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Abstract

Carbon price is a key variable in management and risk decisions in activities related

to the burning of fossil fuels. Using innovative multivariate wavelet analysis, we study

the link between carbon prices and primary and final energy prices in the time and

frequency dimensions, particularly in longer cycles (4 ∼ 8 and 8 ∼ 20 months).

We show a tight relation between carbon and electricity prices, co-moving together

in one-year cycles, with electricity slightly leading, in opposition with previous results

obtained for Europe. Thus, an over-allocation of allowances to the power generating

sector is suggested. We also find indication of an out-of-phase relation between carbon

and oil prices, with oil leading, and expect this relation to intensify when including

fuel distributors in the CA market. Finally, and contrary to EU ETS previous results,

we do not find a significant relation between carbon and economic activity.

In conclusion, although our results are not as significant as the ones previously

obtained by other authors, for Europe, they show that the variables are related in the

longer term, which supports the development of emissions trading in the post-2020.
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1 Introduction

In the current economic uncertainty context, with climate change concerns, rise of primary

energy prices, and numerous emission trading schemes multiplying around the world, there

is an urge to develop quantitative tools to model and understand the origins of variations in

carbon prices and effects in energy prices. Information on the movement of these variables has

operational and political implications relevant to the main players in the market: polluters

and regulators.

The emission trading scheme in California is one of the World’s latest emerging green-

house gas (GHG) market, created under the Assembly Bill 32 (AB32), as intended by the

Western Climate Initiative (WCI), signed in 2007. It is an important instrument to meet

the goal of reaching the state’s 1990 GHG levels by 2020. Whereas there has been extensive

research on carbon prices, built mainly on data from Europe, we present a first analysis of

the California Carbon Allowances (CCA). Our aim in this paper is to evaluate dynamics

in the time-frequency domain between CCA prices and other local energy prices, in these

early stages, providing information for future periods, and comparing with European carbon

market features.

This paper adds two important perspectives to current research. On the one hand, pre-

vious research on carbon markets proliferated after the launching of the European Emission

Trading Scheme (EU ETS) phase I (2005) and focused on the study of the market itself, in

aspects such as the sources of price variation, market design such as allocation or offsets role,

volatility, etc. Few have analyzed both origins and implications of carbon prices in energy

markets, and none is related to time-frequency issues. On the other hand, studies of the

Californian carbon market have mostly focused on market design features (Fine et al. 2012,

Sivaraman and Moore 2012, Burton et al. 2013, Thurber and Wolak 2013, Bushnell et al.

2014), although Bushnell (2007) looked into the impact on electricity prices. Therefore, this

is an opportunity to test new market information.

On methodology, initial studies on carbon prices essentially explained the price or volatil-

ity of one variable in terms of others. They used Granger causality methodology to find uni-
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directional relations between pairs of variables, including carbon and energy prices (Keppler

and Mansanet-Bataller 2010, Creti et al. 2012). More recently, new studies consider effects

between variables – energy prices and carbon prices – in both directions. They include

vector auto-regressive studies with multivariate analysis estimate impulse response functions

that show the impact of innovations of a variable, namely carbon (Fezzi and Bunn 2009,

Chevallier 2011a, Pinho and Madaleno 2011, Gorenflo 2012, Kumar et al. 2012, Aatola et al.

2013). Also, carbon price volatility, risk-premia and forecasting have lately been the focus of

attention (Mansanet-Bataller and Soriano 2009, Chevallier and Sévi 2010, Chevallier 2011b,

Feng et al. 2011, Rittler 2012, Byun and Cho 2013, Liu and Chen 2013, Lutz et al. 2013,

Koch 2014, Medina et al. 2014, Reboredo 2014).

We follow the previous studies and consider CO2 prices locally related to energy prices

(in our case, gas, oil and electricity).1 These are the critical variables for carbon market

factors.

Like Sousa et al. (2014), to characterize carbon markets, we rely on multivariate wavelet

analysis (MWA) and work in the time-frequency domain, estimating how carbon price rela-

tionships behave at different frequencies and how they evolve over time. We chose to work

with MWA mainly for two reasons. First, it has been shown that energy price dynamics are

strongly nonstationary and so it is important to use methods that do not require stationarity

– Kyrtsou et al. (2009). Second, we note that changes in power supply quantities, on a

large scale, are neither easy nor quick. Therefore, it makes sense to consider the presence

of long-term decisions, or at lower frequencies, i.e., correlations in several temporal cycles.

This can easily be done with wavelet analysis.

This paper proceeds as follows. Section 2 provides a description of the applied methodol-

ogy, Section 3 describes the data used. Section 4 presents the empirical results, and Section

5 concludes and discuss some the policy implications of our results.

