
Sérgio Emanuel da Cruz Lopes

Touchscreen Biometrics for Continuous
Authentication

Sé
rg

io
 E

m
an

ue
l d

a 
Cr

uz
 L

op
es

December, 2014UM
in

ho
 |

 2
01

4
To

uc
hs

cr
ee

n 
Bi

om
et

ri
cs

 fo
r 

C
on

tin
uo

us
 A

ut
he

nt
ic

at
io

n

Universidade do Minho
Escola de Engenharia





December, 2014

Master’s Dissertation
Integrated Master’s in Communications Engineering

Project done under orientation of
Professor Henrique Manuel Dinis dos Santos

Sérgio Emanuel da Cruz Lopes

Touchscreen Biometrics for Continuous
Authentication

Universidade do Minho
Escola de Engenharia





 

iii 

Acknowledgements 

 This dissertation marks the end of a long journey, full of great memories and 

accomplishments. However, none of that would be possible without the precious help of some 

persons, to which I would like to thank. 

 First, I would like to thank my supervisor, Professor Henrique Santos, for all the help and 

advisors that he gave to me, for all the encouragement words and for all the joy that he transmits 

to all around him. Certainly, things would have been harder without him. 

 Secondly, I want to thank my friends and colleagues, for the good memories, for the 

fellowship and for the mutual aid that characterized these past five years. 

 I thank my family for all the support, to my parents for the courage they always gave me and 

for that “no” they never told me, and to my brothers for always being by my side. 

 Lastly, I want to thank my beloved Patrícia, for all the love, support and affection and for all 

those smiles. Thank you for sharing this journey with me.  

  

 





 

v 

Abstract 

Nowadays, touchscreen devices are part of people’s daily tasks and there is, progressively, 

less need to use traditional computers, whether to work or entertainment activities. 

Consequently, these devices contain an increasingly higher quantity of sensitive information that 

must be protected from unauthorized access. Generally, these devices have only a single layer 

of authentication and, once passed this phase, it is assumed that the device is used only by its 

owner or authorized user. However, no matter how strong is the authentication method, the 

device is still vulnerable to attacks from malicious users who gain access to it in an unlocked 

state. This way, is pertinent to adopt techniques that provide continuous authentication of users. 

In this dissertation is proposed a system for continuous authentication in devices with 

touchscreen, aiming to serve as a proof of concept about the possibility of using the interactions 

of users with the touchscreen as a behavioral biometric characteristic. Was developed a mobile 

application to collect the touch data of some controlled gestures, performed by different users, 

and to extract a selected set of features, used to build their biometric template. The classification 

module was simulated through machine learning software. Lastly, are presented the system 

evaluation results. 

Globally, the results show that the system, using the selected features and classifier, is not 

capable of perform a strong continuous authentication. In fact, was verified that the system 

behaved quite distinctly with different users. Besides the results, it is believed that, with the right 

set of features and classification techniques, the system has a promising future.
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Resumo 

Atualmente, dispositivos com touchscreen fazem parte das tarefas quotidianas das pessoas 

e há, progressivamente, menor necessidade de utilizar os computadores tradicionais, quer para 

trabalho quer para entretenimento. Consequentemente, estes dispositivos contém uma 

quantidade cada vez maior de informação sensível que deve ser protegida de acessos não 

autorizados. Geralmente, estes dispositivos têm apenas uma única camada de autenticação e, 

uma vez ultrapassada esta fase, assume-se que o dispositivo é usado pelo dono ou por um 

utilizador autorizado. No entanto, independentemente do quão forte seja a autenticação no início 

da sessão, o dispositivo continua vulnerável a ataques de utilizadores mal-intencionados que 

ganhem acesso ao mesmo num estado desbloqueado. Desta forma, é pertinente a adoção de 

técnicas que proporcionem uma autenticação contínua dos utilizadores 

Nesta dissertação é proposto um sistema de autenticação contínua em dispositivos com 

touchscreen, com o objetivo de servir como prova de conceito sobre a possibilidade de usar as 

interações de utilizadores com touchscreens como uma característica biométrica 

comportamental. Foi desenvolvida uma aplicação móvel para recolher os dados de alguns gestos 

controlados, executados por diferentes utilizadores, e para extrair um conjunto de atributos 

selecionados, usados para construir o modelo biométrico dos utilizadores. O módulo de 

classificação foi simulado através de software de machine learning. 

Globalmente, os resultados mostram que o sistema, usando os atributos e o classificador 

selecionados, não é capaz de desempenhar uma autenticação contínua robusta. De facto, 

verificou-se que o sistema se comportou de forma bem distinta com utilizadores diferentes. 

Apesar dos resultados acredita-se que, com os atributos e classificadores certos, o sistema tem 

um futuro promissor.
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1.  Introduction 

1.1 Context and Motivation 

The world is currently in the era of mobility. The number of mobile devices, such as 

smartphones and tablets, has increased significantly in the past years and has surpassed, by 

far, the traditional computers in sales [1]. Due their evolution in terms of processing capabilities, 

storage capacity, applications and services offered, people are choosing mobile devices to 

perform their daily activities, rather than desktops or laptops. In US, the internet usage through 

mobile applications has outstripped computers in January of this year [2] and studies predict 

that, in 2017, smartphones and tablets will have 87% of the market share [3].  

Information security always was, and always will be, a critical aspect whether at 

organizational or at personal level. With the usage growth of mobile devices, more and more 

sensitive information is accessed and stored in them, which leads to an upcoming interest of 

malicious users to explore vulnerabilities and gain access to that information, amplifying the 

necessity of enhanced procedures concerning the access control of these devices. In contrast 

with this necessity, most devices only provide user authentication based in secret challenges, 

such as PIN code or password insertion or drawing a defined pattern on the screen, which are 

vulnerable to smudge attacks and shoulder-surfing attacks [4]. Fortunately, there is a growing 

tendency to use biometrics to authenticate users, like fingerprint matching and face recognition 

[5], although they are still easily tricked. However, most of the utilization boils down to quick but 

frequent tasks, like checking the mail inbox and communication activities, and for those these 

authentication methods could be very inconvenient. People tend to give more importance to 

usability rather than security so, to not be bothered by a difficult authentication challenge every 

time they want to use the device, they often opt to insert easy secrets, increase the lock timeout, 

or even use no authentication at all [6]. Furthermore, this mechanisms just provide 

authentication at the session login phase, after that the device is vulnerable, for example, a user 

can leave his device unlocked while he takes a short break and a malicious individual can pick 

it and do whatever he wants with it. This is a very common reality, studies suggest that 60 to 70 
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percent of the attacks to information systems are made by known persons that had the 

opportunity to access a device after authentication phase [7].  

 With the implementation of continuous authentication systems it is possible to solve those 

flaws. After an enrollment phase, where they gather data about one or more behavioral 

characteristics of legitimate use, it is created a biometric profile. Then the system, continuously, 

monitors the activity in the device by matching the interactions of the one using it with the profile 

of the owner. Hence is guaranteed that the device is used always by legitimate user.  

 The fact that behavioral biometrics can be collected non-obtrusively [8] is what makes this 

possible. In these systems, users can not be aware that their behavior monitored and sampled, 

so that intruders don’t change their actions before the matching completion. Behavioral 

biometrics don’t need any additional hardware to be collected [8], which also makes them 

suitable to be used in mobile devices. 

 Is possible to find in the literature works regarding the use of behavioral biometrics with 

touchscreen devices, but for authentication only at the login. Likewise, several projects were 

conducted, and some commercial solutions are on the market [7] [9], using behavioral 

biometrics to continuous authentication, but not applied to touchscreen devices. There are only 

a few works that combine both and with encouraging results. [6], [10]–[12] 

1.2 Goals 

The main goal of the project described in this dissertation is to determine if it is possible to 

implement a system for continuous authentication using touchscreen behavioral biometrics. In 

order to do so there were various sub-goals to achieve: 

 Propose the system architecture and functioning; 

 Determine which gestures would be performed and which features would be 

extracted from their touch data; 

 Develop an application, to run in a mobile device, in which users would perform the 

gestures.  
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 Through the application, collect the touch data from each gesture, extract the 

wanted features and generate the biometric template, saving it on the device’s 

storage.   

 Proceed to the classification of the stored samples, using machine learning 

classification software tuned for this project. 

 Perform the evaluation of the system based on the classification results. 

 

1.3 Research Methodology 

The first task was to identify the problem and the objectives, and to search works in the 

literature to serve as a basis for this project. The search was made through keywords related to 

the project, such as “behavioral biometrics”, “continuous authentication”, “touchscreen 

biometrics” and “machine learning classifiers”. Through the search was built a bibliographic 

pool.  

Afterwards, was performed an extensive study on related works to find similar problems and 

the way that were solved, which were the steps to follow and the critical decisions taken. Was 

conducted a serious study also on the Android API documentation in order to understand how 

the application would be made. 

In all the experimental processes, all steps were conducted carefully and more than once if 

needed. 

1.4 Document Organization 

In this first chapter is made a brief introduction to the project, as well as its objectives. It is 

also present the research methodology and the document organization. 

In chapter 2, is given the state of the art regarding biometrics and biometrics systems. First 

are presented the theoretical concepts about biometrics, and about the architecture and 

operating mode of the biometric systems in the access control context. It is also presented some 

works related to this project.  
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Chapter 3 is related to the data collection and features extraction. There are justified every 

decision taken regarding that aspect, and is shown which were the gestures and features 

analyzed. In this chapter is also present a description about the experimental scenario and the 

mobile application development. 

Chapter 4 presents all the procedures made in the classification process, such as the 

datasets data pre-processing, the classifier chosen, and lastly the training of the classifier and 

the classification itself. 

In chapter 5 are shown the results of the project and its respective analysis, are also shown 

some additional tests that were made in order to understand the results and to see if was possible 

to obtain better results. 

 Lastly, in chapter 6, is presented the conclusion of all work. Are resumed the 

accomplishments of the project and which is the future work to be made. 
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2.  Biometrics and Authentication 

Human beings have unique biological traits, physical characteristics and natural behaviors, 

which distinguish them from the others. Within the technological and security scope, the use of 

those traits to recognition of individuals is referred as biometrics. 

This chapter aims to provide an insight about the use of biometrics for continuous 

authentication purposes, in a progressive way: initially is given an overview about the advantages 

of biometrics when compared with traditional recognition means and the most popular 

biometrics in use, followed by a description of the components of a typical biometric system and 

how are the biometric characteristics used by them and, lastly, about the use of touchscreen 

biometrics in the context of continuous authentication.  

2.1 Biometrics Overview 

The evolution of technology and information systems increases the security concerns. The 

presence of biometrics in authentication systems is growing day by day because they introduce 

several benefits. 

User authentication, in most cases, is still based on user knowledge, like passwords and 

PINs, or user tokens, such as access cards [13]. There are serious vulnerabilities in using  

passwords. If configured too long or too difficult, passwords and PINs can be easily forgotten. 

Because of this, users tend to choose basic passwords, such as names and birthday dates, 

which can be guessed or obtained by brute force dictionary attacks. If strong passwords are 

used, they are often written down in a paper in visible places [14]. To be secure it is 

recommended that passwords have numbers or special characters in it and should be renewed 

frequently, however, most of the times that doesn’t happen. In a survey made in [15] is shown 

that almost 3 in 4 users rarely change the passwords and that only 17% combine letters, 

numbers and symbols. Is also shown that 42% of the survey population uses only one password 

for all their services and that almost half of them have at least one password shared with three 

or more persons. This last aspect is common to tokens, sometimes users share their access 

object with colleagues, and because of it a system cannot be sure if the individual using it is the 
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legitimate. Concerning tokens, these can also be easily stolen or lost. A major concern is also 

the fact that if one password or token is intercepted, all company security system could be 

compromised. By the contrary, biometrics are based on “what users are”, they can’t be forgotten 

or lost and are much more difficult to forge, copy and share. User don’t need to memorize secrets 

or carry any object, just need to be present at the recognition moment. [14]. 

 To be eligible as a biometric characteristic and to be used in a biometric system, the user 

traits must meet these requirements [16], [17]: 

 Acceptability: People should accept provide that characteristic to the biometric 

system; 

 Circumvention: It must be robust enough to not be easily fooled by fraudulent 

methods, like trait imitation;  

 Collectability: Should be possible to measure quantitatively, without causing any 

inconvenient; 

 Distinctiveness: The characteristic has to be sufficiently distinct among different 

user; 

 Performance: The resources usage and the matching accuracy must comply the 

system requirements; 

 Permanence: The trait should not change constantly in a certain period of time; 

 Universality: Everyone should have the characteristic. 

 

There are a considerable number of biometric characteristics, some are already in use 

by commercial solutions, while others are still investigation subjects. They are often 

classified as physiological, such as fingerprints, retina or palm scan, or behavioral, like 

keystroke dynamic, voice, gait or even odor. Beyond that, they can be classified as 

collaborative, if the user know about the process, or as furtive, if the characteristic extraction 

is done without user knowledge or consent [18].  
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2.1.1 Physiological Biometrics 

Physiological biometrics are based in characteristics directly retrieved from physical parts of 

the user’s body. Next is presented a briefly description of some of the most common and well-

stablished biometrics of this type. 

 

Fingerprint 

A fingerprint is a pattern of interleaved ridges and valleys on the surface of a fingertip. These 

patterns are unique for each person’s finger, even twins have different fingerprints. The 

fingerprint matching is a technique being used from long time to personal identification, whether 

to civil registration or criminal investigation, being, undoubtedly, the most used biometric 

characteristic, with a higher acceptance level by people. The accuracy provided in recognition is 

appropriate for verification, although may consume too much computational resources in 

identification processes. As the implementations grow in number and diversity of applications, 

the price of the scanners is becoming more affordable. [10] [11] 

However, fingerprints scanners can’t differentiate well an actual finger of a “dead finger”, 

and there are already tutorials to synthesize fingerprints, undermining their reliability. [19] 

Besides, there are some situations when fingerprint matching is not possible due modifications 

on persons fingers, due aging or labor reasons. 

 

 

Figure 2.1 - Different fingerprint patterns  
taken from http://www.sfis.ca.gov/how_afis.html 
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Face 

Face recognition is an activity that humans always used, naturally, to recognition of 

individuals. This process starts with an image capture of the user’s face, then that image is 

compared with models stored in a database. One of the most typical implementations is based 

on the comparison of positions of facial attributes (eyes, chin, nose, lips and eyebrows) and their 

special relations [14].  

This technique has problems regarding the image capture. Different head orientations, 

illumination changes, face accessories or even aging can damage the recognition. Therefore is 

necessary to adapt the system to all these conditions before capturing faces.  

