IEEE Computer Society Press, 2000. [cited at p. 23]

[42] D. Jackson. Dependable Software by Design. Scientific American, June 2006. [cited at p. 7]

89

[43] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press, 2006.
[cited at p. 11, 16, 17, 75]

[44] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the alloy constraint analyzer. In In
Proceedings of the International Conference on Software Engineering (ICSE), pages 730–
733, 2000. [cited at p. 10]

[45] M. Jackson. Defining a discipline of description. IEEE Software, 15(5):14–17, 1998.
[cited at p. 29]

[46] M. Jackson and P. Zave. Domain descriptions. In International Symposium on Requirements
Engineering, pages 56–64, 1993. [cited at p. 29]

[47] J.L. Jacob. Trace Specifications in Alloy. In Marc Frappier, Uwe Glässer, Sarfraz Khurshid,
Régine Laleau, and Steve Reeves, editors, Abstract State Machines, Alloy, B and Z, volume
5977 of Lecture Notes in Computer Science, chapter 9, pages 105–117–117. Springer Berlin
/ Heidelberg, Berlin, Heidelberg, 2010. [cited at p. 18, 59, 64]

[48] P. Jalote. An integrated approach to software engineering. Springer-Verlag New York, Inc.,
New York, NY, USA, 1991. [cited at p. 7]

[49] C.B. Jones. Systematic software development using vdm - teaching notes, 1995. [cited at p. 5]

[50] S. Jones, D. Till, and A.M. Wrightson. Formal methods and requirements engineering: Chal-
lenges and synergies. Journal of Systems and Software, 40(3):263–273, 1998. [cited at p. 6]

[51] D.E. Knuth. Literate Programming. CSLI Lecture Notes Number 27. Stanford University
Center for the Study of Language and Information, Stanford, CA, USA, 1992. [cited at p. 32]

[52] I. Koren and C.M. Krishna. Fault Tolerant Systems. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007. [cited at p. 2]

[53] J. Kramer. Is abstraction the key to computing? Commun. ACM, 50(4):37–42, April 2007.
[cited at p. 55]

[54] L. Lampor. The temporal logic of actions. ACM Trans. Program. Lang. Syst., 16(3):872–923,
1994. [cited at p. 47, 63]

[55] L. Lamport. LATEX : a document preparation system : user’s guide and reference manual.
Addison-Wesley Pub. Co., Reading, Mass., 1994. [cited at p. 35]

[56] L. Lamport. Real-time model checking is really simple. In CHARME, pages 162–175, 2005.
[cited at p. 47]

[57] G.L. Lann. An analysis of the ariane 5 flight 501 failure - a system engineering perspec-
tive. In Proceedings of the 1997 international conference on Engineering of computer-based
systems, ECBS’97, pages 339–346, Washington, DC, USA, 1997. IEEE Computer Society.
[cited at p. 2]

[58] P.A. Laplante. What Every Engineer Should Know about Software Engineering (What Every
Engineer Should Know). CRC Press, Inc., Boca Raton, FL, USA, 2007. [cited at p. 3]

90

[59] K.G. Larsen, P. Petterson, and W. Yi. UPPAAL in a Nutshell. Int. Journal on Software Tools
for Technology Transfer, 1(1–2):134–152, October 1997. [cited at p. 23]

[60] N.G. Leveson and C.S. Turner. An investigation of the therac-25 accidents. Computer,
26(7):18–41, 1993. [cited at p. 2]

[61] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems. Springer-
Verlag New York, Inc., New York, NY, USA, 1992. [cited at p. 5]

[62] K. L. McMillan. Symbolic model checking: an approach to the state explosion problem. PhD
thesis, Pittsburgh, PA, USA, 1992. UMI Order No. GAX92-24209. [cited at p. 6]

[63] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1982. [cited at p. 5]

[64] G.J. Myers and C. Sandler. The Art of Software Testing. John Wiley & Sons, 2004. [cited at p. 2]

[65] P. Naur and B. Randell. Software Engineering: Report of a conference sponsored by the
NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968. Scientific Affairs Division,
NATO, Brüssel, 1969. [cited at p. 1]

[66] R. Neufville. The baggage system at denver: prospects and lessons. Journal of Air Transport
Management, 1(4):229 – 236, 1994. [cited at p. 2]