1We also included an economic activity index, but ended up excluding this variable, because of statistically
insignificant results.
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2 Multivariate wavelet analysis

Altough some authors have already relied on the use of wavelet analysis to study the evo-

lution of energy prices, including oil, gasoline, natural gas, biofuels and other commodities

(Naccache 2011, Jammazi 2012, Vacha and Barunik 2012, Tiwari, Mutascu and Albulescu

2013, Aloui and Hkiri 2014), as far as we know, specifically about carbon markets, the only

previous work performed in the time-frequency domain is Sousa et al. (2014). With the

exception of this recent paper by Sousa et al. (2014), one common feature to all the above

cited papers is that they all rely on uni and bivariate wavelet analysis. So far, to the best

of our knowledge, multivariate wavelet analysis is still very rare in economic or financial

data. This is an important shortcoming, because when the association between two series

is to be assessed, it is often important to account for the interaction with the other series.

To estimate the interdependence, in the time-frequency domain, between two variables af-

ter eliminating the effect of other variables, we will rely on the concept of partial wavelet

coherency and partial phase-difference.

In this section we provide a necessarily brief description of the wavelet tools that we will

apply. The reader proficient on wavelet analysis may skip this subsection without loss. The

reader interested in an in-depth treatment is directed to Aguiar-Conraria and Soares (2014).

The reader looking for a nontechnical, yet very complete, explanation of these concepts is

referred to Aguiar-Conraria et al. (2012 and 2013).

2.1 The origins of the wavelet and of the Continuous Wavelet

Transform

The theory behind wavelet analysis can be traced back to 1807, when Joseph Fourier showed

that almost any periodic function could be written as a weighted sum of sines and cosines

of different frequencies. Even if the function is not periodic, under some conditions, it still

may be expressed as an integral of sines and cosines multiplied by a weighting function. It

takes one step to apply these ideas to study cycles in time-series data. The typical approach

is to map the original variable, say xt, into the frequency domain, by means of the Fourier
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transform.

Fourier spectral analysis has been used to estimate which cycles play predominant roles

in explaining the variance of a time-series. For example, Granger (1966) and King and

Watson (1996) used these techniques to identify some stylized business cycle facts, Nerlove

(1964) and Wen (2002) used them to identify seasonal components and Merrill, Grofman,

and Brunell (2008) relied on this technique to estimate predominant cycles in the North

American national election results.

In the literature, there are several slight variations in the definition of Fourier transform.

Here, we adopt the following convention for the Fourier transform, X(ω), of a given square

integrable function xt: 2

X (ω) =

�
∞

−∞

xt
�
e−iωt

�
dt. (1)

The spectral representation of a function given by its Fourier transform determines all the

spectral components embedded in the function. The main limitation of Fourier analysis is

apparent in the above formula, where X is a function only of ω, the frequency, implying that

the information about time is lost under the Fourier transform. To overcome this problem,

Denis Gabor, the Hungarian-born Nobel laureate in physics, proposed in his fundamental

paper on communication theory – Gabor (1946) – the use of a modified version of the

Fourier transform, which became known as the short time Fourier transform. The idea is

simple: we first choose a window function g, i.e. a well localized function in time, in order to

localize the Fourier analysis. Then we shift the window along the t-axis. Mathematically, we

multiply the function xt by translated copies of g to select “local sections” of xt, whose Fourier

transforms are then computed. We thus obtain a function of two-variables, τ (the translation

parameter) and ω (the angular frequency), given by Gg,x (τ , ω) =
�
∞

−∞
xt [g (t− τ ) e

−iωt] dt,

where the over-bar denotes complex conjugation.

Gabor (1946) used Gaussian functions as windows. For that particular case, the short

time Fourier transform is known as the Gabor transform. The principal limitation of this

technique is that it gives us a fixed resolution over the entire time-frequency plane. In fact,

2With this definition, ω is the angular (or radian) frequency. The relation to the more common Fourier
frequency is given by f = ω

2π .
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the functions gτ,ω (t) = g (t− τ) e−iωt, being obtained by simple translations in time and

modulations (i.e. translations in frequency) of the window function g, all have the same

“size” as g.

Kahane and Lemarié-Rieusset (1995) and Daubechies (1996) tell us how the struggle

with these limitations paved the way for wavelet analysis. It happened in late 1970s, while

Jean Morlet was working for an oil company. His work consisted in analyzing how one

could generate acoustic waves at the surface and then record the reflected waves. With that

information, he would estimate the influence of each layer of soil by checking the frequency

of the reflected waves. Morlet was unhappy with the Gabor time-frequency analysis: at high

frequencies, there were too many oscillations (leading to numerical instability) and there were

not enough oscillations at low frequencies. Morlet could have applied the Gabor transform

with a narrow window to study high frequency components and a wide window to analyze low

frequency components. However, Morlet wanted to be able to do both simultaneously with

one single transform. To solve this problem, Morlet modified the Gabor approach by using

dilation, instead of modulation. The idea is to consider a window which is an oscillatory

function – hence can be seen as a function with a certain frequency – and compress it

in time to obtain a higher frequency function or spread it out to obtain a lower frequency

function. And, of course, these functions could be shifted in time. Therefore, the transform

function depends on two parameters, one that captures the time location and another that

captures the degree of compression or scale.

