
On Semantics and Refinement of UML Statecharts: A Coalgebraic View �

Sun Meng, Zhang Naixiao
LMAM, School of Mathematical Science

Peking University
�sunmeng,znx�@math.pku.edu.cn

Luı́s S. Barbosa
Department of Informatics

Minho University
lsb@di.uminho.pt

Abstract

Statecharts was conceived as a visual formalism for the
design of reactive systems. UML statecharts is an object-
based variant of classical statecharts, incorporating several
concepts different from the classical statecharts. This paper
discusses a coalgebraic description of UML statecharts, di-
rectly derived from its operational semantics. In particular,
such an approach induces suitable notions of equivalence
and (behavioral) refinement for statecharts. Finally, a few
refinement laws are investigated to support verifiable step-
wise system development with statecharts.
Keywords:
Statechart, Semantics, Coalgebra, Refinement

1. Introduction

Statecharts, a visual language for specifying the behav-
ior of reactive systems introduced originally by D. Harel in
[3], has been found versatile enough to be used in the con-
text of OO system development. The formalism is similar to
finite-state machines, but extends them by three main ingre-
dients: hierarchy, concurrency, and communication. Such
concepts, while intuitive on their own, interact in intricate
ways. As a result, a number of formal semantics propos-
als (and corresponding tools) has flourished, interpreting
their interaction in different ways or imposing different con-
straints. By far the most significant development in recent
years has been the emergence of widely used design nota-
tions like STATEMATE [4], ROOM [22], and UML [19],
and commercial tools to support them.

The UML statecharts formalism is an object-based vari-
ant of Harel statecharts, which provides a view of the dy-
namic behavior of the system. It incorporates several con-
cepts similar to those defined in the ROOM modelling lan-

� This work is partially supported by the National Natural Science Foun-
dation of China under Grant No. 60273001. The work of Luı́s S. Bar-
bosa is supported by FCT, under contract POSI/ICHS/44304/2002, in
the context of the PURe project.

guage and is different from the classical Harel statecharts.
The main difference results from the external context of the
state machine. UML statecharts mainly specifies behavior
of a type while the classical statecharts represent the behav-
iors of processes. There are other differences resulting from
this rationale and a detailed comparison between them can
be found in [19]. While the graphical syntax of the language
has been formally specified, precisely defining its formal se-
mantics proved to be extremely challenging, and more diffi-
cult than originally expected. Recently, a variety of propos-
als on semantics of UML statecharts has been offered in the
literature [4, 11, 13, 14].

Most of the existing results on statecharts semantics are
given by using labelled transition systems (LTS), which can
be naturally represented as coalgebras (see e.g. [21]). This
paper extends the operational semantics of statecharts given
in [13] and proposes a coalgebraic account for statecharts
at first hand, agreeing with their operational semantics. The
difference between the operational semantics in this paper
and the definition in [13] is that the transitions are consid-
ered hierarchically here and a corresponding transition rule
is added. Based on the coalgebraic semantics, we investi-
gate the equivalence of statecharts and define a notion of
refinement for statecharts, which indicates whether the be-
havior of a system specified by a statechart is simulated by
another one, so that we can replace the former by the lat-
ter. Note that although the results in this paper are for stat-
echarts, the notion of refinement here is an instantiation of
behavioral refinement for generic state-based components
[16], which is quite independent of this formalism. So it
can also be used in other contexts. Finally, a family of re-
finement laws for statecharts is described on the syntactic
level. These laws have a well-defined underlying semantics
for ensuring their correctness, which is based on the simu-
lation relationship between statecharts.

