
Exploring an Option Space to Engineer a
Ubiquitous Computing System

Michael D. Harrisona,1 Christian Kraya José Creissac Camposb

aInformatics Research Institute, Newcastle University, U.K.

bDepartamento de Informática/CCTC, Universidade do Minho, Braga, Portugal

Abstract

Engineering natural and appropriate interactive behaviour in ubiquitous computing systems presents new
challenges to their developers. This paper explores formal models of interactive behaviour in ubiquitous
systems. Of particular interest is the way that these models may help engineers to visualise the consequences
of different designs. Design options based on a dynamic signage system (GAUDI) are explored using different
instances of a generic model of the system.

Keywords: interactive systems, model checking, ubiquitous computing, human computer interaction

1 Introduction

Making built environments smart by using public displays, location sensors and
mobile devices is becoming increasingly feasible in a range of environments. Such
environments have the potential to modify the behaviour and experience of their
inhabitants. They provide information and services to support the various roles
and activities of the people within these environments. The development of such
systems presents interesting human and system engineering challenges.

Over the last few years there has been significant development of technologies,
platforms and middlewares that will support these systems. There have also been
valuable ethnographic studies designed to observe the effects that these technologies
have in transforming the working or living arrangements of those who occupy these
spaces. There is however little research devoted to the issues of engineering these
systems, particularly in relation to human engagement and experience. While some
researchers focus on the technological challenges of building sensors, actuators and

1 Email: michael.harrison@ncl.ac.uk

Electronic Notes in Theoretical Computer Science 208 (2008) 41–55

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.106

mailto:michael.harrison@ncl.ac.uk
http://www.elsevier.com/locate/entcs

computing devices that can be integrated into ‘real’ environments, an equally im-
portant aspect relates to investigating and improving how people engage with these
technologies and how these issues can be understood in the design stages. Users
can still find it difficult to engage and appropriate the supported activities. It is not
surprising therefore that discussion about the definition and the utility of ubiquitous
computing (consider for example [1,2,16]) continues despite many substantial and
significant achievements.

Users of ubiquitous computing systems are typically immersed within them,
surrounded by and affected by their consequences. Although the user might engage
with the environment, the system in which she is embedded makes assumptions
based on where the user is, what she is doing and her personal tastes. Weiser
describes “calm computing” that “weave themselves into the fabric of everyday life
until they are indistinguishable from it” [19]. Others have used terms like implicit
interaction [17] or proactive systems [18] to describe the potential of these systems
to make assumptions about the user. More recently authors like Rogers [16] have
reminded the community of the importance of engagement commenting that, in
reality, systems that anticipate the users’ wishes or desires can be controlling or
confusing.

Because of the potential complexities of these systems, models are required to
enable designers to consider the implications of choices about styles of interaction
and the effects on action of context. Analysis based on modelling is required before
fielding the system so that design decisions may be considered early before expensive
commitments have been made. This analysis should consider interaction issues
associated with the usability of the system, the device and the experience that users
have of the system as well as exploring the potential for modifying the behaviour
of these users. This paper explores these issues by addressing: how to understand
novel requirements relating to ubiquitous systems in built environments; how these
are mapped into the design; and how modelling techniques can be used to explore
an option space for the design of the system. These ideas will be explored by
considering a system to provide navigation support through situated displays.

2 Related work

There are a variety of ways that usability can be explored in ubiquitous computing
systems. Analysis may use scenarios aimed at capturing typical or extreme situa-
tions. It may use personas aimed at challenging designer assumptions about who
might be using the system. When the user engages with the system, the effects of
the interaction both personally in terms of personal devices, and publically in terms
of shared displays in the built environment, should be transparent and intuitive.
The system should not take the initiative away from the user in a controlling way.
Informal analysis techniques such as cognitive walkthrough, co-operative evaluation
or heuristic evaluation can provide useful early feedback of some aspects of the
design. However new and challenging characteristics are of particular relevance in
these systems:

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–5542

(i) how context can change the meaning of the actions [12] in ways that might
confuse users

(ii) how context might trigger changes in the information that flows around the
system

(iii) how the right information reaches the right person at the right time, without
controlling or confusing the user

(iv) how this information and the actions that can be carried out will change the
behaviour of users.

