
Components as Coalgebras:

the Refinement Dimension ?

Sun Meng a, Lúıs S. Barbosa b

aLMAM, School of Mathematical Science, Peking University, China
bDepartment of Informatics, Minho University, Portugal

Abstract

This paper characterizes refinement of state-based software components modeled
as pointed coalgebras for some Set endofunctors. The proposed characterization is
parametric on a specification of the underlying behaviour model introduced as a
strong monad. This provides a basis to reason about (and transform) state-based
software designs. In particular it is shown how refinement can be applied to the
development of the inequational subset of a calculus of generic software components.

Key words: software components, refinement, coalgebra

1 Introduction

In the tradition of mathematical modelling in physics and chemistry, cons-
tructive formal specification methods, such as Vdm [1], Z [2] or B [3], are
based on the notion of a software model, understood as a state-based abstract
machine which persists and evolves in time, according to a behavioural model
capturing, for example, partiality or (different degrees of) non determinism.
This can be identified with the more prosaic notion of a software component
[4,5] advocated by the software industry as ‘building block’ of large, often

? Research supported by Fct (the Portuguese Foundation for Science and Techno-
logy), in the context of the PURe Project under contract POSI/ICHS/44304/2002.
Sun Meng was further supported by the National Natural Science Foundation of
China under grant no. 60273001. The authors wish to thank José Oliveira for useful
feedback on an earlier version of this work and the anonymous referees who also
provided a number of helpful suggestions.

Email addresses: sunmeng@water.pku.edu.cn (Sun Meng), lsb@di.uminho.pt
(Lúıs S. Barbosa).

Preprint submitted to Elsevier Science 28 December 2004

distributed, systems. Such a component typically encapsulates a number of
services through a public interface which provides a limited access to a private
state space, paying tribute to the nowadays widespread object-oriented pro-
gramming principles.

Regarded as state-based, dynamical systems, software components belong to
the broad group of computing phenomena which are hardly definable (or
simply not definable) algebraically, i.e., in terms of a complete set of con-
structors. Their semantics is essentially observational, in the sense that all
that can be traced of their evolution is their interaction with the environment.
Therefore, coalgebras, whose theory has recently witnessed remarkable devel-
opments [6], appear as a suitable modelling tool. Such was the starting point
of a coalgebraic approach to the semantics of state-based software components
proposed by the authors in [7,8], under the slogan components as coalgebras.
This research has been driven by two key ideas: first, the ‘black-box’ char-
acterization of components favours an observational semantics; secondly, the
proposed constructions should be generic in the sense that they should not
depend on a particular notion of component behaviour. This led both to the
adoption of coalgebra theory to capture observational semantics and to the ab-
stract characterization of possible behaviour models (ranging from partiality
to non determinism) by strong monads acting as parameters in the resulting
calculus.

Within this approach, briefly reviewed in section 2, a set of component con-
nectors have been identified and their properties established as bisimilarity
equations with respect to a generic behaviour model. Actually, the corner
stone of the resulting calculus is the use of coinduction to prove ∼-results,
where ∼ is the appropriate bisimilarity relation, when reasoning about and
transforming component-based designs. The aim of this paper is to provide a
basis to extend the calculus toward the inequational side, while retaining its
genericity, through the introduction of suitable notions of refinement.

But what is component refinement? In broad terms refinement can be defined
as a transformation of an ‘abstract’ into a more ‘concrete’ design, entailing
a notion of substitution, but not necessarily equivalence. There is, however, a
diversity of ways of understanding both what substitution means, and what
such a transformation should seek for. In data refinement, for example, after
Hoare’s landmark paper [9], the ‘concrete’ model is required to have enough
redundancy to represent all the elements of the ‘abstract’ one. This is captured
by the definition of a surjection from the former into the latter (the abstrac-
tion or retrieve map). Also substitution is regarded as ‘complete’ in the sense
that the (concrete) operations accept all the input values accepted by the
corresponding abstract ones, and, for the same inputs, the results produced
are also the same, up to the abstraction map. This means that, if models are
specified, as they usually are in constructive design methods, in terms of pre

2

and post-conditions, the former are weakened and the latter strengthened,
under refinement. In object-orientation, on the other hand, substitution is ex-
pressed in terms of behaviour subtyping [10] capturing the idea that ‘concrete’
objects behave similarly to objects in the ‘abstract’ class. Finally, refinement
in process algebras is usually discussed in terms of a number of ‘observation’
preorders (see, for example, [11]), most of them justifying transformations
entailing reduction of non determinism.

In general, refinement correctness means that the usage of a system according
to its ‘abstract’ description is still valid if it is actually built according to
the ‘concrete’ one. What is commonly understood by being a valid usage is
that the corresponding observable consequences are still the same, or, in a less
strict sense, a subset thereof. The exact definition, however, depends on the
underlying behaviour model, which, in our approach to component modelling,
is taken as a specification parameter. Therefore, the main contribution of this
paper is a semantic characterisation of refinement for state-based components,
parametric on a strong monad intended to capture components’ behavioural
models.

After a brief review of the equational calculus, in section 2, the paper discusses
two levels of component refinement: the interface level, concerned with what
one may call plugging compatibility, in section 3, and the behavioural one in
section 4, which introduces forward and backward morphisms as refinement
‘witnesses’, and section 5 which builds on them to propose a family of re-
finement preorders. The extension of the component calculus with refinement
inequations is illustrated in section 6. Section 7 proves soundness of simu-
lations to establish behavioural refinement and, finally, some prospects for
future work are presented in section 8.

2 Components as Coalgebras

As mentioned above, software components and connectors have been charac-
terised in [7,8] as dynamical systems with a public interface and a private,
encapsulated state. As an example consider LBuff: a connector modelling a
buffered channel which occasionally loses messages, as represented in figure 1.

The put and pick operations are regarded as ‘buttons’ or ‘ports’, whose signa-
tures are grouped together in the diagram (M stands for a message parameter
type, 1 for the nullary datatype and + for ‘datatype sum’). One might capture
LBuff dynamics by a function aLBuff : P(U ×O)←− U×I where U denotes the
state space. This describes how LBuff reacts to input stimuli, produces output
data (if any) and changes state. It can also be written in a curried form as
aLBuff : P(U ×O)I ←− U that is, as a coalgebra of signature U ←− T U where

3

put : M −→ 1

pick : 1 −→M •

��	�

��
LBuff

O = 1 + M

I = M + 1

Fig. 1. The LBuff component.

functor T captures the transition ‘shape’:

T = P(Id×O)I (1)

Built in this ‘shape’ is the possibility of non deterministic evolution captured
by the use of P , the finite powerset monad. Concretely, LBuff is defined over
U = M∗, with nil as the initial state, and dynamics given by

aLBuff〈u, put m〉 = {〈u, ι1 ∗〉, 〈m : u, ι1 ∗〉}
aLBuff〈u, pick〉 = {〈tl u, ι2 (hd u)〉}

where put m and pick abbreviate ι1 m and ι2 ∗, respectively.