The motivation of our work is that software systems
(classes, components, etc.) can be naturally modelled as
coalgebras (see e.g. [1, 6, 16, 21]), i.e., pairs ��� � � � �

��� where the carrier � represents the set of states of the
system, and� is a functor which describes the behavior type

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

of the system, given as a signature of transitions and obser-
vations. One obvious advantage of the coalgebraic approach
for statecharts semantics is that it induces a simple notion of
behavior equivalence on statecharts, which can be charac-
terized as a coalgebraic bisimilarity. Moreover, it provides
a uniform treatment of statecharts and other modelling lan-
guages, e.g., class diagrams and use cases [15]. Placing data
and behavior at a similar level conveys the idea that state-
chart models can be chosen and specified according to a
given application area, in the same way that a suitable data
structure is defined to meet a particular requirement, and
can be used as a unifying framework to represent differ-
ent modelling formalisms. Finally, UML statecharts always
specify behavior of types, where the states can be repre-
sented as algebras of some signature. By commuting the un-
derlying environment category from ��� to a set based cat-
egory enriched with some algebraic structure, like in [2],
we can model the UML statecharts instead of classical stat-
echarts naturally.

It is the aim of this paper to present a step towards cov-
ering the gap between coalgebra theory and practice in soft-
ware development. We believe that both theory and practice
can benefit from this approach.

This paper is organized as follows: In Section 2, the op-
erational semantics of statecharts is given by using extended
hierarchical automata, and the coalgebraic semantics is de-
fined. The equivalence of statecharts is presented by ex-
ploiting the coalgebraic semantics in Section 3. Section 4
discusses the notion of refinement for statecharts based on
the coalgebraic semantics, and gives a family of refinement
laws. The paper finishes with a discussion on concluding re-
marks and future work in Section 5.

2. Semantics for Statecharts

In this section we recall the notion of Extended Hierar-
chical Automata (EHA) defined in [17] for statecharts se-
mantics. The operational semantics for statecharts is faith-
fully represented by transitions in the EHA. Then we will
briefly present the coalgebraic description of statecharts se-
mantics, where the carrier of a coalgebra represents the con-
figurations of the system being modelled by the statechart,
and the transition structure interprets the evolution of the
system being triggered by the events and the optional ac-
tion being performed.

Transitions in a statechart are relationships among states.
One transition indicates that an object in the first state
(source) will enter the second state (target) and perform spe-
cific actions when a specified event occurs provided that
certain specified conditions are satisfied. A transition may
be labelled by a transition string with the following general
format where the options may be omitted.

event-name ‘(’ parameter-list ‘)’ ‘[’
guard-condition ‘]’ ‘/’ action-expression

For the purpose of representing statechart diagrams, we
shall use functions ������, �����, ����, ����� and ������ de-
note, respectively, the source state, trigger event, guard, ac-
tion and target state of transition �.

2.1. From Statechart to Extended Hierarchi-
cal Automata

We first give the definition of an extended hierarchical
automata, which is built by the composition of sequential
automata. Then we briefly show how to represent state-
charts by extended hierarchical automata. A detailed trans-
lation from statecharts to extended hierarchical automata
can be found in [13].

A sequential automata � is a tuple ���	 �
�
�	
�	 Æ��

where �� is the set of states of � with ��� � �� the ini-
tial state,
� is a finite set of transition labels of � and
Æ� � �� �
� � �� is the transition relation. Sequen-
tial automata can be parallely and hierarchically composed
to build hierarchical automata [17].

Definition 2.1 An extended hierarchical automata � is
given by a triple ��		 �� where � � ����������� ��
is a set of sequential automata with mutually dis-
tinct state spaces (for any �	 � in ��	 � � � 	 ��, � �� �,
���

� ���
� �), is a finite set of events and � a com-

position function � �
�

��� �� 	
�� � which satis-
fies:

1. � � � � ��� ��
�
������, denoted by �����;

2.
�
������ � � �������� and � � � ���������� � � ��
�������� ��� � � � ����;

3. � �
�

��� ������� � ��� �
�

����	� �� � �� �

� � ��.

In the sequel for � � � , � will be identified with � if
� � �����. For � � � an automata in the extended hierar-
chical automata � , we use ��, �� and � � to denote the
automata, states and transitions under � respectively. The
composition function � on � � ����������� �� induces a suc-
cessor function � �

�
��� �� 	
�

�
��� ���, which is

defined by

���� � ��� � �� � ��� � ���� � �� � ���

We use �� and �� to denote the irreflexive, resp. reflexive
transitive closure of �. Moreover, � induces an irreflexive
partial order on states in

�
��� ��:

�� � � iff �� � ������

We say that � is the parent of �� iff �� � ���� and � is an
ancestor of �� iff �� � �����.