Mathematically, gτ,ω (t) is replaced by a two-parameter family of functions, ψτ,s (t) , which

we call the wavelet daughters. In this case, however, the functions ψτ,s (t) are obtained from

a given window function ψ (t), which is oscillatory – the so-called mother wavelet –, by a

dilation by a scaling (or compressing) factor s and a translation by τ ,

ψτ,s (t) =
1

�
|s|
ψ

�
t− τ

s

�
, s, τ ∈ R, s �= 0.3. (2)

For |s| > 1, the windows ψτ,s become larger (hence, correspond to functions with lower

3The factor 1/
�
|s| is a normalizing factor being introduced so that all the wavelet-daughters have the

same energy as the mother wavelet, where the energy of a function xt is given by
�∞
−∞

|xt|2dt.
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frequency) and for |s| < 1, the windows become narrower (hence, become functions with

higher frequency). The main advantage of the wavelet transform, as opposed to the Gabor

transform, is clear: instead of giving a fixed resolution over the entire time-frequency plane,

it provides us a time-scale (or time-frequency, as we will explain later) representation of a

function with windows whose size automatically adjusts to frequencies: it stretches into a

long wavelet function to measure the low frequency movements; and it compresses into a

short wavelet function to measure the high frequency movements.

Jean Morlet was an engineer. He realized that this new approach worked quite well in

practice, but he was not able to explain why. Daubechies (1996) quotes Morlet’s description

of his audiences reaction: "If it were true, then it would be in the math books. Since it

isn’t there, it is probably worthless." Thanks to a common friend, Morlet approached Alex

Grossmann, a quantum physicist, who related the Morlet wavelet transform to some areas

of study in quantum physics. In 1984, the engineer Jean Morlet, the quantum physicist

Alex Grossmann and the geophysicist Pierre Goupillaud – Goupillaud, Grossmann and

Morlet (1984) – provided the first formalization of the continuous wavelet transform.4 The

definition of the continuous wavelet transform is similar to the short time Fourier transform.

Simply replace the window functions gτ,ω by the wavelet daughters ψτ,s. Given a time-series

x (t), its continuous wavelet transform (CWT) with respect to the wavelet ψ is a function of

two variables, Wx (τ , s), defined by

Wx(τ , s) =

�
∞

−∞

x (t)
1

�
|s|
ψ

�
t− τ

s

�
dt., (3)

Compare formulas (1) with (3). In the Fourier transform, X is only a function of ω, the

frequency,hence the information about time is lost under this transform. This implies that,

while one can use Fourier analysis to extract information about the periodicity/frequency

of the most important cycles, it will be virtually impossible to tell when those cycles occur

and to trace changes in their behavior. In the continuous wavelet transform, the position

of the wavelet in time is given by τ , while its position in the scale is given by s. Therefore

4Previously, Morlet had only worked with a discrete choice of scales.
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the wavelet transform, by mapping the original series into a function of two variables, τ and

s, gives us information simultaneously on time and scale, which is equivalent to providing

information simultaneously on time and frequency.

The minimum requirements imposed on a function ψ to qualify for being a mother wavelet

are that ψ is a square integrable function and also that it fulfills a technical condition, usually

referred to as the admissibility condition.

For most of the applications, the wavelet ψ must be a well localized function, both in the

time domain and in the frequency domain, in which case the admissibility condition reduces

to requiring that ψ has zero mean, i.e.
�
∞

−∞
ψ (t) dt = 0. This means that the function ψ has

to wiggle up and down the t−axis, i.e. it must behave like a wave; this, together with the

assumed decaying property justifies the choice of the term wavelet to designate ψ.

The specific wavelet we use in this paper is a complex-valued function selected from the

so-called Morlet wavelet family, first introduced in Goupillaud et al. (1984):

ψω0 (t) = π
−
1

4 eiω0te−
t
2

2 , (4)

and corresponds to the particular choice of ω0 = 6. Although, strictly speaking the above

function is not a true wavelet, since it has no zero mean, for sufficiently large ω0, namely

for the value used in this paper, ω0 = 6, for all numerical purposes it can be considered as a

wavelet; see Foufoula-Georgiou and Kumar (1994).

