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Abstract. In this paper we address the problem of computing multiple
roots of a system of nonlinear equations through the global optimization
of an appropriate merit function. The search procedure for a global min-
imizer of the merit function is carried out by a metaheuristic, known as
harmony search, which does not require any derivative information. The
multiple roots of the system are sequentially determined along several ite-
rations of a single run, where the merit function is accordingly modified
by penalty terms that aim to create repulsion areas around previously
computed minimizers. A repulsion algorithm based on a multiplicative
kind penalty function is proposed. Preliminary numerical experiments
with a benchmark set of problems show the effectiveness of the proposed
method.
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1 Introduction

In this paper, we aim to investigate the performance of a repulsion algorithm
that is based on a multiplicative kind penalty merit function, combined with
a metaheuristic optimization algorithm, the harmony search (HS), to compute
multiple roots of a system of nonlinear equations of the form

f(x) = 0, (1)

where f(x) = (f1(x), f2(x), . . . , fn(x))
T , each fi : Ω ⊂ Rn → R, i = 1, . . . , n is

a continuous possibly nonlinear function in the search space and Ω is a closed
convex set, herein defined as [l, u] = {x : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n}.
The functions fi(x), i = 1, . . . , n are not necessarily differentiable implying that
analytical and numerical derivatives may not be used. The work herein presented
comes in the sequence of the study published in [1,2]. To compute a solution of



a nonlinear system of equations is equivalent to compute a global minimizer of
the optimization problem

min
x∈Ω⊂Rn

M(x) ≡
n∑

i=1

fi(x)
2, (2)

in the sense that they have the same solutions. Thus, a global minimizer and not
just a local one, of the function M(x), known as merit function, in the set Ω,
is required. Problem (2) is similar to the usual least squares problem for which
many iterative methods have been proposed. They basically assume that the ob-
jective function is twice continuously differentiable. However, the objective M in
(2) is only once differentiable if some, or just one, of the fi, (i = 1, . . . , n) are not
differentiable. Thus, the most popular Newton-type and Quasi-Newton methods
should be avoided [3,4,5,6]. Furthermore, their convergence and practical perfor-
mance are highly sensitive to the user provided initial approximation. Addition-
ally, they are only capable of finding one root at each run of the algorithm. Since
a global minimizer of problem (2) is required, classical optimization techniques
with guaranteed convergence to local minimizers cannot be applied. When the
optimization problem is nonlinear and non-convex, metaheuristics are able to
avoid convergence to local minimizers and to generate good quality solutions
in less time than most classical techniques. Metaheuristics are general heuristic
methods which can be applied to a wide variety of optimization problems. In
2001 emerged the HS algorithm that relies on a set of points and is inspired by
natural phenomena [7]. It draws its inspiration not from a biological or physical
process like most metaheuristic optimization techniques, but from an artistic one
– the improvisation process of musicians seeking a wonderful harmony. HS has
efficient strategies for exploring the entire search space, as well as techniques to
exploit locally a promising region to yield a high quality solution in a reasonable
time. The dynamic updating of two important parameters in the HS algorithm
has improved the efficiency and robustness of the metaheuristic [8]. Until today,
the HS paradigm has been implemented in many areas, such as in engineering,
robotics, telecommunications, health and energy [9,10], in scheduling problems
[11], in transportation problems [12], and in seismic isolation systems [13].

Although finding a single root of a system of nonlinear equations is a trivial
task, finding all roots is one of the most demanding problems. Multistart meth-
ods are stochastic techniques that have been used to compute multiple solutions
to problems [14,15,16]. In a multistart strategy, a search procedure is applied to
a set of randomly generated points of the search space to converge sequentially
along the iterations to the multiple solutions of the problem, in a single run.
However, the same solutions may be located over and over again along the itera-
tions and the computational effort turns out to be quite heavy. Other approaches
that combine metaheuristics with techniques that modify the objective function
in problem (2) have been reported in the literature [17,18,19,20]. The technique
in [20] relies on the assignment of a penalty term to each previously computed
root so that a repulsion area around the root is created. In [19], an evolutionary
optimization algorithm is used together with a type of polarization technique



to create a repulsion area around each previously computed root. The repulsion
areas force the algorithm to move to other areas of the search space and look for
other roots thus avoiding repeated convergence to already located solutions.