  

 

Figure 2.2 - Face recognition 
taken from http://www.dailytelegraph.com.au/news/national/nsw-government-recording-features-for-facial-

recognition/story-e6freuzr-1225874819392?nk=3395e9e1099503b1a0ce770b267cb510 

 

Iris 

 Similarly to face recognition, iris scan is also a non-intrusive technique. Iris is the annular 

region of the eye. Iris, contrasting with other characteristics last for the lifetime [13], and its 

texture carries very complex and distinct information. The process also consists in record an 

image to be compared later. It has a very low false accepted rate, which is good to identification. 

[13]. However, not all people is willing to put an eye in a sensor, so this characteristic has a very 

low acceptance level. [14] 
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Figure 2.3 - Iris pattern, taken from [20] 

 

Retina 

Retinal scan techniques compare the vasculature of the back part of the eye. The pattern 

composed by the vasculature is unique and it has great accuracy levels. Retinal scans are not 

easily tricked because the vasculature is very difficult to replicate. It involves user  cooperation 

and a considerable effort and, like iris scan, the user has to look directly and very closer to the 

sensor, which can lead to an uncomfortable situation, decreasing the user acceptability.  [11]  

[16] 

 

Figure 2.4 - Retina vasculature,  
taken from http://www.eastoneyecare.net/services/New-Services-Page,440166 

 

Hand Geometry 

The recognition of the geometry of a hand is made by analyzing the hand measurements, 

such as shape, size of palm and length and width of fingers. It can be made with these measures 

only, or by fixing points in the captured image and calculate the distances between the points 

and the features. [19]. These techniques are very simple and effortless, and are not biased by 

bad skin conditions of user’s hand like on fingerprint case.  
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On the other hand, hand measures are not a very discerning factor, they can work in small 

population but cannot be implemented in large scale because are big risks of not being able to 

distinguish users. More, it can’t be used on children because they are in constant growth. Other 

disadvantage lies on the size of the scanner, it’s too big to be integrated in relatively small devices 

as happens with fingerprint scanners or the built-in webcam in laptops. [14]  

 

 

Figure 2.5 - Hand geometry scanning,  
taken from http://fingerprinting.umwblogs.org/adoption/ 

 

Face and Hand Thermogram 

The body temperature is not the same in all members of the human body. Using infrared 

cameras is possible to obtain a heat print of the user, which is unique, being more used in hands 

and face. In these systems is necessary to pay attention to the capturing scenario because there 

can’t be present heat generator objects.  

 

Figure 2.6 - Two different thermograms,  
taken from http://hplusmagazine.com/2013/02/19/extending-the-human-sensorium-part-i-touching-the-invisible/ 
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2.1.2 Behavioral Biometrics 

Behavioral biometrics are usually less popular than physical ones, however they have some 

advantages. In contrary to the physical biometrics, these don’t need any special hardware to be 

collected, which makes them cheaper, and that can be done furtively or non-obtrusively. [8] 

 

Voice 

Despite being behavioral, voice has a physic origin. It’s due to different physiological 

characteristics that user have different voices. The process is made by converting the voice signal 

in an amplitude spectrum, analyzing the location and size of the spectral peaks. There are three 

types of voice recognition systems, depending on user’s speech freedom: fixed text systems, 

where the speaker says a defined word, to enrollment procedures; text dependent systems, 

where the user has to say a phrase or a set of phrases and, finally, text independent systems, 

where the user says whatever he wants. This biometric characteristic is integrated with ease, 

and in many application, as the material that it is needed is just a microphone. [8] 

 

Gait 

Gait is a muscle control-based and complex spatial-temporal biometric, and translates the 

peculiar way that a user walks. It is not much distinct between users, being just enough to allow 

verification but in low security levels. The acquisition is made by video-sequence footage and has 

in account the arm swing, walking rhythm, bounce, steps length, vertical distance between head 

and foot, distance between head and pelvis and maximum distance between both feet [8]. This 

characteristic can be severely affected by injuries that compromise the natural walking behavior. 

 

Figure 2.7 - Gait analysis, taken from http://homepages.inf.ed.ac.uk/rbf/CVDICT/cvg.htm 
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Signature 

Signature verification are a widely accepted mean of identifying people. There are two types 

of verification that can be used in these systems, depending on the data collection procedure. If 

the signature is scanned after the signing moment it is called the offline or static verification. If 

the signature is collected in real time is the online or dynamic verification and, in this case, 

special equipment is needed so the dynamics of the signature can be collected. In the static way 

are collected the trajectories of the signature, while in online verification is also collected the pen 

pressure, acceleration and pen tilts. Consequently, dynamic verification presents better results 

that static verification [8].  

The downside is that this is a characteristic easily replicable by attackers, fooling the system. 

Besides, people’s signatures change over time and even the legitimate user doesn’t perform his 

own signature exactly the same way more than once. [14] 

 

 

Figure 2.8 - Online signature verification, taken from 
http://www.azcentral.com/business/articles/2008/05/28/20080528biz-SkySong0529-ON-CP.html 

 

Keystroke dynamics 

Each person has its own typing pace, and its own way of pressing the keys. Keystroke 

dynamics is a behavioral biometrics that explore those differences. It can be used as for 

verification as for identification, requiring different amounts of samples. The keystroke features 

mostly about times: time duration between keystrokes, inter-key strokes and dwell time (time 

pressed down); but also measure the typing speed, sequence of errors, use of numpad, the 

order in which user presses shift key to and pressure. These systems can be used in login 
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authentication or collect data furtively to perform continuous user authentication, as will be seen 

ahead. [8]  [11] 

 

 

Figure 2.9 - Keystroke analysis, 
 taken from http://www.deakin.edu.au/research/cisr/research-areas/pma-lab.php 

 

Mouse Dynamics 

The same way that users tend to type on keys in a unique rhythm, the way that users use 

the mouse is also unique. By monitoring the mouse action is possible to create a user profile. 

Movement, drag and drop, point and click and stillness are among the possible actions to monitor 

[8]. These systems can also be used to perform continuous authentication. 

 

 

2.2 Biometric Systems 

 

“A biometric system is essentially a pattern-recognition system that operates by acquiring 

biometric data from an individual, extracting a feature set from the acquired data, and comparing 

this feature set against the template set in the database” – Jain, 2004 

 Through the previous definition, it is clear that a biometric system comprises four main 

modules: biometric sensor, feature extraction module, classification module and database. [11] 

[18] 
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2.2.1 Architecture 

 

Biometric 
Sensor

Feature 
Extraction

Classification Database

 

Figure 2.10 - Components of a Biometric System 

 

 

1. Sensor Module 

It’s through the sensor that users interact with the system. It collects the biometric data of 

the individuals. Sensors can be special hardware, purpose made to that task, like fingerprint or 

hand scanners, or built in modules in devices like webcams, microphones and keyboard in 

laptops. In the case of this dissertation project, the sensor will be the touchscreen of the mobile 

device.  

 

 

2. Feature Extraction Module 

The feature extraction module is one of the most important in the entire system. In this 

module the data collected with the sensor is processed and a set of biometric features is 

extracted. Those features should be chosen in order to discriminate one user from the others, in 

other words, they must be the features with more variance among their samples. 

Generally, between this module and the previous one is made a quality check before 

extracting the features. The quality check serves to prevent compromised samples of being part 

of the user biometric profile, taking the risk of jeopardize the classification.  
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3. Classification Module 

The classification module is where the extracted features are compared with the templates 

stored in the database to make a decision. The matching is made through classification 

algorithms, usually called classifiers. In order to correctly match the samples, the classifiers have 

to be trained, generating the user templates. 

There are many classifiers in use nowadays. Despite having the same main goal, there are 

classifiers more appropriate than others in a specific domain, some are better in text 

classification (i.e. email spam), others in image classification. Hence, was made an investigation 

work about which classifier would best serve the project. After analyzing the literature, there were 

four classifiers who stood out. Namely, K-Nearest Neighbors (kNN), Naïve Bayes, Neural 

Networks and Support Vector Machines (SVM).   

When comparing the performances of those four algorithms, some studies and experiments 

stated that SVM presented better results [22] [23] [24] . In [6], SVM was compared with kNN, 

in a situation very similar to this dissertation project, and SVM had always the least number of 

wrong classifications. 

Despite having multi-class implementations arising, SVM is used generally as a binary 

classifier, working through the separation of two sets of multidimensional data. For example, 

considering samples from two different classes in the same dataset, SVM finds a hyperplane (in 

the cases of two-dimensional data it finds a line) that separates the two classes of data. However, 

there are more than one possible hyperplane that can separate the data and other techniques 

that does the same. SVM stands out by using the concept of “margin” to optimize the separation, 

being the margin given by the distance between the hyperplane and the nearest samples of each 

class, the support vectors. This way, maximizing the margin is obtained the best separation of 

classes. Figure 2.11 is an example of the data separating, with a bi-dimensional dataset. 
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Figure 2.11 - SVM separating hyperplane and margin maximization, taken from [25] 

Unfortunately, two classes aren’t always easily separated, most of the times are outlier 

samples in the dataset placed in the wrong side of the hyperplane. Therefore, to include those 

samples it is added an extension of the margin, the so called soft margin, controlled by a 

parameter C, wherein the lower the value of C the bigger will be the soft margin, by the contrary 

as C tends to infinity the margin tends to be thinner and may even narrow the original margin. 

However, this has an associated risk, because by extending the margin there’s a bigger chance 

of inclusion, in one class, samples from the other. Therefore, C must be set with caution because 

it controls the trade-off between the maximization of the margin and wrong accepted samples. 

The Figure 2.12 is an adaptation of the last example, where it is used the soft margin to include 

the green outlier sample, however it is included also the blue samples in between.   

 

Figure 2.12 - SVM separating hyperplane and margin maximization with soft margin, adapted from [25]  
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Despite the use of soft margin may improve the separation, with a well-tuned C parameter, 

in most cases that is just not enough. In real cases the data rarely is linearly separable, so it 

needs to be applied the “kernel trick” to the SVM. It consists in using a function that converts 

the dataset data in a higher-dimensional space, and apply then the hyperplane to separate the 

data. The original space is called input space and the new high-dimensional space is called 

transformed feature space.  

 

Figure 2.13 - Transformation to a higher-dimensional space, taken from 
http://www.imtech.res.in/raghava/rbpred/svm.jpg 

 

To train the SVM algorithm one must build the training dataset, containing data from the 

two classes, with an additional feature indicating the class. After that the kernel is chosen, the 

parameters are tuned and the SVM is run. Once calculated the hyperplane, the train is done and 

a training model is generated. To proceed to classification the classifier is fed with a data sample, 

then that sample is compared with the training model. The classifier determines to which side 

of the hyperplane belongs the testing sample, classifying it accordingly.   

 

 

4. Database 

This is the last module of the biometric system. Database is where the user’s biometric 

profiles are stored. The information must be always available to be matched and must be secured 

because if the stored templates are compromised, so are also the future classifications. 
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2.2.2  Operating Modes 

A biometric system has three operating modes: enrollment, verification or identification. 

 

Enrollment Mode 

 In this phase, the system receives the biometric data from the user to create his profile and 

store it in the database, next to information concerning the user [17]. 

 

Biometric 
Sensor

Feature 
Extraction

Classification Database

Biographic data

 

Figure 2.14 - Enrollment Mode 

The biometric characteristic is collected and sampled by the sensor, before the feature 

extraction starts, is made the quality test, to check if is valid. Once extracted the variables, in the 

classification mode, the classifier is trained with them creating the user biometric templates, 

which is stored in the database. 

 

Verification Mode 

 This is where the authentication procedures are made. In this case, the classifier will match 

an authentication attempt with the corresponding profile. 

 User informs the system about who he claims to be, then the system sends to the classifier 

the template of that user. After the typical procedure (collection, quality assurance and feature 

extraction), the actual input sample of the challenger is matched to the profile already in the 

classification module. The classification generates a score match that is passed to the decision 

rule. The decision rule has configured a threshold value, if the score is higher, then the attempt 
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is considered valid, if is below the threshold the user is considered an intruder. This is a scenario 

of positive recognition. 

Biometric 
Sensor

Feature 
Extraction

Classification Database

Claimed identity

1

Decision rule(t) YES / NO

 

Figure 2.15 - Verification Mode 

 
 
 

Identification Mode 

 

 The identification mode is the most challenging in terms of resources consumption. In this 

case the user don’t have to tell who he is, that’s a scenario of negative recognition.  
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NOT IDENTIFIED

 

Figure 2.16 - Identification Mode 

 The classifier now receives all templates stored in the database and matches one by one 

with the user attempt data. In the same way, the final decision is made comparing the score 

value of each classification with the threshold. 
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In the end of all iterations, if the user still not identified it’s because he is not enrolled in the 

system. Negative recognition has the special intention of not let the same individual use multiple 

identities. This kind of recognition is exclusive of biometrics while positive recognition can be 

implemented with the traditional authentication means.  

 

2.3 Continuous Authentication using Touchscreen Biometrics 

Behavioral biometrics, despite being less popular than physical biometrics, have a grown 

up body in literature in authentication. However, most of the works focus on session login 

authentication rather than continuous authentication. Despite that, characteristics like keystroke 

dynamics have some work done, and that were base to commercial solutions [7] [9].  

The use of touchscreen devices was only thought for first time a few years ago. In [26] was 

proposed behavioral manners of using a touchpad like a touchscreen. Was used a combination 

of finger pressure and keystroke dynamics with 10 participants. The features extracted were 

hold-time, inter-keys and finger pressure. It was found that finger pressure alone was more 

discriminative than keystroke dynamics using k-NN classifier, and had an accuracy of 99%.   

More recently the capabilities of mobile devices started to be explored. In [4], was explorer 

a two-factor authentication in smart devices, using the lock pattern and with biometric 

information. Was achieved an EER of 10.39% from the experiment with 32 participants and using 

Random Forest as classifier. This suggested that users could be identified by the pattern they 

draw.  

In [27], it was created a prototype for mobile user identification that provides continuous 

authentication, using voice, location, multitouch and locomotion. The results suggested that 

those modalities were suitable as data sources for implicit mobile identification.  

 Then started to appear, a couple of years ago approaches that tried to establish a 

continuous authentication method based on interactions on touchscreen. In [12] was presented 

an approach with the purpose of exploit touch screen data of common smartphones to identify 

users based on the way they performed an action. Were evaluated unlock gestures and password 
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patterns of Android platform. Was obtained an accuracy rate of 77%, FAR of 21% and FRR of 

19%, using dynamic time warp (DTW). 