A well designed system can create a designed experience for the user. For example,
consider designing an environment in a hospital to allay the anxiety of an out-patient
visiting an unfamiliar hospital, aiming to reach a specified consulting room for a
specific appointment time. Properties such as those relating to experience can be
difficult to analyse. They are critically dependent on physical and textural charac-
teristics only available in the live target environment. A prototype system explored
in the live environment may have safety or commercial consequences, consider for
example a prototype running in a busy airport. Deploying a system that is close to
product when many downstream design commitments have already been made will
be expensive to redesign.

An important part of requirements elicitation is to establish what scenarios or
personas represent the important characteristics of the design to form the basis
for analysis. This process can be carried out through interview. However other
techniques help to elicit the scenarios that are used. For example, a richer un-
derstanding of the experience that users have may be obtained by using cultural
probes [7] to elicit snapshot experiences. These probes may be used to discover
properties. Tools can be used to check these models to produce counter-examples
that may themselves form the basis for valuable scenarios. These cultural probes
are fragments provided by users that can be used to help understand experience of
an existing system. The aim is that these snapshots establish what is required of a
new design. Eliciting snapshots involves subjects collecting material: photographs,
notes, sound recordings, that they believe capture important features of their en-
vironment. These snippets may make sense as part of a story. The information
gleaned may help understand characteristics of the current system that cut across
a range of scenarios.

A range of formal models can be developed capturing different characteristics
of ubiquitous systems that can be explored either through simulation or through
property checking. This can happen prior to implementing a system and therefore
provide the means to explore, relatively cheaply, alternative design options. Two
key concerns in the modelling process are to identify relevant properties and to
capture aspects relating to the deployment of information, scheduling of activities,
and issues of location.

This paper explores a particular kind of model that describes aspects of a user’s
implicit action while moving through a built environment. It aims to characterise
those properties that relate to experience or user behaviour. This space includes

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–55 43

public displays, mobile devices and sensors [8]. Interaction between user and ac-
tivity may be impacted unexpectedly by location, the current status of the task at
hand and other external effects generated by the ubiquitous environment. It may be
affected by other users carrying out different tasks. A similar analysis [8] focussed
on timing issues, in particular the timeliness and relevance to person and location
of message delivery, using the Uppaal model checking tool [3]. In most previous
research in formal methods in interactive systems models are used to explore the
interaction between user and device. For example these models are used to charac-
terise and analyse mode confusion problems, see for example [12]. It may also be
appropriate to explore the way in which information in the environment provides
resources for the user as they carry out their activities in the style discussed by
[4]. To illustrate the analysis of whole built environments and implicit action an
example is used based on a dynamic signage system installed at Lancaster Univer-
sity. Alternative designs and properties of the system are explored. The models
and properties incorporate simple user assumptions.

3 The GAUDI system

The GAUDI system [10] is designed to help people find their way in a complex
built environment such as a large office building. Static signage and directories are
replaced with dynamic situated displays. The user interface of the implemented
system consists of two parts. The interface provided by GAUDI shows labelled
photographs of all the office owners as well as the meeting rooms in the building on
a large touchscreen. A visitor can touch the photograph or name of the person she
wants to visit. This will initiate navigation support. Situated displays are arranged
throughout the building (similar to the interactive doorplates described in [9]).
When a visitor selects the person they wish to visit on the large touchscreen, all the
displays in the building will show arrows that point towards their office. Together
they indicate the path a visitor needs to follow. GAUDI will continue to show these
arrows either until the visitor touches the display at her target location, or until a
time out period has expired. GAUDI, in its original form, may be considered to be
calm technology:

• it does not interfere with people’s ‘everyday life’, that is it (subtly) enhances
rather than replaces an existing analogue system

• it can be used without thinking about it, i.e., the only explicit interaction required
is touching a destination (and possibly the display at the target location)

• it provides support when and where it is needed, e.g., if displays are present at
all decision points.