In this study, we further explore this penalty-type approach to create repul-
sion areas around previously detected roots and propose a repulsion algorithm
that is capable of computing multiple roots of a system of nonlinear equations
through the invoking of the HS algorithm with modified merit functions. We
propose a multiplicative kind penalty function based on the inverse of the ‘erf’
function, known as error function.

The proposed algorithm is tested on 13 benchmark systems of nonlinear
equations and the obtained results are compared to the results produced by
other penalty type functions that have been recently proposed in the literature.
It is shown that the proposed ‘erf’ penalty function is competitive with other
penalties in comparison.

The paper is organized as follows. Section 2 reports on penalty type functions
and describes the proposed repulsion algorithm and Section 3 addresses the HS
metaheuristic to compute global minimizers of merit functions with accuracy
and efficiency. Then, some numerical experiments are shown in Section 4 and we
conclude the paper in Section 5.

2 Repulsion Merit Functions

This section aims to discuss the implementation of penalty type functions to
create repulsion areas around previously computed solutions of a system of non-
linear equations, thus avoiding the convergence to already located solutions. The
proposed repulsion algorithm solves a sequence of global optimization problems
by invoking a solver to locate a global minimizer of a sequentially modified
merit function. The first call to the global solver considers the original merit
function (2). Thereafter the merit function needs to be modified to avoid locat-
ing previously computed minimizers. Let the first located minimizer be ξ1. The
idea is to define a repulsion area around ξ1 so that it will be no more a global
minimizer of the modified merit function. The minimization problem is then
based on the modified merit function M̄ with a repulsion area created around
ξ1 so that the solver will not find it again. We now show two modified objective
functions available in the literature. The first one, presented in [20], is:

min
x∈Ω⊂Rn

M̄(x) ≡ M(x) + βe−∥x−ξ1∥ (3)

where β is a large positive parameter and aims to scale the penalty for approach-
ing the root ξ1. Thus, after k roots of the problem (1) having been identified,
herein denoted by ξ1, ξ2, . . . , ξk, the repulsion modified merit function is

M̄(x) = M(x) +
k∑

i=1

PA(x; ξi, β, ρ), (4)



where the superscript A stands for ‘additive-type penalty’ and each penalty term
is given by

PA(x; ξi, β, ρ) =

{
βe−∥x−ξi∥, if ∥x− ξi∥ ≤ ρ
0, otherwise

(5)

where ρ = min{0.1, ∥ξj − ξl∥/2 : j ̸= l and j, l = 1, . . . , k} is a small problem
dependent parameter and defines the radius of the repulsion area, so that other
solutions not yet identified, and outside the repulsion area, are not penalized in
M̄ [20]. We note that an additive penalty term like (5) satisfies the following
properties:

– PA(x; ξi, β, ρ) → β when x → ξi, and increases with parameter β, in a way
that ξi is no longer a minimizer of M̄(x);

– PA(x; ξi, β, ρ) → 0 when x moves away from ξi, such that the merit function
is not affected outside the repulsion area.

Other type of penalty term aiming to create a repulsion area around a previously
computed minimizer, say ξi, but with a distinctive behavior, is presented in [19]:

PM (x; ξi, α) = |coth(α∥x− ξi∥)| , (6)

where coth is the hyperbolic cotangent function and α is a positive parameter
greater or equal to one, called density factor and used to adjust the radius
of the repulsion area. Here, the superscript M means that the penalty is of
a ‘multiplicative-type’. The main properties in this repulsion context are the
following:

– PM (x; ξi, α) → ∞ when x → ξi, so that ξi is no longer a minimizer of M̄(x);
– PM (x; ξi, α) → 1 when x moves away from ξi, in a way that the merit

function is not affected outside the repulsion area.

