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Abstract 

Affective disorders are common comorbidities of chronic inflammatory pain that are often 

overlooked in primary care. As the impact of inflammatory pain upon mood-like disorders in 

animal models is not well known, our objective was to assess whether prolonged experimental 

monoarthritis (ARTH) induced the development of anxiety and depressive-like behaviours in 

rodents and if amitriptyline, an antidepressant commonly used in the treatment of chronic 

pain, could reverse both nociceptive and mood-like impairments. Experimental ARTH was 

induced through an injection of kaolin/carrageenan into the right knee joint with control 

(SHAM) animals injected with saline. Four weeks after induction, ARTH animals displayed 

mechanical hyperalgesia and a depressive-like phenotype as they showed a significant increase 

in immobility and a decrease in the latency to immobility in the forced-swimming test at the 

expense of the time spent climbing/swimming. ARTH animals also displayed a decreased 

sucrose preference, an index of anhedonia and anxiety-like behaviour as time spent exploring 

the open arms of the elevated-plus-maze was decreased when compared to controls. The 

anxiety-like phenotype was also supported by an increase in the number of fecal boli left in the 

open field. In ARTH animals, the administration of amitriptyline decreased mechanical 

hyperalgesia and increased sucrose preference and the time spent climbing, although it had a 

deleterious effect in the performance of control animals. Our data show that this model of 

ARTH can be useful for the study of chronic pain-mood disorders comorbidities and that 

amitriptyline is able to partly reverse the associated nociceptive and emotional impairments. 

Keywords: Experimental monoarthritis, Pain-mood disorders comorbidity, Mechanical 

hyperalgesia, Amitriptyline.  
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1. Introduction  

Joint pain is a condition that affects millions of people, especially the elderly, representing a 

huge burden on National Health Programs [1]. Pain is the most common complaint in arthritis 

but often patients exhibit clinical signs of comorbid depression and anxiety [2] that frequently 

go untreated [3]. 

Curiously, although many animal models of chronic inflammatory pain are available and 

extensively used, only a few studies addressed inflammatory pain and mood disorders 

comorbidity [4,5,6,7]. However, the animal models and time points chosen to perform the 

behavioural analysis are different among studies. For example, the time frame of osteoarthritis 

(OA) settlement is one feature of the behavioural experimental designs that could by itself 

limit the full development of neuropsychological impairments (anxiety- and depressive-like 

behaviour) in a slow developing disease such as OA. Accordingly, recent data obtained from 

studies on chronic neuropathy [8] demonstrated that the experimental time frame adopted is 

critical to model the affective pathologies associated to chronic pain. These authors showed 

that anxiety and depressive-like behaviours developed in a time-dependent manner, with the 

former present at three weeks of neuropathy while the latter was expressed only after 6 

weeks of neuropathy. 

In spite of all the evidence demonstrating the existence of pain-depression comorbidity, the 

actual mechanisms underlying this interaction are still mostly unknown [3]. While chronic pain 

patients are up to four times more prone to develop major depressive disorders than the 

general population [9], more than half of depressed patients present comorbid chronic pain 

[8], with the effects of having both chronic pain and depression being worse than suffering 

from chronic pain or depression alone [10]. Therefore, antidepressants, including tricyclic 

antidepressants (TCAs), are extensively used in the management of both chronic pain and 

depression [11]. TCAs are the first-line drugs for the treatment of chronic pain and 
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amitriptyline (AMI), the most commonly used TCA to treat depression in chronic pain patients 

[12], has also been associated with significant analgesia in different animal models of chronic 

neuropathic pain [13]. 

Accordingly, in the work herein, we used the kaolin/carrageenan model of experimental knee 

monoarthritis (MA) to establish a direct link between prolonged MA and the development of 

mood-like disorders in rodents. After four weeks of MA, we treated the animals with AMI to 

evaluate whether this antidepressant could reverse the nociceptive and mood-like changes 

induced by the model. 

 

2. Materials and methods 

2.1. Animals and ethical questions 

The experiments were performed in adult male Wistar rats (n=44, Charles Rivers, Barcelona, 

Spain) weighting 225–250g at the beginning of the experiment. The experimental protocol was 

approved by the Institutional Ethical Commission and followed the European Community 

Council Directive 86/609/EEC and 2010/63/EU concerning the use of animals for scientific 

purposes. All efforts were made to minimize animal suffering and to use only the number of 

animals necessary to produce reliable scientific data. 

Animals were housed in pairs under a 12h light cycle (starting at 8:00 a.m.) with food and 

water available ad libitum. General health parameters were surveyed twice per week by the 

resident veterinary and animal weight was recorded every week throughout the experimental 

period. Before the beginning of the experiment, all animals were handled daily by the 

experimenter for a week and on the day of the experimental sessions animals were left in the 

experimental room for an hour in order to habituate to the surroundings. 
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2.2. Induction of monoarthritis 

The induction of arthritis (ARTH) was performed as described in detail elsewhere [14]. Briefly, 

3% kaolin and 3% carrageenan (Sigma-Aldrich, St. Louis, MO, USA) were dissolved in distilled 

saline solution (0.9% NaCl) and injected into the synovial cavity of the right knee joint at a 

volume of 0.1 mL. This model produces mechanical hyperalgesia, which begins just in a few 

hours after surgery and lasts for several weeks [15]. Control animals (SHAM) were injected 

with 0.1 mL saline in the synovial cavity of the right knee joint. 

2.3. Behavioural assessments 

2.3.1. Nociceptive behaviour 

In each animal, the development of arthritis was verified 1–2 h prior to each experiment. Only 

those rats that vocalized every time after five flexion–extension movements of the knee joint 

were considered to have developed osteoarthritis, and were included in the ARTH group. 

SHAM animals did not vocalize to any of the five consecutive flexion–extension movements of 

the knee joint. 

2.3.1.1. Pressure Application Measurement 

The application of noxious pressure to the primary site of injury is a classical approach to 

measure mechanical hyperalgesia [16], both in humans and animals [17]. Here, a new pressure 

application measurement (PAM) method was used. It allows an accurate behavioural 

measurement of primary mechanical hypersensitivity in rodents with chronic inflammatory 

joint pain [18] by the application of a force range of 0–1500g. To perform the test and with the 

animal securely held, the force transducer unit (fitted to the experimenter’s thumb) is placed 

on one side of the animal's knee joint and the forefinger on the other and an increasingly force 

is gradually applied across the joint until a behavioural response is observed (paw-withdrawal, 

freezing of whisker movement, wriggling or vocalization) with a cut-off of 5s. The peak force 
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(in grams force (gf)) applied immediately prior to the behavioural response is recorded as the 

limb withdrawal threshold (LWT). LWT was measured twice in both the ipsilateral and 

contralateral limbs at 1 min intervals. The mean LWTs were calculated per animal. At the end 

of the session animals were returned to their home cage. 