A number of properties of this system reflect these characteristics of calmness.

P1: the directions provided will always get the visitor to their required destination
subject to simple assumptions about the passenger following the directions shown
on the nearest dynamic sign

P2: the throughput of new visitors who need this facility will be sufficiently low

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–5544

that the arrival of a new visitor will not have the effect of changing the route and
therefore confusing the visitor currently following the path.

The derivation of properties that are relevant to a particular system may be
achieved through a variety of processes including obtaining snapshot experiences
from users of existing systems [8]. Consider the following plausible example:

S1: photographs produced by subjects of anonymous and narrow corridors with
comments like:
• “It is very easy to lose my bearings in spaces such as this one”
• “When I get lost who do I ask, all the doors are closed?”
• “How near am I to my destination?”

In practice the variety of elicited snapshot experience requires organization to ensure
that subsets of facilities are not neglected. Snapshot experiences may be used to
trigger further narratives. The analyst might enquire of a user who has generated
a snapshot: “Can you think of situations where this particular feature has been
important?” By these means they may inspire a scenario that would not otherwise
have been gathered. These documented experiences can also be converted into
properties that the new design should satisfy. Hence the comment relating to S1: “It
is very easy to lose my bearings in spaces such as this one” could lead to properties
such as:

P3: when a visitor moves into a location where there is more than one possible exit
the sign should indicate the direction which the visitor should travel

P4: it should always be possible to see the next sign in the path

P5: the user should be able to visualise where they have come from and where they
are going to and how far they have got in their journey

P6: if the visitor makes a wrong turn then signs should continue to lead the visitor
to their destination.

One problem with the current version of GAUDI is that if the visitor is too slow
getting to the destination, they will either lose the route and therefore be stranded
or they will follow signs to the office selected by the next visitor to the building.
Another problem is that a new visitor will have to be told to wait until the delay has
completed or the previous visitor has reached their destination before choosing the
room that they wish to reach. In practice these problems will not be an issue if the
delay is long enough and visitors who are unfamiliar with the environment arrive
infrequently enough. However visitors may arrive more frequently than anticipated
or arrive in bursts. The next section explores a model of GAUDI like systems that
can be used to explore possible alternatives that avoid some of these problems. An
aim is to develop a family of models that can be used easily to explore alternatives.

4 Modelling the System

The Uppaal system [3] is used to explore alternative designs. This is partly because
it was envisaged that timing issues would be important in understanding the system

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–55 45

and partly because Uppaal provides useful and robust facilities for animating the
system model. In Uppaal, processes are modelled as communicating timed automata
and can be animated to explore specific paths based on derived scenarios. Properties
of the system, such as P1-P6 in the previous section, can be investigated using model
checking techniques. An important focus of these models is how users interact
with the system in terms of the implicit interactions that take place in the built
environment. This will be discussed further in later sections. It must be emphasised
that a variety of approaches could have been used to explore models of these system
alternatives. Particular approaches would have made it easier to capture other
aspects of the models. For example, KLAIM [6] or π calculus [14] would have
been more expressive of location and mobility. While others would have allowed an
alternative style of analysis. For example, PRISM [11] would have made it possible
to explore statistical properties of the system.

The common characteristics of these systems are that they all involve public
displays, sensors and mobile devices. In principle a generic form of the model may
be tailored to appropriate versions of the system. In this example the model’s
structure is based on a publish-subscribe communication mechanism. A central
distributor broadcasts messages to listening processes (in this system the processes
are either visitors or sensor/displays). The physical and human capabilities are also
defined in the model. The model emulates a two storey building with a staircase
linking the two floors. The space is defined using co-ordinates. The co-ordinates
describe regions of the room rather than points — that area around the co-ordinate
in which the sensor / display recognises the presence of another device. These
regions may be rooms, corridors or staircases. The model captures the visitor or
visitor’s mobile device reading the information on the sensor / display when in the
region of a particular co-ordinate position.