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

A statechart can be translated to an extended hierarchi-
cal automata � � ����� �� by defining � , � and � respec-
tively. In the following we give a brief description of such
a translation. A more detailed translation from statechart to
extended hierarchical automata can be found in [13].

� Each automata � � � is defined as follows:

1. States of the statechart are uniquely mapped to
states of sequential automata.

2. Initial state of an automata is the state corre-
sponding to the state in the statechart marked by
an initial pseudostate.

3. A transition in a statechart is characterized by
its least common ancestor (LCA) state, which is
the lowest level non-concurrent state containing
all the source and target states. The main source
(main target) of a transition is the direct substate
of its LCA that contains the sources(targets).
Main sources and main targets are always trans-
formed to states of the same automata. And each
transition in the statechart is mapped to a unique
transition of the extended hierarchical automata.

4. The label of a transition � is generated by using
the source(s) and target(s), while events, guard
and action are inherited from �.

� The set of events � is the union of the set of trigger
events and the set of events generated by actions in the
statechart.

� The composition function � is determined by the sub-
state relationships of composite states.

2.2. Operational Semantics

A configuration of an extended hierarchical automata de-
notes a global state of it, composed of local states of com-
ponent sequential automata, together with the current en-
vironment with which the extended hierarchical automata
is supposed to interact. The global state describes which
states of sequential automata in an extended hierarchical
automata are simultaneously active. The environment de-
scribed a structure (like FIFO queues, bags, or sets, etc.)
over the active events. For simplicity, we assume in the se-
quel such structures be modelled by sets, like in classical
statecharts.

Definition 2.2 A configuration of � � ����� �� is pair
������ where

� � �
�
��� �� is a set of states such that

1. Exactly one state of ����� is in the configuration:
� � � � ������ 	 � � �;

2. Downward closure: ��� � 	 � � � � � �
���� � � � �� � �� 	 �� � �.

� �� � � denotes the current environment of active
events.

The restriction of a configuration ������ of� � ����� ��
at one of its subautomata �� is defined as ��	�� � ���,
where �	�� � �
 �� 	 �� � � � ��� � �� ��. The
initial configuration of � is
 � ����� where

��� � 	 � � � � � � � � �� � � � ���

The operational semantics of an extended hierarchical

automata is given by a transition relation
���	
��, which is

defined via a deduction system as follows.
A system may be either closed (not interacting with the

environment) or open (interacting by receiving events from
and supplying generated events to the environment). The
corresponding rules are given respectively as follows.

Rule 1 (Closed systems)

� � � � ��� � �
 ��� � ����

��� ����

���
������ ���

�����
���	
�� ���� ��� ����

For open systems, the environment is allowed to add
events after each step.

Rule 2 (Open systems)

� � � � ��� � �
 ��� � ����

��� ����

���
������ ���

�� � ����

�����
���	
�� ���� ��� ������

In the above rules an auxiliary relation

���
��is used for

modelling transitions of the extended hierarchical automata
�, where � is the event triggering the corresponding transi-
tion and � is the optional guard condition which should be
true to fire the transition. Before defining the deduction sys-

tem for

���
��, we first give the following auxiliary definition.