In [28] was presented a touch-screen based user authentication approach for mobile 

devices. The system used touch gestures on the touchscreen as input, and also used a digital 

sensor glove to add extra gesture information. Were used as classifiers Decision Trees, Random 

Forest and Bayes Net Classifier. At his best the model achieved a FAR of 4.66% and a FRR of 

0.13%, which proves that it can be used. 

In [6], was proposed a model with 30 features extracted from raw touchscreen logs. It were 

used just scroll moves, in three different sessions. Were used kNN and SVM as classifiers and 

SVM had always lower error rates. It was achieved EER values from 0% to 4%, depending on the 

session. Although, the authors disqualify this method as a standalone solution. 

It was combined, in [10], the interaction in the touchscreen with the walking patterns of the 

user. To do that were used the motion sensors of the smartphone, namely the accelerometer 

and the gyroscope. It was used SVM as the classifier. The results were encouraging as they got 

a FAR and FRR below 1% after collection 10 actions. 

These last works are the ones with more in common with this project. However all these 

works were focused only at the device level, because in most of them users could perform free 

gesture. 
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3.  Data Collection and Feature Extraction 

Data collection and feature extraction are the first steps that any biometric system has to 

perform. Regardless of the context, whether for enrollment or recognition, the system has to 

gather the subject's biometric information and select which features will be extracted. 

In this chapter is described the practical work regarding the data collection and subsequent 

biometric feature extraction done in this dissertation project. For start, are given two introductory 

sections, the first presents the proposed biometric system that served as a guide for the project 

and mostly for the decisions taken along the way, the second reflects about the choice of the 

operating system in which the collection application would be implemented.  

Later, the chapter includes sections concerning aspects such as: which gestures would be 

performed by the users and which features would be extracted. It also contains, in the end, the 

data collection scenario and the description of the application development. 

 

3.1 Biometric System Proposed 

The desired biometric system proposed is a system that provides a continuous 

authentication of users using only behavioral biometrics, unlike other systems that use the 

traditional authentication methods or in some cases a combination of both. 

The system is not to be applied to the entire device because that would require changes in 

the operative system layers, and it would only work in rooted devices, which is not reachable for 

everyone. Instead, this system is to be implemented in applications, no matter its nature, the 

user or the device, as long as has a touchscreen. This is so because different applications 

requires distinct actions from users and, this way, is possible to adjust the system to each app. 

In an earlier phase, the legitimate user of the device is asked to perform an enrollment 

process, a sequence of defined gestures, so the system can create a biometric profile of him. 
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That profile is created using the features extracted from the gestures and training the classifiers 

with them. Once created, this step should no longer be available, this way there is no risk of an 

attacker perform this process in order to pass by the authentication system.  

The system should now be able to compare the input gestures with the legitimate user’s 

profile, through the classifiers, which calculates a matching score between the two datasets. If 

the matching score is above a given threshold the gesture is classified as legitimate, if the score 

is below the threshold then the gesture is classified as not legitimate or as an attack. As a system 

for continuous authentication the decision about the user’s identity is not taken immediately, it 

must be defined the number of not legitimate attempts needed to consider that the user is an 

attacker. Once reached that number, the system should act in order to block the device and 

possibly warn the legitimate user. 

Users tend to change their behavior over time, either by being more used to the device or 

even to physical limitations. Therefore, for the system to remain accurate, the user’s biometric 

profile must be updated, as long as the user keep using the device. Obviously, not all input data 

can be used to update the profile, new biometric information should only be kept after the user 

be classified as legitimate.    

For the purpose of implement this biometric system, it is necessary to study which 

touchscreen features are measurable, which must or must not be used in the analysis, and if 

the resulting biometrics are enough to provide an accurate authentication. And that is what this 

project is about. 

 

3.2 Choice of Operating System 

Prior to develop the application to collect touch data, it was necessary to identify which 

operating system better suited the project. There were some obvious options due their presence 

on portable devices: Android, iOS and Windows (Windows 8 and Windows Phone). These 

operating systems were analyzed in terms of their market share, if their API methods allow to 

monitor and extract touch data, requirements to develop, ease of programming and support 

documentation. 
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In terms of market share, Android has a great advantage over its rivals. In the second quarter  

of 2014, Android had 84.7% of market share, with 255.3 Millions of devices, growing 33.3% 

compared to the same period of 2013. It is also the mobile operating system most present in 

low-end and mid-range devices, contrasting with iOS which has no presence in low-end devices. 

Windows Phone has a nearly insignificant market share comparing with Android and iOS, and 

Windows 8, until now, runs only in PCs and in a limited range of tablets. [29] 

Each platform has a main programming language and particular requirements to develop 

applications.  

Android requires knowledge of, at least, Java and XML. The code can be written using 

various IDEs alongside with Android SDK Tools. However, it is recommended using Eclipse ADT 

or Android Studio, because these IDEs already have everything set up. It is multiplatform, can 

be installed in Windows, Mac OS or Linux. Android applications are free to develop and to publish 

in the store, but it has a one-time registration fee of 25$. 

The iOS app development main programming language is Objective-C. To build apps with 

iOS it is needed Xcode IDE and iOS SDK. Unlike Android, it can only run on a Mac operating 

system, which means that the developer has to own a Mac computer or use a virtual machine 

to run Mac OS in other platforms. It charges the developers an annual fee of 99$ for the 

developer license, needed to publish apps in the store.  

To develop Windows apps, whether to Windows 8 or Windows Phone, the main programming 

language is C#. Like iOS it requires an exclusive IDE and operating system, Visual Studio and 

Windows, respectively, which forces developers to own a windows PC or to use virtual machines. 

It costs a one-time fee of 19$ to individual developers or 99$ to companies. 

In terms of support documentation all of them have platform has a well-established 

developer center, with tutorials, complete information of every API method, examples of 

applications, design guides, among other utilities.  

The monitoring of touchscreen inputs and gesture recognition are possible with the API of 

any of these platforms, so this was no key factor in the decision. 

Ease of programming also was not an exclusion factor. In fact, all these programming 

languages are suited for the job. However, the author has already a Java background, so it is 
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less time-consuming to develop in a known language instead of learning a new one, because no 

matter how good the learning curve might be, it always consumes a considerable amount of 

time. 

Having all of the previous information into account, the chosen platform to develop the 

application was Google's Android. 

 

3.3 Analyzed Gestures 

After choosing Android as the application development platform, the next step was to 

determine which gestures could be monitored by Android's API [30]. 

In Android, each touch on the screen, with one or more pointers1, generates an event. Those 

events, isolated or in sequence, can be interpreted as gestures, if they follow a particular pattern. 

It was used the GestureDetector.SimpleOnGestureListener class to detect the 

gestures. This is a nested class from GestureDetector class2, which receives the events, 

triggered by the touches on screen, collect all the information related to them and determines if 

they have the same pattern of any supported gesture. Each gesture has a respective method to 

assign any action to it. 

This class supports the following gestures: [31] 

Tap down: When the screen is touched, this is the first event of any gesture. 

Single tap up: Occurs every time that a pointer is lifted. 

Single tap confirmed: Occurs when a pointer is lifted, but is not followed by another tap down 

(e.g. double tap). 

Long press: When a pointer presses the screen, without moving, for a long time.  

                                                 

1 Pointer is the object that makes contact with the screen, it could be a finger, stylus pen, among others. 

2 It was used the GestureDetectorCompat class instead of GestureDetector to grant compatibility with older 

versions of Android. 
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Show press: When a tap down occurs and still down for a long time. It occurs alongside with 

long presses or scrolls. 

Scroll: When there is a displacement between the coordinates of a single tap down and the 

respective tap up, with one or more pointers. It is one of the most common gestures. 

Fling: When a scroll is performed and the pointer is lifted so quickly that gesture remains 

accelerated, making the scroll continues. The gesture continues until is completely decelerated 

and stop.   

Double tap: When a double-tap is performed 

Double tap event: When occurs a double tap with displacement between the first tap down 

and the final tap up (e.g. double tap with dragging). 

To implement a biometric authentication system, the gestures to analyze must meet some 

criteria, such as:  

 Simplicity 

 High frequency 

 Universality  

 Distinctiveness  

The gestures must be simple and common, so that any person can perform them, regardless 

the experience with the device. They also need to occur with high frequency, so they should, 

preferentially, be part of common actions that everyone performs naturally (e.g. reading a 

document and navigate between menus). Finally, these gestures must be performed differently, 

as much as possible, by different users. 

Under these circumstances, it was necessary to review all the supported gestures to decide 

if they fulfill the previous requirements. 

Gestures like Show press and Long press were discarded. The first one because it occurs 

always alongside scrolls and long presses, so it would only add redundancy to the dataset. 

Among the actions that a user could perform, apart from selecting or highlighting, that is no use 

for a static long press, even those two actions are not very usual. Every common action involving 

long presses are made combining a movement, like when a user drags an item to other place. 

For this reason, long presses were also not taken into account.  
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Isolated events, such as, tap down and tap up were also discarded. Despite being simple, 

universal and be executed several times, these single events do not have enough distinctiveness 

to discern users. A single tap down event is always followed by a tap up, and a tap from one user 

does not differ much from a tap of other user, there is no displacement and no velocity, besides, 

they are quite random so they cannot be associated to a particular action when performed 

isolated. 

Related to taps, there are some works made by studying the keystrokes. These works analyze 

the behavior of an individual when he writes on a keyboard, the time that he takes to step from 

one key to another, the pressure made by the stoke, the time spent to tap a sequence of keys, 

among other features. This could be studied on this dissertation project, however, this idea falls 

apart because of the unlimited amount of different keyboards that a user could install on his 

device. That way, a key mapping is impossible to make, unless the experiment was conducted 

on a particular keyboard, made for the purpose or selected between the many keyboards on the 

market (tough this would raise permission problems). Nevertheless, this would focus on only a 

part of the device utilization, so it was left aside as well.  

On the other hand, there are gestures that users inevitably do in order to complete certain 

action. Navigation through menus, web browsing, reading and gaming are some of the most 

common uses of touchscreen devices. When someone navigate between menus, inside an 

application or in the app drawer, that action is made using swipes, which are nothing more than 

scrolls with fling. Whether to scroll a web page or an application view, or even in reading, there 

are always the same base actions: scrolls to apply movement and double taps or multitouch 

gestures for scaling. In fact, these gestures are present in almost every usage. 

Given these points, the chosen gestures to get touch data from, were single or multitouch 

scrolls, flings and double taps. 
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Figure 3.1 - Analyzed gestures3 

 

3.4 Extracted Features 

As has been mentioned before, the class that detects gestures receives events and gather 

all the data that they hold. Those events are MotionEvents, objects that contain data from a 

whole gesture or just a part. This is so because, while a pointer is in contact with the screen, 

events are triggered from time to time, generally 16 or 17 ms. Because of that, a tap down has 

just one event but is typical to find a scroll with several events. 

With the methods of this class it was possible to retrieve, from each event, the following 

data: 

Action: Returns the kind of action that was performed, such as, down, up, move and cancel. 

This information is useful to interpret to which part of the gesture it belongs. If action is down 

represents the beginning of the gesture, if it is up represents the end and if it is move represents 

a movement event between the beginning and the end of the gesture.  

                                                 

3 Figures made using Touch Gesture Reference Guide visio stencils by Luke Wroblewski, 
http://www.lukew.com/ff/entry.asp?1071  
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Down time: Returns the time of the gesture's first action down, in other words, the first touch 

on the screen, in milliseconds. 

Event time: Returns the time in which the event occurred. If it is related to the first event of the 

gesture, the event time and down time are the same, in milliseconds. 

Number of Pointers: Returns the quantity of pointers in contact with the touchscreen at the 

same time. In Android, the gestures can be performed, at the most, by 10 fingers simultaneously.  

Orientation: Returns the orientation of the device: portrait, landscape. 

Pressure: Returns the pressure made by every pointer in contact with the screen. 

Size: Returns the size of the pointers, in other words, returns the area of the screen pressed by 

the pointers. 

X, Y: Returns the X and Y coordinates of every pointer.  

The data from each event was organized in vectors. Since the only gestures that have just 

one event are the tap down and tap up, and those were discarded from analysis, each gesture 

has more than one vector. Therefore, it was necessary to compile, for each gesture, all vectors 

in one, representing the gesture's biometric template. This final vector has the following format: 

1. Initial time; 

2. Fling time; 

3. Total time; 

4. Initial X; 

5. Final X; 

6. Initial Y; 

7. Final Y; 

8. Minimum Size; 

9. Average Size; 

10. Maximum Size; 

11. Minimum Pressure 

12. Average Pressure 

13. Maximum Pressure 

14. Distance in X-axis 

15. Distance in Y-axis 

16. Velocity in X-axis 

17. Velocity in Y-axis 

 

For example, the Figure 3.2 shows the data gathered from a scroll with double tap. Is 

possible to count 12 rows, which are the 12 events that compose the gesture. Then, those 

vectors were compiled and saved in the format showed in Figure 3.3. As one can see, the final 
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vector has more variables than the event’s vectors. Those features were included because they 

could be useful to differentiate users. 

 

 

Figure 3.2 - Event vectors of a scroll with double tap gesture 

 

Figure 3.3 - Final vector with the compiled data 
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There are three different times saved on this vector. The initial time is the difference 

between the downtime and the event time of the first move, in other words it’s time between the 

first tap down and the first move event; the total time shows the total time of the gesture, since 

the first tap down until the tap up or, in case of fling, until the animation stops; finally the fling 

time represents the time between the tap up of a gesture and the instant that the view stops 

scrolling, occurring mostly on gestures performed quickly, which can be a good way to distinguish 

users that perform gestures quicker than other. 

The starting and ending positions in X-axis and Y-axis are depicted in Initial X, Initial Y, 

Final X and Final Y. With these positions was calculated the distance covered by the gesture, 

more specifically the distance in X and the distance in Y. Using these distances and the total 

time was possible to calculate the velocity in X and the velocity in Y, given in px/ms. 

Analyzing the values of size and pressure of all event vectors, it were calculated their 

minimum, average and maximum values.   

The orientation was left out because it was decided that the device had to be with the same 

orientation for every collection. 

Those new features were measured through basic calculations because, as previously 

stated, the extracted features should be nearly raw data, ensuring that device's processing 

requirements are kept to a minimum.  

Again, these features were collected through the android application, and the data vectors 

were saved in csv files, because it’s an easily readable format and can be imported by many 

software. 