The popularity of the Morlet wavelets is due to their interesting characteristics. Since

ψω0 is simply a complex sinusoid of angular frequency ω0 damped by a Gaussian “envelope",

it is reasonable to associate the angular frequency ω0 – i.e. the usual Fourier frequency

f = ω0/(2π) – to this function; hence, the wavelets at scale s can be associated with

frequencies fs = ω0
2πs

; for ω0 = 6, we have fs ≈ 1

s
, which greatly facilitates the interpretation

of the wavelet analysis – which is a time-scale analysis – as a time-frequency analysis.

Also, this function inherits, from its Gaussian envelope, an important property: it has

optimal joint time-frequency concentration. The Heisenberg principle says that one cannot

be simultaneously precise in the time and in the frequency domains. Theoretically, the time-
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frequency resolution of the wavelet is bounded by the so called Heisenberg box. The area of

the Heisenberg box, which describes the trade-off relationship between time and frequency,

is minimized with the choice of the Morlet wavelet.

2.2 Wavelet tools

Remark 1 As for the wavelet transform, all the quantities we are going to introduce below

are functions of two variables, time (τ) and scale/frequency (s). To simplify the notation,

we will describe these quantities for specific values of the arguments which, unless strictly

necessary, will be omitted from the formulas.

2.2.1 The wavelet power and the wavelet phase

In analogy with the terminology used in the Fourier case, the (local) wavelet power spectrum,

denoted by (WPS)x, is defined as

(WPS)x = |Wx|
2 . (5)

The wavelet power spectrum (sometimes called scalogram ot wavelet periodogram) gives us

a measure of the variance distribution of the time-series in the time-scale (time-frequency)

plane.

When the wavelet ψ(t) is chosen as a complex-valued function, as in our case, the wavelet

transformWx is also complex-valued and can, therefore be separated into its real part, ℜ(Wx),

and imaginary part, ℑ(Wx); alternatively, the transform can be expressed in polar form as

Wx = |Wx| e
iφ
x, φx ∈ (−π, π].

The angle φx is known as the (wavelet) phase.5 For real-valued wavelet functions, the imagi-

nary part is zero and the phase is undefined. Therefore, to separate the phase and amplitude

5Recall that the phase-angle φx of the complex number Wx can be obtained from the formula: tan(φx =
ℑ(Wx)
ℜ(Wx)

, using the information on the signs of ℜ(Wx) and ℑ(Wx) to determine to which quadrant the angle
belongs to.
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information of a time-series, it is necessary to use complex wavelets.

2.3 Coherency and phase-difference

In many applications, one is interested in detecting and quantifying the time-frequency

relations between two non-stationary time series. Generalizations of the wavelet tools, ap-

propriate for this purpose, are now briefly described.

Given two time-series, x(t) and y(t), we define their cross-wavelet transform, Wxy, by

Wxy =WxWy (6)

where Wx and Wy are the wavelet transforms of x and y, respectively. The absolute value

of the cross-wavelet transform, |Wxy|, will be referred to as the cross-wavelet power .

We also define the complex wavelet coherency of x and y, ̺xy, by

̺xy =
S (Wxy)

[S (|Wx|2)S (|Wy|2)]
1/2
, (7)

where S denotes a smoothing operator in both time and scale.6 By analogy with the Fourier

case, the wavelet coherency, Rxy, is defined simply as the absolute value of the complex

wavelet coherency, i.e.

Rxy =
|S (Wxy) |

[S (|Wx|2)S (|Wy|2)]
1/2
, (8)

With a complex-valued wavelet, we can compute the wavelet phases of both series and, by

computing their difference, we are able obtain information about the possible delays of the

oscillations of the two series, as a function of time and frequency. It follows immediately

from (6) that the phase-difference, which we will denote by φxy, can also be computed simply

as the phase-angle of the cross-wavelet transform, i.e. by using the formula

tanφx,y =
ℑ (Wxy)

ℜ (Wxy)
,

6As in the Fourier case, smoothing is necessary, otherwise the magnitude of coherency would be identically
one.
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together with the information on the signs of each part to completely determine the value

of φxy ∈ (−π, π].

A phase-difference of zero indicates that the time series move together at the specified

frequency; if φxy ∈ (0,
π
2
), then the series move in phase, but the time-series x leads y; if

φxy ∈ (−
π
2
, 0), then it is y that is leading; a phase-difference of π indicates an anti-phase

relation; if φxy ∈ (
π
2
, π), then y is leading; time-series x is leading if φxy ∈ (−π,−

π
2
).

Remark 2 The wavelet-phase difference is sometimes defined as the phase-angle of the com-

plex wavelet coherency; although this is not fully consistent with the difference between the

individual phases, since it is affected by the smoothing, the results obtained are not substan-

tially different; this alternative definition has the advantage of being simpler to generalize to

the multivariate case.