Non determinism, capturing the occasional loss of messages, is a possible be-
havioural pattern for this buffer, but, by no means, the only one. Other com-
ponents will exhibit different behaviour models : actually genericity is achieved
by replacing the powerset monad above, by an arbitrary strong monad 1 B. In
the general case, a component p with input interface I and output interface
O, denoted by p : O ←− I, is specified as a (pointed) coalgebra in Set

〈up ∈ Up, ap : B(Up ×O)I ←− Up〉 (2)

1 A strong monad is a monad 〈B, η, µ〉 where B is a strong functor and both η
and µ strong natural transformations. B being strong means there exist natural
transformations T(Id × −) : T × − ⇐= T × − and T(− × Id) : − × T ⇐= − × T
called the right and left strength, respectively, subject to certain conditions. Their
effect is to distribute the free variable values in the context “−” along functor B.
Strength τr, followed by τl maps BI×BJ to BB(I×J), which can, then, be flattened
to B(I × J) via µ. In most cases, however, the order of application is relevant
for the outcome. The Kleisli composition of the right with the left strength, gives
rise to a natural transformation whose component on objects I and J is given by
δrI,J = τrI,J • τlBI,J

Dually, δlI,J = τlI,J
• τrI,BJ

. Such transformations specify how
the monad distributes over product and, therefore, represent a sort of sequential
composition of B-computations. Whenever δr and δl coincide, the monad is said to
be commutative.

4

where point up is taken as the ‘initial’ or ‘seed’ state. Therefore, the com-
putation of an action will not simply produce an output and a continuation
state, but a B-structure of such pairs. The monadic structure provides tools to
handle such computations. Unit (η) and multiplication (µ), provide, respecti-
vely, a value embedding and a ‘flatten’ operation to reduce nested behavioural
annotations. Strength, either in its right (τr) or left (τl) version, will cater for
context information.

In such a framework, components become arrows in a (bicategorical) universe
Cp whose objects are sets, providing types to input/output parameters (the
components’ interfaces). Component morphisms h : q ←− p, which impose a
categorical structure on Cp homsets, are functions relating the state spaces of
p and q and satisfying the following homomorphism conditions:

h up = uq and aq · h = B (h×O)I · ap (3)

From the applicational point of view, component morphisms provide a basis
for component comparison.

For each triple of objects 〈I,K,O〉, a composition law is given by functor
;I,K,O : Cp(I, O)←− Cp(I, K)× Cp(K, O) whose action on objects p and q is

p ; q = 〈〈up, uq〉 ∈ Up × Uq, ap;q〉 with

ap;q = Up × Uq × I
∼=−−−→ Up × I × Uq

ap×id−−−→ B(Up ×K)× Uq

τr−−−→ B(Up ×K × Uq)
∼=−−−→ B(Up × (Uq ×K))

B(id×aq)−−−−−→ B(Up × B(Uq ×O))
Bτl−−−→ BB(Up × (Uq ×O))

∼=−−−→ BB(Up × Uq ×O)
µ−−−→ B(Up × Uq ×O)

This law is just a generalisation of functional composition to take into account
both the presence of state and a generic behaviour model B. Similarly, for each
object K, an identity law is given by a functor copyK : Cp(K, K)←− 1 whose
action is the constant component 〈∗ ∈ 1, η1×K〉. Note that the definitions
above rely solely on the monadic structure of B. All in all, the fact that,
for each strong monad B, components form a bicategory amounts not only
to a canonical definition of the two basic combinators (; and copyK), but
also to set up their basic laws. Recall (from e.g. [6]) that the graph of a mor-
phism is a bisimulation. Therefore, the existence of a seed preserving morphism
between two components makes them bisimilar, leading to the following laws,
for appropriately typed components p, q and r:

copyI ; p ∼ p ∼ p ; copyO (4)

(p ; q) ; r ∼ p ; (q ; r) (5)

5

The dynamics of a component specification is essentially ‘one step’: it describes
immediate reactions to possible state/input configurations. Its temporal ex-
tension becomes the component’s behaviour. Formally, behaviour [(p)] of a
component p is computed by coinductive extension, applying the seed-value
of p to the unique morphism (denoted by [(ap)]) from its dynamics ap to the
final coalgebra:

[(p)] = [(ap)]up

Again behaviours organise themselves in a category Bh, whose objects are sets
and arrows b : O ←− I elements of νI,O, the carrier of the final coalgebra ωI,O

for functor B(Id×O)I .

It should be observed that the structure of Bh mirrors whatever structure Cp
possesses. In fact, the former is isomorphic to a sub-(bi)category of the latter
whose arrows are components defined over the corresponding final coalgebra.
Alternatively, we may think of Bh as the quotient Cp by the greatest bisimu-
lation. However, as final coalgebras are fully abstract with respect to bisimu-
lation, the bicategorical structure collapses. This is why properties holding in
Cp up to bisimulation, do hold ‘on the nose’ in Bh.

In [7,8] a set of component combinators has been defined in a similar para-
metric way and their properties studied. In particular it was shown that any
function f : B ←− A can be lifted to Cp as

pfq = 〈∗ ∈ 1, η(1×B) · (id× f)〉

The pre- and post-composition of a component with Cp-lifted functions can be
encapsulated into an unique combinator, called wrapping, which resembles the
renaming connective found in process calculi (e.g., [12]). Let p : O ←− I be
a component and consider functions f : I ←− I ′ and g : O′ ←− O. Notation
p[f, g] denotes component p wrapped by f and g, which is typed as I ′ −→ O′.

Formally, the wrapping combinator is a functor−[f, g] : Cp(I ′, O′)←− Cp(I, O)
which is the identity on morphisms and maps a component 〈up, ap〉 into
〈up, ap[f,g]〉, where

ap[f,g] = Up × I ′
id×f−−−→ Up × I

ap−−−→ B(Up ×O)
B(id×g)−−−−→ B(Up ×O′)

Function lifting and wrapping verify a number of laws of which the following
two will be needed in the sequel:

pfq ; pgq ∼ pg · fq (6)

p[f, g] ∼ pfq ; p ; pgq (7)

6

Typical component assembly patterns are modelled by three tensors, capturing,
respectively, external choice (�), parallel (�) and concurrent (�) composition.
Let p : O ←− I and q : R←− J . When interacting with p�q : O+R←− I+J ,
the environment chooses either to input a value of type I or one of type J ,
which triggers the corresponding component (p or q, respectively), producing
the relevant output. In its turn, parallel composition p � q : O×R←− I × J
corresponds to a synchronous product: both components are executed simul-
taneously when triggered by a pair of legal input values. Note, however, that
the behaviour effect, captured by monad B, propagates. For example, if B cap-
tures component failure and one of the arguments fails, the product will fail as
well. Finally, concurrent composition p� q : O +R +O×R←− I +J + I ×J
combines choice and parallel, in the sense that p and q can be executed inde-
pendently or jointly, depending on the input supplied. Generalised interaction
is catered through a sort of ‘feedback’ mechanism connecting a specified subset
of outputs to a subset of inputs of the same component. Therefore arbitrary
communication between components is achieved by first aggregating them
through one of the tensors and then selecting the input and output points to
be connected by the feedback operator.