3.5 Data Collection Scenario 

The data collection scenario was planned considering the goals of the project, therefore this 

was a very oriented scenario, and one of the reasons why this project is different from other 

projects in this area.  

Users had to do exactly the same gestures, those selected in 3.3, in the same order, in the 

same conditions, meaning the same device and with the same posture. This is so because the 
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study focuses on the applications and not in free use of the operating system, and most of the 

time applications require the same gestures, with limited performance, to execute an action. So, 

what matters is the variance of the features. For instance, it is wished to know if the set of 

features of the same gesture (i.e. swipe from bottom left from top right), performed by two 

different persons, is different enough so that those users can be distinguished by the system.  

That being so, it was prepared a sequence of gestures for users to perform on the 

touchscreen, each one with a set of instructions, such as the part of the screen where the gesture 

should start and end of the gesture, how many times they would have to do it and a description 

of the gesture.  

The device used was the Asus Google Nexus 7 2013, running Android KitKat 4.4.4. This 

device has a capacitive touchscreen with a resolution of 1200x1920 px. 

 

3.5.1 Procedure Description 

The process started with an explanation of the project to the participants, such as the 

purpose of project, what they would have to do and what would be done with their touch data.  

Right before start performing gestures, it was asked the participants to complete a small 

form where they indicated their name (just for data cataloging purposes), age, gender, 

handedness and experience level in using touchscreen devices. The data was used to build a 

characterization of the participants, and to determine if those parameters could have any 

influence in the results. 

After the completion of the form, the participants performed the gestures. The users were 

seated with the device placed on a flat table, in front of them. The orientation of the device was 

set to portrait and the user wasn’t allowed to change its position so that the conditions were the 

same for all. It was not said nothing about how the user was supposed to make the gesture, in 

terms of speed or pressure or the exact spot to place the fingers, because that could affect their 

natural performance 

The sequence of gestures was: 

1. Swipe from bottom left to top right; 
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2. Swipe from bottom right to top left; 

3. Swipe from top left to bottom right; 

4. Swipe from top right to bottom left; 

5. Swipe horizontally from left to right; 

6. Swipe horizontally from right to left; 

7. Swipe vertically from bottom to top; 

8. Swipe vertically from top to bottom; 

9. Static double-tap; 

10. Double tap and swipe from bottom left to top right; 

11. Double tap and swipe from bottom right to top left; 

12. Double tap and swipe from top left to bottom right; 

13. Double tap and swipe from top right to bottom left; 

14. Double tap and swipe horizontally from left to right; 

15. Double tap and swipe horizontally from right to left; 

16. Double tap and swipe vertically from bottom to top; 

17. Double tap and swipe vertically from top to bottom; 

18. Zoom in from center to bottom left and top right 

19. Zoom in from center to bottom right and top left 

20. Zoom out from bottom left and top right to the center 

21. Zoom out from bottom right and top left to the center 

In each twenty-one gesture sequence, the participants were asked to perform every gesture 

five times. It was provided a counter in the application so that the participant knew how many 

gestures were missing, and if any gesture was done wrong the user had the opportunity to start 

over. Once the zoom gestures were made using two fingers, each finger was analyzed 

individually, meaning that for every zoom performed was originated two vectors of data. 

For classification purposes, was required to collect data to train the classifiers and data to 

test the classifiers. By that reason, each user had to complete the sequence two times, the data 

collected from the first sequence was used to build the training dataset and the data from the 

second sequence was used to build the testing dataset. Consequently, in total, were collected 

250 vectors of touch data per participant. 
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To conclude the procedure, it was verified if everything gone as planned, by checking the 

csv files in the device’s storage, searching flaws that could contaminate the data. 

 

3.5.2 Characterization of the Participants 

The touch data was collected from ten participants, with ages between 10 and 51 years, 

equally divided among men and women.  

 

 

Figure 3.4 - Characterization of the test population 

 

The experience level was classified in three levels, from low to high. It is possible to 

understand that the younger participants have more experience in using touchscreen devices. 

By the other hand, one cannot say that the gender of the participant has influence on experience. 

The handedness is not part of the analysis because all users were right-handed.    
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3.6 Android Application 

The application, developed for devices running Android 2.3+, is responsible for handle 

users’ information, through a form, collect the touch data from the gestures, process that data 

and store the resulting data templates. Those tasks are accomplished through a set of chained 

activities. An activity is an application component that provides a screen containing a view with 

the user interface, and where the developer implements some callback methods to be called 

when the it transits from one state of its lifecycle to another (when its created, stopped, resumed 

or destroyed), or when occurs any user interaction with the activity. 

Android activities can start other activities and be paused to be ready when needed again, 

however, that strategy wasn’t followed. Each step of the workflow has its own activity and 

resources, it was created an activity for the initial form and a new one per gesture, stepping 

forward as the user performs the five samples. When the application transits to other activity, 

the previous is destroyed, this way there is no consumption of unnecessary resources. 

 

 

Initial 
welcoming 

activity 
Form activity

Gesture 1
activity

Gesture 2
activity

Gesture 21
activity

End. . .

 

Figure 3.5 - Application workflow 

 

In order to collect the information of the participants and to build the characterization of the 

previous section (Figure 3.4), was built an activity with the form on the Figure 3.6. The checkbox 

at the bottom is to indicate if the samples are for training or testing. Once filled the form is 

created a directory in the device’s storage with the user’s name and the information is saved in 

a text file in that location. It is also created in that directory a folder to both training and testing 

samples in which are stored the csv files with the touch data, i.e. “device_storage/app_name/ 

user_name/train/”. The form was built with security checks in every field, so that users were 

reminded if was some information to fill. This is considered an extra activity because it is not 

part of a biometric system, therefore it won’t be part of further description. 
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Figure 3.6 - Initial form with verification 

 

3.6.1 Architecture 

The application is divided in two main components, the Activity and the TouchListener, in 

Figure 3.7 is shown the system architecture.  

The activities, as explained before, provide the user interface, through which participants 

interact with the system, and have an implementation of the GestureDetector class. For 

every interaction with the touchscreen the android system generates MotionEvents, which 

triggers the Gesture Detector. Once “awaked”, the Gesture Detector receives the event, the 

activity changes the value of the counter presented in the UI, and sends the event to the 

TouchListener module to be processed. Once again, activities are independent, so each one has 

its own Gesture Detector and its own TouchListener module. 

The TouchListener is the most important component of the application, it is there were all 

the features are extracted and organized. Once called, this module processes the event 

information in order to see which gesture it refers. Those methods select the required data and 

hold it in temporary vectors. When the gesture ends, and all its events are handled, the remaining 
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features are calculated, all features are organized in a final vector and then saved to a csv file, 

in the corresponding storage directory.  
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Figure 3.7 - Application Architecture 

 

3.6.2  Implementation 

In this section it is explained how the components are implemented. As the application is 

not the main goal of the project, the description won’t be exhaustive, instead, will be provided 

general explanations using a few diagrams to better understanding.  

The interactions between the application components and the application lifecycle can be 

resumed in four states, displayed in Figure 3.8. 
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Figure 3.8 - Application statechart diagram 

  

User Interface 

 The user interface main purpose is to serve as a guide to users, showing how they should 

perform the gestures.  

In each activity is given a description of the gesture, the starting and ending positions, a 

gesture counter and a reset button. Although the gestures have a conditioned performance, the 

starting and ending marks are big enough so users can start the gesture pressing a slightly 

different position. In Figure 3.9 are shown user interfaces of four different gesture-performing 

activities, namely, swipe from bottom left to top right, double tap and swipe vertically from bottom 

to top, zoom out from bottom right and top left to the center and swipe horizontally from right to 

left. As one can see, in the fourth activity, the countdown is replaced by an error message, this 

message appears when the participant does not perform the gesture that the activity wants to 

receive. Those alerts were created so that the user could not spoil the experiment by perform 

wrong gestures.  

If the participant is aware that may have made a performing mistake he can reset the 

procedure, clicking in the reset button, or go back to the previous gesture by clicking on back 

button. Once finished the performance of the five gestures the counter shows an “OK” message 

and no longer accepts touch inputs, so user must click on next to proceed. The other UIs can be 

consulted in Appendix A. 
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Figure 3.9 - User interface of four different activities 
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Activities 
 

 There are three types of activities: activities that are expecting swipe gestures, activities that 

are expecting double tap gestures and activities that are expecting zoom gestures. With the 

flowchart diagram presented on Figure 3.10, it’s possible to understand how activities work. 

 

 

Start

Constructs GestureDetector 
and TouchListener

Receives MotionEvents

Verification ok?

Displays error message TouchListener

Gesture Finished?

End

Yes
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No

Yes

Yes

No

No

Yes

No

Sample += 1

 

Figure 3.10 - Activities flowchart diagram 

 

 Once are only needed five samples of each gesture at time, activities control the number of 

samples performed, if the sample number is bigger than 5 it doesn’t process further received 

events.  
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 Besides the UI, activities differ in the verification made to the events. That verification serves 

to guarantee that the events are from the gestures that are supposed to be performed. Activities 

that are expecting swipe gestures discard any multitouch event and any event that has a double 

tap. Activities that are expecting double taps also reject both the multitouch events and any event 

that does not start with a double tap. Finally, activities that are expecting zoom events reject the 

double tap events, discarding also any event that is not performed with two pointers. If those 

constraints are not met the error message is shown and the user restarts the gesture. 

 Once the event is accepted in the verification, the TouchListener module is called and the 

event is passed as a parameter. But before, if the event is the first of a new gesture, the counter 

value is changed. Since events from same gestures have the same downtime, that can be verified 

by comparing the actual event downtime with the previous.  

 The final part of the activity workflow is to check if the processed event is the last of the 

gesture, it is true if the event is an action up, which is always the final action of any gesture. If 

so the sample value is incremented. In the end the activity starts waiting for new events. 

 

TouchListener  

 The TouchListener module is where the data processing and storing is made. It is configured 

to accept only events of the type double tap, scroll or fling, any other type is not considered. The 

flowchart diagram of Figure 3.11 an overview about how it works. 

 The first step is to determine if the event received is the first of its gesture or if it belongs to 

a gesture already in processing. As already said, that is made by comparing the downtime. If so, 

the gesture vectors are initialized and the variables are cleaned. 

When it comes to extract the data from the events, described in 3.4, are used the public  

methods of the MotionEvent class shown in Table 3.1. Since gestures can be performed with 

more than one pointer, in this case the zoom gestures, it is necessary to process each pointer 

individually because some data is different, such as the X,Y coordinates, size and pressure. This 

way, the data extraction process is made as many times as the number of pointers. The data 

extracted in each turn of the loop is saved in temporary vectors, with the number of the 

corresponding event. 
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Receive MotionEvent

Doubletap or scroll or fling?

First event?
Initialize vectors and reset 

variables

pointerId = 0

Start

Get Features (PointerId) Save on temporary vector

PointerId = PointerCounter?

Last event?

End

Save on final vectorCalculate remaining features

Append final vector to csv file

 

Figure 3.11 - TouchListener flowchart diagram 

 

Data to extract MotionEvent method 

Type of action getActionMasked() 

Down time getDownTime() 

Event time getEventTime() 

Number of pointers getPointerCount() 

Pressure getPressure(PointerId) 

Size getSize(PointerId) 

X coordinate getX(PointerId) 

Y coordinate getY(PointerId) 

Table 3.1 - MotionEvent public methods used 

 

The process is repeated until the last event is processed. When that happens, through a 

sequence of loop operations on the temporary vectors, the remaining features are calculated, 
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such as global times, distances, velocities, minimum, average and maximum values. At last, all 

features are compiled to a single vector, which is appended to the csv file that stores that type 

of gesture, located in the device’s storage. 

In the end of the experiment can be found forty-two csv files per participant, half for 

training purposes and the other half for testing. 

 

3.7   Summary  

This chapter covered the data collection and feature extraction process, which was made 

through an application, in a device running Android.  

Before any implementation, were considered which gestures could be analyzed, justifying 

also the choice of the extracted features. It was decided to analyze just gestures with motion, 

such as scrolls and flings, static double taps and double taps with movement and multitouch 

gestures such as zoom. 

Was asked the user to perform two sequences of 21 oriented gestures in the touchscreen, 

five times each. The first sequence for classifier training and the second for testing. The 

application recorded the data from those gestures, selected the required features and saved 

them in a file, using a specific format. Once zoom gestures are multitouch in the datasets was 

saved a touch data vector by each finger used. 
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4. Classification 

After the data collection and feature extraction procedures, the next phase of a biometric 

system is the classification. This is the phase where the decisions are taken, meaning, if the 

biometric information captured by the system belongs to the legitimate user or if it belongs to an 

impostor. 

In this section is explained how the classification was performed. First is made a briefly 

reference to the classifier that was used and, afterwards is detailed all steps of the classification 

process. 

In order to make decisions related to the authenticity of biometric data, it is necessary to 

include a classification algorithm or technique, known as classifier, in the system. As explained 

in 2.2.1, a classifier compares a stored biometric profile composed of processed information, 

behavioral biometric information in this case, with a new incoming dataset of data, previously 

processed by the feature extraction procedures, producing a result. 

The classifier chosen was Support Vector Machines (SVM). This classifier has a good 

reputation in the machine learning scope, being widely used for pattern recognition. SVM was 

preferred over the others because it is one of the most robust and accurate methods of 

classification [32] and, as referred in 2.2.1, obtained better results when compared with others.  

There are a few popular kernels that could have been used, in this project was used the 

“radial basis function kernel” (RBF), because is it one the first choices in pattern recognition 

processes[33]. 

This project, as a proof of concept, does not required an integration of SVM in the 

application. As said before, the samples were collected, processed and saved in csv files and the 

implementation of SVM and further classification was made using LIBSVM library. In fact, LIBSVM 

is more than a library, is an integrated software for support vector classification, being one of the 

most used SVM software by now. It is a very convenient solution due the fact that provides 

implementations for a wide range of SVM applications on several platforms, and a tools package 
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with some utilities, in python. As the development was made in Windows platform, were used 

the already compiled LIBSVM executable files for Windows. 

The classification process was divided in six steps, according to the LISVM guide [34], in the 

following order: 

1. Build the training and testing datasets; 

2. Convert from csv to LIBSVM format; 

3. Scale the samples values; 

4. Find the better values for parameters to tune the SVM; 

5. Train the classifier with training dataset; 

6. Test the classifier with testing dataset; 

All these steps were executed through some purpose made batch scripts, because, given 

the quantity of data to process (250 gestures per user), it would be impractical to proceed each 

step, one gesture at a time. 