Definition 2.3 For � � � , set of states � and environ-
ment �, the set of all the enabled local transitions of � in
�����, �������� is defined as follows:

�������� � �� � Æ� 	 ������ � � � ����� � ��

����� 	� �����

The set of all enabled transitions of � in ����� includes
all the ��������� where �� is a descendent of �, which
is defined as follows:

�������� �
�

�����

���������

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

Rule 3 (Progress)

� � ���������
� �� � �������� � ��	��

�� � ��	���
�� � � � ����	���� � �� � ��	��� � ���
��� � �� � ���
����� � �� � �
���� � ���

�� � �� � �������� � 	���

�����
�����������
�� ����� ���

In this rule, the event ����� being used to trigger the tran-
sition � is consumed and will no longer exist. This mecha-
nism looks intuitive and reasonable and can help to prevent
incorrect looping. Once a transition � is taken, a new con-
figuration is entered and proper actions are performed. The
condition � �� � �������� � ��	��

�� � ��	��� specifies
the priority condition: there is no transition having higher
priority than � at the configuration �����.

Transitions in statecharts are considered hierarchically in
this paper, and this provides an extension to the semantics
definition in [13]. If no local transitions of� are enabled, an
enabled transition for the active substate of � may be per-
formed instead. This consideration is carried out in the fol-
lowing rule.

Rule 4 (Hierarchy)

��������� � 	
�� �
�

� � ����������

�����
�����������
�� ���� ���

��� � �� � �� � �
���� � ��

�� � �� � ��	��� � ��� ��
�����������
�� ����� ���

For a parallel statechart, it is natural and intuitive that
several transitions allocated in orthogonal components may
be executed simultaneously. That means, they can be per-
formed in a truly concurrent way. This situation is captured
by the following rule:

Rule 5 (Composition)

��� � � � ��

���� � ���� ��� � � � � ��� � 	

�����
� ��

�������������
�� ���� ��� ��� � � � � �

����
�����

� �� � 	 ��� � � � � �

�� � � �
�

�����

����	����� � �� � ��	���� � ���

��� � �� �
�

�����

���
������ � �� � �
����� � ���

�� � �� � �
�

�����

�������� �
�

�����

	����

�����

�

�����

�������
�

�����

������

�� ����� ���

If no transition in an extended hierarchical automata �

is enabled, and no subautomata exist to which the transition
may be delegated, then � has to ”stutter”.

Rule 6 (Stuttering)

�������� � 	

�����
�
�������

2.3. Semantics of Statecharts: Coalgebraically

A coalgebraic semantics of statecharts may be directly
induced by its operational semantics. This leads to a defi-
nition of statecharts as coalgebras, whose carriers represent
configurations and the dynamics is determined by their op-
erational semantics. The coalgebraic structure captures the
evolution of the system modelled by the statechart.

Because of the hierarchical structure of statecharts, we
will endow the set of configurations with a coalgebraic
structure induced by the operational semantics rather than
simply construct the coalgebraic structure over the set of
states. Let ��� � ����� be the set of possible configura-
tions for a given statechart �. Define functor � as follows:

���� � ��� �����

where � denotes the set of all events (Here events can carry
parameters rather than being primitive signals) and � is a
strong monad1 for specifying the behavior pattern of the
statechart. This is a novelty of the approach in the sense
that by parameterizing � by a strong monad � we can ab-
stract away from a particular behavioral model (like deter-
minism or non-determinism) underlying the statechart defi-
nition. This means that the computation of a statechart tran-
sition will not simply produce an action and a continuation
configuration, but a �-structure of such pairs.

Several possibilities can be considered, on a pragmatic
basis, in the definition of �. The simplest case is, obviously,
the identity monad, ��. Systems specified by such statecharts
would then behave in a totally deterministic way. More in-
teresting possibilities, capturing more complex behavioral
features, include:

� Partiality, i.e., the possibility of deadlock or failure,
captured by the usual maybe monad � � ��� �.

� Nondeterminism, introduced by the (finite) powerset
monad, � � � . If the target of a transition in a state-
chart is a composite state, i.e., the transition may have
more than one configurations as its target, then the ef-
fect of such a transition would be captured by the pow-
erset monad.

1 A strong monad is a monad ��� �� �� where � is a strong functor
and both � and � are strong natural transformations [12]. � being
strong means there exist natural transformations ��

� � ��� ��
������� and ��

� � �� � �� ���� ���, called the right and
left strength, respectively, subject to certain conditions. Their effect is
to distribute the free variable values in the context “�” along func-
tor �.