3 Interface Refinement

Component interface refinement is concerned with type compatibility. The
question is whether a component can be transformed, by suitable wiring, to
replace another component with a different interface. As the structure of com-
ponents’ interface types encodes the available operations, this may capture
situations of extension of functionality, in the sense that the ‘concrete’ com-
ponent may introduce new operations. In the context of object-orientation,
this is often called design sophistication (rather than refinement). In general
a preorder capturing functionality extension fails to be a pre-congruence with
respect to typical process combinators (see e.g., [13]). If input and output
parameters are structured in a signature of operations, interface refinement
can also be seen as induced by a signature morphism, as in e.g., [14].

As a first example, consider, from [7], the following law expressing commuta-
tivity of choice:

p � q ∼ (q � p)[s+, s+] (8)

where s+ : J + I ←− I + J is the natural isomorphism capturing + commuta-
tivity. The law states that p�q and q�p are bisimilar up to isomorphic wiring.
This means that the observational effect of component p � q can be achieved
by q � p, provided the interface of the latter is converted to the interface of
the former. Such a conversion is achieved by composition with the appropriate

7

wires 2 , leading to a notion of replaceability.

Definition 1 Let p and q be components. We say that p : O ←− I is repla-
ceable by q : O′ ←− I ′, or q is a replacement of p, and write plq if there exist
functions w1 : I ′ ←− I and w2 : O ←− O′, to be referred to as the replacement
witnesses, such that

p ∼ q[w1, w2] (9)

Furthermore, components p and q are interchangeable if each of them is a
replacement of the other. Formally,

p + q iff p l q ∧ q l p (10)

Lemma 2 Replaceability (l) is a preorder on components

PROOF. Clearly, l is reflexive because p l p is witnessed by p ∼ p[id, id].
On the other hand, if p l q and q l r hold, there exist w1, w2, w3 and w4 such
that p ∼ q[w1, w2] and q ∼ r[w3, w4]. Thus, a composition result on wrapping
[8] and transitivity of ∼, entails p∼ r[w1 · w3, w4 · w2], i.e., p l r.

2

Using l and + some component laws in [8] can be presented in a ‘wiring free’
form. For example, law (8) above becomes

p � q + q � p (11)

As another example consider the law which relates concurrent composition
with choice,

pι1q ; (p � q) ∼ (p � q) ; pι1q

which gives rise to two replacement inequations:

pι1q ; (p � q) l p � q and (p � q) ; pι1q l p � q

Finally, the statement that every component p can replace an inert component
may be expressed as an interface refinement situation: inert l p. Note that
the inert component, which is unable to react to any external stimulus, corres-
ponds to the lifting of the canonical mediating arrow ?1 = !∅ : 1 ←− ∅. Also

2 Wires are components over 1 defined from identities using only the structural
properties of the underlying category — i.e., arrows associated to products, co-
products and exponentials. Therefore wires are natural but, of course, not always
isomorphisms. Their role is to provide ‘interconnection buses’ between different
components.

8

note that definition 1 does not restrict replacement situations to be witnessed
by functions whose lifting to CpB results in wires — arbitrary functions, with
the right types, can also be used. In general, law (7) justifies the following
fact:

pfq ; p ; pgq l p (12)

However, relation l fails to be a pre-congruence with respect to the component
operators introduced in [7]. It is easy to check that �, � and �, as well as
wrapping are preserved, i.e., if plp′ then, for any q, f and g, p[f, g]lp′[f, g], p�
qlp′�q and, similarly, for the other two tensors. But things are different with
respect to sequential composition and feedback. In these cases, the replaced
expression may even become wrongly typed.

What p l p′ means is that component p can be replaced in any context by
p′[w1, w2], for any functions w1, w2 witnessing the fact. The explicit reference
to them is actually required. Such is common in other approaches to interface
refinement, such as [15], where witnesses are often considered part of the
observation domain.

4 Forward and Backward Morphisms

Interface refinement is essentially concerned with plugging adjustment. Beha-
viour refinement, on the other hand, affects the internal dynamics of a compo-
nent while leaving unchanged its external interface: it takes place inside each
hom-category of Cp. Intuitively component p is a behavioural refinement of
q if the behaviour patterns observed from p are a structural restriction, with
respect to the behavioural model captured by monad B, of those of q. To make
precise such a ‘definition’ we shall first describe behaviour patterns concretely
as generalized transitions.

Actually, just as transition systems can be coded back as coalgebras, any
coalgebra 〈U, α : TU ←− U〉 specifies a (T-shaped) transition structure over
its carrier U . For extended polynomial Set endofunctors 3 such a structure
may be expressed as a binary relation α←−: U ←− U , defined in terms of
the structural membership relation ∈T: U ←− T U , i.e.,

u′ α←− u ≡ u′ ∈T α u

3 The class inductively defined as the least collection of functors containing the
identity Id and constant functors K for all objects K in the category, closed by
functor composition and finite application of product, coproduct, covariant expo-
nential and finite powerset functors.

9

or, in an equivalent but pointfree formulation which othen simplifies formal
reasoning, as the following relational equality 4

α←− = ∈T ·α

where ∈T is defined by induction on the structure of T 5 :

x ∈Id y iff x = y

x ∈K y iff false

x ∈T1×T2 y iff x ∈T1 π1 y ∨ x ∈T2 π2 y

x ∈T1+T2 y iff

y = ι1 y′ ⇒ x ∈T1 y′

y = ι2 y′ ⇒ x ∈T2 y′

x ∈TK y iff ∃k∈K . x ∈T y k

x ∈PT y iff ∃y′∈y. x ∈T y′

For any function h, relation ∈T satisfies the following naturality condition

h · ∈T = ∈T · T h (13)

which can be proved by induction on T. Applying shunting 6 to the left to
rigth inclusion component of equation (13) leads to

∈T ⊆ h◦ · ∈T · Th (14)

The dynamics of a component p : O ←− I is based on functor B(Id × O)I .
Therefore a possible (and intuitive) way of regarding component p as a beha-
vioural refinement of q is to consider that p transitions are simply preserved in
q. For non deterministic components this is understood simply as set inclusion.
But one may also want to consider additional restrictions. For example, to
stipulate that if p has no transitions from a given state, q should also have no
transitions from the corresponding state(s). Or one may adopt the dual point
of view requiring transition reflection instead of preservation. In any case the
basic question remains: how can such a refinement situation be identified?

4 In the sequel both functional and relational composition will be denoted by the
same symbol · given that the former is just a special case of the latter.
5 Relation ∈T is actually an instance of datatype membership defined in [16] by a
Galois connection.
6 In the relational calculus [17] Galois connection f ·R ⊆ S ≡ R ⊆ f◦ ·S, involving
function f and arbitrary relations R and S, is known as the shunting rule. Also note
that notation R◦ stands for the converse of relation R.