Similar arguments may be used to create a sequence of global minimization
problems based on the modified merit function M̄ [19] which creates repulsion
areas around the located global minimizers ξi, i = 1, . . . , k so that the solver will
not converge again to the same solutions:

M̄(x) = M(x)
k∏

i=1

PM (x; ξi, α). (7)

We now illustrate the behavior of the above referred penalty terms (5) and (6),
as the corresponding parameters β and α increase. See Figure 1. While the
parameter α, in the penalty |coth(α∥x− ξi∥)|, aims to define the radius of the
repulsion area (figure on the right), the parameter β in penalty βe−∥x−ξi∥ aims
to scale the penalty created by moving close to a previously located solution.
The radius of the repulsion area is defined by the parameter ρ.

We now present the main ideas behind the new repulsion merit function.
It uses the error function, denoted by ‘erf’, which is a mathematical function
defined by the integral

erf(x) =
2√
π

∫ x

0

e−t2 dt,
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Fig. 1. Penalty terms in (0, 0.5], for different values of the parameters

satisfies the following properties

erf(0) = 0, erf(−∞) = −1, erf(+∞) = 1, erf(−x) = − erf(x), (8)

and has a close relation with the normal distribution probabilities. When a
series of measurements are described by a normal distribution with mean 0 and
standard deviation σ, the erf function evaluated at x

σ
√
2
, for a positive x, gives

the probability that the error of a single measurement lies in the interval [−x, x].
In a penalty function context aiming to prevent convergence to a located root ξi,
thus defining a repulsion area around it, we propose the multiplicative inverse
‘erf’ penalty function:

PM
e (x; ξi, δ, ρ̄) =

{
|erf(δ∥x− ξi∥)|−1

, if ∥x− ξi∥ ≤ ρ̄
1, otherwise

(9)

which depends on the parameter δ > 0 to scale the penalty for approaching the
already computed solution ξi, and on the parameter ρ̄ to adjust the radius of
the repulsion area, where ρ̄ = 0.1mini=1,...,n(ui − li). We note that the penalty
term tends to +∞ when x approaches the root ξi, meaning that ξi is no longer
a minimizer of the modified penalty merit function. According to the properties
in (8), as x → ∞, the penalty PM

e (x; ξi, δ, ρ̄) → 1 meaning that the modified
merit function is of ‘multiplicative-type’ and thus it is not affected when far from
previous located roots:

M̄(x) = M(x)PM
e (x; ξi, δ, ρ̄). (10)

We include Figure 2 to show how the penalty behaves with the parameter δ.
Our proposal for the implementation of the penalty (9) is the following:

– the parameter δ is used to scale the penalty in the neighborhood of ξi, i.e.,
when ∥x− ξi∥ ≈ 0, noting that the penalty increases as δ decreases;

– the parameter ρ̄ is used to adjust the radius of the repulsion area, and this
may depend closely on the problem at hand.
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Fig. 2. | erf(δx)|−1 penalty in (0, 0.5], for δ = 0.1, δ = 1 and δ = 10

Algorithm 1 contains the main steps of the repulsion algorithm. The set
Ξ, empty at the beginning of the iterative process, contains the roots that are
computed and are different from the previous ones. To check if a computed root
ξ has been previously located the following conditions

|M(ξ)−M(ξi)| ≤ ϵ and ∥ξ − ξi∥ ≤ ϵ (11)

must hold, for all ξi ∈ Ξ and a small positive ϵ. Although the repulsion strategy
is rather successful in locating multiple roots and avoiding repeated convergence
to previously located solutions, these may be occasionally recovered suggesting
that the penalty could be increased. The algorithm stops when five unsuccessful
iterations (counter Ituns in the algorithm) are encountered. An iteration is con-
sidered unsuccessful when the solution produced by Algorithm 2 is not a global
minimizer of the merit function. In practice, and after an empirical study, we
consider that a solution is not a global one if M > 10−10. Anyway, Algorithm 1
is allowed to run for Itmax iterations, the user provided threshold.