Three versions of the system were modelled indicative of a range of possible
designs. Each of the designs involves a different degree of explicit interaction. In the
implemented version of the system the only user engagement that can occur takes
place at reception when the visitor selects a destination and at the destination itself
when they press the display at the doorplate having reached the destination office.
The two variations reflect changes in the proactive nature of the interaction and the
degree of engagement of the users. Version 2 makes the situated displays sensitive
to the presence of visitors to avoid the problem that arises because the frequency
of completely novice visitors will make the one at a time approach of the existing
system unacceptable. Version 3 acknowledges the possibility that more than one
visitor can be in the same space at the same time and so supports user initiated
action to obtain further information updates directly to the visitor’s personal device.
To simplify the model for exposition purposes some of the aspects of timing that
are required to ensire that reachability is achieved are not included in the models.

4.1 The distributor

Two models for the the distributor were developed. They are presented in Figure
1 and Figure 2 (state transitions have been labelled to help the description that

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–5546

Fig. 1. The GAUDI distributor

Fig. 2. The sensitive distributor

follows). The first model (Figure 1) is used to characterise the distributor of the
original version of the GAUDI system (which will be referenced as version 1). The
second model (Figure 2) is used to characterise the distributor of the two additional
versions that have been developed (versions 2 and 3).

The distributor has a general format. After initialisation, its behaviour is trig-
gered by a request (routeup? – 1© in both Figure 1 and Figure 2). In version 1 the
request to the distributor is made when the visitor is in reception. In the case of
versions 2 and 3 (Figure 2) the triggering request occurs when the sensor / display
recognises the presence of the visitor in its space. The information sent with the
request tells the distributor which room number the visitor is looking for (the room
identifier roommsg is used to index route which is an array of directions holding all
the paths along the space – and select the appropriate route), and which display to
use (needed in versions 2 and 3).

As a result of being triggered the distributor broadcasts one or many messages
using the channel mchan 2©. In the case of version 1, messages are sent to all
locations (the process counts through the location values using the variable xi 3©).
On each increment the direction associated with the route at that location is sent
(using the shared variable xdir = route[roomsg+xi]). In the case of version 2 and

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–55 47

version 3 the routeup? request carries information regarding the current position
of the visitor using the shared variable xi (room = xi), and a single message is
broadcast using xdir = route[roommsg+room]. These messages are broadcast to
all the combined sensor / displays in the system. Through shared variables, the
messages contain both the direction that is to be displayed by the display / sensor
and a tag (in this case the room) that is used by the display / sensor to decide
whether the message is relevant.

When the distributor has completed distribution (in version 1 Figure 1) it either
waits until a timeout has elapsed (t>=delay) or it is notified by the visitor that it has
arrived arrive? before allowing another to request a destination. This handover is
not required for versions 2 and 3.

The direction information is absolute (North, South, East, West, Up or Down). It
is assumed that the hand-held device of the visitor could be used to adjust direction
to the orientation of the visitor. This aspect of the design is not considered in more
detail in these models. The implemented version of GAUDI differs from these
models in that each sensor/display holds the whole route so that if the display is
moved to a new location it picks up the new direction and adjusts itself accordingly.
Maintaining multiple copies of arrays of directions is not an option using the sort
of modelling technique described. Because the time to distribute all the messages
for the space is insignificant, this can be seen as practically equivalent.

4.2 The sensor / display process

A single process is modelled that combines sensor and display. In all versions of the
process, the visitor sends a request to read information (using route? 1©) and the
sensor / display then sends a result (using direct! 2©) which includes the direction
to be displayed contained in shared variable xsign. Version 1 (Figure 3) receives
messages from the distributor (via mchan 3©) and updates its own display using the
function updatedisplay(). This function checks whether the message is relevant
to the current location. The visitor can only read the relevant display when they are
“within range of the sensor”. This is modelled by linking the visitor’s co-ordinate
position to a channel that can be used to communicate with the sensor / display in
the visitor’s location if there is one (see section 4.3).

