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MODELING ENZYMATIC REGULATION IN METABOLIC NETWORKS

Introduction

➔ Systems Biology aims to understand and predict 
cellular behavior through the creation of 
computational cell models.

➔ Constraint-based modeling has been used to 
model metabolic networks at the genome scale [4]. 
Its simplicity provides scalability but ignores kinetic 
behavior and enzymatic regulation.

➔ Kinetic models at the genome scale are being 
recently built, adding approximative kinetic rate laws 
to constraint-based models [3,6]. However, they still 
lack enzymatic regulation.

➔ Petri nets are a graphical and mathematical 
formalism used to model all kinds of biological 
networks [5].

➔ Extended Petri nets are an extension that include 
special types of arcs able to model different kinds of 
interactions.

Objectives

➔ Use Extended Petri nets to model metabolic 
networks in order to account for regulatory 
interactions.

➔ Develop a framework for kinetic inference that 
generates kinetic models from the underlying 
topology.

➔ Build an Extended Petri net model of the central 
carbon metabolism of E. coli, based on the available 
dynamic model [1], and generate kinetic models 
(with and without enzymatic regulation).

➔ Simulate the metabolic phenotype of mutant 
strains upon gene knockout and adjustment of 
enzyme expression levels.

➔ Evaluate the impact of accounting for enzymatic 
regulation by comparing the results with those 
obtained with the original model.

ModelMethods Results

➔ Kinetic models generated with GMA kinetics [2].

➔ Parameters fitted to wild-type steady-state.

➔ New models predicted the mutant phenotypes.

➔ Regulatory effects can only be predicted by the 
model with regulation.

➔ Example: 5-fold underexpression of pepCxylase 
– only the model with regulation correctly predicted 
the flux shift confirmed by the original model.

Conclusions

➔ Enzymatic regulatory effects can influence the metabolic flux distribution.

➔ Extended Petri nets can model such effects with activation and inhibition arcs.

➔ They provide a better scaffold to generate large-scale kinetic models.

➔ These models may reveal new targets for rational strain design.

Future work...

➔ Parameter estimation is still the main bottleneck of this process.

➔ The framework can be extended to include transcriptional regulation.
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