2.4 Multivariate tools: partial coherency and partial phase-difference

Some wavelet tools specially designed to use when more than two series are involved, namely

the so-called partial wavelet coherency and partial phase-difference, have recently been in-

troduced; see, e.g. Mihanovíc et al. (2009) for the case of three series and Aguiar-Conraria

and Soares (2014) for the more general case. Here, we will only display the formulas for the

case of three variables. For the other cases, the reader is referred to the appendix of the

aforementioned paper by Aguiar-Conraria and Soares (2014).

Given three series x, y, z, we define the complex partial wavelet coherency of x and y

after controlling for z, denoted by by ̺xy .z, the quantity given by

̺xy .z =
̺xy − ̺xz̺yz�

(1−R2xz)(1−R
2
yz)
. (9)

We then define the partial wavelet coherency, Rxy .z, as the absolute value of the complex

partial wavelet coherency, and the partial phase-difference of x over y, given z, denoted by

φxy .z, as the phase-angle of ̺xy .z.
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2.5 Statistical significance

Naturally, it is important to assess the statistical significance of the computed wavelet mea-

sures. Torrence and Compo, in their influential paper – Torrence and Compo (1998) –

were among the first authors to discuss this issue. Based on a large number of Monte Carlo

simulations, Torrence and Compo concluded that the wavelet power spectrum of a white or

red noise process, normalized by the variance of the time-series, is well approximated by a

chi-squared distribution. This problem was reconsidered more recently by Zhang and Moore

(2012). For the specific case of the use of a wavelet ψω0 from the Morlet family, Zhang and

Moore established, analytically, that the wavelet power spectrum of a Gaussian white noise

with variance σ2 is distributed as

|Wx|
2 ⌢

σ2

2
(1 + e−ω

2

0)X2

1
+
σ2

2
(1− e−ω

2

0)X2

2
,

where X1 and X2 are independent standard Gaussian distributions. In the case of a Morlet

wavelet with parameter ω0 > 5, we have e−ω
2

0 ≈ 0, and so we obtain
			W

2
x

σ2

			⌢ 1

2
χ2
2
, confirming,

for this specific type of wavelet and particular underlying process, the result obtained by

Torrence and Compo. To assess significance of the wavelet power spectrum we will rely on

this theoretical distribution

Ge (2008), Cohen and Walden (2010, 2011) and Sheppard et al. (2012) have some

important theoretical results on significance testing for the wavelet coherency. The results,

however, are for specific ways of smoothing (namely in the time domain only) and do not

apply directly to our case. To our knowledge, no work has been done on significance testing

for the partial coherency. All our significance tests are obtained using surrogates. We fit

an ARMA(1,1) model to the series and construct new samples by drawing errors from a

Gaussian distribution with a variance equal to that of the estimated error terms. For each

time-series (or set of time-series) we perform the exercise 5000 times, and then extract the

critical values at 5 and 10% significance.

Related to the phase-difference, there are no good statistical tests. This is so because it is

very difficult to define the null hypothesis. In fact, Ge (2008) argues that one should not use
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significance tests for the phase-difference. Instead, one should complement its analysis by

inspecting the coherence, and only focus on phase-differences whose corresponding coherence

is statistically significant.

3 A first look at our data: energy and carbon prices

The carbon market in California (called WCI for simplification) took effect in early 2012

and is linked to Québec’s since January 2014. It is undergoing its first period – 2012-2014

(compliance started in 2013); second compliance period starts in 2015, and will last until

2017, including distributors of transportation fuels, natural gas, and other fuels; and finally

2018-2020 will cover the third period. Currently, prospects for post-2020 and linkage to

Mexico’s carbon pricing are being considered.

California (CA) is one of the largest economies in the world. On energy, in 2011 the state

had a consumption of 7858,4 trillion BTU and produced internally around 2624,5 trillion

BTU of primary energy (crude oil and natural gas accounting for 43% and 11%, respectively,

15% coming from nuclear electric power and 32% from renewables). California’s electricity

system generates more than 200,000 GWh per year. The current source shares include

approximately 63% natural gas, 9% hydroelectric, 18% other renewables, 9% nuclear and

1% coal. In fact, California produces 70% of the electricity it uses. The state imports the

remaining amount.7 California challenge on electricity under AB32 is to secure supply with

33% renewable sources, while reducing greenhouse gases (GHG) emissions. In consequence,

California emitted of a total of 448 MMTCO2eq. (million metric tonnes of CO2 equivalent)

in 2011, from which 38% originated from transportation, 23% from industrial sources and

19% from electricity generation (10% imported plus 9% in state).8 As noted in AB32,

California has an emission goal of 427 MMTCO2e in 2020, i.e. equaling 1990 estimated

emissions, and aims to an 80% reduction in 2050 below 1990 levels.