[67] B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering, pages 35–46, New
York, NY, USA, 2000. ACM. [cited at p. 3]

[68] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework for expressing the relationships
between multiple views in requirements specification. IEEE Transactions on Software Engi-
neering, 20:760–773, 1994. [cited at p. 29]

[69] J.N. Oliveira. Generative and transformational techniques in software engineering ii. chap-
ter Transforming Data by Calculation, pages 134–195. Springer-Verlag, Berlin, Heidelberg,
2008. [cited at p. 22]

[70] J.N. Oliveira. Extended Static Checking by Calculation Using the Pointfree Transform, pages
195–251. Springer-Verlag, Berlin, Heidelberg, 2009. [cited at p. 20]

[71] D.L. Parnas. Really rethinking ’formal methods’. Computer, 43:28–34, January 2010.
[cited at p. 29]

[72] P. Poizat, C. Choppy, and J. Royer. From informal requirements to coop: a concurrent
automata approach, 1999. [cited at p. 6]

[73] R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill Science/Engi-
neering/Math, 6 edition, April 2004. [cited at p. 7]

[74] B. Ramesh and M. Jarke. Toward reference models for requirements traceability. IEEE Trans.
Softw. Eng., 27:58–93, January 2001. [cited at p. 5]

91

[75] A. Redouane. Experience using formal methods for capturing requirements of web-based
applications. In Proceedings of the 1st IEEE International Conference on Cognitive Infor-
matics, pages 213–221, Washington, DC, USA, 2002. IEEE Computer Society. [cited at p. 6]

[76] Daniel Sheridan. Temporal Logic Encodings for SAT-based Bounded Model Checking. PhD
thesis, University of Edinburgh, November 2005. [cited at p. 6]

[77] D.J. Sheridan. Temporal logic encodings for SAT-based bounded model checking. University
of Edinburgh, 2006. [cited at p. 63]

[78] I. Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9. edition, 2010.
[cited at p. 2, 3]

[79] The Standish Group. Chaos report, 1995. http://www.cs.nmt.edu/~cs328/reading/

Standish.pdf – last visited 15th of June, 2008. [cited at p. 3]

[80] M. Vetterling, G. Wimmel, and A. Wisspeinter. Secure systems development based on the
common criteria: the palme project. SIGSOFT Softw. Eng. Notes, 27:129–138, November
2002. [cited at p. 41]

[81] J. M. Wing. A Specifier’s Introduction to Formal Methods. IEEE Computer, 23(9):8–26,
September 1990. [cited at p. 5]

[82] J. Woodcock and J. Davies. Using Z: specification, refinement, and proof, volume 1. Prentice
Hall Upper Saddle River, NJ, 1996. [cited at p. 5]

[83] H. Yang, A. Willis, A. De Roeck, and B. Nuseibeh. Automatic detection of nocuous coor-
dination ambiguities in natural language requirements. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, ASE ’10, pages 53–62, New
York, NY, USA, 2010. ACM. [cited at p. 6]

92

http://www.cs.nmt.edu/~cs328/reading/Standish.pdf
http://www.cs.nmt.edu/~cs328/reading/Standish.pdf

Index

Alloy, 7–23, 25, 27, 30–33, 35, 38–40, 43–47,
50, 53, 56–61, 63–68, 71–74, 76–78,
80, 81, 83, 84

Assertions, 12, 14, 15, 32
Facts, 12–15, 32, 33, 47, 50
Idioms

Global State, 17, 18
Local State, 17, 18, 45

Predicates, 12, 13, 15, 16, 20, 21, 28, 30,
32, 35, 47, 51, 64, 66

Signatures, 10, 12, 16, 18, 19, 22, 32, 33,
35

API
Application Programming Interface, 33, 35,

39, 74

CC
Common Criteria, 41

CTL
Computation Tree Logic, 23, 24

DFA
Deterministic Finite Automaton, 66–74, 76–

81

F.M
Formal Methods, 5–7, 9, 29, 30, 41, 56, 84
Models, 5–10, 12, 16, 17, 19, 20, 22, 23,

