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Abstract

Neuro-fuzzy approach has been successfully applied to a wide range of civil engineering problems so far. However, this is limited for
geopolymeric specimens. In the present study, compressive strength of different types of geopolymers has been modeled by adaptive neuro-fuzzy
interfacial systems (ANFIS). The model was constructed by 395 experimental data collected from the literature and divided into 80% and 20% for
training and testing phases, respectively. Curing time, Ca(OH)2 content, NaOH concentration, mold type, aluminosilicate source and H2O/Na2O
molar ratio were independent input parameters in the proposed model. Absolute fraction of variance, absolute percentage error and root mean
square error of 0.94, 11.52 and 14.48, respectively in training phase and 0.92, 15.89 and 23.69, respectively in testing phase of the model were
achieved showing the relatively high accuracy of the proposed ANFIS model. By the obtained results, a comparative study was performed to
show the interaction of some selected factors on the compressive strength of the considered geopolymers. The discussions findings were in
accordance to the experimental studies and those results presented in the literature.
& 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

Geopolymers, a class of inorganic polymers having an amor-
phous structure consisting of [SiO4]

4� and [AlO4]
5� tetrahedral

which share the entire corners with each other through oxygen
atoms, are generally produced by mixing of an raw aluminosilicate
source in the form of a powder with an alkaline silicate solution
followed by curing [1,2]. On account of production by little carbon
emmision, geopolymers are one of the primary replacements for
ordinary Portland cement (OPC) whose production requires large
amounts of energy and emits much anthropogenic CO2 [2,3].
Various aluminosilicate sources are used to date for production
environmentally friendly geopolymers. Kaolin and metakaolin
[4–8], fly ash [9–14] and different types of slags and muds
[10,15–18] are among the most used aluminosilicate sources for
geopolymerization.
e front matter & 2013 Elsevier Ltd and Techna Group S.r.l. All ri
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Although such soft-computing techniques as artificial neural
networks (ANNs), genetic programming (GP) and adaptive
neuro-fuzzy interfacial systems (ANFIS) have been successfully
applied to a wide range of civil engineering problems so far [19–
30], this is very limited in geopolymers field as a new type high-
performance construction materials and is only limited to the
previous works (see [31–33] for example). In the previous work
[31], compressive strength of geopolymers with different alumi-
nosilicate source was modeled by ANNs. It was reported that
ANNs are capable to predict the compressive strength of
geopolymers by a suitable accuracy. In the present study, ANFIS
has been utilized to predict the compressive strength of the
previously modeled geopolymers. Through using fuzzy sets and a
linguistic model incorporating a set of IF–THEN fuzzy rules,
ANFIS integrates the human-like reasoning approach of fuzzy
systems. Besides the ability to petition for interpretable IF–THEN
rules, being universal approximators is the main strength of
ANFIS approximations [34].
To construct the ANFIS model in the present study, curing

time (days), Ca(OH)2 content (wt%), NaOH concentration,
ghts reserved.



Fig. 1. Input data membershipvalues [39].
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mold type, aluminosilicate source and H2O/Na2O molar ratio
were considered as independent input parameters and the
compressive strength of the investigated geopolymers as
independent target value. The experimental databases were
divided into training (80%) and testing (20%) sets and
modeled by the proposed ANFIS model which was constructed
by a total of 128 rules.

2. Data collection

The collected data were same as those used in the previous
work [31]. Three main series of geopolymers each made from
a certain aluminosilicate source were considered in this study
same as the previous work:
(1)
 The first series of samples were the compressive specimens
made from tungsten mine wastes. Tungsten mine waste
mud which was subjected to a thermal treatment, the fine
aggregate which was crushed sand from the same mine,
distilled water, the sodium hydroxide flakes, sodium
silicate solution and calcium hydroxide were the materials
used to produced geopolymeric compressive specimens
using 50� 50� 50 mm3 cubic molds, according to ASTM
C109. The complete preparation method of the considered
geopolymers has been given in Ref. [35].
(2)
 Metakaolin-based geopolymers made from metakaolin,
calcium hydroxide, sodium hydroxide, sodium silicate
solution, superplasticizer, sand and distilled water was
used to dissolve the sodium hydroxide flakes [12]. Alkali-
activated mortars were a mixture of aggregates, metakao-
lin, calcium hydroxide and alkaline silicate solution were
poured into 160� 40� 40 mm3 cubic specimens accord-
ing to EN 1015-11. The preparation method for compres-
sive strength tests has been presented in Ref. [8].
(3)
 The third group of geopolymers made by tungsten waste mud
was consisted of aggregates, waste mud, calcium hydroxide,
alkaline silicate solution and water in a similar way to the
method described above for the data gathered from Ref. [35].
3. Fuzzy logic

A wide range of covering engineering, process control,
image processing, pattern recognition and classification, man-
agement, economics and decision making has been considered
over the last decade by fuzzy logic, an interesting method
invented by Lotfi Zadeh [36] in 1965 [37].