California Carbon Allowances, or CCAs, are traded in the Intercontinental Futures Ex-

7Electricity data from 2012 retrieved from CA Energy Almanac, 8th January 2014,
http://energyalmanac.ca.gov/electricity.

8California’s Greenhouse Gas Inventory official page: http://www.arb.ca.gov/cc/inventory/data/data.htm.
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change US (The ICE Futures US),9 a leading trade for commodity markets. Currently, traded

products are CCAs Vintage Futures for 2013-2016, and corresponding options on futures.

An important difference between the California market and the European Emission Trad-

ing Scheme (EU ETS) regards the inclusion of importers of electricity from out of state

(through its primary energy source mix), and of distributors of transportation fuels, natural

gas, and other fuels , that do not exist in Europe. All other CA trading sectors 10 are, in their

essence, energy intensive and/or high emission sectors, such as the EU sectors. Considering

these WCI market fundamentals and other previous work on European CO2 prices causality

(Alberola et al. 2009, Fezzi and Bunn 2009, Keppler and Mansanet-Bataller 2010, Sijm et

al. 2012, Aatola et al. 2013, Lutz et al. 2013, Nazifi 2013) our model initially considered

six variables associated to the energy and carbon markets in California: CO2 price (CCA),

electricity, gas and oil prices and an economic activity index – Dow Jones Utility Index,

DJU. We dropped the economic activity index due to insignificant results.

CO2

In this study, we used the available daily series on the CCA Future Vintage 2013 and

2014 released by Climate Policy Initiative S. Francisco of The ICE data. Data was available

from 29/08/2011, and 766 observations were included, without missing information. Average

value was of 14,21 US$ per CCA, reaching a maximum level of 23,75 US$ and a minimum

of 11,55 US$ per CCA, visible in Figure 1. The limits on US$ axis are intentional 10 and 40

US$, for these are the expected CCA price thresholds. 10US $ is the minimum CCA value

at auctions and 40 US$ is the minimum price of CCAs from the strategic price containment

reserve.

9CCA at The ICE: https://www.theice.com/productguide/ProductSpec.shtml?specId=6747556#.
10Sectors included in AB32 carbon trading since 2013 are: first deliverers of electricity (in-state and

imported) and large industrial facilities (such as petroleum refineries; crude petroleum and natural gas
extraction; cement; industrial gas; mineral mining and lime; fruit and vegetable canning; glass; paper;
dairies; iron, steel, and aluminium; chemical, biological, and pharmaceutical; breweries, wineries, and juice).
After 2015, distributors of transportation fuels, natural gas, and other fuels will also be included. In:
http://www.arb.ca.gov/cc/capandtrade/allowanceallocation/allowanceallocation.htm.
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Figure 1: California carbon prices, 2011—2014
(Data source: The ICE, retrieved from CPI, California Carbon Dashboard,

http://calcarbondash.org/)

Energy

The AB32 program covers nearly 600 emitting facilities, responsible for 85% of CA emis-

sions. Phase one includes electric utilities and large industrial facilities that emit more than

25 MtCO2/year, and in phase two, distributors of transportation, natural gas and other fuels

will also be added. We include in this category representative electricity prices, oil, natural

gas and gasoline prices. Coal was not included due to its small percentage in the generation

mix of California.

Regarding the electricity variable, we considered the wholesale day ahead price of SP15

EZ Generation Hub, located in California. Data source is The ICE exchange. It was retrieved

from the US Energy Information Association (EIA) information page for ten major electricity

trading hubs in USA.11 Prices are in US$/MWh and were included from 29/08/2011 to

29/08/2014, with only 30 days of missing data.

11EIA electricity data: http://www.eia.gov/electricity/data/browser/.
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Figure 2: California selected energy prices, 2011—2013
(On the left vertical axis we refer to electricity and oil prices. The right axis refers to gas prices.

Data sources: referred in text.)

Oil prices regard the West Texas Intermediate (WTI) Light Sweet Crude Oil Futures

(one month future), exchanged and available at The ICE, at US$ per US barrel ($/USbbl).

No missing data.

For natural gas prices we used Natural Gas Futures Contract 1 (Dollars per MillionBTU

- MMBTU), or front month futures, available from the US Energy Information Association

(EIA).12 The source is the New York Mercantile Exchange (NYMEX) and the prices are

based on delivery at the Henry Hub in Louisiana. Minor missing data (20 days) for the time

length considered, totalizing 753 observations.

In Figure 2, we can see the evolution of energy prices. Like in the previous section, we

did not consider variables as the Clean Dark and Spark Spreads, or the “carbon switch"

because they are linear combinations of variables included.

12EIA natural gas data: http://tonto.eia.gov/dnav/ng/hist/rngc1d.htm.
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4 Data Analysis

Figure 3 provides a first assessment of the behavior of each variable in the time-frequency

domain. Variables are plotted on the left-hand side panel, together with their wavelet power

spectrum, on the right-hand side.

