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Abstract 
In bioreactors, the measurement of variables that play a key role in the quality and productivity of 
fermentations, is of major importance. However, their direct measurement is often expensive or even 
impossible considering the current sensor technology. Therefore, on-line estimation of unmeasured 
variables in bioreactors can be an interesting approach. 
The objective of this work is to introduce an alternative solution for the state observation of 
bioprocesses in cases where the kinetic model is unclear and the concentration of the influent 
substrates is badly known, a situation that is common in many practical applications. 
The high-cell density fed-batch fermentation of Escherichia coli is studied in terms of applicability of 
a simple interval observer for the estimation of relevant variables of the process, when uncertainties of 
the process inputs exist. 
The simple interval observer is designed on the basis of the cooperativity properties of the observer 
error dynamics (Rapaport and Dochain, 2005). Further assumptions are the knowledge of the (lower 
and upper) bounds of the influent substrate concentration. Furthermore, an appropriate state 
transformation and conditions that guarantee system cooperativity have been introduced for that 
purpose. 
The performance of the interval observer is illustrated through numerical simulation. 
 
1 Introduction 
It is well known that industries are interested in decreasing the production costs and increasing the 
process yield, keeping the quality of the metabolic products. Thus, the ability to accurately and 
automatically control bioprocesses at their optimal state is of great importance, since it can contribute 
to achieve that goal. However, the lack of on-line instruments has limited the application of control 
theory to these processes. Therefore, the development of state observers, also called software sensors 
(Dochain, 2003) can be an attractive alternative since a large amount of additional information can be 
obtained, using a model together with a limited set of state variable measurements (Bernard and 
Gouzé, 2004, Bogaerts and Wouwer, 2004). 
In the literature, two classes of state observers are usually found. The first class includes the classical 
observers, such as the Luenberger, the Kalman, and the non-linear observers, which are based on the 
perfect knowledge of both model structure and parameters. However, the uncertainty in the model 
parameters can generate a large bias in the estimation of unmeasured state(s). The asymptotic 
observers (Bastin and Dochain, 1990), which constitute the second class of observers, do not require 
the knowledge of the process kinetics. Nevertheless, a potential problem concerning these observers is 
the dependence of the estimation convergence rate on the operating conditions (Dochain, 2003). 
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In this work it is intended to study an alternative solution for the state observation of a high-cell 
density fed-batch fermentation of E. coli, supposing that the kinetics model structure is unknown and 
the concentration of influent substrates is badly known, a situation that happens often in real 
applications, for example when using complex substrates.. 
The approach used is based on an interval analysis. The objective is to reconstruct intervals for the 
missing state variables, for which the state is certain to lie, based on a given interval of variation of the 
uncertain variable(s). 
In this study, the design of the interval observers is based on the assumption that measurements of 
acetate, dissolved oxygen and carbon dioxide concentrations are available. This choice is due to the 
fact that, nowadays, the sensors for these state variables are more developed and thus, more reliable. 
Therefore, the purpose is to estimate the intervals of variation of the biomass and substrate 
concentrations. 
 
2. Process Modelling 
The dynamics of a reaction network in a stirred tank bioreactor can be described by the following mass 
balance equations written in matrix form as (Bastin and Dochain, 1990): 

( ) QFDtKr
dt
d

−+−= ξξξ ,         (1) 

in which ξ is a vector representing the n state components concentrations (ξ ∈ ℜ
n), r is the growth rate 

vector corresponding to m reactions (r ∈ ℜ
m
), K is the matrix of yield coefficients (K ∈ ℜ

n×m
), F is the 

vector of feed rates and Q is the vector of gaseous outflow rates (F, Q ∈ ℜ
n
), D is the dilution rate 

(being D-1 the residence time). 
During the aerobic growth of E. coli with glucose as the only added substrate, the microorganism can 
follow three main metabolic pathways: oxidative growth on glucose, fermentative growth on glucose, 
and oxidative growth on acetate. The corresponding dynamical model for fed-batch fermentation can 
be represented as follows: 
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      (2) 

where X, S, A, O, and C represent biomass, glucose, acetate, dissolved oxygen, and dissolved carbon 
dioxide concentrations, respectively; μ1, μ2, and μ3 are the specific growth rates; ki are the yield 
(stoichiometric) coefficients; Fin and Sin are the substrate feed rate and the influent glucose 
concentration, respectively; W is the culture medium weight, CTR is the carbon dioxide transfer rate 
from liquid to gas phase, and OTR is the oxygen transfer rate from gas to liquid phase. 
The variation of the culture medium weight with the time is given by: 

F
dt

dW
=         (3) 

where F includes weight variations due to the substrate feed rate, the amount of culture removed or 
added during sampling, base and acid additions, evaporation and mass taken from the reactor due to 
gas exchanges, that can not be considered negligible in small-scale high-cell density reactors. 
A typical observation question is the estimation of biomass and glucose concentrations from on-line 
measurements of acetate, dissolved oxygen and carbon dioxide concentrations. It is assumed that the 
kinetics are unknown, the dilution rate D and the yield coefficients (matrix K) are known, and that the 
influent glucose concentration Sin is uncertain but bounded between known lower and upper bounds: 