We now consider an example to illustrate the behavior of the three above
described penalty functions. This is a system with many roots in the considered
search space Ω.

Example 1. Let the function M illustrated in Figure 3 be the merit function of
the system

f(x) =

{
cos(x1) = 0
sin(x2) = 0

.

In [−5, 5]2, the merit function has 12 global minimizers [18]. Table 1 shows the
average number of roots, N.rootsavg, the average number of function evaluations,
NFEavg, and time (in seconds), Tavg, found in five experimental runs produced
by our algorithm, where we implemented:

– the ‘exp’ penalty term as described in (5) with β = 1000;



Algorithm 1 Repulsion algorithm

Require: Itmax > 0, ϵ > 0;
1: Set Ξ = ∅, It = 0, Ituns = 0, k = 0;
2: Compute ξ1 = argminx∈Ω M̄(x) using Algorithm 2;
3: if M(ξ1) ≤ 10−10 then
4: Set k = 1, r1 = 1, Ξ = Ξ ∪ ξ1;
5: else
6: Set Ituns = Ituns + 1;
7: end if
8: while Ituns ≤ 5 and It ≤ Itmax do
9: Compute ξ = argminx∈Ω M̄(x) using Algorithm 2;
10: if M(ξ) ≤ 10−10 then
11: if |M(ξ)−M(ξi)| > ϵ or ∥ξ − ξi∥ > ϵ, for any i = 1, . . . , k then
12: Set k = k + 1, ξk = ξ, rk = 1, Ξ = Ξ ∪ ξk;
13: else
14: Set rl = rl + 1 (ξl ∈ Ξ);
15: end if
16: else
17: Set Ituns = Ituns + 1;
18: end if
19: Set It = It+ 1;
20: end while
21: return k (number of located roots), Ξ (located roots), ri, i = 1, . . . , k (number

of times each root was recovered)

– the ‘coth’ penalty as shown in (6) with α = 10;

– the ‘erf’ penalty with δ = 10 but without the condition with the parameter
ρ̄ (aiming to work like the coth function) (erf1);

– the ‘erf’ penalty using δ = 0.1 and ρ̄ = ρ as defined to be used in (5) (erf2);

– and finally, the ‘erf’ penalty using δ = 0.1 and ρ̄ as proposed to be used
in (9) (erf3).
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Table 1. Comparison of penalty
repulsion functions
penalty N.rootsavg NFEavg Tavg

exp 10.6 14204 1.562
coth 11.2 20695 1.860
erf1 9.4 15426 2.344
erf2 11.4 15334 1.894
erf3 12.0 16728 1.313



Based on this example we conclude that the proposed methodology, summa-
rized by variant erf3, performed better for this experiment. For completeness,
we report now the roots produced by one of the five experimental runs of erf3:

(1.57080295e+00, -3.14159058e+00), (-4.71238170e+00, -3.14159195e+00),
(-4.71239481e+00, 1.99367704e-06), (4.71238471e+00, 3.14158920e+00),
(-1.57080249e+00, -3.14159349e+00), (1.57080522e+00, -3.68619544e-06),
(-1.57079403e+00, 7.33762541e-06), (-1.57079621e+00, 3.14160097e+00),
(-4.71239131e+00, 3.14159943e+00), (4.71239663e+00, -3.14159506e+00),
(4.71237915e+00, 1.11265112e-06), (1.57079907e+00, 3.14158507e+00).

3 Improved Harmony Search

The HS algorithm was developed to solve global optimization problems in an
analogy with the music improvisation process where music players improvise the
pitches of their instruments to obtain better harmony [7,9]. An overview of the
existing variants of the HS is presented by Alia and Mandava in [21]. Here, the
improved harmony search (I-HS) variant [8] is used to compute a global solution
of the problem (2).