Fuzzy systems can be defined as rule-based systems that are
constructed from a collection of linguistic rules which can
represent any system with accuracy, i.e., they work as
universal approximators. The rule-based system of the fuzzy
logic theory uses linguistic variables as its antecedents and
consequents where antecedents express an inference or the
inequality, which should be satisfied and consequents are
those, which we can infer, and is the output if the antecedent
inequality is satisfied. The fuzzy rule-based system is actually
an IF–THEN rule-based system, given by, IF antecedent,
THEN consequent [38].
FL operations are based on fuzzy sets where the input data

may be defined as fuzzy sets or a single element with a
membership value of unity. The membership values (μ1 and
μ2) are found from the intersections of the data sets with the
fuzzy sets as shown in Fig. 1 which illustrates the graphical
method of finding membership values in the case of a single
input [39].
A fuzzy set contains elements which have varying degrees

of membership in the set, unlike the classical or crisp sets
where a member either belongs to that set or does not (0 or 1).
However, a fuzzy set allows a member to have a varying
degree of membership which can be mapped into a function or
a universe of membership values [40].
The implementation of fuzzy logic to real applications

considers the following steps [40]:
1.
 Fuzzification which requires conversion of classical data or
crisp data into fuzzy data or Membership Functions (MFs).
2.
 Fuzzy Inference Process which connects membership func-
tions with the fuzzy rules to derive the fuzzy output.
3.
 Defuzzification which computes each associated output.

3.1. Neuro-fuzzy systems

Fuzzy systems can also be connected with Neural Networks
to form neuro-fuzzy systems which exhibit advantages of both
approaches. Neuro-fuzzy systems combine the natural language
description of fuzzy systems and the learning properties of
neural networks. Various neuro fuzzy systems have been
developed that are known in literature under short names.
Adaptive Network-based Fuzzy Inference System (ANFIS)
developed by Jang [41], is one of these neuro-fuzzy systems
which allow the fuzzy systems to learn the parameters using
adaptive back propagation learning algorithm [37]. Mainly three
types of fuzzy inference systems have been widely employed in
various applications: Mamdani, Sugeno and Tsukamoto fuzzy
models. The differences between these three fuzzy inference
systems compromise as a result of their fuzzy rules, as well as
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their aggregation and defuzzification procedures which differ
accordingly [41]. In this study, the Sugeno FIS is used where
each rule is defined as a linear combination of input variables.
The corresponding final output of the fuzzy model is simply the
weighted average of each rule's output. A Sugeno FIS consisting
of two input variables x and y, for example, a one output
variable f will lead to two fuzzy rules:
Fig. 4. Final membership

Fig. 3. Initial membership

Fig. 2. The Sugeno fuzzy m
Rule 1: If x is A1, y is B1 then f1¼p1xþq1yþr1
Rule 2: If x is A2, y is B2 then f2¼p2xþq2yþr2
where pi, qi, and ri are the consequent parameters of ith rule.
Ai, Bi and Ci are the linguistic labels which are represented by
fuzzy sets shown in Fig. 2 [41].
functions [42].

functions [42].

odel [41].



Fig. 5. Fuzzy inference diagram [42].

Table 1
Features of the proposed ANFIS model.

Type SUGENO

Aggregation method Maximum
Defuzzification method Weighted average
Input membership function type Gaussian
Output membership function type Constant

Table 2
Statistical parameters of testing and training sets and overall results of ANFIS
model for compressive strength.