 

4.1 Building the datasets 

Training datasets 

In order to train a classifier, to authentication of users, is has to be created a dataset with 

samples of the legitimate user and samples of other users, in this case those samples are the 

vectors with data from the gestures that are already stored, being used only data from the first 

sequence each user performed in the collection procedure. 

To each vector was included an attribute called class, which could be 1 or -1, 1 for indicate 

that belongs to the legitimate user and -1 to indicate the opposite. That way, SVM maps all data 

and the hyperplan separates the “biometric print” of the legitimate user from the others. The 

first samples to be placed in the training dataset were those from the legitimate user. Here, 

legitimate user is the one to whom the dataset is built. The files were opened, the samples inside 

copied to the dataset, going file by file until reached the 21th gesture and a total of 125 samples. 

The order in which the files are opened is the same of the collection procedure, see 3.5.1. 
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After the legitimate samples, were placed in the dataset the samples of other users. The 

dataset is balanced, containing the same quantity of samples of both classes. To achieve that 

without biasing the dataset it were taken random samples from files of random users. The order 

of gestures was the same, in other words, were copied five random samples of a gesture, 

followed by another five random samples of the next gesture, in case of zoom gestures instead 

of five samples were copied ten because it is a two-touch gesture. In Table 4.1 is an example of 

this random picking. 

 

 

 

 

 

 

Table 4.1 - Example of random sample picking to training dataset 

 
 Once each zoom gesture has two samples, the process is slightly different. The samples of 

a zoom are contiguous, so once selected a random sample, from a random user, it was copied 

also the next sample if the sample number was odd or the previous sample if the number was 

even. In Table 4.2 is an example for zoom gestures. 

 

 

 

  

 

Table 4.2 - Example of random sample picking with zoom gesture 

 

Were built thus the datasets for training the classifier, with 250 vectors of touch data, half 

from legitimate user and half from random users. In the Figure 4.1 is possible to see an overview 

about the building process and in Figure 4.2 is shown, more specifically how it was made. 

 

… … 

3rd sample of swipe_down_up.csv from user 2 Swipe vertically 

from bottom to 

top 

1st sample of swipe_down_up.csv from user 9 
4th sample of swipe_down_up.csv from user 5  
3rd sample of swipe_down_up.csv from user 1 
2nd sample of swipe_down_up.csv from user 7 

… … 

… … 

3rd sample of zoomin_bl_tr.csv from user 2 Zoom in from 
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top right 

4th sample of  zoomin_bl_tr.csv from user 2 
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8th sample of  zoomin_bl_tr.csv from user 5 

… … 
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Figure 4.1 - Global overview of training dataset building 
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Figure 4.2 - Flowchart diagram of training dataset building 

 

Testing datasets 

 The building process of testing datasets was very similar to the training datasets. For each 

user were created two testing datasets, one with only legitimate test samples, to test the classifier 

for legitimate authentication attempts, and the other with just samples from other users, to 

simulate attacks to the system. In fact, the only difference in the building process relies in splitting 

the script in two parts, to generate separated files. The legitimate samples are extracted to the 

testing dataset the same way that were extracted for the training dataset, and the random sample 
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picking applied in the first process is also applied here. Unlike the previous process, to build both 

testing datasets was used only the data from the second sequence of gestures made by users.  

4.2 Converting to LIBSVM input format 

LISBVM has its own input format, so in order to feed the classifier it was necessary to convert 

the csv datasets, created in the previous step, into LIBSVM format files. 

 Csv stand for comma separated values so, as name suggests, in each array of data the 

values are separated by commas. Typically the first line of a csv is where the labels are. By the 

contrary, in LIBSVM format values are not separated by commas but by spaces, and there are 

no labels. In the top of Figure 4.3 is shown a chunk of a csv file from a dataset, and in the bottom 

is the same data but in LIBSVM format. 

 

 
 

 

Figure 4.3 - CSV and LIBSVM formats 

 

 As on can see, LIBSVM treats differently the first attribute of the line and then enumerates 

the other attributes, in the same order, separating the index of the value by a colon. The first 

value is interpreted as the class label. Again, the label for legitimate samples is “1” and the label 

for the other samples is “-1”. 

 Although being an easy process, there were too many samples to convert, so the process 

was automated according to the flowchart diagram of Figure 4.4. 
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Figure 4.4 – Flowchart diagram of CSV to LIBSVM conversion 

 

4.3 Scaling the values 

The datasets have values from very different ranges, reaching the thousands barrier when 

related to the distance traveled by the finger, but in the case of velocities, since it is given in 

px/ms, the values are less than a dozen. If the classifier training was made with this discrepancy 

in the magnitude of values, the highest values would have had more influence than the lower 

values. On the contrary, as the values are from independent features, they must have the same 

influence on the final result. Therefore is essential to normalize the datasets.  

The data was scaled using a tool provided by LIBSVM, svm-scale. By default, values are 

normalized in the [-1, 1] scale, however it is possible to indicate which are the lower and upper 

values to scale in a personalized scale. More importantly, svm-scale provides an option to 

save the scaling parameters in a file, so that those parameters could be used to scale other 

dataset. This is extremely important in to the project, once the classifier is trained with a scaled 

dataset and, consequently, generated its training model, all the data used in classifications with 

that model must be scaled with the same parameters. This process prevents that values from 
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same attributes are transformed with different scales, resulting in wrong classifications and 

accuracy loss.  

For this reason, for each user, the training dataset was scale to the default range, [-1, 1], 

and the scaling parameters were saved in a file and, posteriorly, both testing dataset (legitimate 

samples and attack samples) were scaled using the parameters of that file.  

 

Scaling 
parameters

svm-scale

Training dataset Legitimate dataset Attack dataset

Scaled training 
dataset

Scaled legitimate 
dataset

Scaled attack 
dataset

 

Figure 4.5 - Scaling procedure 

 

The svm-scale commands syntax are: 

Training dataset:  

Testing dataset:  

  

In the first command the –s argument is to indicate the file in which the scaling parameters 

are to be saved, and the –l and –u argument are to indicate the lower and upper values of the 

scale range. In the second command, for testing datasets, there’s no need of lower or upper 

values because the range is already defined in the file with the scaling parameters. That 

information is imported through the –r argument. 

svm-scale –s range_file –l lower_limit –u upper_limit training_dataset_file > output_file 

 

svm-scale –r range_file testing_dataset_file > output_file 
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In the next figure are two pieces of data, before scaling and after scaling with the [-1, 1] 

range.  

 

Figure 4.6 - Data before and after scaling 

 

4.4 Finding the best values for parameters 

As said before, the kernel applied to the SVM was the RBF kernel, so there were two 

parameters to tune, C and 𝛾. SVM is very sensitive to values of the parameters and a little 

variation can result in a considerable difference in classification accuracy. So this is a critical 

procedure to execute. 

By default, C = 1 and  𝛾 = 1/number of features but, just as there is no equal datasets, so 

the parameters to use in SVM won’t be the same from one to another. The problem is that one 

doesn’t know which values would serve better to train a particular dataset, then is necessary to 

perform a parameter selection process. As recommended by the creators of LIBVSM, a grid-

search with cross validation was made for each parameter. Cross validation is a very common 

practice among the training methods, consists in split the dataset in a given quantity of subsets, 

called folds, with equal number of samples. One subset is used to test the classifier, previously 

trained by the remaining subsets using the current values of C and 𝛾. When the classification is 

done, the process is repeated with other subset, going on until all samples of the dataset have 

been used to test and to train. The accuracy result is given by the correct classified sample rate. 

(Correct classified samples / all samples). 

Grid-search is based on the trial-error method, it tests various (C, 𝛾) pairs with the training 

dataset and keeps the one with better accuracy. It was made with a python script provided by 

LIBSVM, in the “tools” package. In Figure 4.7 is shown the output of an example of grid-search 

made with this tool. 
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In a demand for the better accuracy value, was conducted a study with different number of 

fold in the cross-validation. Grid-search, by default uses a 5-fold cross validation, but in this 

experiment were used also 10-fold, 15-fold and 20-fold cross validation. The reason of this test 

lies on the discussion about the number of folds that should be used in cross validation. Rule of 

thumb, it is used 5-fold or 10-fold, but there is no solid support to justify that option. The 

procedure was realized with the training datasets of all users. The Table 4.3 presents the results 

of the study. 

 

Figure 4.7 - Example of grid search 

 
 

 Accuracy (%) 

Users 5-fold CV 10-fold CV 15-fold CV 20-fold CV 

1 80.4 81.2 81.6 79.6 

2 79.2 77.2 77.6 79.6 

3 78 78 77.6 76.8 

4 88.8 88.4 90.4 89.6 

5 89.6 90 90.4 90.8 

6 83.2 86 86.4 86.4 

7 91.6 92 92 91.6 

8 80 81.6 82.4 82.8 

9 86.4 87.6 89.2 87.2 

10 96 96.4 96.8 96.4 

Table 4.3 - Accuracy values from cross validation study 

 



Chapter 4. Classification 

55 

 The green cells have the highest accuracy value by user. As one can see the 15-fold cross 

validation was who got more highest values in general, so this was the adopted number of folds.  

 The grid-search script was embedded in a batch script, so that, once found the values of C 

and 𝛾 that provide better accuracy, those values could be saved in a text file to be used posteriorly 

in the real training.  

 

4.5 Training 

At this point of the process, the datasets are scaled and the best values for parameters are 

chosen so the classifier is ready to be trained.  

To train the classifier it is used svm-train, from LIBSVM library. It can be trained for 

classification (SVC), to regression (SVR) or to one-class SVM. The kernel to use can be chosen 

from among these four: the linear kernel, polynomial kernel, rbf kernel and sigmoid kernel. 

The command syntax is:  

 

 

 

Once the objective was classification, it was used the C-SVC as SVM type. It was possible to 

choose also the nu-SVC, though. The kernel type used, as known by now, was the radial basis 

function, however, LIBSVM supports also linear, polynomial and sigmoid kernels. C-SVC and rbf 

are the default options. For C and 𝛾 were used the values previously determined and saved by 

the grid-search process.  

The argument –b provides an additional functionality, the probability estimates. With this 

option disabled, the SVM classification output just informs the class to which each sample 

belongs and the accuracy value of the whole classification. However, if the probabilities estimates 

option is enable, instead of only tell the class it also inform about the probability of belonging to 

that class. In the training this option was enabled to supply more information about the 

classification, allowing further analysis. 

svm-train –s svm_type –t kernel_type –c c_value –g  𝛾_value –b prob_en dataset_file 
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Finished the training, is generated the train model file, which contains the hyperplan 

information, its coordinates and training parameters. It was with it that the predictions were 

made. 

 

4.6 Testing 

The final phase to the classification process is the testing, the classification itself. As was 

discussed in 4.1, there were two different testing datasets per user. The dataset with only test 

samples from the legitimate user simulated the true authentication attempts, while the dataset 

with a compilation of test samples from all the other users simulated the false authentication 

attempts in the system, or attacks. 

The testing was made using the svm-predict. The command has the following syntax:  

 

 

 

There was just one argument to configure this time, because of the fact that the additional 

information needed is already on the training model. Since the probability estimates was enable 

when training the classifier, now it also has to be enable. 

The test samples, similarly to the training samples, also have a first attribute representing 

the class. As a matter of fact, that attribute is always set as “1”. That is because, whether being 

a legitimate attempt or an attack, in an authentication scenario the user always tries to convince 

the system that he belongs to the rightful class.      

Once started the script, each vector of touch data, depicted in the dataset rows, was 

analyzed by the classifier. All its data, except the class attribute, were mapped and the 

probabilities of belonging to both classes was calculated. After that, the classifier compared if 

the predicted class in the result matched the class attribute of the vector. In affirmative case it 

was counted as a positive classification, otherwise was counted as a negative classification, being 

svm-predict –b prob_en test_dataset train_mode_file output_file 
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the accuracy given by the percentage of positive classifications. The accuracy value was saved 

in a text file. 

 

Figure 4.8 - Example of classification accuracy given by svm-predict 

 

 The Figure 4.8 shows the resulting accuracy of a classification made by svm-predict. The 

values between brackets are the number of correct matches and the total number of samples, 

respectively.  

 In Figure 4.9 is shown a piece of the output file generated by the classification process. 

 

 

Figure 4.9 - Piece of svm-predict output file 

 

Each row represents a classified sample. The first column is the classification result, the 

ones labeled with “1” are classified as belonging to the genuine user and those labeled with “-

1” are classified as belonging to imposters. The other two columns depict the probabilities, the 

first of being part of the label 1 class and the second of being part of the label “-1” class. 
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4.7 Summary 

This chapter started by justify the adoption of SVM as the classifier algorithm, used through 

LIBSVM. After that it described all steps of the classification process. 

First, was the construction of the datasets, for training and for testing. After that the datasets 

were converted from CSV to LIBSVM format so that could be used. The feature values of training 

datasets were scaled from -1 to 1, and the testing datasets were scaled using the same scaling 

parameters. The best values to use as parameters to tune the classifier were discovered using a 

grid-search method with 15-fold cross validation. The number of folds of cross validation was 

chosen heuristically. The training datasets were trained with those parameters, generating the 

training model. At last, the testing datasets were compared with the training model, by the 

classifier, and were generated the score results of that classification. 
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5. Results and Analysis 

In order to proceed to the evaluation of the biometrics and get to the conclusion if it could 

be used as a continuous authentication mean, were analyzed all classifications made by the 

classifier. In this chapter are presented the results of the project and consequent analysis. First 

are exposed the general results and, later, are presented extra tests and their own results.  

An authentication system decides if accepts or rejects a user’s authentication attempt based 

on a probability calculation and a preset threshold value. If the attempt has a probability of being 

genuine higher than the threshold, the system considers that the user is who he claims to be - it 

is a true match or positive case. By the contrary, if the probability is below the threshold, it 

considers that he is someone else, an impostor – it is a non-match or negative case. 

Under these circumstances, there are two possible situations: the system makes a correct 

classification or the system makes a wrong classification. Each situation can be provoked two 

decisions:  

1- Correct classification 

a. Accepted genuine sample -  true match (TM) or true positive; 

b. Rejected sample of impostor -  true non-match (TNM) or true negative;  

2-  Wrong classification  

a. Accepted sample of impostor – false match (FM) or false positive, known as 

error type 1. 

b. Rejected sample of legitimate user - false non-match (FNM) or false negative, 

also referred as error type 2. 