2.3.2. Locomotor activity and anxious-like behaviour 

2.3.2.1. Open-field test 

The open field (OF) test was used to evaluate differences in the locomotor ability between 

SHAM and ARTH animals and followed a protocol previously implemented in our lab [19]. In 

summary, locomotor behaviour was assessed by measuring the total distance travelled by the 

animal inside the arena and anxiety-like behaviour was evaluated through the analysis of the 

time spent in the centre of the arena and by counting the number of faeces (fecal boli) 

remaining in the arena at the end of each trial [20]. The OF test was performed in a square 

arena (43.2 cm wide with the central area of the arena corresponding to a square 21.6cm wide 

and equidistant from the borders) with transparent acrylic walls (Med Associates Inc., St. 

Albans, Vermont, USA) in a brightly illuminated room (240 lux in the centre of the arena). The 

test started when the animal was placed at the centre of the arena and its exploratory activity 

was automatically registered during 5 min. The arena was cleaned with 10% alcohol between 

each trial.  

2.3.2.2. Elevated-plus maze 

The elevated-plus maze (EPM) was used to assess anxiety-like behaviour and followed a 

protocol previously implemented in our lab [21]. The EPM apparatus (ENV-560; 

MedAssociates, St. Albans, Vermont, USA) consisted of two opposite open arms (50.8 × 10.2 

cm) and two closed arms (50.8 × 10.2 × 40.6 cm), which were elevated 72.4 cm above the 

floor. At the beginning of the test the animal was placed in the centre of the maze and allowed 

5 min to freely explore the maze. During the duration of the trial, behaviour was recorded 
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through the use of an infra-red photobeam system connected to a computer with software 

(MedPCIV, MedAssociates) that allows for the quantification of the time spent in each arm. 

Between trials, the maze was cleaned with 10% ethanol. The percentage of time spent in the 

open arms was used as an index of anxiety-like behaviour. 

2.3.3. Depressive-like behaviour 

2.3.3.1. Sucrose preference test 

Anhedonia, measured as a reduction in sucrose preference (SPT), was assessed through the 

application of a protocol adapted from Bessa et al. [21]. This protocol includes an initial 

exposure of the animals to the sucrose solution a week before the induction of ARTH. During 

this session, performed during their active period (8:00 p.m.), animals (without any previous 

water and food restriction) had free access to both water and the sucrose solution for 2h. In 

addition, the behaviour of the animals was monitored by the experimenter in order to certify 

that all animals tasted the sucrose solution. On the test day and after twenty-four hours of 

food/water deprivation, each animal was presented with two pre-weighted bottles [water and 

sucrose solution (2%)] for one hour (8:30-9:30p.m). Afterwards, the bottles were re-weighted 

and sucrose preference was calculated using the equation:  

Sucrose_preference=[sucrose_intake/(sucrose+water)_intake]×100. 

For experiment 1, the results are presented as the difference in sucrose preference between 

the data obtained at four weeks post-ARTH induction and the basal assessment that preceded 

the induction of monoarthritis. In experiment 2, the results are presented as the difference in 

sucrose preference between the data obtained during the fourth week of pharmacological 

treatment and the assessment performed at four weeks post-ARTH induction. 
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2.3.3.2. Forced swimming test 

Learned helplessness was evaluated in the modified forced-swimming test (FST) [22] and 

followed a protocol previously implemented in our lab [21]. Animals were submitted to a pre-

test session (10 min) in which they were individually placed in cylinders filled with water (25°C; 

depth 30 cm). Twenty-four hours later animals were again placed in the cylinders for a period 

of 5 min and the testing session was recorded with a video camera. The quantification of (i) 

latency to immobility, (ii) time spent immobile, (iii) time spent swimming and (iv) time spent 

climbing was performed by a blind observer that rated the videos using the Etholog software 

[23]. Note that the time spent swimming and climbing was discriminated as opposed to 

floating as previously described by Rénéric and colleagues (2002) [24]. Learned helplessness 

behaviour was defined as an increase in time of immobility at the expense of the time spent 

swimming /climbing and a decrease in the latency to immobility. 

2.4. Drug treatment 

Four weeks after arthritis induction, amitriptyline hydrochloride (AMI; Sigma-Aldrich, St. Louis, 

MO, USA) was dissolved in saline (SAL) and administered intraperitoneally (i.p.) at a dose of 

15mg/kg daily for three weeks, until the beginning of the behavioural tests. The 

pharmacological treatment with AMI or SAL was maintained during the duration of the 

behavioural evaluation with injections being administered daily at the end of the behavioural 

session. 

2.5. Experimental design 

The present study was divided in two main experiments (Fig. 1A), (i) the first one involving the 

assessment of the comorbid development of mood-like disorders in animals with experimental 

ARTH and (ii) the second determining the potential of amitriptyline in reversing both the 

nociceptive and the emotional-like components of chronic experimental ARTH. 
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In experiment 1, one week preceding the intrasynovial injection animals were presented to a 

sucrose solution and in the day before knee injection animals were submitted to a baseline 

evaluation in the sucrose preference test (SPT).  After four weeks of the knee injection animals 

were tested in the SPT, PAM, OF, EPM and FST. At the end of the behavioural sessions animals 

were sacrificed with a lethal dose of pentobarbital and the knee joints were removed for 

further histological processing and analysis.  

In experiment 2, one week preceding the intrasynovial injection animals were presented to a 

sucrose solution and in the day before the beginning of the treatment animals were submitted 

to a baseline evaluation in the sucrose preference test (SPT).  After four weeks of the 

intrasynovial injection SHAM and ARTH animals were administered either saline (SHAM_SAL 

and ARTH_SAL) or amitriptyline (SHAM_AMY and ARTH_AMY). Three weeks after the 

beginning of the treatment, animals were behaviourally tested following the same 

experimental design as in experiment 1 (Fig. 1A). 

2.6. Histology 

Right knees from SHAM and ARTH animals were excised and fixed in paraformaldehyde 

solution (4%). Knees were subsequently submerged in a decalcifying solution (BiodecR, Bio-

Optica, Milan, Italy) for 48 hours, paraffin embedded, cut into 4-µm sections and stained with 

hematoxylin and eosin (Fig. 1B). 