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

� Markov stamping, with � � ���� , � � ��� ��. And
it should hold

�� � �� �
�
���

������� ��� � �

where �� is the projection which returns 	 for
���� �� � ����� ����	�. Such a monad specifies the
probability of executing every transition in a state-
chart.

For the simplest case, where � is the identity functor, the
�-coalgebra corresponding to a particular statechart is de-
fined as ���� ��, where �� is the set of configurations and

��
��� � � ��

���
��

��
�� ���� �� ��� � ���� � �����

�
���
����
���
�� ���

�
��� � ���� � ����

Then the behavior of �� is given by

������ � �� � �� � ����

The overall behavior of the statechart is retrieved, of course,
as the coinductive extension of �.

3. Equivalence of Statecharts

One major concept for the semantics of statecharts, is
that of their equivalence. Given two different statecharts,
can they be considered to be two different ways of mod-
elling the same system? This question actually consists of
two parts:

1. What is the criterion to affirm that two statecharts are
equivalent?

2. How is the equivalence relation between statecharts
defined formally?

Intuitively, two statecharts are equivalent to each other
if they have the same semantics, i.e., from the syntax, we
can derive the same behavior relevant information. Here the
syntax of statecharts is given as EHA clearly, and the se-
mantics is given by (final) coalgebras. Therefore, the defini-
tion of an equivalence relation both presupposes and implic-
itly induces the semantics: the relevant information about
the behavior being specified by the statechart is precisely
that which is common to all equivalent statecharts. So the
semantics of a statechart is defined as its equivalence class,
i.e., the final coalgebra.

For the formal definition of the equivalence relation be-
tween statecharts, the semantics of statecharts plays an im-
portant role and formal definitions of equivalence should be
consistent with the semantics. Therefore, we take bisimula-
tion into consideration, which is one basic notion in coal-
gebra theory [21], and without question the simplest way to
define the behavioral equivalence of two statecharts.

Let ����� � � ��� � ������� and ����� � � ��� �
������� be two coalgebras corresponding to statecharts
��� and ���, in the following we depict the bisimulation
relationship between the two configuration spaces ��� and
��� which specifies their equivalent property.

Definition 3.1 A binary relation � 	 ������� between
two set of configurations is a bisimulation iff the following
diagram commutes:

���
�

��
�

��
� ���

������

�
�

�
���

����

�
�

���
� ������

�
�

where �� and �� are the projection functions from � to
��� and ��� respectively. Two configurations �� and ��
are equivalent if there is a bisimulation � such that �����.

Some standard properties of bisimulation apply:

Proposition 3.1 For given sets of configurations���,���

and ���, we have

1. The identity relation on ��� is a bisimulation.

2. If � 	 ��� � ��� is a bisimulation, then ��� 	
��� � ��� is a bisimulation.

3. If � 	 ������� is a bisimulation and �� 	 ����
��� is a bisimulation, then the composition � Æ� � 	
��� � ��� is a bisimulation.

4. If
�� � �� 	 ��� � ������� is a family of bisimu-
lations, then the relation � � ����� 	 ��� � ���

is a bisimulation.

Corollary 3.1 The set of all bisimulations between sets of
configurations ��� and ��� forms a complete lattice.

Since the arbitrary union of bisimulation relations be-
tween two set of configurations ��� and ��� is still a
bisimulation, if there exists a bisimulation relation between
two set of configurations, there also exists a greatest bisim-
ulation. Such a greatest bisimulation can be defined as the
union of all bisimulations for this type, leading to the fol-
lowing proof principle, again quite standard in coinductive
reasoning:

Definition 3.2 Two statecharts ��� and ��� are equiva-
lent iff there is a bisimulation � between their sets of con-
figurations ��� and ��� such that their initial configura-
tions �� and �� satisfies �����.