By calculating the frequencies of these classifications it is possible to evaluate the 

performance of the biometric system, in terms of accuracy, sensitivity, specificity and matching 

error rates.  
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To help visualize the performance of the classifier is usual to build a confusion matrix, as 

shown in Table 5.1, matching the actual classes of samples (positive or false) against the 

predicted classes, making it easier to understand if the classifier is confusing the samples from 

genuine user with samples from impostors.     

 

  Predicted Class 

  Match Non-Match 

Actual  

Class 

Match (M) True Matches (TM) False Non-Matches (FNM) 

Non-Match (NM) False Matches (FM) True Non-Matches (TNM) 

Table 5.1 - Confusion Matrix 

 

The accuracy rate reflects the ability of the system to perform a correct classification,  that 

is, the probability of correct classified samples among all.  

 

 (5.1) 

 

 

 A common mistake when evaluating biometric systems is taking accuracy and equal error 

rate as main performance indicators. The accuracy value, in particular, tend to generalize the 

performance of the system, however, not all systems have the same purpose. Some are more 

sensitive, such as identification systems, whilst others are more specific, like authentication 

systems. 

 

Sensitivity is the ability to recognize legitimate users, in other words, the probability of 

genuine samples among the accepted ones. It is given by the true match rate. 

 

 

𝐴𝑐𝑐 =
𝑇𝑀 + 𝑇𝑁𝑀

𝑀 + 𝑁𝑀
=  

𝑇𝑀 + 𝑇𝑁𝑀

𝑇𝑀 + 𝑇𝑁𝑀 + 𝐹𝑀 + 𝐹𝑁𝑀
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(5.3) 

 

Specificity is the ability to recognize impostors, meaning, the probability of rejected samples 

belong to impostors. It is defined by the true non-match rate. 

 

(5.3) 

 

The matching error rates are the false match rate and the false non-match error, being 

sometimes referred as 1 – specificity and 1 – sensibility, respectively. 

 

 (5.4) 

 

 

 

(5.5) 

 

The performance can also be depicted in ROC curves. ROC stands for receiver operating 

characteristics and it is a threshold independent curve that plots in the x-axis the false match 

rate and in the y-axis the true match rate, exposing the performance in relation to these two 

rates. A bit different, but also useful, are the detection error trade-off curves (DET). These curves 

show the trade-off between both error rates, the false match rate and the false nom-match rate, 

and are particular appropriate to visualize in which threshold is the equal error rate, EER. The 

equal error rate is also given by 1 – accuracy. 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑀𝑅 =
𝑇𝑀

𝑀
=

𝑇𝑀

𝑇𝑀 + 𝐹𝑁𝑀
 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑀𝑅 =  
𝑇𝑁𝑀

𝑁𝑀
=  

𝑇𝑁𝑀

𝑇𝑁𝑀 + 𝐹𝑀
 

𝐹𝑀𝑅 =
𝐹𝑀

𝑁𝑀
=  

𝐹𝑀

𝐹𝑀 + 𝑇𝑁𝑀
 

𝐹𝑁𝑀𝑅 =
𝐹𝑁𝑀

𝑀
=

𝐹𝑁𝑀

𝐹𝑁𝑀 + 𝑇𝑀
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5.1 System Results 

After classifying all samples, the results were analyzed and used to evaluate the biometric 

system, following the parameters discussed above. 

For LIBSVM, the probability threshold from which the samples are classified is 0.5, or 50%, 

as is possible to understand from Figure 4.9. Once the probability of having label “1” is 

complementary to the probability of having label “-1”, it would be redundant to use both values 

in the result analysis, therefore, the values used were from the probability of belonging to the 

genuine class (“1” label), see the 2nd column of Figure 4.9, being interpreted as the classification 

score. With those scores it was generated a confusion matrix for the threshold of 50%. 

 

  Predicted Class  

  Match Non-Match  

Actual  

Class 

Match (M) 815 (TM) 435 (FNM) 1250 

Non-Match (NM) 195 (FM) 1055 (TNM) 1250 

  1010 1490 2500 

Table 5.2 - Confusion matrix of the system, for a threshold of 50% 

 

Through the confusion matrix is noted immediately that the predicted matches are less than 

the original matches, having more samples classified as non-matches.   

Using the matrix values were calculated the sensitivity, specificity, error rates and accuracy. 

Those rates were placed on Table 5.3 
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Evaluation Rate Value, in % 

Sensitivity – TMR 65.2 

Specificity – TNMR  84.4 

FMR 15.6 

FNMR 34.8 

Accuracy 74.8 

Table 5.3 – Evaluation rates results 

As one can see, these values aren’t good enough for the authentication system. However, 

there is no guarantee that the threshold used by LIBSVM was indicated to this data. This way, 

was performed an analysis for various threshold values, in order to find which gives better results.  

The classification results of the both test datasets were clustered in probabilities groups and 

then counted, generating the following histograms. 

 

Probability Frequency 

0 – 0.05 399 

0.05 – 0.10 166 

0.10 – 0.15 100 

0.15 – 0.20 90 

0.20 – 0.25 82 

0.25 – 0.30 55 

0.30 – 0.35 58 

0.35 – 0.40 35 

0.40 – 0.45 37 

0.45 – 0.50 33 

0.50 – 0.55 20 

0.55 – 0.60 28 

0.6 – 0.65 20 

0.65 – 0.70 21 

0.7 – 0.75 18 

0.75 – 0.80 30 

0.80 – 0.85 17 

0.85 – 0.90 20 

0.9 – 0.95 15 

0.95 - 1 6 

Total 1250 

Table 5.4 - Histogram of attacks 

 

 

Probability Frequency 

0 – 0.05 66 

0.05 – 0.10 34 

0.10 – 0.15 27 

0.15 – 0.20 27 

0.20 – 0.25 35 

0.25 – 0.30 38 

0.30 – 0.35 51 

0.35 – 0.40 51 

0.40 – 0.45 49 

0.45 – 0.50 57 

0.50 – 0.55 40 

0.55 – 0.60 59 

0.6 – 0.65 51 

0.65 – 0.70 61 

0.7 – 0.75 67 

0.75 – 0.80 70 

0.80 – 0.85 88 

0.85 – 0.90 88 

0.9 – 0.95 132 

0.95 - 1 159 

Total 1250 

Table 5.5 - Histogram of legitimate attempts
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 In Table 5.4, are grouped the classification results of the attack samples, while Table 5.5 

are results of legitimate attempts. The range of each score group is 0.05, or 5 in percentage. To 

better understand this values, the results distributions for each attempt type are depicted in the 

graph of Figure 5.1. The values were scaled to the relative frequencies and the score matches 

are in percentage. 

  

 

Figure 5.1 – Distribution of relative frequencies graph4 

 

With this chart is possible to see that somewhere between 35% and 40% is the turning point, 

where the legitimate samples start to appear more than the attacks. The attacks, or impostor’s 

attempts, are mostly between 0% and 15%, while the legitimate attempts are more widely 

distributed, but with more presence in the 90% to 100% interval. However, despite having the 

bigger concentration in different intervals, these two distributions never stand alone in any score 

interval, there are always attempts from impostors and legitimate users in every score. This may 

jeopardize the performance of the classifier in a possible implementation. 

The evaluation rates are depicted in Table 5.6, with twenty different thresholds (t).  

                                                 

4 All graphs and tables concerning the presentation of results were based on [36] 
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t TMR TNMR FMR FNMR ACC 

5 0,9472 0,3192 0,6808 0,0528 0,6332 

10 0,92 0,452 0,548 0,08 0,686 

15 0,8984 0,532 0,468 0,1016 0,7152 

20 0,8768 0,604 0,396 0,1232 0,7404 

25 0,8488 0,6696 0,3304 0,1512 0,7592 

30 0,8184 0,7136 0,2864 0,1816 0,766 

35 0,7776 0,76 0,24 0,2224 0,7688 

40 0,7368 0,788 0,212 0,2632 0,7624 

45 0,6976 0,8176 0,1824 0,3024 0,7576 

50 0,652 0,844 0,156 0,348 0,748 

55 0,62 0,86 0,14 0,38 0,74 

60 0,5728 0,8824 0,1176 0,4272 0,7276 

65 0,532 0,8984 0,1016 0,468 0,7152 

70 0,4832 0,9152 0,0848 0,5168 0,6992 

75 0,4296 0,9296 0,0704 0,5704 0,6796 

80 0,3736 0,9536 0,0464 0,6264 0,6636 

85 0,3032 0,9672 0,0328 0,6968 0,6352 

90 0,2328 0,9832 0,0168 0,7672 0,608 

95 0,1272 0,9952 0,0048 0,8728 0,5612 

100 0 1 0 1 0,5 

Table 5.6 - Rates calculation, with various thresholds (t) 

With the lowest threshold, 5 in this case, the quantity of samples predicted as genuine is 

maximum, consequently, the number of true matches is the biggest because it catches almost 

every actual genuine attempts. However, the number of false matches is also the biggest because 

it also classifies most of the actual impostor attempts as genuine. By the contrary, the quantity 

of true non-matches and false non-matches are the lowest. As the threshold increases, more 

samples are predicted as impostors and less as genuine, leading to the decrease of true matches 

and false matches rates and increasing the true non-matches and false non-matches rates. 

The threshold that provides the best accuracy value is 35, which corresponds to the turning 

point seen in the distributions chart. As the accuracy is the complementary of EER, that threshold 

is also where the EER is lower. In DET Curves chart, in Figure 5.2, is represented the trade-off 

between the FMR and FNMR, and there it can be seen better the EER point.  
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Figure 5.2 - DET Curves 

 
 With the DET Curves one can verify that the EER point is at the threshold 35. That is what 

commercial or not specialized applications are looking for, because this is a point of balance, 

and the lower the value of it, the better.    

To improve the perception of the system performance, in Figure 5.3 is a ROC Curve. As said 

before, this curve doesn’t depend of the threshold, it depicts the performance regarding the 

ability to correctly classify a genuine sample against the error rate in classify that type of samples.  

 

 

Figure 5.3 - ROC Curve 
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The ROC curve is as better as closer to the top left, in other words, with maximum TMR and 

minimum FRM. As expected from the values obtained in the Table 5.6, the curve is a little too 

far from that position. In fact, despite not being a bad result at all, the evaluation performed 

suggest that the samples from legitimate user and impostors are not sufficiently distinguishable 

for the classifier. As a consequence, one may assume that, with these conditions, touch data 

can’t be used for authentication purposes, which doesn’t mean that could not be used for 

continuous authentication, once the decision is made after a sequence of classifications. 

 

5.1.1 Individual Analysis 

In consequence of the system global results, the need for an individual analysis became 

more obvious. Because of the fact that the generated datasets for training and testing of each 

user were scaled with its unique scaling parameters and the parameters used to train the 

classifier were optimized for each dataset, it is pertinent to carry an evaluation to each user. 

 With that in mind, for each user is presented, below, a graph with the distributions of 

genuine attempts, from its own test dataset, and the distribution of attacks used in the general 

analysis. After, in Table 5.7 are shown the evaluation rates for the threshold with better accuracy. 

This way is compared the influence of each user dataset in the classification, using the same 

attacks. In Appendix B are the complete tables, with calculated rates for every threshold.  

 

 

Figure 5.4 - Distribution of probabilities of user 1 
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Figure 5.5 - Distribution of probabilities of user 2 

 

 

Figure 5.6 - Distribution of probabilities of user 3 
 

 

Figure 5.7 - Distribution of probabilities of user 4 
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Figure 5.8 - Distribution of probabilities of user 5 

 

Figure 5.9 - Distribution of probabilities of user 6 

 

 

Figure 5.10 - Distribution of probabilities of user 7 
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Figure 5.11 - Distribution of probabilities of user 8 

 

 

Figure 5.12 - Distribution of probabilities of user 9 

 

 

Figure 5.13 - Distribution of probabilities of user 10 
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Users Best 

Threshold 

TMR TNMR FMR FNMR ACC 

1 45 68.8 67.2 32.8 31.2 68.0 

2 35 89.6 73.6 26.4 10.4 81.6 

3 30 91.2 57.6 42.4 8.8 74.4 

4 35 77.6 87.2 12.8 22.4 82.4 

5 20 94.4 79.2 20.8 5.6 86.8 

6 55 83.2 80.0 20.0 16.8 81.6 

7 10 46.4 72.8 27.2 53.6 59.6 

8 30 82.4 48.8 51.2 17.6 65.6 

9 35 84.0 89.6 10.4 16.0 86.8 

10 80 94.4 100 0 5.6 97.2 

Table 5.7 – Evaluation rates of all users, for the threshold that provides them better accuracy 

 

The individual graphs and the table reveal big differences between some users. First aspect 

to note is that for some users the best accuracy rate is at a very low threshold, as in case of 

users 7 and 5.  

The best prediction performance belongs to user 10, with 97% of accuracy for a threshold 

of 80, meaning that most of the genuine samples were classified in the 80% to 100% interval of 

probability, which can be seen on Figure 5.13.  

On the other hand, the worst performances belong, in order, to user 7 with 59.6% of 

accuracy and to user 8 with 65.6% of accuracy, having both low thresholds, respectively 10 and 

30. In the case of user 7 most of the samples were classified in the 0% to 10% range, so, despite 

having the lowest threshold of all, it has the biggest rate of false non-matches and consequently 

the lowest of true matches. Both distributions, attacks and legitimate attempts, are very similar 

as both have the peak of frequencies at the lowest score intervals, so is safe to assume that the 

classifier wasn’t able to set apart genuine samples from impostor samples. Regarding to user 8, 

there’s a different situation, the genuine samples are not aggregated to any particular threshold 

and the same goes to impostor samples, except for the peak in 0% to 5% interval. As the threshold 

is relatively low, this results in a high rate of true matches, the problem is that it also results in 

the highest false match rate of all users. 
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At last, to compare all the performances the ROC curves of all users were placed in the 

same chart. 

 

Figure 5.14 - ROC Curves off all users 

  
 With so many different performances and distributions of probabilities, there must be some 

differentiating factors that enable the classifier to work better with some users and worse with 

the other.  

For that reason, was made a further analysis to the captured gestures. Were analyzed all 

samples from the training datasets of the users with worst and better performances, in relation 

to false non-matches, they were user 7 and user 10. Using all samples of each gesture, 

previously scaled in 0 to 1 range, was calculated the mean and standard deviation values of their 

features, and then was calculated the mean of all mean values and the standard deviation of all 

standard deviation values, resulting in a pair (mean, standard deviation) for each gesture. After 

that, gestures were ranked by the standard deviation value, from the highest to lower. This 

process was made, separately, with samples of each user. With standard deviation is possible 
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to understand in which gestures the features values vary more, in other words, the gestures that 

are more distinguishable, influencing more the classifier. Standard deviation is clearly the most 

important value, however, in combination with the mean value one can also compare the 

differences in the execution of the gesture by both users. If that pair of values, for the same 

gesture, is significantly different from one user to another, then it means that it was performed 

distinctly.     