2.7. Statistical analysis 

The GraphPad Prism® 6 software (GraphPad Software Inc, La Jolla, CA, USA) was used to 

perform the statistical analysis.  Differences in weight gain between ARTH and SHAM groups 

were evaluated by applying a mixed-design two-way analysis of variance (ANOVA) followed by 

t-test with a Bonferroni correction for multiple comparisons. The comparisons of differences 

between groups in experiment 1 were performed using a Student’s t-test for unpaired data. A 
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two-way ANOVA followed by t-test with a Bonferroni correction for multiple comparisons was 

used to compare results from the behavioural assessment at the end of experiment 2, except 

for the PAM test where a repeated measures two-way analysis of variance followed by t-test 

with a Bonferroni correction for multiple comparisons was performed. Statistical significance 

was accepted for P<0.05. Data in the results section are expressed as mean ± standard 

deviation (SD). 

 

3. Results 

3.1. Body weight 

In experiment 1, body weight of all animals increased significantly (main effect of elapsed time: 

F4,40=136.00, P<0.001) but ARTH animals gained less body weight during the experimental 

period than SHAM animals (interaction between elapsed time and the experimental group: 

F4,40=3.16, P=0.024). In experiment 2, the administration of AMI induced an overall 10% 

decrease in the body weight of SHAM and ARTH animals when compared with SAL-treated 

animals (interaction between weight gain and experimental group during AMI treatment: 

F9,112=20.68, P<0.001). 

3.2. Nociceptive Behaviour  

All animals in the ARTH group developed a clear swelling of the treated knee joint and all gave 

a vocalization response during a minor extension and flexion of the affected limb. SHAM 

animals displayed no obvious swelling of the knee joint and did not vocalize when the limb was 

flexed. 
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3.3. Histological analysis 

As shown in figure 1-B1, SHAM animals presented no surface abnormalities in the joint. In 

ARTH animals an overall tissue degeneration is evident with the medial femoral plateaux (FP) 

being more affected than the tibial plateaux (Fig. 1-B2). In the FP it is possible to observe focal 

damage of cartilage surface associated to a decrease in cartilage thickness in the central area, 

reduplication of the tidemark and some surface fibrillation. Additionally, there is an increase in 

subchondral bone volume concomitant with subchondral sclerosis, decreased bone marrow 

area and subchondral cyst formation. 

3.4. Experiment 1 

3.4.1. Mechanical hyperalgesia 

LWT was significantly decreased in ARTH animals compared to SHAM (t10=4.885, P<0.001) 

confirming their arthritic state (Fig. 2A). 

3.4.2. Locomotor activity 

In the OF test, total distance travelled by the animals was not different between SHAM and 

ARTH animals (t10 = 0.790, P=0.448) (Fig. 2B). 

3.4.3. Anxiety-like behaviour 

In the OF, ARTH animals showed a strong tendency to spend less time in the centre of the 

arena (t10=2.122, P=0.060) (Fig. 2C) and left a significantly higher number of fecal boli in the OF 

arena (t10=3.078, P=0.012) (Fig. 2D) when compared to SHAM animals, indicating they 

developed an anxious-like phenotype. This was confirmed in the EPM test, as ARTH animals 

also spent less time in the open arms (t10=2.665, P=0.024) (Fig.2E). 
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3.4.4. Depressive-like behaviour  

ARTH animals displayed a depressive-like phenotype as these animals showed a significantly 

decreased preference for sucrose solution (i.e., anhedonia-like behaviour) when compared 

with the SHAM group (t10=2.319, P=0.043) (Fig. 2F). No differences in liquid consumption per 

body weight unit were found between the experimental groups (t10=1.755, P=0.110). SPT 

results are further substantiated in the FST where ARTH animals showed a significant decrease 

in the latency to immobility (t10=2.845, P=0.017) (Fig. 3A). This finding was accompanied by an 

increase in the immobility time (t10=3.630, P=0.005) (Fig. 3B) and a corresponding decrease of 

the time spent swimming (t10=2.955, P=0.014) (Fig. 3C) and climbing (t10=3.267, P=0.009) (Fig. 

3D) by ARTH animals. 

3.5. Experiment 2 

3.5.1. Mechanical hyperalgesia after treatment 

LWT was significantly different between the experimental groups (main effect of the 

experimental group: F1,28=12.310, P=0.002) with ARTH animals displaying a lower LWT when 

compared to SHAM animals (data not shown). Additionally, LWT also varied with the drug 

treatment (interaction between the experimental group and drug treatment: F1,28=7.565, 

P=0.010) since ARTH animals treated with AMI displayed a higher LWT when compared to 

ARTH treated with SAL. Post hoc tests showed that AMI was able to reverse primary 

hyperalgesia as shown by the increase in LWT of ARTH_AMI animals to the level of SHAM 

animals (Fig.4A). 

3.5.2. Locomotor activity 

In the OF test, total distance travelled by the animals was not different between experimental 

groups (main effect of test group: F1,28=0.618, P=0.438) (Fig. 4B). 
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3.5.3. Anxiety-like behaviour after treatment 

In the OF test, there were no differences in the time spent in the centre of the arena (main 

effect of test group: F1,28=2.405, P=0.1322) (Fig. 4C). The number of fecal boli that remain in 

the OF arena varied with the drug treatment (interaction between the experimental group and 

drug treatment: F1,28=7.488, P=0.011) (Fig. 4D). In the EPM there were no significant 

differences between the groups in the time spent in the open arms (main effect of test group: 

F1,28=1.348, P=0.256) (Fig. 4E). Note that SHAM_AMI animals had behavioural performances 

similar to ARTH_SAL animals (Fig. 4). 

3.5.4. Depressive-like behaviour after treatment 

Sucrose preference was significantly different between the experimental groups (main effect 

of test group: F1,28=5.536, P=0.026) with SHAM animals displaying more preference for the 

sugary beverage when compared to ARTH animals. Additionally, sucrose preference also varied 

with the drug treatment (interaction between group and drug: F1,28=6.044, P=0.020) since 

ARTH animals treated with AMI consumed considerably more sucrose than ARTH animals 

treated with SAL. Post hoc tests confirm that ARTH_AMI animals increased sucrose preference 

when compared with ARTH_SAL animals (Fig. 4F). In the FST, the latency to immobility 

between the groups varied with the drug treatment (interaction between the group and drug: 

F1,28=6.710, P=0.015) as SHAM and ARTH animals treated with AMI display a lower latency to 

immobility. Post hoc tests indicated that the latency to immobility was significantly shorter in 

the SAL-treated ARTH than SHAM group and also between SAL-treated SHAM and AMI-treated 