25, 44, 45, 50, 55, 61, 63, 76
Tools, 9, 25, 29, 30, 61

FMTR
Formal Methods Tool Repository, 9

Grammar
Left Hand Side, 61
Right Hand Side, 61

GUI
Graphical User Interface, 9, 35, 39, 64, 66,

72, 84

IFIP

International Federation for Information Pro-
cessing, 2

IMA
Integrated Modular Avionics, 41

LCS
Life-Critical System, 2, 7, 41, 54

Model checking, 5, 6, 9, 61

NATO
North Atlantic Treaty Organization, 1, 2

NL
Natural Language, 2–4, 7, 27, 29, 55, 56

OOP
Object Oriented Programming, 10, 17, 25

RB
Requirements Boilerplates, 4, 7, 55–59, 61,

84
RE

Requirements Documents, 2, 7, 27, 29, 30,
33, 35, 41, 80

Requirements Elicitation, 2, 3
Requirements Engineering, 3, 4, 16
Requirements Traceability, 4, 5, 29, 33, 39,

54
Relational Calculus, 19, 21

Either, 21–23
Pointfree, 20
Split, 21–23

SAT
Boolean satisfiability problem, 9, 16

Secure Partitioned Kernel, 8, 56, 57
Configuration Management System, 57
Partition Information Flow Policy, 56

Software
Engineering, 1–3

93

UML
Unified Modeling Language, 16, 19

Uppaal, 8, 9, 23–25, 30, 63, 64, 68, 71, 72, 76,
80, 81, 84

VSR
Verified Software Repository, 58

XML
Extensible Markup Language, 74–76, 84

94

Appendix A

Partitioning Kernel Modeling

95

Secure Partitioning Kernel — A Case Study in

Requirements Engineering

January 21, 2012

Contents

1 Partition Requirements 2
1.1 Partition Attributes . 2

1.1.1 Alloy . 3
1.1.2 Metamodel . 3

1.2 Partition Modes . 4
1.2.1 Alloy . 4
1.2.2 Metamodel . 5

1.3 Partition Secheduling Characteristics 6
1.3.1 Alloy . 6

2 Process Requirements 7
2.1 Processes Attributes . 7

2.1.1 Alloy . 8
2.1.2 Metamodel . 9

2.2 Processes Scheduling Model . 10
2.2.1 Alloy . 10

1

Chapter 1

Partition Requirements

1.1 Partition Attributes

Requirement Number PRT#001

Title Partition Attributes

Description Each Partition shall have the following attributes:

• Identifier: uniquely defined on a system-wide basis, and used to
facilitate partition activation and message routing.

• Memory Requirements: defines memory bounds (minimum and
maximum quotas) of the partition, with appropriate code/data
segregation.

• Period: defines the activation period of the partition, and is used
to determine the partition’s runtime placement within the core
module’s overall time frame.

• Duration: the amount of processor time (minimum and maxi-
mum quotas) given to the partition every period of the partition.

• Criticality Level: denotes criticality level of partition.

• Partition Health Monitor Table (health monitor reconfigura-
tions): denotes instructions to the HM on the actions required.

• Entry Point (i.e., partition initialization): denotes partition elab-
oration restart address.

• System Partition: denotes if the partition is a system partition.

• Lock level: denotes the current lock level of the partition.

• Start condition: denotes the reason the partition is started

Rationale N/A.

2

1.1.1 Alloy

sig Partition {
minimum : one Int,
maximum : one Int,
period : one Int
}

fact Constraints{
all p:Partition | gt[p·minimum,0]
all p:Partition | gt[p·maximum,0]
all p:Partition | gt[p·period,0]
all p:Partition | gt[p·maximum,p·minimum]
all p:Partition | gte[p·period,p·maximum]
}

1.1.2 Metamodel

Figure 1.1: Requirement Metamodel.

3

1.2 Partition Modes

Requirement Number PRT#004

Title Partition Modes

Description The Partition shall have the following modes:

• IDLE: In this mode, the partition is not executing any processes
within its allocated partition windows. The partition is not ini-
tialized (e.g., none of the ports associated to the partition are
initialized), no processes are executing, but the time windows
allocated to the partition are unchanged.

• NORMAL: In this mode, the process scheduler is active. All
processes have been created and those that are in the ready state
are able to run. The system is in an operational mode.

• COLD START: In this mode, the initialization phase is in
progress, preemption is disabled with LOCK LEVEL=0 (pro-
cess scheduling is inhibited) and the partition is executing its
respective initialization code.