Example 3.1 For two statecharts ��� and ��� as shown
in Figure 1. Let

� �
������ ���� ��� ���� ����� ��� �����

������ ���� ��� ���� ����� ��� �����

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

p1

p2

SC1

(a)

t

p3

p4

t

s11 s12

SC2

(b)

s21

p1

p3

s22

p2

p4

t

Figure 1. Equivalent Statecharts

It is easy to check that � is a bisimulation and their initial
configurations are in �. Therefore, the two statecharts are
equivalent to each other.

Note that the equivalence of statecharts captures the two-
way refinement relations, where we require the behavior of
the refined statechart and the abstract statechart to be ex-
actly the same. In the following section, we give a notion
of refinement on the inequational side, which is more use-
ful in step-wise developments.

4. Refinement

We are now ready to define the notion of refinement for
statecharts we are interested in. What we want to investi-
gate first is whether a configuration is simulated (refined)
by another one. Then we extend the notion to statecharts as
well.

Generally, a refinement approach should be semantically
compatible. That means, if a concrete statechart is a refine-
ment of an abstract one, then the structure and the behav-
ior specified by the abstract one should in a certain sense
be preserved (or reflected) by the concrete one. This prop-
erty is formulated via forward (and backward, respectively)
morphism between coalgebras as discussed in [16].

The refined statechart may impose further functional and
nonfunctional requirements in addition to those imposed by
the given abstract statechart. In this paper, we only focus on
behavior refinement which relates statecharts with the same
event set. We first recall the definition of behavior refine-
ment in the generic setting, then we instantiate it in the con-
text of statecharts and give a family of refinement laws ac-
cording to the definition.

4.1. What is Behavior Refinement?

The most fundamental notion of refinement underlying
the coalgebraic framework is behavior refinement. In the
following we recall the precise definition of behavior re-
finement in the generic context and the notion of simulation
being used as a sound proof technique for behavior refine-
ment [16].

In data refinement, there is a ‘recipe’ to identify a re-
finement situation: look for a retrieve function to witness
it. I.e., a morphism in the relevant category, from the ‘con-
crete’ to the ‘abstract’ model such that the latter can be re-
covered from the former up to a suitable notion of equiva-
lence, though, typically, not in a unique way. In [18] such a
retrieve function is an epi and the ‘suitable notion of equiv-
alence’ is, of course, ��� isomorphism.

In our coalgebraic framework, however, things do not
work this way. The reason is obvious: initial states preserv-
ing coalgebra morphisms are known (e.g., [21]) to entail
bisimilarity. Therefore we have to look for some weaker no-
tion of morphism between coalgebras. This is formalized
by forward (and backward) morphisms between coalgebras
([16]), building on the notion of order on an endofunctor,
which is defined in [8].

Given a ��� endofunctor �, an order � on � is defined
as a functor � from ��� to �������� (concretely, map-
ping every set � into a collection of preorders�����) mak-
ing the following diagram to commute:

������������

�
���

�
�

� ����

�
�

where � is the forgetful functor which forgets the preorder
structure for every preordered set and gives its underlying
set. In the sequel � will be referred as a refinement pre-
order. Then,

Definition 4.1 Let � be an extended polynomial functor on
��� and consider two �-coalgebras � � ��� � � � �

����� and � � ��� � � � � ��� ��. A forward morphism
� � �� � with respect to a refinement preorder�, is a func-
tion from � to � such that

�� Æ � � � Æ �

Dually, � is called a backward morphism if

� Æ � � �� Æ �

It has been proved in [16] that forward (respectively,
backward) morphism preserves (respectively, reflects) tran-
sition relations of coalgebras.

Forward and backward morphisms compose respectively
and both can be taken as witnesses of refinement situations.
Formally, behavior refinement between coalgebras is de-
fined as the existence of a forward morphism up to bisimi-
larity.

Definition 4.2 Given two coalgebras � and �, � is a behav-
ior refinement of �, written � �� �, if there exist coalge-
bras 	 and
 such that � � 	, � �
 and there exists a (ini-
tial state preserving) forward morphism from 	 to
.