SHAM (Fig. 5A). The duration of the immobility time was significantly different between 

treatments (main effect of test drug: F1,28=5.303, P=0.029) as SHAM animals treated with AMI 

increased the amount of immobility time. In parallel, the difference in the immobility time 

between the groups varied with the drug treatment (interaction between group and drug: 

F1,28=6.801, P=0.015) as ARTH animals treated with AMI showed no difference in immobility 
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time while SHAM treated with AMI significant increased the time spent immobile. Post hoc 

tests confirm that the duration of immobility time was significantly longer in the SAL-treated 

ARTH than SHAM group (Fig. 5B). Concerning the duration of the active period, the time spent 

swimming was significantly different between the experimental groups (main effect of the 

group: F1,28=5.658, P=0.024) since ARTH animals spent less time swimming when compared to 

SHAM. In addition this parameter also varied with the treatment (main effect of the drug: 

F1,28=15.470, P<0.001) since the time spent swimming was decreased in SHAM animals after 

the treatment with AMI when compared with SAL-treated SHAM. Moreover, the difference in 

swimming time between the groups was dependent on the drug treatment (interaction 

between the group and drug: F1,28=5.198, P=0.030) since the effects of AMI administration 

were restricted to SHAM animals. Post hoc tests confirm that the swimming time was shorter 

in the SAL-treated ARTH than SHAM group (Fig. 5C).  

The difference in time spent climbing varied with the drug treatment and the experimental 

group (interaction between the group and drug: F1,28=14.800, P<0.001) since ARTH animals 

treated with AMI increased the time spent climbing while AMI-treated SHAM animals 

decreased it. Post hoc tests confirm that the duration of the climbing time was significantly 

longer in the AMI-treated ARTH than SHAM group (Fig. 5D). Overall, SHAM animals treated 

with AMI had behavioural performances similar to ARTH animals treated with SAL (Fig. 5). 

 

4. Discussion 

In this study, we demonstrate that the K/C animal model can be used as a valid method to 

study the comorbidity between arthritis and mood disorders in the rat. In addition to sustained 

hyperalgesia (decreased withdrawal threshold to noxious mechanical stimulation of the 

inflamed knee), animals with four weeks of K/C–induced arthritis exhibited anxiety-like 

behaviour (low exploratory activity in the EPM and increased defecation in the OF arena), 
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anhedonic behaviour (reduced preference for sucrose) and learned helplessness (decreased 

mobility in the FST). We also demonstrated that after three weeks of antidepressant 

treatment, AMI is able to decrease mechanical hyperalgesia and partly reverse depressive-like 

behaviour, as the preference for sucrose is increased in ARTH animals and they spend more 

time climbing in the forced swimming test. Due to the importance of using animal models that 

mimic the greatest number of features of the human disorders, we anticipate that the 

concomitant study of pain and emotional-like behaviours in the experimental model of 

arthritis will significantly increase our understanding of the mechanisms underlying 

comorbidity of chronic pain and mood disorders. 

In general K/C-induced arthritis has been established as model of acute monoarthritis that 

partly mimics the initial inflammatory stages of OA [25]. The advantage of also administering 

kaolin is the mechanical damage to intra-joint structures [26] triggered by this clay, which is 

absent in inflammatory models using carrageenan alone. Taking into account that 

inflammatory disorders are slowly progressing degenerative diseases it is most surprising that 

the majority of studies using this model use a restricted time frame (e.g. 4h [27], 5-6h [28] and 

1 week [29]). Our data contrast with most studies, reporting marked cellular infiltration, as we 

observe a clear degeneration of the femoral plateaux (thinning of the cartilage, fibrillation and 

subchondral sclerosis). This degree of joint degeneration partly mimics features of later stages 

of chronic inflammatory diseases, in particular of osteoarthritis. Indeed and according to 

Pearson’s [30] report, our animals display a knee joint degeneration level concomitant with 

stage three of human osteoarthritis that comprises the presence of deep fissures, loss of 

cartilage, remodelling of the bone plate and reduplication of the tidemark. Nonetheless, 

further studies involving a time dependent evaluation of the succession of events affecting 

knee joint structure are needed for this K/C-induced arthritis to be considered a valid 

osteoarthritis model. 
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Anxiety and depression [31] are important comorbidities that have been positively correlated 

with pain severity in arthritic patients. These mood disorders are 2 to 3 times more prevalent 

in OA patients than in patients with other chronic pathologies [3]. However, to date and to the 

best of our knowledge, only one experimental animal study [32] has addressed the 

comorbidity of pain and depression in OA, in spite of the availability of many animal models 

mimicking specific aspects of the OA pathology [33]. It should be emphasized that in our study 

anxiety- and depression-like behaviours were assessed after a sustained hyperalgesic state 

that had lasted 28 days, whereas the majority of the studies from other authors used more 

restricted time-frames (see above).  

Our data shows that ARTH animals with 28 days of the K/C-induced arthritis display a profound 

mechanical hyperalgesia in the ipsilateral knee (PAM test), which parallels the hyperalgesic 

response of OA patients to noxious stimulation of the knee [34]. Interestingly, some reports 

have positively associated motor disability with the development of depression in OA patients 

[31]. However, although our ARTH rats present mechanical hyperalgesia, they did not display 

any locomotor impairments as the total distance travelled in the OF was not different from 

SHAM animals. Hence, in this work the development of mood-like disorders could not be 

associated to locomotor disability of rodents. 

Clinical treatment of joint disorders focuses mainly on ameliorating pain and functional 

limitations [35], while less attention is paid to mood comorbidities [2]. However, several 

studies have shown that the prevalence of anxiety and depression e.g. in OA patients is very 

high [2,31], around 41% and 62%, respectively, although the recognition of both depression 

and anxiety in primary care settings is typically lower, less than 50% [2]. Similarly, in preclinical 

OA studies most authors have focused on acute changes in behaviour or molecular and cellular 

responses [4-7,27-29,36,37]. In experimental animal studies on neuropathic pain, comorbid 

anxiety- and depression-like behaviour has been studied more extensively. For example, Yalcin 



17 
 

et al.[8] assessing anxiety and depression-related behaviours in a mouse model of neuropathic 

pain demonstrated a time-dependent development of mood-like disorders. Their findings 

indicate that anxiety-related behaviour was developed 4 weeks after induction of the 

neuropathy, whereas depression-related behaviours were observed 2-4 weeks later. 

In the currently used K/C model, the development of anxiety-like behaviour had already been 

shown by Ji et al. [28] as early as 24h after its induction. Using a similar set-up, we 

demonstrated that ARTH animals still displayed anxiety-like behaviour at four weeks post-

induction as shown by the significant decrease in the time spent in the open arms of the EPM. 