• WARM START: In this mode, the initialization phase is in
progress, preemption is disabled with LOCK LEVEL=0 (pro-
cess scheduling is inhibited) and the partition is executing its
respective initialization code. This mode is similar to the
COLD START but the initial environment (the hardware con-
text in which the partition starts) may be different, e.g., no need
for copying code from Non Volatile Memory to RAM.

Rationale N/A.

1.2.1 Alloy

sig Time {}
sig Mode {}
sig Normal, Idle extends Mode {}

sig Partition {
minimum : one Int,
maximum : one Int,
period : one Int,
mode : Mode one → Time,
}

fact Modes{
#(Normal)=1
#(Idle)=1
Mode = Normal + Idle
}

4

1.2.2 Metamodel

Figure 1.2: Requirement Metamodel.

5

1.3 Partition Secheduling Characteristics

Requirement Number PRT#007

Title Partition Scheduling Characteristics

Description The main characteristics of the partition scheduling model shall be:

• The scheduling unit is a partition.

• Partitions have no priority.

• The scheduling algorithm is predetermined, repetitive with a
fixed periodicity, and is configurable by the system configuration
only. At least one partition window is allocated to each partition
during each cycle.

• The core module level O/S exclusively controls the allocation of
the resources to the partition.

Rationale N/A.

1.3.1 Alloy

fun prox : Time → Time {
ordering/next + last → first
}

fun diff [t,t’ : Time] : Int {
#(t’ in (t·nexts + t) ⇒ (t·nexts & (t’ + t’·prevs)) else (t·nexts + t’·prevs + t))
}

pred i2n [p : Partition, t : Time] {
p·mode·t = Normal
p·mode·(t·˜prox) = Idle
}

pred n2i [p : Partition, t : Time] {
p·mode·t = Idle
p·mode·(t·˜prox) = Normal
}

fact Scheduler{
all t : Time | lone (mode·t)·Normal
all p : Partition | some t : Time | p·mode·t = Normal
all p : Partition, t : Time | i2n[p,t] ⇒
{

(some t’ : Time | eq[diff[t,t’],p·period] and i2n[p,t’])
&&
(all t’ : Time | lte[diff[t,t’],p·minimum] ⇒ p·mode·t’= Normal)
&&
(all t’ : Time | gt[diff[t,t’],p·maximum] and lt[diff[t,t’], p·period]⇒ p·mode·t’=Idle)
&&
(all t’ : Time | gt[diff[t,t’],0] and lt[diff[t,t’],p·period] ⇒ not i2n[p,t’])
}
}

6

Chapter 2

Process Requirements

2.1 Processes Attributes

Requirement Number PRC#004

Title Processes Attributes

Description A set of unique attributes shall be defined for each process within the
system. These attributes differentiate between unique characteristics
of each process as well as define resource allocation requirements. The
following attributes a process shall have:

• Base Priority - Denotes the capability of the process to manipu-
late other processes.

• Period - Identifies the period of activation for a periodic process.
A distinct and unique value should be specified to designate the
process as aperiodic.

• Time Capacity - Defines the elapsed time within which the pro-
cess should complete its execution.

• Current Priority - Defines the priority with which the process
may access and receive resources. It is set to base priority at
initialization time and is dynamic at runtime.

• Process State - Identifies the current scheduling state of the pro-
cess. The state of the process could be either dormant, ready,
running or waiting.

Rationale N/A.

7

2.1.1 Alloy

sig State {}
sig Ready, Running extends State {}

fact Modes{
#(Normal)=1
#(Idle)=1
Mode = Normal + Idle

#(Ready)=1
#(Running)=1
State = Ready + Running
}

sig Process{
prt : one Partition,
p period : one Int,
time capacity : one Int,
base priority : one Int,
curr priority : Int one → Time,
state : State one → Time,
}

fact ProcessConstraints{
gt[Process·p period,0]
gt[Process·time capacity,0]
all p:Process | gt[p·base priority, 0]
all p:Process, t:Time | gt[p·curr priority·t,0]
all p:Process | eq[p·base priority, p·curr priority·first]
all p:Process | gte[p·p period,p·time capacity]
all p:Process | gt[p·p period, p·prt·period]
all p:Partition | some p’:Process | p’·prt = p
}

8

2.1.2 Metamodel

Figure 2.1: Requirement Metamodel.