( ) +− ≤≤ ininin StSS         (4) 

 
3. Design of the Interval Observer 
The motivation of interval observers is to generate state estimates with bounds that are related to the 
uncertainty of the model or of the measurements (Gouzé et al., 2000). 
The design is based on the cooperativity properties of the observer error dynamics. Cooperative 
systems are dynamical systems for which the non-diagonal terms of the Jacobian matrix are positive 
(Rapaport and Dochain, 2005). Considering the following non-linear state space model: 

( )xtf
dt
dx ,=         (5) 

cooperation means that for any (t, x): 

( ) jixt
x
f

j

i ≠≥
∂
∂

for        ,0,         (6) 

Considering the cooperative system (5 and 6) and being −f  and +f  two vector fields such that: 

( ) ( ) ( ) ( )xtxfxtfxf ,     ,, ∀≤≤ +−         (7) 
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0x , 0x , +
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and fulfills the following property: 

( ) ( ) ( ) 0      , ≥≤≤ +− ttxtxtx         (9) 

Therefore, two estimates can be computed, an upper one and a lower one, that bounds the unmeasured 
variables. Since the best final estimate is aimed, the interval [x−(t), x+(t)] should become smaller (or 
ideally tends to {x(t)}) when the time t increases (Gouzé et al., 2000). 

It should be noticed that interval observer ( )SX ˆ,ˆ  cannot be designed directly from an observer of the 
dynamical model given by eq. (2). In fact, the off-diagonal term of the Jacobian matrix (eq. (10)) of 
the observer (with 1g , 2g , 3g , 4g  and 5g  the observer gains) does not fulfill the condition of eq. (6), 
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Nevertheless, it should be notice that the notion of cooperativity is coordinates dependent, and 
therefore an approach to achieve this property is to consider a partition in the state variables vector ξ 



induced by the measured and unmeasured variables, ξ1 and ξ2, respectively, the dynamical model 
given by eq. (2) can be re-written as follows: 

( ) 1111
1 , QFDtrK

dt
d

−+−= ξξ
ξ  (11a) 

( ) 2222
2 , QFDtrK

dt
d

−+−= ξξ
ξ  (11b) 

The following transformation can be established: 

1
1

122 ξξ −−≡ KKZ  (12) 

where 1
1
−K  is the pseudo-inverse of the matrix K1, considering that K1 has full rank. K1 and K2 are 

obtained from the matrix K applying the induced partition. 

The dynamics of Z are independent of the reaction rate r(ξ,t) and the following equivalent state 
representation for the process dynamics can be written: 

( ) ( )1
2 1 1 1 2 2

dZ DZ K K F Q F Q
dt

−= − − − + −  (13) 

and the following standard observer equations can be also derived: 
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If the measured variables are A, O and C the matrix used in the state transformation of eq. (12) will be: 
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The observer, in this case, is given by the following equations: 
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The cooperative properties of this observer can then be checked. If the observer errors are defined by: 
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Their dynamics are given by the following equation: 
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with the following Jacobian matrix: 
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It can easily be seen that the error system is cooperative and thus it is possible to build an interval 
observer. 



Considering the lower and upper bounds for the initial value of the estimate of biomass and substrate 
concentrations: 

+−+− ≤≤≤≤ 000000         , SSSXXX  (20) 

the following set of interval observer equations can be defined: 
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This simple interval observer will then give estimates for the upper and lower bounds of both biomass 
and glucose concentrations X and S, respectively: X+, X− and S+, S−. 
 
4. Simulation results and Discussion 
The performance of the interval observer has been tested by numerical simulations. Simulated 
“experimental” values of the state variables were obtained by integration of the differential equations 
of eq. (2), using the MATLAB version 6 subroutine ODE23s. The implementation of the observer 
using both “experimental” and estimated data was conducted using the Euler integration method. It is 
assumed that glucose concentration in the feed Sin is unknown, but it is assumed that its time varying 
bounds are known ( ( ) ( ) ( ) 0     ≥∀≤≤ +− t,tStStS ininin ). It is also assumed that a priori bounds on initial 
values of X0 and S0 are known. 
Therefore, the simulation results have been performed by considering that uncertainty is concentrated 
on the influent glucose concentration with 10% variation around its nominal value (Sin = 250 g/kg). 
The results obtained are presented in Figure 1. As it can be seen, the “experimental” values for 
biomass and glucose are always between the lower and the upper bounds estimated using the interval 
observer. 
 
5. Conclusions 
In this work, an interval observer is presented in order to handle the uncertainties on the influent 
glucose concentration. A key issue associated with interval observer is the cooperativity of the 
observer error dynamics. An appropriate state transformation and conditions that guarantee system 
cooperativity have been introduced for that purpose. 
Nevertheless the good results obtained, experimental validation of this work is needed and is under 
investigation. 
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Figure 1. Interval observer simulation in presence of uncertainty on the influent glucose concentration. 
 
Moreover, as pointed out by Rapaport and Dochain (2005) the interval observers principles used can 
also be applied in order to account for the uncertainties in the yield coefficients as well as for bounded 
noise on the outputs. Further studies taking into account the above-mentioned approaches are 
undergoing examination. 
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