In addition, ARTH animals also displayed an anxious-like phenotype in the open field test as 

this group left a significantly higher number of fecal boli in the OF arena when compared to 

SHAM animals. Despite its simplicity, defecation is considered an important indicator of 

emotional responses, particularly in anxiety-like behaviour [20]. 

While the results by Yalcin et al. [8] showed that the development of depression-like behaviour 

in neuropathic animals took 6-8 weeks, our results indicate that in the K/C model the 

depressive-like phenotype appeared earlier, at four weeks. This was shown by a decrease in 

the latency to immobility, an increase in the duration of immobility and a decrease in active 

behaviours (climbing and swimming) in the FST. This type of behavioural change in 

experimental animals is considered an index of learned helplessness that presumably 

represents human “resignation” [38]. Yet, based on studies on neuropathic pain by Wang et al. 

[39], it could be argued that the differences obtained between SHAM and ARTH animals in the 

FST could be explained by motor deficits of ARTH animals. However, ARTH animals of the 

present study failed to display any motor impairments in the OF. Nor could we detect any 

obvious difference in the use of the left and right hind paws during the FST. Moreover, the 

depressive-like phenotype obtained in the FST is further supported by the SPT data, a test that 

does not implicate/require motor coordination.  



18 
 

Although the analysis of anhedonia (lack of interest in pleasure) in rodents has to be 

approached with caution, a reduced preference for a sweet solution is considered to share 

some analogy with anhedonia and depressive behaviour in humans [40] and therefore, the SPT 

is widely used in stress studies [41]. Our ARTH animals showed a significant decrease in the 

preference for a sweet solution when compared to SHAM, hence displaying a clear hedonic 

deficit. It has been argued that sucrose intake can also be influenced by body weight [41], but 

comparing the ratio between animal body weight and liquid consumption between groups 

revealed no significant differences between ARTH and SHAM animals. This finding gives further 

support to the presence of an anhedonic state in ARTH animals.  

In what concerns the performance of AMI-treated SHAM animals, there appears to be an 

anxiogenic and pro-depressive effect of AMI on these animals as shown in the OF and the FST 

tests. In clinical practice, antidepressants are known to have deleterious effects when 

administered to non-depressed patients [42] comprising, amongst others, sedation, lower 

reaction time in the choice reaction time task, sensory impairments, disruption of 

discrimination ability, dry mouth, dizziness and constipation [42,43]. In what concerns the 

effects of prolonged AMI administration to animals only a few works reported frequency-

related depression of ventricular conduction in dogs [44,45]. Nonetheless, in a preliminary 

study (unpublished data) where we compared the motor performance of AMI- and SAL-treated 

SHAM animals in the Rotarod test (increasingly faster rotations) no differences could be found 

between experimental groups. These results are in accordance with a report from Bomholt et 

al. [46] also showing that the acute administration of AMI did not alter the motor performance 

of SHAM animals in the Rotarod test. Based on these results we considered that the 

detrimental effects of AMI administration to SHAM animals were not motor related. 

Recurrent episodes of inflammation at the damaged joints in arthritic patients lead to the 

release of inflammatory mediators that activate voltage-gated sodium channels causing 
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peripheral/central sensitization and ultimately, persistent inflammatory pain [47]. Descending 

monoaminergic pathways play an important role in inhibiting pain transmission at the spinal 

cord level [48]. Tricyclic antidepressants (TCAs), which inhibit the reuptake of serotonin and 

noradrenalin, are essential components of the current pain management therapeutic 

strategies in chronic pain disorders, including rheumatoid arthritis [49]. Yet, Richards et al. [49] 

while studying the effect of AMI in controlling pain in a data base of controlled trials in adults 

with rheumatoid arthritis or ankylosing spondylitis could not confirm the efficacy of this TCA as 

an analgesic. No available data could be found concerning the use of AMI for pain 

management in monoarthritic/osteoarthritic patients. Nonetheless, our data shows that the 

administration of AMI to ARTH animals significantly decreased mechanical hyperalgesia after 

three weeks of treatment. Interestingly, this effect might result not only from increased 

availability of brain serotonin and noradrenaline and subsequent activation of descending 

pathways as demonstrated in other works [48,50], but also from a peripheral effect as this 

drug decreases the activity of sodium and calcium voltage dependent channels [51]. This 

hypothesis is supported by demonstration that AMI selectively inhibits ectopic discharge of 

low frequency and bursting discharge in animal models of neuropathic pain [52], and that the 

antidepressants’ ability to block sodium channels could effectively suppress persistent 

peripheral signaling [53]. 

Although AMI had no effect upon anxiety-like behaviour, it efficiently reversed the hedonic-

like behaviour as measured in the SPT. These results are consistent with data from other 

studies showing that the decrease in depressive-like behaviour results from the modulation of 

the activity of serotonin transporters [54] and of several receptors [54,55]. However taking into 

account our results from the FST it is unlikely that the effect of AMI reported herein is related 

to the modulation of serotonin receptors, as no differences were found for the swimming 

component of the test, but rather to an effect of this drug on noradrenergic receptors. In fact, 

similarly to what was observed by Detke et al. [56], in rats injected with specific noradrenaline 
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uptake inhibitors, the administration of AMI to ARTH animals selectively increased climbing 

behaviour without altering the time spent swimming. 

 

5. Conclusions 

So far, it is not clear which components of chronic inflammation are directly involved in the 

development of mood disorders in human patients with an inflammatory joint disorder such as 

OA [57]. The causes of pain-depression comorbidity in patients with arthritis are complex 

(involving sensory, affective and cognitive processes) and the abnormal peripheral and central 

mechanisms of pain processing involved in this comorbidity are far from being understood. 

Our present results support the proposal that the K/C model in the rat provides a good pre-

clinical tool for studying the link between chronic inflammatory joint pain and mood disorders, 

as well as a model for testing novel drugs that may modulate pain intensity, mood disorders, 

or both. Importantly, AMI was able to reverse the nociceptive and hedonic components of 

chronic inflammatory pain with its influence likely due to a simultaneous combination of 

central and peripheral effects. 

 

Abbreviations 

AMI – Amitriptyline hydrocloride 

ARTH – K/C induced monoarthritis 

EPM - Elevated plus maze 

FC - Femoral condyle 

FP – Femoral plateaux 



21 
 

FST - Forced swimming test 

gf – Gram force 

K/C - Kaolin/carrageenan 

LWT - Limb withdrawal threshold 

M – Meniscus 

OA - Osteoarthritis 

OF - Open field test 

PAM - Pressure application measurement 

PL - Patellar ligament 

SAL - Saline 

SCB - Subchondral bone 

SHAM – Control animals 

SPT - Sucrose preference test 

TCA – Tricyclic antidepressant 

TP - Tibial plateau 

 

 

 

 



22 
 

Competing interests 

The authors declare that they have no competing interests. 