At each iteration, the I-HS algorithm provides a set of solution vectors from
which the best and the worst solutions, in terms of their fitness - objective
function values - are selected. The candidate solutions are saved in the harmony
memory (HM). Throughout the iterative process there are HMS (the size of the
HM) solutions. After generating the HM randomly in the search space Ω, xj ,
j = 1, . . . ,HMS, the vectors are evaluated and the best harmony, xbest, and the
worst, xworst, in terms of objective/merit function value are selected. Thereafter,
a new harmony is improvised meaning that a new vector y is generated using
three improvisation operators:

– O1: HM operator
– O2: random selection operator
– O3: pitch adjustment operator.

A harmony memory considering rate (HMCR) represents the probability of
choosing the component of the new harmony/vector from the HM (operator
O1). Otherwise, the component is randomly generated in Ω (operator O2):

yi =

{
xj
i , j random ∈ {1, . . . ,HMS}, if τ1 < HMCR

li + τ2(ui − li), otherwise
(12)

for i = 1, . . . , n, where τ1, τ2 are uniformly distributed random variables in [0, 1].
Based on a pitch adjusting rate (PAR), the operator O3 is subsequently applied
to refine only the components i produced by O1, as follows:

yi =

{
yi ± τBW, if τ < PAR
yi, otherwise

(13)

where BW is an arbitrary distance bandwidth and τ is a random number in the
range [0, 1]. Finally, the HM is updated. The new harmony is compared with the



worst harmony in the HM, in terms of M values. The new harmony is included
in the HM, replacing the worst one if it is better than the worst harmony.

As shown in (13), the classical HS algorithm uses fixed value for both PAR
and BW. However, small values of PAR with large values of BW can considerably
increase the number of iterations required to converge to an optimal solution
of (2). Experience has shown that BW must take large values at the beginning
of the iterative process to enforce the algorithm to increase the diversity of
solution vectors. However, small BW values in the final iterations increase the
fine-tuning of solution vectors. Furthermore, large values of PAR combined with
small values of BW usually cause the improvement of best solutions in the final
stage of the process. To eliminate some of the drawbacks due to fixed values of
PAR and BW, the I-HS variant [8] dynamically defines parameter values that
depend on the iteration counter ItHS of the algorithm:

PAR(ItHS) = PARmin + ItHS
(PARmax − PARmin)

ItHSmax

(14)

where ItHSmax represents the allowed maximum number of iterations, PARmin

and PARmax are the minimum and maximum pitch adjusting rate respectively,
and

BW(ItHS) = BWmaxe
c ItHS , for c =

ln( BWmin

BWmax
)

ItHSmax

(15)

where BWmin and BWmax are the minimum and maximum bandwidth respec-
tively. The main steps of the I-HS algorithm are as represented in Algorithm 2
below:

Algorithm 2 I-HS algorithm

Require: k and ξi, i = 1, . . . , k (from Algorithm 1), HMS, Ω, ItHSmax > 0;
1: Set ItHS = 1;
2: for j = 1, . . . ,HMS do
3: Randomly generate xj ∈ Ω;
4: Compute M̄(xj);
5: end for
6: Based on M̄, select xbest and xworst;
7: while ItHS ≤ ItHSmax and M̄(xbest) > 10−10 do
8: Improvise a new harmony y ∈ Ω;
9: Compute M̄(y);
10: Based on M̄, update HM and select xbest and xworst;
11: Set ItHS = ItHS + 1;
12: end while
13: return ξ ← xbest (for Algorithm 1)



Table 2. Problems set

NonD2
f1 = x2

1 − x2
2

f2 = 1 − |x1 − x2|
2 roots in [−3, 3]2

Trans
f1 = x2

1 − x2 − 2
f2 = x1 + sin(πx2/2)
3 roots in [−3, 3]2

Himmelblau
f1 = 4x3

1 + 4x1x2 + 2x2
2 − 42x1 − 14

f2 = 4x3
2 + 4x1x2 + 2x2

1 − 26x2 − 22
9 roots in [−5, 5]2

Geometry
f1 = x1x2 + (x1 − 2x3)(x2 − 2x3) − 165
f2 = (x1x

3
2)/12 − (x1 − 2x3)(x2 − 2x3)