Version 2 and 3 of the sensor / display includes a further trigger (Figure 4)
that requests an update from the distributor routeup!. The requests include a
message that contains the route number and location of the visitor who requires the
information (ybutt and xloc). As a result of the request this version of the sensor
/ display receives a specific broadcast message via mchan as before.

In summary the display/sensor has three important characteristics.

(i) It knows its location. The relevant direction and route channels that are used
in the mapping of co-ordinates are part of the instantiation of the process.

(ii) It receives messages from a central server. It filters those messages that relate
to its location.

(iii) It represents an access point for a “mobile” process which communicates with

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–5548

Fig. 3. The combined sensor and display

t<=0

lbutt==butt
route?

lbutt = xbuttdisp=blank

direct!
xsign=disp

routeup!
ybutt=lbutt,
butt=lbutt,
xloc=loc

mchan?
updatedisplay()

Fig. 4. The sensitive sensor and display

it. The mobile process calculates the channels from its location.

4.3 The visitor

The visitor process describes simple human characteristics of the visitor as well as
the visitor’s personal device. It knows:

• its position as defined by an (x, y) co-ordinate
• when it is in the “neighbourhood” of a sensor / display

In version 1 (Figure 5) the visitor communicates its requested route to the dispatcher
using press. This initiates the download of the whole route to the displays in
the space. In all versions the visitor process detects its position using a function
sensorlink() that maps its co-ordinates (initially the visitor is in the reception
area which is on the ground floor, co-ordinates (0, 0)). This function returns the
channel loc that is to be used to communicate with the nearest sensor / display. If
the value returned is NS then there is no nearest sensor but if there is a sensor, a
request is made to the sensor / display using route[loc]! and the value returned
via direct[loc]? is stored in dir. This direction is used to update the co-ordinates
using the function updatecoord(). The visitor process “remembers” the direction
last read if there is no sensor / display in a given location (i.e., loc has the value NS).
The visitor process follows the direction indicated by the sign (using the function
updatecoord()).

This description of a visitor process captures assumptions about how a visitor
will behave in the environment. Clearly different user assumptions could be made.
In the present case further assumptions are made about the visitor’s movement. The

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–55 49

arrived

t<=1

loc==NS

sensorlink()

((dir!=down)||(loc==SF))
updatecoord()

(dir==down)&&(loc!=SF)
arrive!

direct[loc]?
dir=xdir

loc!=NS
route[loc]!

press!
xi=i

initsenschans()

Fig. 5. The visitor

visitor reads and updates the direction of travel correctly in response to the display
that is read. If the direction is “North” then the y co-ordinate is incremented, if
“West” then the x co-ordinate is decremented. When the visitor reaches a direction
“Down” and is not in a stairwell then it has reached its destination. If it is in the
stairwell on the first floor and it reads “Down” then it descends to the ground floor
and so on.

The model makes further assumptions about how the visitor responds to possible
collisions. In the event that movement would cause collision, hitting a wall, then the
co-ordinate that would have been updated is unchanged and the other co-ordinate is
updated in the same direction (if the x co-ordinate was to be incremented then the y
co-ordinate would be incremented and so on). This policy works in the present case
because sensor / displays are located in the corners and therefore a visitor always
eventually reaches a location where there is a display.

Each of these assumptions may be questioned. They capture hypotheses about
how people might behave in the smart environment. For example if a stochastic
model like PRISM [11] were used instead further assumptions might be made about
how the visitor remembers the direction with a given probability and in so doing
estimates of likely error behaviour could be explored.

In summary the model supports a generic notion of mobility achieved by relating
space to the channels that are used to communicate with the display / sensor. The
visitor process in addition captures a set of simple assumptions about the user which
can be explored further:

(i) It can read the direction from the sensor display.