10

In data refinement, as mentioned above, there is a ‘recipe’ to identify a refine-
ment situation: look for an abstraction function to witness it. In other words:
look for a morphism in the relevant category, from the ‘concrete’ to the ‘ab-
stract’ model such that the latter can be recovered from the former up to a
suitable notion of equivalence, though, typically, not in a unique way.

In our components’ framework, however, things do not work this way. The
reason is obvious: component morphisms are (seed preserving) coalgebra mor-
phisms which are known (e.g., [6]) to entail bisimilarity. Therefore we have to
look for a somewhat weaker notion of a morphism between coalgebras.

Recall first that a T-coalgebra morphism h : β ←− α is a function from the
state space of α to that of β such that

Th · α = β · h (15)

Regarding α and β as (generalised) transition systems equation (15) becomes
a relational equality (by a straightforward generalisation of an argument in
[6]):

h · α←− = β←− ·h (16)

i.e., the conjunction of inclusions

h · α←− ⊆ β←− ·h (17)

β←− ·h ⊆ h · α←− (18)

By shunting inclusion (17) can also be presented in the following equivalent
way:

α←− ⊆ h◦ · β←− ·h (19)

Note that introducing variables inequalities (19) and (18) take the following
more familiar shape:

u′ α←− u ⇒ h u′ β←− h u (20)

v′ β←− h u ⇒ ∃u′∈U . u′ α←− u ∧ u′ = h v′ (21)

They jointly state that, not only α dynamics, as represented by the induced
transition relation, is preserved by h (17), but also β dynamics is reflected
back over the same h (18). Is it possible to weaken the morphism definition to
capture only one of these aspects? The answer is yes and resorts to the notion
of a preorder ≤ on a Set endofunctor T. This was defined in [18] as a functor
≤ which makes the following diagram commute:

PreOrd
��

(TU,≤TU)
��

Set T
//

≤ 66mmmmmmm
Set concretely U //

55lllllll
TU

11

This means that for any function h : V ←− U , Th preserves the order, i.e.

x1 ≤TX x2 ⇒ (Th) x1 ≤TY (Th) x2 (22)

or, in a pointfree formulation,

(Th)· ≤ ⊆ ≤ · (T h) (23)

Let us denote by
.
≤ the pointwise lifting of ≤ to the functional level, i.e.

f
.
≤ g ≡ ∀x. f x ≤ g x (24)

which can also be formulated in the following pointfree way, more suitable for
calculation,

f
.
≤ g ≡ f ⊆≤ ·g (25)

Clearly for any function h monotonic with respect to ≤ one has

f
.
≤ g ⇒ h · f

.
≤ h · g (26)

because

f
.
≤ g

≡ { .
≤ definition }

f ⊆ ≤ ·g
⇒ { monotonicity of · wrt ⊆ }

h · f ⊆ h· ≤ ·g
⇒ { h is monotonic wrt ≤}

h · f ⊆ ≤ ·h · g

≡ { .
≤ definition }

h · f
.
≤ h · g

Similarly,

f
.
≤ g ⇒ f · h

.
≤ g · h (27)

Definition 3 Let T be an extended polynomial functor on Set and consider
two T-coalgebras α : TU ←− U and β : TV ←− V . A forward morphism
h : β ←− α with respect to a preorder ≤, is a function from U to V such that

T h · α
.
≤ β · h

Dually, h is called a backwards morphism if

β · h
.
≤ T h · α

12

The following lemma shows that such morphisms compose and can be taken
as witnesses of refinement situations:

Lemma 4 For T an endofunctor in Set, T-coalgebras and forward (respect-
ively, backward) morphisms define a category.

PROOF. In both cases, identities are the identities on the carrier and compo-
sition is inherited from Set. What remains to be shown is that the composition
of forward (respectively, backward) morphisms yields again a forward (respect-
ively, backward) morphism. So, let h : β ←− α and k : γ ←− β be two forward
(respectively, backward) morphisms. Then

(forward case)

T(k · h) · α

= { T functor, · associative }
Tk · (Th · α)

.
≤ { h forward and (26) }

Tk · (β · h)

= { · associative }
(Tk · β) · h

.
≤ { k forward and (27) }

(γ · k) · h

= { · associative }
γ · (k · h)

(backward case)

γ · (k · h)

= { · associative }
(γ · k) · h

.
≤ { k backward and (27) }

(Tk · β) · h

= { · associative }
Tk · (β · h)

.
≤ { h backward and (26) }

Tk · Th · α

= { T functor }
T(k · h) · α

2

Such a split of a coalgebra morphism into two conditions, makes it possible
to capture separately transition preservation and reflection. Lemma 5 below
states that forward morphisms preserve transitions whereas backwards mor-
phisms reflect them. To prove this however the following extra condition has
to be imposed on preorder ≤ to express its compatibility with the membership
relation: for all x ∈ X and x1, x2 ∈ TX,

x ∈T x1 ∧ x1 ≤ x2 ⇒ x ∈T x2 (28)

or, again in a pointfree formulation,

∈T · ≤ ⊆ ∈T (29)

A preorder ≤ on an endofunctor T satisfying inclusion (29) will be referred

13

to, in the sequel, as a refinement preorder. Then,

Lemma 5 Let T be an extended polynomial functor in Set, and α and β
two T-coalgebras as above. Let α ←− and β ←− denote the corresponding
transition relations. A forward (respectively, backward) morphism h : β ←− α
preserves (respectively, reflects) such transition relations.

PROOF. Let h be a forward morphism. Transition preservation, defined by
equation (19), follows from

α←−
= { definition }
∈T · α
⊆ { (14), monotonicity }

h◦ · ∈T · T h · α

⊆ { h forward entails Th · α ⊆≤ ·β · h, monotonicity }
h◦ · ∈T · ≤ · β · h

⊆ { compatibility with ∈T (29), monotonicity }
h◦ · ∈T · β · h

= { definition }
h◦ · β←− · h

Let now h be a backward morphism. Transition reflection, defined by equation
(18), is established as follows:

β←− · h
= { definition }
∈T · β · h

⊆ { h backwards entails β · h ⊆≤ ·Th · α, monotonicity }
∈T · ≤ · Th · α

⊆ { compatibility with ∈T (29), monotonicity }
∈T · Th · α

≡ { ∈T natural (13) }
h · ∈T · α

= { definition }
h · α←−

2

14

5 Behaviour Refinement

The existence of a forward (backward) morphism connecting two components
p and q witnesses a refinement situation whose symmetric closure coincides, as
expected, with bisimulation. In the sequel we will restrict ourselves to forward
refinement 7 and define behaviour refinement by the existence of a forward
morphism up to bisimulation. Formally,

Definition 6 Component p is a behaviour refinement of q, written q E p, if
there exist components r and s and a (seed preserving) forward morphism h
such that

q ∼ s r ∼ phoo

The exact meaning of a refinement assertion q E p depends, of course, on the
concrete refinement preorder ≤ adopted. But what do we know about such
preorders? Condition (29) provides an upper bound (the lower bound being
the quite unhelpful empty relation). Actually (29) equivales

≤ ⊆ ∈T \ ∈T (30)

by direct application of the Galois connection which defines relational divi-
sion 8

R · X ⊆ S ≡ X ⊆ R \ S (31)

It is well known (see e.g., [16] or [19]) that relation ∈T \ ∈T corresponds to
the lifting of ∈T to a (structural) inclusion, i.e.,

x (∈T \ ∈T) y ≡ ∀e∈Tx . e ∈T y (32)

By (30) this is the largest refinement preorder. All the interesting ones arise
by suitable restrictions. Let us consider a few possibilities.