3/12 − 9369
f3 =

(
2(x2 − x3)

2(x1 − x3)
2x3

)
/ (x1 + x2 − 2x3) − 6835

2 roots in [0, 50]3

Floudas
f1 = (0.25/π)x2 + 0.5x1 − 0.5 sin(x1x2)
f2 = (e/π)x2 − 2ex1 + (1 − 0.25/π)(e2x1 − e)
2 roots in [0.25, 1] × [1.5, 2π]

Merlet
f1 = − sin(x1) cos(x2) − 2 cos(x1) sin(x2)
f2 = − cos(x1) sin(x2) − 2 sin(x1) cos(x2)
13 roots in [0, 2π]2

Reactor

f1 = (1 − R) (D/(10(1 + B1)) − x1) e
10x1/(1+10x1/γ) − x1

f2 = (1 − R) (D/10 − B1x1 − (1 + B2)x2))e
10x2/(1+10x2/γ) + x1

−(1 + B2)x2

with D = 22, B1 = B2 = 2, R = 0.960 and γ = 1000
7 roots in [0, 1]2

P1syst
f1 = x1 + x2 − 3
f2 = x2

1 + x2
2 − 9

2 roots in [−3, 3]2

Papersys
f1 = x1 − sin(2x1 + 3x2) − cos(3x1 − 5x2)
f2 = x2 − sin(x1 − 2x2) + cos(x1 + 3x2)
3 roots in [−3, 3]2

Casestudy5
f1 = ex

2
1 − 8x1 sin(x2)

f2 = x1 + x2 − 1
f3 = (x3 − 1)3

2 roots in [0, 1]3

Casestudy7
f1 = x3

1 − 3x1x
2
2 − 1

f2 = 3x2
1x2 − x3

2 + 1
3 roots in [−1, 2]2

Manipulator
f = 3.9852 − 10.039x2 + 7.2338x4 − 1.17775x6

+(−8.8575x + 20.091x3 − 11.177x5)
√
1 − x2

6 roots in [−1, 1]
Trigonometric f = sin(0.2x) cos(0.5x)

19 different roots in [−50, 50]

4 Computational Experiments

The experiments were carried out on a PC Intel Core 2 Duo Processor E7500
with 2.9GHz and 4Gb of memory. The algorithms were coded in Matlab Ver-
sion 8.0.0.783 (R2012b). In this study, the thirteen problems used for bench-
mark [16,17,19,20,22,23] are listed in Table 2 that also contains the number
of roots in the search space Ω. These are the values set to the parameters:
ϵ = 0.005, Itmax = 30, HMS=10 when n = 1, 2 and 12 for n = 3, 4, HMCR=0.95,
PARmin=0.35, PARmax = 0.99, BWmin = 10−6 and BWmax = 5 [8]. We remark
that the maximum number of iterations allowed in Algorithm 2, ItHSmax , varies
with the problem: 1000 in NonD2, 2000 in Merlet and P1syst, 5000 in Trans,



Floudas, Casestudy5, Casestudy7, Manipulator and Trigonometric, and 10000
in Himmelblau, Geometry, Reactor and Papersys.

Tables 3 – 5 report the average results produced by the proposed Algorithm 1
using:

– the ‘exp’ penalty with β = 1000 and ρ, as defined in (5),

– the ‘coth’ penalty with α = 10, as described in (6), and

– the ‘erf’ penalty with δ = 0.1 and ρ̄, as defined in (9),

respectively, where the columns show:

– the name of the problem, Prob.;

– percentage of runs (out of 30) where all the roots were located, SR (%);

– the average number of located roots per run, N.rootsavg;

– the average number of merit function evaluations per run, NFEavg;

– the average time in seconds per run, Tavg;

– the average number of function evaluations required to locate a root,NFEroot;

– the average time required to locate a root, Troot.