(ii) It remembers the direction it has read and continues to use it even when the
display is not visible.

(iii) It moves correctly in response to the direction that has been read.

Each of these elements could be manipulated to explore types of user error.
All models use the same floor layout which is different from Lancaster University

but is of similar complexity. Version 2 of the system assumes that the sensor is
sensitive to the visitor’s position and therefore the visitor variant sends the route
each time (Figure 6). The third version of the model performs the same activity

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–5550

arrived

loc==NS

sensorlink()

((dir!=down)||(loc==SF))
updatecoord()

(dir==down)&&(loc!=SF)

direct[loc]?
dir=xdir

loc!=NS
route[loc]!
xbutt=bp

initsenschans()

Fig. 6. The visitor who can elect to receive a direction

arrived

loc==NS

sensorlink()

((dir!=down)||(loc==SF))
updatecoord()

(dir==down)&&(loc!=SF)

direct[loc]?
dir=xdir

loc!=NS
route[loc]!
xbutt=bp

initsenschans()

Fig. 7. The explicit visitor process

as the second except that the elective refreshing of the visitor’s handheld display is
also modelled. An additional unlabelled branch in the model specifies the possibility
that the visitor does not request an update to its display. In this case direction
information used by visitor is determined by the last request that was made by
the visitor (this happens non-deterministically in the model). Hence if the user
“forgets” to update the display it will continue to use a prior direction even though
it could have been updated through a visitor’s request.

5 Evaluation

Modelling the system allows exploration of the implications of alternative designs
by exploring sequences of modelled states. These state sequences can be thought of
as paths that provide the basis for scenarios. There is no space for detailed analysis
of the system. Instead the three types of activity that were carried out are briefly
described.

5.1 Scenario exploration

The model provides a framework within which specific scenarios can be explored.
Scenarios that may have been gathered through a process of interviewing users can

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–55 51

be “stripped down” to steps in the model. When animated, the steps taken within
the model may be understood and visualised by the analyst in the broader context of
the physical textures, siting of displays and other features of the real system. Hence
the model animation is used as a trigger for the domain specialist to rehearse and
to visualise what the designed system would be like. The model generates questions
for the designer about the choices that have been made. These questions can be
explored and discussed with a usability specialist or even re-expressed as a narrative
that could be of value to explore with users and to allow them to experience the
properties that are important.

Additionally, when properties fail in Uppaal, a trace is provided by the tool.
These traces need to be explored (sometimes extended) through animation in order
to build an understanding of the root of the problem being highlighted.

5.2 Property exploration

The model provides a basis for exploring properties. These properties could be
identified through a process such as the one described for eliciting snapshot expe-
riences. They may be automatically checked against the model. This process of
property checking may generate traces that would form the basis for further scenar-
ios [5]. Hence for example the version of these models that were used for checking
properties included specific timing information. This was to ensure that the system
would not dwell endlessly at a particular state. The following properties have been
checked.

• Reachability: checking that the model behaves in a way that is consistent with
the proposed system. For example that the user will arrive at the required des-
tination if they follow the signs. This can be achieved using properties such as
A<>(P1.dir==down)&&(P1.loc!=SF), that the visitor (P1) will always reach a
location that is not the stairwell where the direction of the display is down. Note
that timing in the particular model used was designed so that the model always
progresses because without it it is always possible that the process can dwell in
a state forever and therefore fail to reach its destination.

• Visibility: checking that there is always another sign in the line of sight of the
current display in the direction that the visitor should travel. This is achieved by
adding an observer process, see below, and checking that at each location (loc)
the visitor reaches where there is a display then there is a further display visible
(that is in line and not concealed by walls) in the direction defined by the display
in loc.

It is also possible to use this model to check security and privacy properties, for
example to check that the public display closest to the user can never combine with
information displayed on the user’s personal device to betray private information
about another user.