• Structural inclusion as defined above is too large to be useful in practice.
Actually its definition on a constant functor is the universal relation which,
in our component model, would make refinement based on ∈T \ ∈T blind
to the outputs produced. This suggests an additional requirement on refine-
ment preorders for Cp components: their definition on a constant functor K
must be equality on set K, i.e., x ≤K y iff x=K y so that transitions with

7 A similar study can be made about backward refinement, although the underlying
intuition seems less familiar.
8 A pointwise definition of this operator reads

x (R \ S) z ≡ ∀y . yRx ⇒ ySz

15

different O-labels could not be related. Building on this idea, we arrive at
a first (good) example:

x⊆Id y iff x = y

x⊆K y iff x =K y

x⊆T1×T2 y iff π1 x⊆T1 π1 y ∧ π2 x⊆T2 π2 y

x⊆T1+T2 y iff

x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ⊆T1 y′

x = ι2 x′ ∧ y = ι2 y′ ⇒ x′ ⊆T2 y′

x⊆TK y iff ∀k∈K . x k ⊆T y k

x⊆PT y iff ∀e∈x∃e′∈y. e⊆T e′

This preorder will be referred to in the sequel as structural inclusion. Note
that forward refinement of non deterministic components based on ⊆T cap-
tures the classical notion of non determinism reduction.
• However, this preorder can be tuned to more specific cases. For example,

the following ‘failure forcing’ variant — ⊆E
T , where E stands for ‘emptyset’

— guarantees that the concrete component fails no more than the abstract
one. It is defined as ⊆T by replacing the clause for the powerset functor by

x ⊆E
PT y iff (x = ∅⇒ y = ∅) ∧ ∀e∈x∃e′∈y. e⊆T e′

• Relation ⊆T is inadequate for partial components: refinement would col-
lapse into bisimilarity instead of entailing an increase of definition in the
implementation side. An alternative is relation ⊆F

T (F standing for ‘failure’)
which adds a maybe clause

x ⊆F
T+1 y iff

x = ι1 x′ ∧ y = ι1 y′ ⇒ x′ ⊆T y′

x = ι2 ∗ ⇒ true

taking precendence over the general sum clause.

For illustration purposes consider again component LBuff introduced in section
2, and a deterministic buffered channel Buff specified as a coalgebra (M∗ ×
(1 + M))M+1 ←− M∗, with nil as the initial state and dynamics given by

aBuff〈u, put m〉 = 〈m : u, ι1 ∗〉
aBuff〈u, pick〉 = 〈tl u, ι2 (hd u)〉

To establish LBuff EBuff entails the need to embed the latter into the space of
non deterministic systems. This is achieved by a (natural) transformation from
(Id×O)I to P(Id×O)I canonically extending function sing x = {x} which is a
monad morphism from the identity to the powerset monads — the behaviour
models underlying Buff and LBuff, respectively. Then, it is immediate to verify

16

that the identity function on state space M∗ is a forward morphism, with
respect to structural inclusion, i.e.,

(id×O) · aBuff ⊆(B (Id×O))I aLBuff

6 Refinement Laws in the Component Calculus

As mentioned in the introduction, the main motivation underlying this re-
search has been the development of inequational laws in the context of the
component calculus proposed in [7]. Although there is not enough space in this
paper to introduce the calculus in full detail, this section concentrates on two
case studies where refinement results do emerge and prove useful: canonical
arrow lifting and parallel composition.

6.1 Lifting

Lifting canonical Set arrows to Cp is a simple way to explore the structure of
Cp itself. For instance, consider the lifting of ?I : I ←− ∅. Clearly, ?I keeps
its naturality as, for any p : O ←− I, the following diagram commutes up to
bisimulation,

I
p // O

∅

p?Iq

OO

p?Oq

@@��������

because both p?Iq and p?Oq are inert components: the absence of input makes
reaction impossible. Formally equation p?Iq ; p ∼ p?Oq lifts to an equality in
Bh, which makes ∅ the initial object there.

A different situation emerges when considering the lifting of !I : 1 ←− I
because in general, i.e., for an arbitrary B, the following diagram fails to
commute.

I
p //

p!Iq
��

O

p!Oq����
��

��
�

1

The reason is that the Cp lifting of the final arrow (as the lifting of any other
function) cannot fail, whereas the p!Iq ;p may fail (whenever p does). Function
! : 1←− Up×1 is, however, a forward morphism, with respect to ⊆F

T for partial
components, or to both ⊆T and ⊆E

T for non deterministic ones. For this last

17

case, note that ap!Oq·! = λ i ∈ I. {∗}, whereas B(!× id)I · ap;p!Oq 〈u, ∗〉 equals

λ i ∈ I .

{∗} iff (ap u) (i) 6= ∅
∅ iff (ap u) (i) = ∅

Therefore, p!Iq E p ;p!Oq. Also notice that 1 does not become the final object
in Bh, but in the case of deterministic components (i.e., for B = Id).

6.2 Parallel Composition

The next case study concerns the development of the theory of parallel com-
position. This combinator, denoted by p � q, corresponds to a synchronous
product: both components are executed simultaneously when triggered by a
pair of legal input values. Note, however, that the behaviour effect, captured
by monad B, propagates. For example, if B can express component failure and
one of the arguments fails, the product will fail as well. Formally, � is defined
on objects as I � J = I × J and a family of functors

�IOJR : Cp(I × J, O ×R)←− Cp(I, O)× Cp(J, R)

which yields
p � q = 〈〈up, uq〉 ∈ Up × Uq, ap�q〉

where

ap�q = Up × Uq × (I × J) m // Up × I × (Uq × J)
ap×aq // B (Up ×O)× B (Uq ×R)

δl // B (Up ×O × (Uq ×R))
B m // B (Up × Uq × (O ×R))

and maps every pair of arrows 〈h1, h2〉 into h1 × h2. Notice that m : (A ×
C) × (B × D) ←− (A × B) × (C × D) is simply a re-arrangement natural
isomorphism.