These preliminary results are very encouraging. Numerical results suggest that
the new ‘erf’ penalty function clearly has some advantages over ‘coth’ penalty
function and the ‘exp’ penalty function. Overall, ‘coth’ and ‘exp’ penalties pro-
duce fairly similar results for most problems. We observed that the ‘erf’ penalty
function demonstrated to be a promising and viable tool for computing multiple
roots of systems of nonlinear equations.

Table 3. Numerical results from ‘exp’ penalty with β = 1000, considering (4) and (5)

Prob. SR N.rootsavg NFEavg Tavg NFEroot Troot

NonD2 100 2.0 1507 0.109 753 0.055
Trans 97 3.0 9688 0.684 3266 0.231
Himmelblau 0 5.9 37664 3.146 6420 0.536
Geometry 43 1.4 8865 0.633 6332 0.452
Floudas 100 2.0 6290 0.426 3145 0.213
Merlet 20 11.4 10311 1.570 902 0.137
Reactor 7 5.7 157388 12.857 27451 2.243
P1syst 97 2.0 2240 0.157 1139 0.080
Papersys 60 2.4 16479 1.135 6866 0.473
Casestudy5 100 2.0 6941 0.505 3471 0.252
Casestudy7 90 2.9 10207 0.713 3520 0.246
Manipulator 0 5.0 12505 0.889 2501 0.178
Trigonometric 0 8.7 12760 1.383 1467 0.159



Table 4. Numerical results from ‘coth’ penalty with α = 10, considering (6) and (7)

Prob. SR N.rootsavg NFEavg Tavg NFEroot Troot

NonD2 100 2.0 1734 0.141 867 0.070

Trans† 90 2.9 30817 2.416 10627 0.833

Himmelblau† 0 6.2 58940 4.909 9456 0.788
Geometry 63 1.6 16779 1.324 10273 0.811

Floudas† 100 2.0 16385 1.262 8193 0.631

Merlet† 10 10.1 11577 1.119 1146 0.111

Reactor† 3 6.0 467962 39.799 77563 6.597

P1syst† 100 2.0 12303 0.951 6151 0.476
Papersys 60 2.4 17523 1.309 7301 0.545
Casestudy5 23 3.1 13617 1.124 4393 0.363
Casestudy7 90 2.9 10509 0.816 3624 0.282

Manipulator† 100 6.0 105303 7.353 17551 1.225

Trigonometric† 0 13.2 33123 2.585 2509 0.196
† - problems where some or all roots were recovered more than once

(not necessarily in all runs).

Table 5. Numerical results from ‘erf’ function with δ = 0.1, considering ρ̄ =
0.1mini(ui − li) in (9)

Prob. SR N.rootsavg NFEavg Tavg NFEroot Troot

NonD2 100 2.0 1495 0.114 748 0.057
Trans 90 2.9 10074 0.781 3474 0.269
Himmelblau 60 8.6 56018 4.319 6539 0.504
Geometry 53 1.4 8598 0.659 6291 0.482
Floudas 97 2.0 6306 0.457 3206 0.232
Merlet 100 13.0 12574 1.048 967 0.081
Reactor 10 5.9 165713 12.577 28087 2.132

P1syst† 100 2.0 4361 0.366 2181 0.183
Papersys 7 1.7 11955 0.863 6897 0.498
Casestudy5 83 2.1 7938 0.620 3780 0.295
Casestudy7 100 3.0 10523 0.768 3508 0.256
Manipulator 100 6.0 21563 1.689 3594 0.281

Trigonometric† 53 18.6 45499 4.781 2446 0.257
† - problems where some or all roots were recovered more than once

5 Conclusions

A repulsion algorithm is presented for locating multiple roots of a system of non-
linear equations. The proposed algorithm relies on a multiplicative kind penalty
merit function that depends on two parameters. One aims to scale the penalty
and the other adjusts the radius of the repulsion area, so that convergence to
previously located solutions is avoided. The algorithm has been successfully ap-
plied and tested with a benchmark set of problems. The numerical experiments



also lead us to allege that the ‘erf’ penalty function is indeed more accurate,
reliable, and efficient at locating multiple roots than the other alternatives in
comparison.
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