The wavelet power indicates, for each moment of time, the intensity of the variance of

the time-series for each frequency of cyclical oscillations. It is interesting to note that the

electricity prices are much less volatile than the other prices, with the blue color dominating

most of the picture.

In the case of carbon prices, most of the volatility is observed before early 2013, and it is

especially strong in the second half of 2012, period in which the wavelet power spectrum is

statistically significant simultaneously at several frequencies. It is also worth referring that

there is a statistically significant cycle, with period of about 12 months, that runs from the

beginning of the sample until the first quarter of 2013.

The case of the other energy prices, gas and oil, is interesting. There are regions of warm

colors, both at several frequencies and several periods of time, but only one is statistically

significant in each primary energy. In the case of gas, the main significant region happens

at high frequencies and slightly before mid-2012. In the case of oil, the statistically signif-

icant region occurs for most of 2012 (and runs until early 2013) and is concentrated in the

frequencies that correspond to cycles of periods of about four to six months.

Based on this preliminary analysis of the wavelet power spectra it is difficult to discern

any inter-relations between these markets.
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Figure 3: (a) Plot of the daily rate of return of each time-series. (b) The wavelet power spectrum.
The black/gray contour designates the 5%/10% significance level. The cone-of-influence, which is
the region affected by edge effects, is indicated with a black line. The color code for power ranges
from blue (low power) to red (high power). The white lines show the maxima of the undulations

of the wavelet power spectrum.
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Figure 4: on the left – wavelet coherency. The black/gray contour designates the 5%/10%
significance level. The color code for coherency ranges from blue (low coherency – close to zero)
to red (high coherency – close to one). On the right – partial phase-differences between CO2

and the other variable. Top: 2 ∼ 8 frequency band. Bottom: 8 ∼ 20 frequency band.

In Figure 4, we have the wavelet coherency between CO2 and each of the other variables.

Several conclusions can be drawn from these results. First, and perhaps surprisingly after

Figure 3, there are large regions of high coherence. Between carbon and electricity prices,
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at low frequencies, corresponding to about one-year period cycles, coherence is statistically

significant in the first half of the sample. For these frequencies, the phase-difference is

essentially zero, showing that the two variables co-move together.

Between carbon and gas prices the relation is not stable across time and frequencies

either. Until mid-2012, for frequencies corresponding to cycles of period eight or more

months, coherence is statistically significant and the phase-difference, consistently between

0 and π/2, suggests that the variables are in-phase with the carbon prices leading. However,

the picture changes somewhat when we look at higher frequencies, corresponding to period

of four to six month cycles. For these frequencies, coherence is statistically significant from

mid-2012 to mid-2013. The phase difference is consistently between−π and−π/2, suggesting

that variables are out-of-phase, with carbon still leading.

The pattern for the relation between oil and carbon is not homogeneous either. Again,

we observe a statistically significant region until late 2012 for low frequencies, with the

phase-difference being very close to −π, suggesting an almost perfect out-of-phase relation

– at most with a slight lead for carbon prices. However, at higher frequencies, between four

and six month period cycles, and running from early 2012 to early 2013, coherence is also

statistically significant and the phase-difference is between 0 and π/2, telling us that the

variables are in-phase, with carbon prices leading.

Finally, in Figure 5, we have the wavelet partial coherence between CO2 and each variable,

after controlling for the other variables. The results are now much cleaner, showing that the

strongest relation is between electricity and carbon prices.

Focusing in frequencies associated with longer periods (eight months or more), carbon

prices only reflect a strong coherence with respect to gas in the early part and late part of

the sample, being strongly affect by the cone-of-influence. Therefore one should not infer

too much from it. Still, it is interesting that the phase-difference is extremely consistent and

very close to π, suggesting an almost perfect negative correlation. Focusing in shorter period

cycles, around four months, there is an island of significant coherence between mid-2013 and

mid-2014. For these frequencies and between these dates, the phase difference is between

−π and −π/2, showing a negative relation, with carbon prices leading.
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Figure 5: on the left – partial wavelet coherency. The black/gray contour designates the
5%/10% significance level. The color code for coherency ranges from blue (low coherency – close
to zero) to red (high coherency – close to one). On the right – partial phase-differences between

CO2 and the other variable. Top: 2 ∼ 8 frequency band. Bottom: 8 ∼ 20 frequency band.

Regarding oil, the only statistical significant regions of high coherency are situated in

the early part of the sample, until mid-2102, at a frequency corresponding to a eight-month

period and in the late part, at a frequency of a six- month period. In both cases the phase-

difference is consistently between π/2 and π, for such frequencies, showing that the variables

are out-of-phase, with oil leading. Again, due the cone-of-influence, one should not pose too
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much attention to the results.