In [8] several equational results were proved for �, capturing, in particular,
its monoidal structure and lax functoriality, the latter entailing distribution
with respect to sequential composition. Thus, for example,

lax (p � p′) ; (q � q′) ∼ (p ; q) � (p′ ; q′) (33)

copyK�K′ ∼ copyK � copyK′ (34)

functions pfq � pgq ∼ pf × gq (35)

assoc (p � q) � r + p � (q � r) (36)

id idle � p + p (37)

18

zero nil � p + nil (38)

comm p � q + q � p if B is commutative (39)

Notice that the last four laws hold only up to suitable re-wiring and are,
therefore, presented in terms of the interface interchangeability relation +
introduced in section 3. For example, (p � q) � r ∼ (p � (q � r))[a, a◦], where
a : A× (B × C)←− (A× B)× C is the associativity isomorphism and a◦ its
converse.

To introduce refinement let us concentrate on the question of whether � can
act as a universal product construction in the calculus. The answer, as dis-
cussed below, is, in general, negative, but using behavioural refinement several
useful results can still be proved. Just as in Set one defines the universal ar-
row in a cartesian product diagram as the split 〈f, g〉 of two functions 9 , let
us start by defining the split of two components as

〈p, q〉 = pMq ; (p � q) where M= 〈id, id〉

We shall investigate both the suitability of this definition, expressed by the
commutativity of diagram

I
p

{{ww
ww

ww
ww

ww
q

##GG
GG

GG
GG

GG

〈p,q〉
��

O O � Rpπ1q
oo

pπ2q
// R

(40)

as well as its uniqueness. The crucial point to look at is whether the diagonal
arrow M keeps its naturality when lifted to Cp, i.e.,

pMq ; (p � p) ∼ p ; pMq (41)

or, equivalently, by (7),

(p � p)[M, id] ∼ p[id, M] (42)

The obvious candidate to establish bisimilarity is M: Up × Up ←− Up, which
is clearly seed preserving. To show that M is a component morphism amounts
to verifying the commutativity of

(Up × Up)× I
a(p�p)[M,id] // B(Up × Up × (O ×O))

Up × I
ap[id,M] //

M×id

OO

B(Up × Uq × (O ×O))

BM×id

OO

Then,

9 A concrete, pointwise definition reads 〈f, g〉 x = 〈f x, g x〉.

19

B(M ×id) · ap[id,M]

= { wrapping definition }
B(M ×id) · B(id× M) · ap

= { routine: m· M=M × M }
Bm · B M ·ap

?
= { ? }

Bm · δl· M ·ap

= { M natural }
Bm · δl · (ap × ap)· M

= { routine: m · (M × M) =M }
Bm · δl · (ap × ap) · m · (M × M)

= { � definition }
ap�p · (M × M)

= { wrapping definition }
a(p�p)[M,id] · (M ×id)

Clearly this is valid equational reasoning when B = Id or B = Id+1. In general,
however, the step marked with a ? is problematic. For example, for B = P ,
one gets for any set s

PM s = {〈x, x〉| x ∈ s} ⊆ {〈x, y〉| x, y ∈ s} = δl 〈s, s〉 = (δl· M) s

Therefore, symbol
?
= in the calculation above becomes ⊆. Keeping in mind

that structural inclusion ⊆T for functor T = P(Id×O)I amounts to

x ⊆P(Id×O)I y ≡ ∀i∈I . ∀e∈x i . ∃e′∈y i . e = e′ ≡ ∀i∈I . x i ⊆ y i

by choosing ⊆T as the refinement preorder and taking B = P , we arrive at

pMq ; (p � p) E p ; pMq (43)

As a consequence, a fusion law for component spliting emerges just as another
refinement law:

r ; 〈p, q〉 E 〈r ; p, r ; q〉 (44)

which can be verified by the following calculation

r ; 〈p, q〉
∼ { definition }

r ; (pMq ; (p � q))

20

∼ { ; associative }
(r ; pMq) ; (p � q)

E { law (43), ; associative }
pMq ; ((r � r) ; (p � q))

∼ { law (34) }
pMq ; ((r ; p) � (r ; q))

∼ { definition }
〈r ; p, r ; q〉

Let us go back to diagram (40) to discuss its commutativity. Note that each
triangle represents a cancellation law which we may try to verify by checking
whether π1 : Up ←− Up×Uq is a component morphism. A tentative calculation
goes as follows:

B(π1 × id) · a〈p,q〉;pπ1q

= { definitions }
B(π1 × π1) · Bm · δl · (ap × aq) · m · (id× M)

= { routine: π1 × π1 = π1 · m }
Bπ1 · Bm · Bm · δl · (ap × aq) · m · (id× M)

= { m◦ = m }
Bπ1 · δl · (ap × aq) · m · (id× M)

?
= { ? }

π1 · (ap × aq) · m · (id× M)

= { × cancellation }
ap · π1 · m · (id× M)

= { routine: π1 × π1 = π1 · m }
ap · (π1 × π1) · (id× M)

= { routine: π1· M= id }
ap · (π1 × id)

Consider the validity of the step marked with a ?. Clearly this amounts to
equality for B = Id. But what happens for the maybe monad? Let (Id× Id)+1 :
(Id + 1) × (Id + 1) ⇐= (Id + 1) × (Id + 1). An easy computation leads to

((π1 +1) · δl) 〈ι1a, ι2?〉 = ι2? whereas π1 〈ι1a, ι2?〉 = ι1a. In this case symbol
?
=

must be replaced by ⊆F
B(Id×O), leading again to a weak version of cancellation

as a refinement law

p E 〈p, q〉 ; pπ1q (45)

The result also holds for B = P and structural inclusion as the refinement

21

preorder. In such a case, however, refinement boils down to bisimulation unless
the left argument is the empty set: for example, (Bπ1 · δl)〈X, ∅〉 = ∅ 6= X =
π1〈X, ∅〉. Therefore diagram (40) strictly commutes for the non empty power-
set monad, a monad which expresses non deterministic behaviour excluding
the possibility of failure. This seems to be the general rule concerning the ex-
istence of splits for components based on commutative monads: the exclusion
of failure. The result fails because the eventual failure of q propagates, leading
to the failure of 〈p, q〉.

It should be stressed, however, that even in cases where cancellation fails (and
consequently, construction 〈p, q〉 can hardly be called a split) the following
reflection and absorption laws hold, the latter only if B is a commutative
monad:

〈pπ1q, pπ2q〉 ∼ copyO×R (46)

〈p, q〉 ; (p′ � q′) ∼ 〈p ; p′, q ; q′〉 (47)

Let us check (46) in the first place:

〈pπ1q, pπ2q〉
∼ { definition }

pMq ; (pπ1q � pπ2q)

∼ { law (35) }
pMq ; pπ1 × π2q
∼ { law (6) }

p(π1 × π2)· Mq
∼ { × absorption and identity in Cp }

copyO×R

Concerning (47):

〈p, q〉 ; (p′ � q′)

∼ { definition }
pMq ; (p � q) ; (p′ � q′)

∼ { laws (5) and (34) }
pMq ; ((p ; p′) � (q ; q′))

∼ { definition }
〈p ; p′, q ; q′〉

Notice that law (34) used above requires B to be commutative.

22

In summary, a split construction for components has been characterized even
if resorting, in the general case, to refinement results. The following lemma
answers our initial question:

Lemma 7 Combinator � only lifts to a categorical product (up to bisimu-
lation in Cp or strictly in the corresponding category of behaviours) for the
identity monad, i.e., for total, deterministic components.