Training set Testing set Total set

MSE 14.48 23.69 16.32
MAPE 11.52 15.89 12.40
R2 0.94 0.92 0.94
MEAN 1.00 1.03 1.00
COV 0.17 0.23 0.19
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3.2. Solving a simple problem with ANFIS

To illustrate how ANFIS works for function approximation,
let us suppose one is given a sampling of the numerical values
from the simple function below [42]:

yi ¼ a3þb2 ð1Þ
where a and b are independent variables chosen over random
points in the real interval [1,9]. In this case, a sample of data in
the form of 17 pairs (a,b,yi) is given where xi is the value of the
independent variable in the given interval [1,9] and yi is the
output of the function given in Eq. (1) and presented in
Table 2. The aim is to construct the ANFIS model fitting those
values within minimum error for Eq. (1) by using the simplest
ANFIS model that is available where the number of rules is 2
for each variable and the type of output membership function
is constant. Initial and final membership values of rules for
each input are given in Figs. 3 and 4, respectively. Suppose
one will find the output for input values of 1 and 9. The
inference diagram of the proposed ANFIS model is given in
Fig. 5 for input values of 1 and 9 with corresponding values of
output membership which is chosen as constant. For the first
input which is 1 the value of the membership function is
observed to be 1 shown on left side of Fig. 7. For the second
input which is 9 the value of the membership function is
observed to be 1 again shown on left side of Fig. 7. Thus the
final output will be 82� 1¼82.

The exact result for a¼1 and b¼9 from Eq. (1) will be
y¼13þ92¼82.
The main aim of this study is the neuro-fuzzy modeling
compressive strength of geopolymers produced by different
aluminosilicate sources based on an experimental database. Com-
pressive strength of geopolymers will be obtained as a function of
curing time (days), Ca(OH)2 content (wt%), NaOH concentration
(M), mold type, aluminosilicate source and H2O/Na2O molar ratio.
The experimental database was divided into training (80%) and
testing (20%) sets. The ANFIS model is constructed with training
sets and the accuracy is verified by testing sets which the ANFIS
model faces for the first time.



Fig. 6. Performance of ANFIS model with respect to experimental results for
compressive strength.

Fig. 7. Initial membership functions for compressive strength (input1¼cur
of superplasticizer (wt%); input4¼NaOH concentration (M); input5¼mold type; i
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The proposed ANFIS models use Gaussian membership
function with 2 rules. The output membership function is
chosen as constant value. Features of the proposed ANFIS
model are given in Table 1. Statistical parameters of testing
and training sets and overall results of the ANFIS model are
presented in Table 2. The overall correlation of the ANFIS
model can be seen in Fig. 6. ANFIS results are observed to be
very close to actual results. The initial and final membership
functions of inputs for compressive strength are presented in
Figs. 7 and 8, respectively. The fuzzy inference diagram is
presented in Fig. 9 with a total of 128 rules.
4. Results and discussion

Absolute fraction of variance (R2), the absolute percentage
error (MAPE) and the root mean square error (MSE) were used
in this study to represent the error arose during the training and
testing in the proposed ANFIS model and they were calculated
by Eqs. (2), (3) and(4) respectively [43]:

R2 ¼ 1� ∑iðti�oiÞ2
∑iðoiÞ2

� �
ð2Þ
ing time (days); input2¼Ca(OH)2 content (wt%); input3¼ the amount
nput6¼aluminosilicate source; and input7¼H2O/Na2O molar ratio).



Fig. 8. Final membership functions for compressive strength (input1¼curing time(days); input2¼Ca(OH)2 content (wt%); input3¼ the amount of superplasticizer
(wt%); input4¼NaOH concentration (M); input5¼mold type; input6¼aluminosilicate source; and input7¼H2O/Na2O molar ratio).
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MAPE¼ 1
n
∑i

��� ti�oi
ti

���� 100 ð3Þ

MSE¼ 1
n
∑iðti�oiÞ2 ð4Þ

where t, o and n are the target value, the output value and the
number of data sets in each training and testing phases.