9

2.2 Processes Scheduling Model

Requirement Number PRC#013

Title Processes Scheduling Model

Description The main characteristics of the scheduling model used at the partition
level shall be:

• One of the main activities of the O/S is to arbitrate the com-
petition that results in a partition when several processes of the
partition each want exclusive control over the processor.

• Each process has a priority.

• The scheduling algorithm is priority preemptive. If several pro-
cesses have the same current priority, the O/S selects the oldest
one.

• Periodic and aperiodic scheduling of processes are both sup-
ported.

• All the processes within a partition share the resources allocated
to the partition.

Rationale Scheduler has two levels, the system level in which the scheduler sees
only the partitions and not the processes inside the partition, and the
partition level, in which the scheduler sees the processes inside the
partition.

2.2.1 Alloy

pred re2ru[p : Process, t:Time]{
p·state·t = Running
p·state·(t·˜prox) = Ready
}

pred ru2re[p : Process, t:Time]{
p·state·t = Ready
p·state·(t·˜prox) = Running
}

pred HasMaxPriority[p:Process, t:Time]{
all p’:Process | p’·prt=p·prt ⇒ lte[p’·curr priority·t,p·curr priority·t]
}

fact Scheduler{
//Partition
all t : Time | lone (mode·t)·Normal
all p : Partition | some t : Time | p·mode·t = Normal
all p : Partition, t : Time | i2n[p,t] ⇒
{

(some t’ : Time | eq[diff[t,t’],p·period] and i2n[p,t’])
&&
(all t’ : Time | lte[diff[t,t’],p·minimum] ⇒ p·mode·t’=Normal)
&&
(all t’ : Time | gt[diff[t,t’],p·maximum] and lt[diff[t,t’], p·period] ⇒ p·mode·t’=Idle)
&&

10

(all t’ : Time | gt[diff[t,t’],0] and lt[diff[t,t’],p·period] ⇒ not i2n[p,t’])
}

//Process
all t: Time | lone (state·t)·Running
all p : Process | some t:Time | p·state·t = Running
all p : Process, t:Time | p·state·t = Running ⇒ {

p·prt·mode·t=Normal && HasMaxPriority[p,t]
}
all p : Process, t:Time | re2ru[p,t] ⇒ {
(some t’:Time | eq[diff[t,t’],p·p period] && re2ru[p,t’])
&&
(all t’:Time|gt[diff[t,t’],p·time capacity] && lt[diff[t,t’],p·p period]⇒ p·state·t’=Ready)
&&
(all t’:Time | gt[diff[t,t’],0] && lt[diff[t,t’],p·p period]⇒ not re2ru[p,t’])
}
}

11

108

A.1 Scheduling Instance

(a) Time 0

(b) Time 1

(c) Time 2

(d) Time 3

(e) Time 4

(f) Time 5
109

(g) Time 6

(h) Time 7

(i) Time 8

(j) Time 9

(k) Time 10

(l) Time 11

110

(m) Time 12

(n) Time 13

(o) Time 14

(p) Time 15

Figure A.-1: Partitions Evolution over Time

111

	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Requirements Engineering
	1.2 Formal Methods
	1.3 Formal Methods and Requirements Engineering
	1.4 Aims of the dissertation
	1.5 Document Structure

	2 Formal Methods Tools
	2.1 Alloy
	2.1.1 Modeling Idioms
	2.1.2 Alloy and Relational Calculus

	2.2 Uppaal
	2.2.1 Specification
	2.2.2 Verification

	2.3 Summary

	3 Requirements Engineering Assisted by Formal Methods
	3.1 Introduction
	3.2 Methodology
	3.3 Tool Support
	3.4 Summary

	4 Case Study : Partitioning Microkernel
	4.1 Document Structure
	4.2 Requirements Modeling
	4.3 Summary

	5 From Boilerplated Requirements to Abstract Models
	5.1 Introduction
	5.2 Boilerplates meets Alloy
	5.3 Boilerplates Repository
	5.4 Summary

	6 From Alloy to free Uppaal models
	6.1 Introduction
	6.2 Methodology
	6.3 Tool Support
	6.4 Final Considerations
	6.5 Summary

	7 Conclusions and Future Work
	Bibliography
	Index
	A Partitioning Kernel Modeling
	A.1 Scheduling Instance