PROOF. Let us suppose that 〈p, q〉 is definable such that 〈p, q〉 ; pπ1q ∼ p
and 〈p, q〉 ; pπ2q∼ q and that there exists another component r satisfying the
same equalities. Then, by ∼ transitivity, r ; pπ1q∼ 〈p, q〉 ; pπ1q and similarly
for q and π2. Thus

〈p, q〉
∼ { � cancellation for B = Id }
〈〈p, q〉 ; pπ1q, 〈p, q〉 ; pπ2q〉
∼ { assumption }
〈r ; pπ1q, r ; pπ2q〉
∼ { � fusion (44) }

r ; 〈pπ1q, pπ2q〉
∼ { � reflection (46) }

r ; copyO×R

∼ { law (4) }
r

2

7 Simulations

This section introduces an alternative proof technique for establishing beha-
viour refinement: the identification of a simulation relation R : Uq ←− Up on
the state spaces of the ‘concrete’ (p) and the ‘abstract’ (q) components. Again,
the notion of a simulation depends on the adopted refinement preorder ≤. To
proceed in a generic way, we adopt an equally generic definition of simulation
due to Jacobs and Hughes in [18]:

Definition 8 Given a Set endofunctor T and a refinement preorder ≤, a lax
relation lifting is an operation Rel≤(T) mapping relation R to ≤ ·Rel(T)(R)· ≤,
where Rel(T)(R) is the lifting of R to T (defined, as usual, as the T-image of
inclusion 〈r1, r2〉 : U × V ←− R, i.e., 〈Tr1, Tr2〉 : TU × TV ←− TR).

23

Given T-coalgebras α and β, a simulation is a Rel≤(T)-coalgebra over α and
β, i.e., a relation R such that, for all u ∈ U, v ∈ V , 〈u, v〉 ∈ R ⇒ 〈α u, β v〉 ∈
Rel≤(T)(R).

In order to prove that simulations are a sound proof technique to establish
behaviour refinement we consider separately functional and non functional
simulations. In any case, however, they are assumed to be entire relations 10 .

Lemma 9 Let p and q be T-components over state spaces U and V , respec-
tively. For a given refinement preorder ≤, if there exists a simulation R :
V ←− U which is both functional and entire, then p is a forward refinement
of q.

PROOF. By assumption, simulation R is the graph of a function. Now, define
a forward morphism h : V ←− U as hu = v ≡ 〈u, v〉 ∈ R. Because R is a
simulation, for every pair 〈u, v〉 ∈ R, there should exist x ∈ TU , y ∈ TV , such
that p u ≤TU x, y ≤TV q v, and 〈x, y〉 ∈ Rel(T)(R), i.e., y = (Th) x. Inclusion
(23) and p u ≤TU x entail (Th · p) u ≤TV (Th) x, and thus (Th · p) u ≤TV q v.
Since R is entire, h is defined for all u ∈ U , making the following diagram to
commute:

u

p

��

h // h u

q

��
p u (≤TU p u) T h // Th (p u)

≤
q h u

2

Consider, now, the non-functional case (e.g. whenever two bisimilar but not
equal abstract states are represented by a single concrete state). To prove
soundness in this case, the state space of the ‘concrete’ component p is arti-
ficially inflated with an auxiliary value such that a forward morphism can be
found. The technique is similar to the use of ghost-variables in [20].

Definition 10 Given a coalgebra 〈U, α : TU ←− U〉 and a set W , define the
extension of α to W as a coalgebra α̂ over Û = U×W such that Tπ1·α̂ = α·π1.

Clearly this auxiliary state space does not interfere with the behaviour of α:
π1 being a coalgebra morphism, the two coalgebras are bisimilar.

Given components p, q : O ←− I and a non-functional simulation R an
auxiliary ’component’ p̂ can be defined taking R as the state space (which,
because R is entire, is just an extension of p in the sense of the definition

10 A relation R : V ←− U is functional if every u ∈ U is related to at most one
v ∈ V and entire if for all u ∈ U , there exists some v ∈ V such that 〈u, v〉 ∈ R.

24

above) and the rule 〈u′, v′〉 ∈T ap̂〈〈u, v〉, i〉 iff u′ ∈T ap〈u, i〉 ∧ v′ ∈T aq〈v, i〉,
for all i ∈ I, as its dynamics. With this construction we prove that

Lemma 11 (Soundness) To prove q E p it is sufficient to exhibit an entire
simulation R such that 〈up, uq〉 ∈ R.

PROOF. If R is functional the result follows from lemma 9. Otherwise con-
struct p̂ as above: clearly p is bisimilar to p̂ and the graph of projection π2

from its state space to V defines a simulation between p̂ and q. By definition,
p ∼ p̂ and the existence of a (seed-preserving) forward morphism from p̂ to q
entails q E p.

2

Finally notice that, although E is transitive, it is not always the case that
simulations are closed under (relational) composition.

To illustrate the simulation proof technique we shall prove now another re-
finement law in the component calculus.

Lemma 12 For any refinement preorder ≤, relation E is monotonic with
respect to parallel composition, i.e.,

q � t E p � r (48)

whenever q E p and t E r.

PROOF. Let R1 and R2 be the simulation relations witnessing facts q E p
and tEr, respectively. Our aim is to build a relation R ⊆ (Up×Ur)×(Uq×Ut)
such that

〈〈u, v〉, 〈u′, v′〉〉 ∈ R⇒ 〈ap�r 〈u, v〉, aq�t 〈u′, v′〉〉 ∈ ≤ ·Rel≤(B(Id×(O×O′))I×I′)(R)· ≤

Define

R = {〈〈u, v〉, 〈u′, v′〉〉 | 〈u, u′〉 ∈ R1 ∧ 〈v, v′〉 ∈ R2}

let a pair 〈〈u, v〉, 〈u′, v′〉〉 ∈ R. This implies:

25

〈ap�r 〈u, v〉, aq�t 〈u′, v′〉〉 ∈ ≤ ·Rel≤(B(Id× (O ×O′)I×I′))(R)· ≤
≡ { for all 〈i, j〉 ∈ I × I′ }
〈ap�r 〈〈u, v〉, 〈i, j〉〉, aq�t 〈〈u′, v′〉, 〈i, j〉〉〉 ∈

≤ ·Rel≤(B(Id× (O ×O′)))(R)· ≤
≡ { � definition }
〈Bm · δl 〈ap 〈u, i〉, ar 〈v, j〉〉, Bm · δl 〈aq 〈u′, i〉, at 〈v′, j〉〉〉 ∈

≤ ·Rel≤(B(Id× (O ×O′)))(R)· ≤
≡ { definition of R, composite Bm · δl is structural }
〈〈ap 〈u, i〉, ar 〈v, j〉〉, 〈aq 〈u′, i〉, at 〈v′, j〉〉〉 ∈

≤ × ≤ · (Rel≤(B(Id×O))(R1)×Rel≤(B(Id×O′))(R2)) · ≤ × ≤
≡ { product of binary relations }
〈ap 〈u, i〉, aq 〈u′, i〉〉 ∈ ≤ ·Rel≤(B(Id×O))(R1)· ≤ ∧

〈ar 〈v, j〉, at 〈v′, j〉〉 ∈ ≤ ·Rel≤(B(Id×O))(R2)· ≤
≡ { assumption }

True

2

Note that similar monotonicity laws can be obtained along the same lines for
both pipeline composition and the remaining tensors.