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

Example 4.1 The exact meaning of a refinement assertion
� �� � depends on the refinement preorder � adopted. For
example, we can define the preorder for extended polyno-
mial functor � by induction as follows:

� ��� � iff � � �

� �� � iff � �� �

� ������ � iff ��� ��� ��� � ��� ��� ���

� ������ � iff

�
� � ���

� � � � ���
� � �� ��� �

�

� � ���
� � � � ���

� � �� ��� �
�

� ��� � iff �� � �� ���� �� ����

� ��� � iff �	 � �� �	� � �� 	 �� 	�

Here �� (��, respectively) are the projection (injection) func-
tions for the products (sums). A behavior refinement of non
deterministic behavior based on �� captures the classical
notion of nondeterminism reduction.

A behavior refinement can be established by the exis-
tence of a simulation
 connecting the state spaces of the
‘concrete’ and the ‘abstract’ coalgebras. Again, the notion
of a simulation also depends on the adopted refinement pre-
order.

Definition 4.3 ([8]) Given a ��� endofunctor � and a re-
finement preorder�, for two �-coalgebra � � ��� � � �
��� and � � ��� � � � � �� � define a lax relation lift-
ing as an operation
	����� on relations assigning a re-
lation
 to � Æ��
� Æ �, where Æ is relational composi-
tion.

A simulation is just a
	����� coalgebra, i.e., a rela-
tion
 such that, for all � � �� � � � , 	�� �
 �
 �
	�� � �
 �
	������
�.

Note that the expression forward and backward simula-
tions are used in data refinement [5, 10], where they are
usually denoted by � and ���. Although our use of them
is a bit more specific (corresponding to the existence of a
forward (respectively, backward) morphism), the definition
of simulation above includes both � and ���-simulation
because � is reflexive. Actually, if we let the first � in
� Æ��
� Æ � be �, then the result simulation corresponds
to ���-simulation, i.e. ��
� Æ � � Æ
. If we let the sec-
ond � be �, then the result simulation corresponds to �-
simulation, i.e. Æ
�� � ���
���� Æ �. Furthermore,
simulation provides a sound proof technique for behavior
refinement. See [16] for the proof of the soundness of sim-
ulation for behavior refinement.

4.2. Refinement for Statecharts

This section presents some discussions on refinement
for statecharts. We start by proposing a suitable refinement

preorder and formalizing the notion of simulation for stat-
echarts. According to the coalgebraic semantics of stat-
echarts, the state spaces represent sets of configurations.
Thus a simulation relation in the style of the Milner-Park
simulation relation between abstract and concrete state-
charts is given in the following definition.

Definition 4.4 Let �� � ���� ��� ��� be an abstract stat-
echart and �� � ��� � �� � ��� a concrete statechart, 	 �
�� is an arbitrary event in��. The simulation relation
 is
defined as the greatest binary relation
 � ���� �����
satisfying the following conditions:

1. Non-determinism reduction: ���
�� � ��
�
��

��
�
�� ���

�
� ���

�
����

�
� ��

�

��

�
�;

2. Lack of new divergence: ��
�� � ����	�
�
	�� � �� �

�� � ��
�
������� � �����	�

�
	�� � �� � ��� � ��

�

�
��

������;

3. Lack of new deadlocks: ���
�� � ���� � ���� � 	 �

� � ���
�
�� ��

�
� �� ��������� � ����

�
�

����� 	 � � � ���
�
����

�
� �� ���������;

4. Stuttering transition introduction: ���
�� � ��
�
��

��
�
�� ��

�

��;

5. Stuttering transition removing: ���
�� � ��
�
��

��
�
�� ��
�

�
�

.

The presence of condition 1 in Definition 4.4 is con-
sistent with the refinement preorder given in Example 4.1.
Condition 2 means that the refinement does not authorize
new infinite loops with no interaction with the environment.
Condition 3 implies that any deadlock in �� corresponds to
a deadlock in ��, which means that new deadlocks are for-
bidden in the refinement. Define a trace as a finite sequence
of external events in which a statechart participates with its
environment, then Condition 4 together with Condition 1
mean that every trace of �� refines some trace of ��. Be-
cause idle steps modulo observation equivalence of states,
the simulation can be obtained by either introducing or re-
moving stuttering transitions. This is illustrated by Condi-
tion 5 together with Condition 4.