Situations where a property breaks can be at least as interesting as whether
the property is satisfied. Counter-examples may demonstrate failures in the system
but they may also indicate situations where properties of the information may not

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–5552

be satisfied but may be unproblematic from a usability point of view. Alternative
models that make different assumptions about visitor dwell time will enable the
exploration of counter-examples where visitors might spend longer than expected
reading displays and travelling between locations. These counter-examples to prop-
erties may be used as the basis for scenarios.

5.3 Observer processes

Observer processes provide further opportunities to check properties of the system.
They can be used to act like observational scientists spotting interesting events
and calculating whether these events have properties in the context of the ongoing
execution of the system. Hence for example an observer was used to check whether
a visitor can always see the next sign in the direction of the arrow that is on the
nearest sensor / display. In order to achieve this the observer process is signalled
each time a visitor reaches a new location, and a message is sent to the observer
giving the direction it reads from the sensor / display and the visitor’s destination.
The observer uses this information to calculate from the current location whether
there is a straight line in terms of the (x, y) co-ordinates to another sensor / display.
The observer sets a variable depending on whether the display can be found. Other
examples of observer processes are described in [8].

6 Discussion and Conclusions

An important benefit of formal modelling of human interactions in ubiquitous sys-
tems is the ability to evaluate user characteristics prior to building the system. This
applies both to testing whether user requirements are met in a particular model and
to improving a model iteratively so that it eventually meets the set requirements.
This may enable developers to modify the current design/model in a targetted way
and speed up the development process. Another benefit is that the elicited traces
are gathered by a formal process and therefore the designer can be quite clear why
the scenario based on the trace is of interest.

One potential disadvantage of the proposed approach relates to scalability. While
there are no inherent limitations, it is possible that models become too complex to
fully check them within reasonable time or memory limits. This can result either
from poor modelling (e.g., using the wrong abstractions) or the fact that the model
requires multiple instances of the same process. Ways to overcome this particular
problem include the use of multiple, smaller models (potentially at the expense of
being able to prove certain properties for the entire system) or multi-tiered models
with several layers of abstraction.

A second issue is the mapping between informal usability requirements, the
model and the implementation of the system. In order for the model to have any
value, it needs to be tightly linked to the system implementation, i.e., the system
needs to implement the model. Similarly, the formal requirements used to check
against the formal model need to accurately represent the requirements identified
in the elicitation phase. Potential solutions to these issues include formal and/or

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–55 53

(semi-)automatic processes to derive an executable implementation from the formal
model or tools supporting both processes (compare for example, [13,15]).

Finally, creating, evaluating and modifying a formal model of a ubiquitous sys-
tem introduces a further step into the development process, which can incur in-
creased costs and lengthen the time to completion of a project. In addition, formal
modelling may require a different set of skills from developers, which may have the
same effect. This issue is however counterbalanced by the advantages listed above
as well as by the potential savings resulting from identifying problems early on in
the development process.

The main value of Uppaal was through its provision of animation facilities and
time. The modelling technique makes it necessary to use rather complicated “pat-
terns” to capture communication and to support mobility. Another problem with
the techniques is that there are no clear pathways towards stochastic modelling.
Questions remain about whether modelling such as this will require not only con-
sistent families of model but also a variety of modelling techniques.

By making interaction requirements explicit, modelling can also pave the way to
define more clearly what is meant by ‘calm computing’ in the context of a particular
system. The next step is to integrate and use the approach described in this paper
in the context of a larger and more complex project.

Acknowledgement

Michael Harrison and José Creissac Campos acknowledge with thanks EPSRC grant
EP/F01404X/1 and FCT/FEDER grant POSC/EIA/56646/2004.

References

[1] Abowd, G. and E. Mynatt, Charting past, present and future research in ubiquitous computing, ACM
Transactions on Computer-Human Interaction 7 (2000), pp. 29–58.

[2] Abowd, G. D., E. D. Mynatt and T. Rodden, The human experience, Pervasive Computing Magazine
1 (2002), pp. 48–57.