 

Author contributions 

DA and ADP carried out the experimental work and scored the tests. DA analysed the data. DA 

and FPR designed the experiment, coordinated the tasks and wrote the manuscript. AP and AA 

revised the manuscript. All authors read and approved the final manuscript. 

 

Acknowledgements 

This study was supported by grants from the Portuguese Science Foundation (FCT) Project nº 

PTDC/SAU-NEU/108557/2008, FEDER-COMPETE, and the Academy of Finland. Diana Amorim 

was supported by FCT grant SFRH/BD/71219/2010. Ana David-Pereira was supported by FCT 

grant SFRH/BD/90374/2012. 

 

References 

[1] Stange KC, Zyzanski SJ, Jaen CR, Callahan EJ, Kelly RB, Gillanders WR, et al. Illuminating 

the ‘black box’. A description of 4454 patient visits to 138 family physicians. J Fam 

Pract 1998;46:377–389. 

[2] Sherbourne CD, Asch SM, Shugarman LR, Goebel JR, Lanto AB, Rubenstein LV, Wen L, 

Zubkoff L, Lorenz KA. Early identification of co-occurring pain, depression and anxiety. 

J Gen Intern Med 2009;24(5):620-625. 



23 
 

[3] Bair MJ, Robinson RL, Katon W, Kroenke K. Depression and pain comorbidity: a 

literature review. Arch Intern Med 2003;163(20):2433-2445. 

[4] Fernandez-Guasti A, Reyes R, Martinez-Mota L, Lopez-Munoz FJ. Influence of 

inflammatory nociception on the anxiolytic-like effect of diazepam and buspironein 

rats. Psychopharmacology (Berl) 2005;180:399–407. 

[5] Narita M, Kaneko C, Miyoshi K, Nagumo Y, Kuzumaki N, Nakajima M, Nanjo K, 

Matsuzawa K, Yamazaki M, Suzuki T. Chronic pain induces anxiety with concomitant 

changes in opioidergic function in the amygdala. Neuropsychopharmacology 

2006;31:739–750. 

[6] Jimenez-Velazquez G, Lopez-Munoz FJ, Fernandez-Guasti A. Parallel anxiolytic-like and 

antinociceptive actions of diazepam in the anterior basolateral amygdala and dorsal 

periaqueductal gray. Brain Res 2010;1349:11–20. 

[7] Parent AJ, Beaudet N, Beaudry H, Bergeron J, Bérubé P, Drolet G, Sarret P, Gendron L. 

Increased anxiety-like behaviors in rats experiencing chronic inflammatory pain. Behav 

Brain Res 2012;229(1):160-167. 

[8] Yalcin I, Bohren Y, Waltisperger E, Sage-Ciocca D, Yin JC, Freund-Mercier MJ, Barrot M. 

A time-dependent history of mood disorders in a murine model of neuropathic pain. 

Biol Psychiatry 2011;70:946–953. 

[9] Twillman RK. Mental disorders in chronic pain patients. J Pain Palliat Care 

Pharmacother 2007;21:13-19. 

[10] Teh CF Zaslavsky AM, Reynolds CF, Cleary PD. Effect of depression treatment on 

chronic pain outcomes. Psychosom Med 2010;72(1):61-67. 

[11] Jann MW, Slade JH. Antidepressant agents for the treatment of chronic pain and 

depression. Pharmacotherapy 2007;27(11):1571-1587. 

[12] Moore RA, Derry S, Aldington D, Cole P, Wiffen PJ. Amitriptyline for neuropathic pain 

and fibromyalgia in adults. Cochrane Database Syst Rev 2012;12:CD008242. 



24 
 

[13] Mochizucki D. Serotonin and noradrenaline reuptake inhibitors in animal models of 

pain. Hum Psychopharmacol 2004;19(Suppl 1):S15-S19. 

[14] Pinto-Ribeiro F, Ansah OB, Almeida A, Pertovaara A. Response properties of 

nociceptive neurons in the caudal ventrolateral medulla (CVLM) in monoarthritic and 

healthy control rats: modulation of responses by the paraventricular nucleus of the 

hypothalamus (PVN). Brain Res Bull  2011; 86:82-90. 

[15] Radhakrishnan R, Moore SA, Sluka KA. Unilateral carrageenan injection into muscle or 

joint induces chronic bilateral hyperalgesia in rats. Pain 2003; 104:567–577. 

[16] Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed 

tissue. Arch Int Pharmacodyn Ther 1957; 111:409–419. 

[17] Rivat C, Richebé P, Laboureyras E, Laulin JP, Havouis R, Noble F, Moulinoux JP, 

Simonnet G,. Polyamine deficient diet to relieve pain hypersensitivity. Pain 2008; 

137:125–137. 

[18] Barton NJ, Strickland IT, Bond SM, Brash HM, Bate ST, Wilson AW, Chessell IP, Reeve 

AJ, McQueen DS. Pressure application measurement (PAM): a novel behavioural 

technique for measuring hypersensitivity in a rat model of joint pain. J Neurosci 

Methods 2007; 163(1):67-75.  

[19] Leite-Almeida H, Almeida-Torres L, Mesquita AR, Pertovaara A, Sousa N, Cerqueira JJ, 

Almeida A. The impact of age on emotional and cognitive behaviours triggered by 

experimental neuropathy in rats. Pain 2009; 144:57-65. 

[20] Ennaceur A, Michalikova S, Chazot PL. Models of anxiety: Responses of rats to novelty 

in an open space and an enclosed space. Behav Brain Res 2006; 171:26–49. 

[21] Bessa JM, Mesquita AR, Oliveira M, Pêgo JM, Cerqueira JJ, Palha JA, Almeida OF, Sousa 

N. A trans-dimensional approach to the behavioral aspects of depression. Front Behav 

Neurosci 2009; 3:1.  



25 
 

[22] Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like 

activity in rodents. Nat Protoc 2012; 7(6):1009-1014. 

[23] Ottoni EB. EthoLog 2.2 - a tool for the transcription and timing of behavior observation 

sessions. Behav Res Meth Ins C 2000; 32(3):446-449. 

[24] Rénéric JP, Bouvard M, Stinus L. In the rat forced swimming test, chronic but not 

subacute administration of dual 5-HT/NA antidepressant treatments may produce 

greater effects than selective drugs. Behav Brain 2002; 136(2):521-532. 