The most striking aspect of Figure 5 is the very strong and very stable relation (both

with respect to coherency and phase-difference) between carbon and electricity prices, for

frequencies of about one year period. The phase-difference is slightly negative until mid-2013

and essentially zero afterwards. This suggests that the variables are very tight in the longer

run, co-moving together with, at most, a slight lead from electricity prices.

5 Concluding remarks and policy implications

In this paper, we presented a first analysis of the carbon prices in WCI, the emerging Califor-

nia emission market. After describing the market main features, we studied the interaction

between carbon prices and energy prices, including oil, gas and electricity.

We applied multivariate wavelet analysis (MWA) tools with the purpose of analyzing

the correlation between the various prices at different frequencies. Energy price dynamics

is nonstationary, so it is important to use methods that do not require stationarity. MWA

tools allow to go beyond the study of daily cycles that the VAR allows, using an adequate

methodology, indicative of existent relationships in other, longer, cycles than daily. We note

that changes in power supply quantities, on a large scale, are neither easy nor quick. So, it

makes sense to consider the presence of long-term decisions, or at lower frequencies, i.e., cor-

relations in longer temporal cycles. The results we obtain in MWA for lower frequencies are

of particular relevance to market regulators, State governance and also emitting companies,

because they provide a perception of the annual relationships between decision variables.

In a related study, Sousa et al. (2014) find that European carbon prices mostly reflect

economic developments, and influence the price of final energy - electricity. In contrast, in

California, we find the most important result in the relation between electricity prices and

carbon, tight in the longer run, co-moving together with, at most, a slight lead from elec-

tricity prices. This result is in line with recent crediting of climate allowances in residential

electricity bills. It regards the refunding of sold carbon allowances that were freely allocated

in the beginning of the year, which the power generators did not use. It shows that the
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carbon price did not influence the price of electricity in California. The situation may be

explained by the novelty of the market, but it may also be an indicator of an allowances

surplus.

By the end of the first year of compliance (2013), there was an average of 1.8 MM

weekly traded licenses, reaching 2.5 by the end of the year (The ICE, 201413). This volume

displays an increase in market liquidity. However, the fall in prices since the start of the

year is another indicator of an allowances’ surplus. Three aspects may be contributing to

the surplus: first, the banking rules of AB32, allowed for future periods, though subject

to some limits. Second, the growing renewable power production and increase in rain, in

the Spring, fueling hydro power plants. Moreover, recently, fewer than expected emissions

originating in Québec, recently linked to the California carbon market. These three reasons

may cause the prices to remain near the bottom limit until 2020. The surplus problem has

also been afflicting the European market, and California tried to prevent it by defining price

control mechanisms. They include a price floor at auctions and a price containment reserve

to ‘slow down’ peaks. Despite this potential problem, there has been a growth of sales of

licenses for future years, conveying the idea that the WCI market will continue to operate,

with credibility.

On natural gas, the main fossil fuel in the generating mix of California, our results show

that carbon seemed to lead an out-of-phase relation in half-year cycles. However, this result is

not as consistent as the electricity result, and we should not infer too much from it. Similarly,

the EU result for natural gas also requires further investigation (Sousa et al. 2014).

Regarding the transport sector, with the inclusion of their distributors in the carbon

market after 2015, consumers will be directly affected by greenhouse gas emissions limits in

transport and home heating fuels. The causal out-of-phase link between CO2 and oil, with

oil leading, is already apparent in our study. We expect this relationship to intensify and

gain significance when new phase data is included. Free allocation is not currently planned

for fuels distributors, though one could argue that the licenses not used by the power utilities

could be channeled to that sector. However, attending the possible situation of a licenses

13Carbon market North America available at https://www.pointcarbon.com/polopoly_fs/1.3478414!CMNA20131220.pd
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surplus, free allocation is an approach that may escalate the problem. An option should be

to consider the use of personal climate revenues to accommodate the expected increase in

gasoline and heating fuel prices. This solution would not tamper with the climate goal.

One should note some main structural differences between the EU ETS andWCI markets

that should affect the variations in carbon prices, and in carbon price effects. In WCI, the

inclusion of fuels distributors, the accounting of electricity imports per fuel, the existence of

a price floor and ceiling, and the return to consumers of the selling value of free allocated

licenses that have not been used. In EU ETS, the no-banking of licenses rule between periods.

The WCI market features mean that the carbon price contains more information on GHG

emitting activities and, more importantly, allows consumers of energy-intensive goods to be

more aware of the cost of emissions.

In conclusion, we suggest that the first year and half of compliance of the WCI market

advocates emissions’ trading as a significant measure for climate change mitigation. The

financial quantitative analytics we present here supports the development of the WCI in the

post 2020.
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