The calculated performance values for the proposed ANFIS
model have been presented in Table 1. The values of R2,
MAPE and MSE in training phase of the model are 0.94, 11.52
and 14.48, respectively while these values in testing phase are
0.92, 15.89 and 23.69, respectively. These values together with
the results illustrated in Fig. 6 show that the proposed ANFIS
models could predict the compressive strength of the consid-
ered geopolymers appropriately. However, the predicted com-
pressive strength for two geopolymeric mixtures with
compressive strengths of about 56 and 68 MPa have the most
deviation in the model. Although, some deviation is observed
for some of the other data, the values predicted by the model
have accuracy more than 90% and one may propose the
presented model as a suitable one for prediction the compres-
sive strength of the considered geopolymers.
A comparison between the predicted results by the proposed

ANFIS model in this study and that of the previous work [31]
shows that both ANNs models and ANFIS could predict the
compressive strength of the evaluated geopolymers well.
Since the presented soft-computing techniques are limited

to those presented in the previous works (see for example
[31–33]), it is not possible to present a comprehensive
evaluation with different geopolymeric specimens. However,
all of the proposed models in the previous work and that
presented in this work show that such soft-computing methods
as ANFIS, ANNs and GP could be suitably adopted for
predicting the properties of geopolymeric specimens.
The 3D interaction graph between some of selected vari-

ables generated by the proposed model can be seen in Fig. 10.
Fig. 10a shows the interaction between H2O/Na2O ratio and
NaOH concentration on compressive strength of the consid-
ered geopolymers. The results show that the highest strength
has been achieved in higher concentration of NaOH and lower
H2O/Na2O ratio. This is in accordance to the previous work



Fig. 9. Fuzzy inference diagram for compressive strength.
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[31]. Strength of a geopolymeric mixture depends on several
factors in which NaOH concentration has a significant effect.
However, the effect of NaOH concentration on compressive
strength of geopolymers is completely antithesis. While some
reported the increased strength with high NaOH concentration
[11,44,45], the others [46,47] showed the negative impact of
high NaOH concentration. An investigation on the proposed
NaOH concentration for production geopolymers with higher
strength shows that this depends mainly on the aluminosilicate
source [48]. This has been completely evident in Fig. 10b
where for type 1 aluminosilicate source even at low NaOH
concentration, the strength is high and in some cases for this
source type, the strength has been decreased by the increased
NaOH concentration. However, the results of the three sources
in this work show that the strength and NaOH increments
behave in a parallel manner.

Fig. 10c shows the interaction between NaOH concentration
and the amount of superplasticizer. The figure shows that
higher amount of superplasticizer at all NaOH concentrations
resulted in higher strengths. This is in accordance to the
previous work [31], where higher content of superplasticizer
usage lead to the reduced required water and hence increased
strength. This is completely established for concrete specimens
and since the nature of these constructional materials is similar,
one may anticipate that geopolymers behave in the same
manner.
One of the most interesting findings by the proposed ANFIS

model has been illustrated in Fig. 10d where the interaction
between Ca(OH)2 content and NaOH concentration has been
presented. The figure shows that in all of NaOH concentration
and high Ca(OH)2 content, the compressive strength is very
low. The highest strengths have been achieved at intermediate
NaOH concentrations and up to 10% of Ca(OH)2. The findings
show that even at high NaOH concentration, excessive Ca
(OH)2 content may lead to the decreased strength. This is in
accordance to [48] where geopolymers were produced by
ordinary Portland cement (OPC) and high content of lime.
Relatively low compressive strength of those geopolymers
show the possible formation of Ca(OH)2 during incomplete
geopolymerisation.
Finally, Fig. 10e–i shows the interaction between curing

time and the other parameter. In all cases, it has been predicted
that the compressive strength of the considered geopolymers
increased up to 28 days and then will be decreased. This is in
accordance to the previous work [31]. Although the conducted
works on the post 28-days compressive strength of the
geopolymers are limited, some of them have reported the
decreased strength after 28 days of curing [44]. However, in
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contrary, some reported the increased strength after 28 days of
curing [47]. This may be related to the production method and
aluminosilicate source and requires further investigations.
5. Conclusion

Application of neuro-fuzzy approaches for the prediction of
compressive strength of the considered geopolymers is very scarce.
This paper presents a pioneer work on neuro-fuzzy approach in this
field. The proposed ANFIS model is a unified rule-based model
based on experimental data. The proposed ANFIS models show
very good agreement with experimental results. The values of R2,
MAPE and MSE in training phase of the model were acquired as
0.94, 11.52 and 14.48, respectively and 0.92, 15.89 and 23.69,
respectively, in testing phase. The predicted results by the proposed
ANFIS model showed that the effect of NaOH concentration as a
main factor depends on the other factors. However, by considering
the effect of the entire factors, the strength is decreased after 28
days of curing. As a conclusion of this study, neuro-fuzzy may
serve as an effective alternative tool for the modeling compressive
strength of geopolymers in the future.
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