[25] Neugebauer V, Han JS, Adwanikar H, Fu Y, Ji G. Techniques for assessing knee joint 

pain in arthritis. Mol Pain 2007;3:8. 

[26] Neugebauer V. Arthritis Model, Kaolin-Carrageenan Induced Arthritis (Knee). In: 

Encyclopedia of Pain, Schmidt RF, Willis WD, Ed. Springer-Verlag Berlin Heidelberg 

2007;115-118. 

[27] Lu Y, Westlund KN. Gabapentin attenuates nociceptive behaviors in an acute arthritis 

model in rats. J Pharmacol Exp Ther 1999;290(1):214-219. 

[28] Ji G, Fu Y, Ruppert KA, Neugebauer V. Pain-related anxiety-like behavior requires CRF1 

receptors in the amygdala. Mol Pain 2007;3:13. 

[29] Kim KS, Kim MH, Yeom M, Choi HM, Yang HI, Yoo MC, Hahm DH. Arthritic disease is 

more severe in older rats in a kaolin/carrageenan-induced arthritis model.  Rheumatol 

Int 2011;32:3875-3879. 

[30] Pearson RG, Kurien T, Shu KS, Scammell BE. Histopathology grading systems for 

characterisation of human knee osteoarthritis-reproducibility, variability, reliability, 

correlation, and validity. Osteoarthr Cartilage 2011;19(3):324-331.  

[31] Axford J, Butt A, Heron C, Hammond J, Morgan J, Alavi A, Bolton J, Bland M. Prevalence 

of anxiety and depression in osteoarthritis: use of the Hospital Anxiety and Depression 

Scale as a screening tool. Clin Rheumatol 2010;29(11):127712-127783. 



26 
 

[32] Kim H, Chen L, Lim G, Sung B, Wang S, McCabe MF, Rusanescu G, Yang L, Tian Y, Mao J. 

Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and 

depression. J Clin Invest  2012;122:2940-2954. 

[33] Brandt KD. Animal models of osteoarthritis. Biorheology 2002; 39(1-2):221-235. 

[34] Wessel J. The reliability and validity of pain threshold measurements in osteoarthritis 

of the knee. Scand J Rheumatol 1995;24:238–242. 

[35] Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra 

SM, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh CK, 

Lohmander LS, Tugwell, P. OARSI recommendations for the management of hip and 

knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. 

Osteoarthr Cartilage 2008;16:137–162. 

[36] Neugebauer V, Schaible HG. Evidence for a central component in the sensitization of 

spinal neurons with joint input during development of acute arthritis in cat's knee. J 

Neurophysiol 1990;64:299–299. 

[37] Neugebauer V, Rumenapp P, Schaible HG. The role of spinal neurokinin-2 receptors in 

the processing of nociceptive information from the joint and in the generation and 

maintenance of inflammation-evoked hyperexcitability of dorsal horn neurons in the 

rat. Eur J Neurosci 1996;8:249–260. 

[38] Castagné V, Moser P, Roux S, Porsolt RD. Rodent models of depression: forced swim 

and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci 

2011; Chapter 8, Unit 8.10A. 

[39] Wang J, Goffer Y, Xu D, Tukey DS, Shamir DB, Eberle SE, Zou AH, Blanck TJ, Ziff EB. A 

single subanesthetic dose of ketamine relieves depression-like behaviors induced by 

neuropathic pain in rats. Anesthesiology 2011;115(4):812-821. 

[40] Anisman H, Matheson K. Stress, depression, and anhedonia: Caveats concerning 

animal models. Neurosci Biobehav Rev 2005;29:525–546. 



27 
 

[41] Matthews K, Forbes N, Reid IC. Sucrose consumption as an hedonic measure following 

chronic unpredictable mild stress. Physiol Behav 1995;57:241–248. 

[42] Fairweather DB, Kerr JS, Hilton S, Hindmarch I. A placebo controlled double-blind 

evaluation of the pharmacodynamics of fengabine vs amitriptyline following single and 

multiple doses in elderly volunteers. Br J Clin Pharmacol 1993;35(3):278-283. 

[43] You LQ, Liu J, Jia L, Jiang SM, Wang GQ. Effect of low-dose amitriptyline on globus 

pharyngeus and its side effects. World J Gastroenterol 2013;19(42):7455-7460. 

[44] Nattel S. Frequency-dependent effects of amitriptyline on ventricular conduction and 

cardiac rhythm in dogs. Circulation 1985;72(4):898-906. 

[45] Sasyniuk BI, Jhamandas V, Valois M. Experimental amitriptyline intoxication: treatment 

of cardiac toxicity with sodium bicarbonate. Ann Emerg Med 1986;15(9):1052-1059. 

[46] Bomholt SF, Mikkelsen JD, Blackburn-Munro G. Antinociceptive effects of the 

antidepressants amitriptyline, duloxetine, mirtazapine and citalopram in animal 

models of acute, persistent and neuropathic pain. Neuropharmacology 

2005;48(2):252-263. 

[47] Flake NM, Gold MS. Inflammation alters sodium currents and excitability of 

temporomandibular joint afferents. Neurosci Lett 2005;384(3):294-299. 

[48] Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol 2006; 80:53-83.  

[49] Richards BL, Whittle SL, van der Heijde DM, Buchbinder R. The efficacy and safety of 

antidepressants in inflammatory arthritis: a Cochrane systematic review. J Rheumatol 

Suppl 2012;90:21-27. 

[50] Cui M, Feng Y, McAdoo DJ, Willis WD. Periaqueductal gray stimulation-induced 

inhibition of nociceptive dorsal horn neurons in rats is associated with the release of 

norepinephrine, serotonin, and amino acids. J Pharmacol Exp Ther 1999;289(2):868-

876. 



28 
 

[51] Bräu ME, Dreimann M, Olschewski A, Vogel W, Hempelmann G. Effect of drugs used 

for neuropathic pain management on tetrodotoxin-resistant Na(+) currents in rat 

sensory neurons. Anesthesiology 2001;94(1):137-144. 

[52] Su X, Liang AH, Urban MO. The effect of amitriptyline on ectopic discharge of primary 

afferent fibers in the L5 dorsal root in a rat model of neuropathic pain. Anesth Analg 

2009;108(5):1671-1679. 

[53] Dharmshaktu P, Tayal V, Kalra BS. Efficacy of antidepressants as analgesics: a review. J 

Clin Pharmacol 2012;52(1):6–17. 

[54] Li Y, Raaby KF, Sánchez C, Gulinello M. Serotonergic receptor mechanisms underlying 

antidepressant-like action in the progesterone withdrawal model of hormonally 

induced depression in rats. Behav Brain Res 2013;256C:520-528. 