[3] Behrmann, G., A. David and K. Larsen, A tutorial on uppaal, in: M. Bernardo and F. Corradini,
editors, Formal methods for the design of real-time systems, number 3185 in Springer Lecture Notes in
Computer Science, Springer-Verlag, 2004 pp. 200–236.

[4] Campos, J. and G. Doherty, Supporting resource-based analysis of task information needs., in: S. Gilroy
and M. Harrison, editors, Interactive Systems: Design, Specification and Verification 12th International
Workshop, DSVIS 2005, Newcastle upon Tyne, UK, July 2005, number 3941 in Springer Lecture Notes
in Computer Science (2006), pp. 188–200.

[5] Campos, J. and M. Harrison, Model checking interactor specifications, Automated Software Engineering
8 (2001), pp. 275–310.

[6] De, R., Nicola, G. L. Ferrari and R. Pugliese, KLAIM: a kernel language for agents interaction and
mobility, IEEE Transactions on Software Engineering 24 (1998), pp. 315–330.

[7] Gaver, W., T. Dunne and E. Pacenti, Design: cultural probes, ACM Interactions 6 (1999), pp. 21–29.

[8] Harrison, M., C. Kray, Z. Sun and H. Zhang, Factoring user experience into the design of ambient
and mobile systems, in: G. van de Veer, P. Palanque and J. Wesson, editors, Engineering Interactive
Systems, 2007, accepted for publication, Springer Lecture Notes in Computer Science.

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–5554

[9] Kray, C., K. Cheverst, D. Fitton, C. Sas, M. Patterson, J.and Rouncefield and C. Stahl, Sharing control
of dispersed situated displays between nomadic and residential users, in: Proceedings of MobileHCI’06,
Espoo, Finland, 2006.

[10] Kray, C., G. Kortuem and A. Krüger, Adaptive navigation support with public displays, in: R. S. Amant,
J. Riedl and A. Jameson, editors, Proceedings of IUI 2005 (2005), pp. 326–328.

[11] Kwiatowska, M., G. Norman and D. Parker, PRISM: Probabilistic symbolic model checker, in:
T. Field, P. Harrison, J. Bradley and U. Harder, editors, Computer Performance Evaluation: Modelling
Techniques and Tools Proceedings 12th International Conference, TOOLS 2002, number 2324 in
Springer Lecture Notes in Computer Science (2002), p. 200.

[12] Loer, K. and M. Harrison, Analysing user confusion in context aware mobile applications, in:
M. Constabile and F. Paternò, editors, INTERACT 2005, 3585 (2005), pp. 184–197.

[13] Mellor, S. J. and M. J. Balcer, “Executable UML: A Foundation for Model-driven Architecture,”
Addison Wesley, 2002.

[14] Milner, R., “Communicating and mobile systems: the pi-calculus,” Cambridge University Press, 1999.

[15] Murphy, G. C., D. Notkin and K. Sullivan, Software reflexion models: bridging the gap between source
and high-level models, SIGSOFT Softw. Eng. Notes 20 (1995), pp. 18–28.

[16] Rogers, Y., Moving on from Weiser’s vision of calm computing: Engaging UbiComp experiences, in:
P. Dourish and A. Friday, editors, Proceedings of Ubicomp 2006 (2006), pp. 404–421.

[17] Schmidt, A., Implicit human computer interaction through context, Personal and Ubiquitous
Technologies 4 (2000), pp. 191–199.

[18] Tennenhouse, D., Proactive computing, Communications of the ACM 43 (2000), pp. 43–50.

[19] Weiser, M., R. Gold and J. S. Brown, The origins of ubiquitous computing research at PARC in the
late 1980s., IBM Systems Journal 38 (1999), pp. 693–696.

M.D. Harrison et al. / Electronic Notes in Theoretical Computer Science 208 (2008) 41–55 55

	Introduction
	Related work
	The GAUDI system
	Modelling the System
	The distributor
	The sensor / display process
	The visitor

	Evaluation
	Scenario exploration
	Property exploration
	Observer processes

	Discussion and Conclusions
	Acknowledgement
	References