The results are shown in the next tables. 

Ranking Gesture StdDev Mean 

1 Swipe from top right to bottom left 0,430 0,497 

2 Swipe from right to left 0,427 0,475 

3 Double tap with swipe from top left to bottom right 0,417 0,512 

4 Swipe from top left to bottom right 0,409 0,487 

5 Double tap with swipe from top to bottom 0,403 0,530 

6 Swipe from left to right 0,398 0,495 

7 Swipe from top to bottom 0,397 0,486 

8 Zoom in bottom left top right 0,394 0,423 

9 Swipe from bottom right to top left 0,393 0,497 

10 Swipe from bottom left to top right 0,392 0,485 

11 Double tap with swipe from bottom right to top left 0,391 0,514 

12 Double tap with swipe from bottom left to top right 0,390 0,423 

13 Double tap with swipe from bottom to top 0,390 0,483 

14 Swipe from bottom to top 0,383 0,422 

15 Double tap with swipe from right to left 0,383 0,453 

16 Zoom in bottom right top left 0,382 0,423 

17 Double tap with swipe from top right to bottom left 0,375 0,465 

18 Double tap with swipe from left to right 0,373 0,386 

19 Zoom out bottom left top right 0,373 0,506 

20 Zoom out bottom right top left 0,360 0,419 

21 Double tap 0,301 0,279 

Table 5.8 - Gesture analysis of user 10 
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Ranking Gesture StdDev Mean 

1 Swipe from bottom to top 0,426 0,483 

2 Swipe from bottom left to top right 0,413 0,534 

3 Swipe from bottom right to top left 0,413 0,494 

4 Swipe from top right to bottom left 0,413 0,531 

5 Swipe from right to left 0,411 0,522 

6 Swipe from top left to bottom right 0,404 0,453 

7 Swipe from top to bottom 0,401 0,527 

8 Swipe from left to right 0,399 0,376 

9 Double tap with swipe from top to bottom 0,393 0,364 

10 Double tap with swipe from right to left 0,391 0,459 

11 Double tap with swipe from bottom to top 0,388 0,444 

12 Double tap with swipe from top left to bottom right 0,384 0,443 

13 Double tap with swipe from bottom left to top right 0,383 0,441 

14 Double tap with swipe from bottom to top 0,383 0,444 

15 Zoom out bottom left top right 0,382 0,500 

16 Double tap with swipe from top right to bottom left 0,379 0,413 

17 zoom out bottom right top left 0,378 0,464 

18 Double tap with swipe from left to right 0,375 0,422 

19 Zoom in bottom left top right 0,371 0,465 

20 zoom in bottom right top left 0,356 0,445 

21 Double tap 0,269 0,314 

Table 5.9 - Gesture analysis of user 7 

 

The most variable gesture, executed by user 10, is the swipe from top right to bottom left, 

while in case of user 7 is the swipe from bottom to top. There are many differences in the top of 

the gesture’s ranking of each user, suggesting that the train models created from these samples 

are more influenced by different gestures.  

At the same way that the first ranked gestures are the more influent in the classification, the 

last ranked are the ones with less variation and, consequently, less influence in the classification. 

With this in mind, and the fact that in both cases the last gesture is double tap (static double 
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tap), one can assume that if the gesture was removed from the datasets, the classification 

wouldn’t differ much.  

With this analysis is realized that the same gestures have distinct influence in the training of 

the classifiers, for different users. That can serve as motivation to a deeper analysis of gestures, 

evaluating if some gestures could be left aside, or if it must be given more importance to other, 

or even a combination between both.   

 

5.2 Results of additional tests 

Once the results of the project weren’t sufficiently strong so that continuous authentication 

was proven to work with the extracted features, were performed additional. In this sub-section 

those tests are justified and described. In the end is presented a comparison between the results 

of each test and the original results, from last section. 

In a the classification process, users are distinguished by the features of their gestures, 

being the distinction as better as more divergent are the feature values in relation to other users. 

Naturally, there are features that presents more variance and so are the ones which have more 

influence. By the other hand, there are also features that don’t vary much from one user to 

another and so their inclusion could be counterproductive, this is because, instead of add data 

for distinguish users, they create common points in the user’s profiles. With this in mind, was 

conducted a study in order to understand which are the more important features and which are 

the ones that could be removed.   

Was selected the training dataset of user 3, chosen by a random function. After the analysis, 

the less important features were removed from that dataset and from the testing datasets, and 

the classification process was performed again with the new datasets. In the end was compared 

the results obtained with the original results of that user. 

The analysis was made through Principal Component Analysis [35], using the machine 

learning suite WEKA [36]. To put it briefly, PCA calculates the directions in which data is more 

spread and expresses those directions in eigenvectors, one for each direction, with the 

corresponding eigenvalue, which indicates the weight of their features variance. Inside the 
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eigenvectors are the features, each one with a given score that represents their influence in that 

direction. All features score values are in the 0 to 1 range.  

PCA returned 12 eigenvectors from the analysis of the training dataset. Weka calculates the 

proportion of the eigenvectors in relation to the others, based on their eigenvalue, attributes a 

ranking score (1 - proportion) and ranks them accordingly. It ranks also the features inside each 

by their score.  Were chosen the first four eigenvectors, because together they accumulated 

nearly 60% of the calculated proportions leaving the remaining 40% to the other eight vectors. In 

the same way, the first ranked features of each eigenvector are the ones with more variance, so 

it was decided to choose the first eight features (around half of the total) of the four eigenvectors.  

 

Eigenvector 1st 2nd 3rd 4th 

Eigenvalue 3.65467 2.56233 1.92649 1.73491 
Score 0.785 0.6343 0.521 0.4189 

1st feature 
Ave. Size  

0.468 
Max. Size  

0.433 
Distance Y 

0.561 
Distance X 

0.477 

2nd feature 
Ave. Pressure 

0.461 
Velocity X 

0.358 
Velocity Y 

0.506 
Initial Time 

0.408 

3rd feature 
Min. Size 

0.455 
Total Time 

0.353 
Velocity X 

0.435 
Total Time 

0.365 

4th feature 
Min. Pressure 

0.390 

Velocity Y 

0.348 

Distance X 

0.386 

Initial X 

0.332 

5th feature 
Final Y 
0.266 

Max. Pressure 
0.334 

Total Time 
0.141 

Velocity X 
0.330 

6th feature 
Max. Pressure 

0.264 
Initial Time 

0.281 
Max. Pressure 

0.102 
Final X 
0.320 

7th feature 
Max. Size 

0.220 
Distance X 

0.280 
Min. Pressure 

0.099 
Distance Y 

0.224 

8th feature 
Distance Y 

0.076 
Distance Y 

0.259 
Fling Time 

0.098 
Initial Y 
0.219 

Table 5.10 - Best ranked eigenvectors and features 

  

In the table above are presented the four best ranked eigenvectors and their features, in 

order. As all features are present was not possible to choose immediately which would be 

removed from the datasets so was necessary to calculate a second ranking score. That value 

calculation is given by equation 5.6. 
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(5.6) 

  

In the equation, Es is the eigenvector score and Fs is the feature score. This way was given more 

importance to those features that were in the in the first eigenvectors, not forgetting those who 

appear more than once. After calculation the features were ranked by that value. The order was: 

1- Distance Y 

2- Velocity X 

3- Distance X 

4- Velocity Y 

5- Max. Pressure 

6- Total Time 

7- Max. Size  

8- Ave. Size 

9- Ave. Pressure   

10- Min. Pressure  

11- Min. Size  

12- Initial Time  

13- Final Y  

14- Initial X  

15- Final X  

16- Initial Y 

17- Fling Time

 

X and Y coordinates have little influence in the dataset. This is not surprising because the 

starting and ending areas were indicated in the application and were the same for all users. In 

contrast, since some users tend to perform gestures quicker than others, and that was observed 

in the data collection procedure, it is strange having the fling time as the last ranked attribute. 

Were realized two different experiments, in the first were left in the datasets only the eight 

best ranked features, about half of the feature set, and in the second were left the twelve best 

ranked, roughly three quarters of the set.  

Besides this analysis to the influence of the features, was also made one additional test, this 

time analyzing the influence of a particular category of gestures: zoom. Zoom gestures differ 

from the other because, each one have two vectors of touch data in the dataset, totaling 40 

samples in a dataset of 125, 32% of the data. Because of this were removed all data samples of 

∑ 𝐸𝑠𝑖 ∗ 𝐹𝑠𝑖  

4

𝑖=1
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zoom gestures of the training dataset and of the testing datasets of the same user 3, in order to 

see how the classifier reacts behaves. 

Next are presented the classification results, for each different analysis is shown the chart 

with the distributions of relative frequencies. In the end is a table with all rates and a chart with 

the ROC Curves. 

 

 

Figure 5.15 - Distributions of probabilities of user 3, using 8 features 

 

 

Table 5.11 - Distributions of probabilities of user 3, using 12 features 
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Table 5.12 - Distributions of probabilities of user 3, with no zoom gestures 

 

  
Best 

Threshold 
TMR TNMR FMR FNMR ACC 

8 features 20 89.6 45.6 54.4 10.4 67.6 

12 features 30 82.4 59.2 40.8 17.6 70.8 

No zoom 40 80.0 58.8 41.2 20.0 69.4 

Original 30 91.2 57.6 42.4 8.8 74.4 

Table 5.13 - Comparison between original results and additional tests resul ts 

 

 

Figure 5.16 - Comparison of ROC curves 
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None of the additional tests gave better results. In fact, looking at the charts with 

distributions of relative frequencies is easily seen that they all tend to mistake legitimate attempts 

with attackers.  

 

5.3 Summary 

With the results obtained by the various experiments and analysis, it safe to say that the 

touch data collected in this project, from the interaction of users in the touchscreen, can’t serve 

as a biometric characteristic, as consequence, an implementation of a continuous authentication 

system in these conditions is not feasible. 

Was performed an evaluation of the proposed system based on the results of the classifier, 

in terms of true matches, false matches, true non-matches, false non-matches and accuracy 

rates. These rates were calculated using various thresholds, to find the one in which the system 

has better performance and to have an insight about how the system behaves to threshold 

changes. At the best threshold the system presented an accuracy of roughly 77%, with similar 

rates of true matches and true non-matches. However, was observed that both genuine and 

impostor attempts are too much scattered through all score values, resulting in high rates of  

classification errors.  

These values are not acceptable because an authentication system needs to have the lowest 

possible false match rate, and in this case nearly a quarter of the impostor attempts are 

validated. The ability to reject impostors, the specificity, can be increased by using a higher 

threshold, which also decreases the sensibility, this is a normal situation in authentication 

systems. However, in this case that wouldn’t work. For example, to increase the specificity to 

about 90%, the sensibility would decrease to nearly 50%, and that would turn the system useless.  

Was conducted an individual analysis of each participant, through which was possible to 

verify that the system behavior is very different between user, having one user with an accuracy 

rate just above 97%, while others had an poor performance but for different reasons. That 

indicates that the system must be optimized to each user. 
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By performing a study about which gestures had more influence in the classification, was 

concluded that are some gestures don’t vary much in different so they must the ones with less 

influence.  

Additional tests were made, seeking for better results. Were determined the features 

influence ranking in the dataset of a user, and then was performed the classification process 

with the first eight features and after with the first twelve. Was also conducted an analysis without 

zoom gestures. None of these tests provided best performance of the system. This could mean 

that, even if some features have little influence, it could make the difference between a correct 

and a wrong classification. 

One must not forget that this system is to be implemented in different applications which 

have, certainly, different demands in terms of user interaction. Considering this, to optimize the 

system to each user, considering the application, should be made a further study about which 

are the more appropriate gestures and features to include with a particular user and in a specific 

type of application. 

A last conclusion that must be made is that, due the fact that SVM was the only used 

classifier, it would be interesting to compare the performance of other classifiers in this system, 

and perhaps a combination of classifiers. A future work should also be exist in that scope.    
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6. Conclusions and Future Work 

Touchscreen devices have outnumbered the traditional computers. As their number 

increases, so that happens with the security concerns regarding them. This is because they, 

progressively, access and store more sensitive information. Is then necessary to protect these 

devices from unauthorized accesses. As known by now, the traditional means of authentication 

can’t offer the needed degree of security because once unlocked the device is vulnerable to 

attacks.  

In this dissertation was proposed a system to provide continuous authentication of users in 

mobile devices, based on their interactions on the touchscreen. After study the state-of-art of the 

biometric system was proposed the architecture and operation of this system. To collect the 

touch data of the input gestures was developed a mobile application, to Android devices. The 

application was responsible to collect the data, extract the previous selected features, organize 

them in one single vector and finally store it in the device storage. To proceed to the classification 

were created datasets for training and testing for each participant, complementing them with 

random sample picks from the others. By analyzing the related work was chosen SVM as the 

classifier. Finally were grouped the results and was made the evaluation of the system. 

One of the most challenging aspects was the application development, specially the 

multitouch gestures processing. Each of the fingers used had to be analyzed individually, but the 

Android event handler reports samples of all them together in the same event. Zoom events also 

had a different behavior regarding fling. At first, by experimentation, was seen that all scrolls had 

a fling presence, so it were coupled scroll and fling as the same gesture, but as zoom events 

have fingers moved in different directions that probably canceled the fling effect of the gesture, 

because of that the fling recording was to be made differently 

Unfortunately, results is show that is not viable to implement continuous authentication with 

the biometrics characteristic extracted. The system achieved, for the best threshold, nearly 76.8% 

of accuracy and error rates of 24% to FMR and 22.2% to FNMR, with a corresponding EER of 

23.2%. These results could have multiple interpretation, the problem may be in the selected 
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features, in the selected gestures, in the parameters used to tune SVM or in the use of SVM at 

all, which among all is the less likely. In order to confirm that, were made three new classification 

rounds, excluding some of the less variant features, and in one of them excluding the zoom 

gestures. After these tests were not obtained better results. 

Was made an analysis that shown that the system behavior was too different among the all 

the users, which can mean that the selected features are best fitted to a particular set of users. 

Was also made an additional test to compare the variance of the features in each gesture, using 

the features of the user with the best and worst results, to see which were the most influencing 

gestures in each one. The result shown that was no similarity in the most influencing gestures 

in both users, but there was in the less influencing ones, like static double taps, concluding that 

those probably can be removed from the analysis. This way is also proved that different gestures 

have different influence in distinct users. 