[55] Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of 

antidepressants and related compounds at human monoamine transporters. Eur J 

Pharmacol 1997;340:249-258. 

[56] Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test 

differentially produced by serotonergic and noradrenergic antidepressants. 

Psychopharmacology (Berl) 1995;121(1):66-72. 

[57] Khairova RA, Machado-Vieira R, Du J, Manji HK. A potential role for pro-inflammatory 

cytokines in regulating synaptic plasticity in major depressive disorder. Int J 

Neuropsychopharmacol 2009;12(4):561-578. 

 

 

 

 



29 
 

Figure Legends 

Figure 1. (A) Time course of the two main experiments, (i) the first one involving the 

assessment of the comorbid development of mood-like disorders in animals with experimental 

ARTH and (ii) the second that evaluated the potential of amitriptyline in reversing both the 

nociceptive and the emotional-like components of chronic experimental ARTH. One week 

preceding the intrasynovial injection animals were presented to a sucrose solution and in the 

day before the knee injection animals were submitted to a baseline evaluation in the sucrose 

preference test (SPT). Four weeks after the intrasynovial injection the first test performed was 

the SPT followed by 24h of rest to compensate for the fasting period. The next evaluation was 

the pressure application measurement (PAM), on day 3 followed by the open field test (OF) 

and elevated plus maze (EPM) on days 4 and 5, respectively. Finally, we opted to perform the 

forced swimming test (FST) in the last two days so that the physical effort associated to it 

would not bias the results of the other tests. In experiment 2, animals were divided into four 

experimental groups: SHAM animals that received saline (SHAM_SAL) or amitriptyline 

(SHAM_AMI) and ARTH animals that received saline (ARTH_SAL) or amitriptyline (ARTH_AMI). 

Four weeks after the intrasynovial injection animals were submitted to a baseline evaluation in 

the SPT followed by three weeks of daily injections of SAL or AMI. In the fourth week of the 

treatment, animals were behaviourally tested following the same experimental design as in 

experiment 1. (B) Sections of the femoro-tibial joint space stained with eosin-haematoxylin of 

SHAM and ARTH animals four weeks after the induction of arthritis. In SHAM animals (B1) the 

structure of the femoro-tibial joint is preserved (M: meniscus; PL: patellar ligament; FC: 

femoral condyle; TP: tibial plateau and SCB: subcondral bone). In ARTH animals (B2), cartilage 

damage (a) can be observed in addition to fibrillation and marked thinning of the central part 

of the articular surface. In the FC, subchondral sclerosis (c), cyst formation (d) and 

inflammation (infiltration of immune cells) (e) are present while in the TP only cyst formation 

(b) is observed at this time point. 
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Figure 2. Behavioural assessment four weeks after arthritis induction, in experiment 1. 

Evaluation of the right (ipsilateral) limb withdrawal latency (LWT) in the pressure application 

measurement (PAM). The LWT of arthritic (ARTH) group was significantly decreased when 

compared to results in control (SHAM) animals (mechanical hyperalgesia) (A). No differences 

were found in locomotor behaviour between arthritic (ARTH) and control (SHAM) groups, as 

indicated by the total distance travelled in the open field (OF) test (B). ARTH animals showed 

increased anxiety-like behaviour as indicated by: the tendency to avoid the centre of the OF 

arena (C); the significantly higher number of fecal boli left in the arena at the end of the trial 

(D); and the reduction in time spent in the open arms of the EPM test, when compared to 

SHAM animals (E). ARTH animals displayed an anhedonic-like behaviour as showed by the 

significant decrease in the preference for sucrose solution in the sucrose-preference test (SPT) 

(F) (Δ sucrose preference is the variation in sucrose preference between the data obtained 

four weeks after and one day before monoarthritis induction). Results are expressed as 

Mean+SEM (n=6 per group). *P<0.05, **P<0.01. 

Figure 3. Behavioural assessment in the forced swimming test (FST), in experiment 1. Four 

weeks after the induction of experimental arthritis, ARTH animals become immobile 

significantly earlier than SHAM animals in the forced swimming test (FST) (A). ARTH animals 

spent significantly more time immobile than SHAM animals (B), at the expense of the time 

spent swimming (C) and climbing (D) in the FST test. Results are expressed as Mean+SEM (n=6 

per group). *P<0.05, **P<0.01. 

Figure 4. Behavioural assessment after treatment with amitriptyline (AMI), in experiment 2. 

Evaluation of the right (ipsilateral) limb withdrawal latency (LWT) in the pressure application 

measurement (PAM). The LWT of arthritic (ARTH) animals treated with AMI increased when 

compared to ARTH animals treated with saline (SAL), reaching control (SHAM) levels (abolished 

mechanical hyperalgesia) (A). No differences were found in locomotor activity between 
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arthritic (ARTH) and control (SHAM) groups, as indicated by the total distance travelled  in the 

open-field (OF) test (B). ARTH animal treated with AMI showed no difference in anxiety-like 

behaviour when compared to ARTH animals treated with SAL in both the time spend in the 

centre of the OF arena (C) and the number of fecal boli (D). In the elevated plus maze (EPM) 

test no differences were observed in the time spent in open arms (E). In the sucrose 

preference test (SPT), ARTH animals treated with AMI increased sucrose preference when 

compared with ARTH animals treated with SAL (F) (Δ sucrose preference is the variation in 

sucrose preference between the data obtained three weeks after and one day before the 

beginning of the treatment). Results are expressed as Mean+SEM (n=8 per group). **P<0.01, 

***P<0.001. 

Figure 5. Behavioural assessment in the forced swimming test (FST) after treatment with 

amitriptyline (AMI), in experiment 2. AMI did not reverse the effect of arthritis on the latency 

to immobility (A), the time spent immobile (B) or the time spent in swimming (C). Interestingly, 

ARTH animals injected with AMI increased the time spent climbing (D) but only when 

compared with SHAM treated animals. Additionally, note that following AMI treatment of 

ARTH animals, no differences were observed with the SHAM group treated with SAL in the 

latency to immobility (A), total immobility (B) and time spent climbing (D). Results are 

expressed as Mean+SEM (n=8 per group). *P<0.05, **P<0.01. 

 

 

 

 

 



32 
 

Figure 1 

 

 

 

 

 

 

 

 

 

 



33 
 

Figure 2 

 

 

 

 

 

 

 

 

 

 



34 
 

Figure 3

 

 

 

 

 

 

 

 

 

 



35 
 

Figure 4 

 

 

 

 

 

 

 

 

 

 



36 
 

Figure 5 

 