8 Conclusion and Future Work

This paper introduced two levels of refinement for (state-based) components.
In particular, the notion of behavioural refinement parametric on a model of
behaviour captured by a strong monad B is, to the best of our knowledge, new.
It is generic enough to capture a number of situations, depending on both B
and the refinement preorder adopted. Non determinism reduction is just one
possibility among many others. Also note that Poll’s notion of behavioural
subtyping in [14], at the model level, emerges as a particular instantiation.

A comparison with the mainstream literature on refinement in state based
formalisms (e.g., [21] or [22]) places the approach proposed here as a gen-
eralisation of a particular path in such theories. Generalisation in the sense
that components’ behaviour is taken as a parameter (formalised as a strong
commutative monad B) whereas others adopt from the outset a relational
specification framework (which corresponds to instantiating B with the finite
powerset monad). On the other hand we limit ourselves to functions, instead
of relations, as witnesses of refinement situations. Because our starting point

26

was a notion of software component modelled as a coalgebra in Set, morphisms
are just functions between coalgebra carriers. In order to be able to capture
more general approaches to refinement the results presented in this paper have
to be lifted to a broader base category — that of coalgebras over Rel, the cat-
egory of sets and binary relations. We believe that a suitable generalisation of
forward and backward refinement in a coalgebraic setting, combined with the
economy of pointfree style calculations, will provide new insights in structuring
and classifying existing approaches to refinement of state based specifications.

We are currently working on such a generalisation building on a theory of
generic transposition proposed in [19]. This extends the usual power-transpose,
a device aimed at developing relational algebra via the algebra of functions
[23], to different classes of datatype arrows. Such transposed arrows have the
structure of F-coalgebras, for F a datatype with membership, framed in a
monadic structure wherever F is a monad.

On the application side our current concern is the full development of a re-
finement calculus for software components and its application to the proof
of consistency of static and dynamic Uml diagrams in the context of [24].
Whether this approach scales up to be useful in the classification and trans-
formation of software architectures [25] remains a research question.

References

[1] C. B. Jones, Systematic Software Development Using Vdm, Series in Computer
Science, Prentice-Hall International, 1986.

[2] J. M. Spivey, The Z Notation: A Reference Manual (2nd ed), Series in Computer
Science, Prentice-Hall International, 1992.

[3] J. R. Abrial, The B Book: Assigning Programs to Meanings, Cambridge
University Press, 1996.

[4] C. Szyperski, Component Software, Beyond Object-Oriented Programming,
Addison-Wesley, 1998.

[5] P. Wadler, K. Weihe, Component-based programming under different
paradigms, Tech. rep., Dagstuhl Seminar 99081 (February 1999).

[6] J. Rutten, Universal coalgebra: A theory of systems, Theor. Comp. Sci. 249 (1)
(2000) 3–80, (Revised version of CWI Techn. Rep. CS-R9652, 1996).

[7] L. S. Barbosa, J. N. Oliveira, State-based components made generic, in: H. P.
Gumm (Ed.), CMCS’03, Elect. Notes in Theor. Comp. Sci., Vol. 82.1, 2003.

[8] L. S. Barbosa, Towards a Calculus of State-based Software Components, Journal
of Universal Computer Science 9 (8) (2003) 891–909.

27

[9] C. A. R. Hoare, Proof of correctness of data representations, Acta Informatica
1 (1972) 271–281.

[10] B. Liskov, Data abstraction and hierarchy, SIGPLAN Notices 23 (3).

[11] M. Fokkinga, R. Eshuis, Comparing refinements for failure and bisimulation
semantics, Tech. rep., Faculty of Computing Science, Enschede (2000).

[12] R. Milner, Communication and Concurrency, Series in Computer Science,
Prentice-Hall International, 1989.

[13] C. Bolton, J. Davies, Using relational and behavioural semantics in the
verification of object models, in: S. F. Smith, C. L. Talcott (Eds.),
FMOODS’2000 - Formal Methods for Open Object-Oriented Distributed
Systems, Kluwer Academic Publishers, Stanford, USA, 2000, pp. 163–182.

[14] E. Poll, A coalgebraic semantics of subtyping, Theorectical Informatica and
Apllications 35 (1) (2001) 61–82.

[15] A. Mikhajlova, E. Sekerinski, Class refinement and interface refinement in
object-oriented program, in: Proc. 4th Int. Formal Methods Europe Symposium,
Springer Lect. Notes Comp. Sci. (1313), 1997, pp. 82–101.

[16] P. F. Hoogendijk, A generic theory of datatypes, Ph.D. thesis, Department of
Computing Science, Eindhoven University of Technology (1996).

[17] R. C. Backhouse, P. F. Hoogendijk, Elements of a relational theory of datatypes,
in: B. Möller, H. Partsch, S. Schuman (Eds.), Formal Program Development,
Springer Lect. Notes Comp. Sci. (755), 1993, pp. 7–42.

[18] B. Jacobs, J. Hughes, Simulations in coalgebra, in: H. P. Gumm (Ed.),
CMCS’03, Elect. Notes in Theor. Comp. Sci., Vol. 82.1, Warsaw, 2003.

[19] J. N. Oliveira, C. J. Rodrigues, Transposing relations: From Maybe functions to
hash tables, in: D. Kozen (Ed.), 7th International Conference on Mathematics
of Program Construction, Springer Lect. Notes Comp. Sci. (3125), 2004, pp.
334–356.

[20] M. Abadi, L. Lamport, The existence of refinement mappings, Theor. Comp.
Sci. 82 (2) (1991) 253–284.

[21] W.-P. d. Roever, K. Engelhardt, Data Refinement: Model-Oriented Proof
Methods and their Comparison, Vol. 47 of Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1998.

[22] J. Derrick, E. Boiten, Refinement in Z and Object-Z: Foundations and Advanced
Applications, FACIT, Springer-Verlag, 2001.

[23] R. Bird, O. Moor, The Algebra of Programming, Series in Computer Science,
Prentice-Hall International, 1997.

[24] S. Meng, B. K. Aichernig, L. S. Barbosa, Z. Naixiao, A Coalgebraic Semantic
Framework for Component Based Development in UML, in: L. Birkedal (Ed.),
Proc. Int. Conf. on Category Theory and Computer Science (CTCS’04), ENTCS
(to appear), Elsevier, 2004.

28

[25] R. Allen, D. Garlan, A formal basis for architectural connection, ACM TOSEM
6 (3) (1997) 213–249.

29