Though the results were not good as expected, they are far away from the useless point.  For 

continuous authentications purposes, the achieved values are not so bad as for simple 

authentication, because of the fact that the decision regarding the user’s identity is only made  

after a sequence of classifications. This means that, even with this results, a system might work, 

but here there is also big behavior differences of the classifier for different users, turning this not 

viable to implement.  

This project was meant essentially to prove that the differences in the behavior of people, 

when performing gestures in a touchscreen, was distinct enough to serve as a biometric 

characteristic. One can also not forget that the gestures not free performed, which meant that 

the differences in the behavior was reduced drastically. This because, this project was thought 

to be used in application level and not at the operating system level, and application have 

different need in terms of gestures, and some of them require the same gestures. With these 

results, there is hope that with a better analysis of gestures and features is possible to increase 

the accuracy and lower the error rates, making this biometrics characteristic suitable to the 

proposed system. 

Regardless the results there were some accomplishments that are worth to be noted. First 

the application in developed in way that is possible to collect all gestures inputted in the 

touchscreen and not only those chosen to be collected, for example is possible to collect the 
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touch data of multitouch gestures up to ten fingers at the same time, or collect circular or no 

defined-shaped gestures also. The data extracted is consistent and was rigorously acquired so 

there is now a reliable set of touch data that can be used in future tests and implementations. 

Through the scripts built during the project is possible to instantly construct the datasets for 

training and for testing and scale them in different scales. It is also possible to find the best 

tuning parameters for use in SVM for all datasets at the same time and use them automatically 

when training the classifiers. The classification is also made easily through the scripts.  

This project was only the first step in towards the implementation of the system that was 

proposed earlier. That way there is a lot of work to do in the future: 

 It is needed a further feature analysis, to determine which of the chosen features 

are worth to maintain and which are to be deleted. It is also pertinent to study the 

impact of new features in the dataset; 

 The gesture sequence must be analyzes also to determine, in the same way, which 

are to keep or to delete; 

 Take the experiments with a larger population and different handedness. To see if 

are considerable differences between classes of people that were not possible to 

see with the ten participants; 

 Make the classifications using different classifiers, or with combination of classifiers; 

 It would be very important to make a deeper analysis to each gesture, individually, 

to determine if there are features more important than the others. Equally it is 

pertinent to study further the individualities of different users. With these two analysis 

could be achieved important advances towards the optimization of the system to 

different users and to meet the different requirements of applications. 

There are, certainly, other aspects to be studied, but these are the most pertinent to analyze 

immediately.  
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Appendix A 

In this appendix are all the user interface provided by the activities, they are in the exact same 

order used in the data collection procedure.  

 

 

  

 

 

 

 

 



Appendix A 

94 

  

  



Appendix A 

95 

  

 

  



Appendix A 

96 

  

  



Appendix A 

97 

  

  

 



Appendix A 

98 

  

  

 



Appendix A 

99 

  

 

 

 

 

 

 

 

 





 

101 

Appendix B 

In this appendix are the tables of each participant, with all rates calculated. In the first 

column are the threshold values. 

 

User 1 TMR FMR TNMR FNMR ACC 

5 0,968 0,84 0,16 0,032 0,564 

10 0,952 0,752 0,248 0,048 0,6 

15 0,92 0,656 0,344 0,08 0,632 

20 0,872 0,536 0,464 0,128 0,668 

25 0,848 0,512 0,488 0,152 0,668 

30 0,8 0,464 0,536 0,2 0,668 

35 0,768 0,416 0,584 0,232 0,676 

40 0,728 0,384 0,616 0,272 0,672 

45 0,688 0,328 0,672 0,312 0,68 

50 0,648 0,296 0,704 0,352 0,676 

55 0,584 0,272 0,728 0,416 0,656 

60 0,552 0,232 0,768 0,448 0,66 

65 0,472 0,2 0,8 0,528 0,636 

70 0,392 0,16 0,84 0,608 0,616 

75 0,328 0,136 0,864 0,672 0,596 

80 0,256 0,104 0,896 0,744 0,576 

85 0,184 0,08 0,92 0,816 0,552 

90 0,136 0,056 0,944 0,864 0,54 

95 0,056 0,016 0,984 0,944 0,52 

100 0 0 1 1 0,5 

 

 

 

 

 

 

 



Appendix B 

102 

 

User 2 TMR FMR TNMR FNMR ACC 

5 0,992 0,992 0,008 0,008 0,5 

10 0,992 0,856 0,144 0,008 0,568 

15 0,992 0,752 0,248 0,008 0,62 

20 0,992 0,664 0,336 0,008 0,664 

25 0,984 0,56 0,44 0,016 0,712 

30 0,952 0,416 0,584 0,048 0,768 

35 0,896 0,264 0,736 0,104 0,816 

40 0,816 0,2 0,8 0,184 0,808 

45 0,768 0,152 0,848 0,232 0,808 

50 0,696 0,144 0,856 0,304 0,776 

55 0,672 0,12 0,88 0,328 0,776 

60 0,624 0,096 0,904 0,376 0,764 

65 0,584 0,064 0,936 0,416 0,76 

70 0,536 0,064 0,936 0,464 0,736 

75 0,432 0,056 0,944 0,568 0,688 

80 0,344 0,048 0,952 0,656 0,648 

85 0,272 0,04 0,96 0,728 0,616 

90 0,16 0,024 0,976 0,84 0,568 

95 0,024 0,008 0,992 0,976 0,508 

100 0 0 1 1 0,5 

 

User 3 TMR FMR TNMR FNMR ACC 

5 1 1 0 0 0,5 

10 1 0,928 0,072 0 0,536 

15 1 0,792 0,208 0 0,604 

20 0,984 0,664 0,336 0,016 0,66 

25 0,96 0,512 0,488 0,04 0,724 

30 0,912 0,424 0,576 0,088 0,744 

35 0,784 0,296 0,704 0,216 0,744 

40 0,736 0,248 0,752 0,264 0,744 

45 0,664 0,216 0,784 0,336 0,724 

50 0,544 0,168 0,832 0,456 0,688 

55 0,504 0,112 0,888 0,496 0,696 

60 0,4 0,072 0,928 0,6 0,664 

65 0,336 0,064 0,936 0,664 0,636 

70 0,288 0,056 0,944 0,712 0,616 

75 0,208 0,04 0,96 0,792 0,584 

80 0,136 0,032 0,968 0,864 0,552 

85 0,064 0,008 0,992 0,936 0,528 

90 0,008 0 1 0,992 0,504 

95 0,008 0 1 0,992 0,504 

100 0 0 1 1 0,5 
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User 4 TMR FMR TNMR FNMR ACC 

5 0,952 0,496 0,504 0,048 0,728 

10 0,904 0,344 0,656 0,096 0,78 

15 0,864 0,264 0,736 0,136 0,8 

20 0,856 0,224 0,776 0,144 0,816 

25 0,8 0,168 0,832 0,2 0,816 

30 0,792 0,152 0,848 0,208 0,82 

35 0,776 0,128 0,872 0,224 0,824 

40 0,736 0,112 0,888 0,264 0,812 

45 0,704 0,096 0,904 0,296 0,804 

50 0,688 0,056 0,944 0,312 0,816 

55 0,632 0,056 0,944 0,368 0,788 

60 0,616 0,04 0,96 0,384 0,788 

65 0,56 0,04 0,96 0,44 0,76 

70 0,528 0,024 0,976 0,472 0,752 

75 0,44 0,008 0,992 0,56 0,716 

80 0,384 0 1 0,616 0,692 

85 0,312 0 1 0,688 0,656 

90 0,208 0 1 0,792 0,604 

95 0,064 0 1 0,936 0,532 

100 0 0 1 1 0,5 

 

User 5 TMR FMR TNMR FNMR ACC 

5 1 0,432 0,568 0 0,784 

10 0,976 0,272 0,728 0,024 0,852 

15 0,952 0,248 0,752 0,048 0,852 

20 0,944 0,208 0,792 0,056 0,868 

25 0,896 0,168 0,832 0,104 0,864 

30 0,848 0,152 0,848 0,152 0,848 

35 0,808 0,144 0,856 0,192 0,832 

40 0,76 0,128 0,872 0,24 0,816 

45 0,712 0,112 0,888 0,288 0,8 

50 0,656 0,112 0,888 0,344 0,772 

55 0,6 0,104 0,896 0,4 0,748 

60 0,528 0,104 0,896 0,472 0,712 

65 0,464 0,08 0,92 0,536 0,692 

70 0,376 0,08 0,92 0,624 0,648 

75 0,36 0,064 0,936 0,64 0,648 

80 0,272 0,048 0,952 0,728 0,612 

85 0,192 0,016 0,984 0,808 0,588 

90 0,152 0,008 0,992 0,848 0,572 

95 0,048 0 1 0,952 0,524 

100 0 0 1 1 0,5 
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User 6 TMR FMR TNMR FNMR ACC 

5 0,984 0,808 0,192 0,016 0,588 

10 0,976 0,656 0,344 0,024 0,66 

15 0,976 0,568 0,432 0,024 0,704 

20 0,96 0,472 0,528 0,04 0,744 

25 0,952 0,392 0,608 0,048 0,78 

30 0,944 0,36 0,64 0,056 0,792 

35 0,936 0,336 0,664 0,064 0,8 

40 0,904 0,304 0,696 0,096 0,8 

45 0,864 0,264 0,736 0,136 0,8 

50 0,832 0,216 0,784 0,168 0,808 

55 0,832 0,2 0,8 0,168 0,816 

60 0,768 0,16 0,84 0,232 0,804 

65 0,744 0,144 0,856 0,256 0,8 

70 0,696 0,144 0,856 0,304 0,776 

75 0,648 0,128 0,872 0,352 0,76 

80 0,584 0,096 0,904 0,416 0,744 

85 0,504 0,08 0,92 0,496 0,712 

90 0,36 0,032 0,968 0,64 0,664 

95 0,136 0,016 0,984 0,864 0,56 

100 0 0 1 1 0,5 

 

User 7 TMR FMR TNMR FNMR ACC 

5 0,592 0,424 0,576 0,408 0,584 

10 0,464 0,272 0,728 0,536 0,596 

15 0,384 0,24 0,76 0,616 0,572 

20 0,336 0,176 0,824 0,664 0,58 

25 0,312 0,128 0,872 0,688 0,592 

30 0,272 0,104 0,896 0,728 0,584 

35 0,248 0,104 0,896 0,752 0,572 

40 0,248 0,096 0,904 0,752 0,576 

45 0,24 0,088 0,912 0,76 0,576 

50 0,224 0,072 0,928 0,776 0,576 

55 0,216 0,072 0,928 0,784 0,572 

60 0,208 0,072 0,928 0,792 0,568 

65 0,192 0,072 0,928 0,808 0,56 

70 0,168 0,064 0,936 0,832 0,552 

75 0,152 0,056 0,944 0,848 0,548 

80 0,136 0 1 0,864 0,568 

85 0,12 0 1 0,88 0,56 

90 0,096 0 1 0,904 0,548 

95 0,072 0 1 0,928 0,536 

100 0 0 1 1 0,5 
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User 8 TMR FMR TNMR FNMR ACC 

5 0,992 0,864 0,136 0,008 0,564 

10 0,976 0,752 0,248 0,024 0,612 

15 0,952 0,704 0,296 0,048 0,624 

20 0,92 0,64 0,36 0,08 0,64 

25 0,864 0,568 0,432 0,136 0,648 

30 0,824 0,512 0,488 0,176 0,656 

35 0,728 0,496 0,504 0,272 0,616 

40 0,648 0,448 0,552 0,352 0,6 

45 0,576 0,416 0,584 0,424 0,58 

50 0,504 0,368 0,632 0,496 0,568 

55 0,448 0,344 0,656 0,552 0,552 

60 0,376 0,296 0,704 0,624 0,54 

65 0,336 0,256 0,744 0,664 0,54 

70 0,256 0,192 0,808 0,744 0,532 

75 0,2 0,168 0,832 0,8 0,516 

80 0,136 0,112 0,888 0,864 0,512 

85 0,088 0,088 0,912 0,912 0,5 

90 0,032 0,032 0,968 0,968 0,5 

95 0 0,008 0,992 1 0,496 

100 0 0 1 1 0,5 

 

User 9 TMR FMR TNMR FNMR ACC 

5 0,992 0,52 0,48 0,008 0,736 

10 0,968 0,32 0,68 0,032 0,824 

15 0,952 0,208 0,792 0,048 0,872 

20 0,912 0,184 0,816 0,088 0,864 

25 0,88 0,136 0,864 0,12 0,872 

30 0,848 0,128 0,872 0,152 0,86 

35 0,84 0,104 0,896 0,16 0,868 

40 0,808 0,104 0,896 0,192 0,852 

45 0,784 0,08 0,92 0,216 0,852 

50 0,752 0,064 0,936 0,248 0,844 

55 0,736 0,056 0,944 0,264 0,84 

60 0,696 0,048 0,952 0,304 0,824 

65 0,672 0,048 0,952 0,328 0,812 

70 0,632 0,04 0,96 0,368 0,796 

75 0,576 0,024 0,976 0,424 0,776 

80 0,544 0,024 0,976 0,456 0,76 

85 0,4 0,016 0,984 0,6 0,692 

90 0,32 0,016 0,984 0,68 0,652 

95 0,112 0 1 0,888 0,556 

100 0 0 1 1 0,5 
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User 10 TMR FMR TNMR FNMR ACC 

5 1 0,432 0,568 0 0,784 

10 0,992 0,328 0,672 0,008 0,832 

15 0,992 0,248 0,752 0,008 0,872 

20 0,992 0,192 0,808 0,008 0,9 

25 0,992 0,16 0,84 0,008 0,916 

30 0,992 0,152 0,848 0,008 0,92 

35 0,992 0,112 0,888 0,008 0,94 

40 0,984 0,096 0,904 0,016 0,944 

45 0,976 0,072 0,928 0,024 0,952 

50 0,976 0,064 0,936 0,024 0,956 

55 0,976 0,064 0,936 0,024 0,956 

60 0,96 0,056 0,944 0,04 0,952 

65 0,96 0,048 0,952 0,04 0,956 

70 0,96 0,024 0,976 0,04 0,968 

75 0,952 0,024 0,976 0,048 0,964 

80 0,944 0 1 0,056 0,972 

85 0,896 0 1 0,104 0,948 

90 0,856 0 1 0,144 0,928 

95 0,752 0 1 0,248 0,876 

100 0 0 1 1 0,5 

 