Similar to Example 4.1, we can define the refinement
preorder for other conditions. For example, if we take the
singleton set � � ��� for denoting deadlock, then condi-
tion 3 corresponds to the following preorder (The only dif-
ference with Example 4.1 is ������):

� ������ � iff

�
� � ���

� � � � ���
� � �� ��� �

�

� � ��� � � � ���

Our notion of simulation for statecharts is based on one
assumption which has not been made explicit so far. Basi-
cally, the events triggering transitions and the actions being
generated are assumed to be atomic and terminating. That’s

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

why we do not consider causality here, by which one tran-
sition may generate new events which may in turn trigger
some new transitions while disabling others. Without the
assumption, it is difficult to reason about the effect of be-
havior of one statechart. However, the assumption does not
imply that all events and actions have to be atomic and ter-
minating. In other words, one macro-step does not have to
be a micro-step. The differences of the micro-steps in one
macro-step can be hidden from outside by a natural trans-
formation, which is called a view in [9].

Simulations have some important properties, which are
particularly useful for reasoning refinement.

Proposition 4.1 For a statechart �� � ��� � �� � ���, the
identity relation on ���� , denoted by ���� � ���� �
���� , is a simulation.

Proposition 4.2 Let �� � ���� ��� ���, �	 �
��� � �� � ��� and �� � ��� � �� � ��� be state-
charts, For two simulations
 � ���� � ���� and

� � ���� � ���� , we have that
� Æ
 is still a simu-
lation.

Proposition 4.3 Let �� � ���� ��� ��� and
�� � ��� � �� � ��� be two statecharts, for simula-
tions
 � ���� � ���� and
� � ���� � ����,

 �
� is still a simulation.

In fact, for two given statecharts, there may be many pos-
sible simulations. For fixed statecharts satisfying the prop-
erties required by the definition of simulation, the least sim-
ulation is the empty relation, whereas the greatest simula-
tion is obtained as the union of all simulations. We assume
that all the simulations being used in the following are not
empty.

Definition 4.5 Let �� and �� be statecharts. A configu-
ration �� � ���� refines (or simulates) a configuration
�� � ����, denoted by �� � ��, if there is a simulation

 � ���� � ���� containing the pair ��� � ���. For-
mally,

��
�
�
 �
 is a simulation�

Note that � is the empty relation when there is no asso-
ciated simulation. From this definition, we conclude that in
order to prove that a state �� is simulated by a state �� , it is
enough to find a simulation containing the pair ��� � ���.

We now come to some properties of the refinement re-
lation on configurations. First, from the definition, we can
easily know that refinement contains all the possible simu-
lations.

Proposition 4.4 Let �� and �� be statecharts. The re-
finement relation � is the greatest simulation between their
configurations.

The refinement relation on configurations is reflexive and
transitive, as indicated by the following proposition.

Proposition 4.5 For statecharts ��, �	 and ��,

1. for any �� � ���� , �� � ��;

2. �� � �� and �� � �� imply �� � ��, where �� �
���� , �� � ���� , �� � ����.

Based on the notion of refinement of configurations, we
can define refinement for statecharts.

Definition 4.6 For two statecharts �� and��, we say that
�� is a behavior refinement of ��, written �� � ��, if
there is a simulation
 � ���� � ���� containing the
pair of their initial configurations ���� � ����.

Similarly to refinement of configurations, refinement of
statecharts also has reflexive and transitive properties.

Proposition 4.6 For statecharts ��, �	 and ��,

1. �� � ��;

2. �� � �	 and �	 � �� imply �� � ��.

4.3. Discussions on Initial Configurations and
Reachability

We have previously assumed there is only one initial con-
figuration in one statechart. However, there may be several
initial configurations. In general, one could allow, for each
statechart, a set of initial configurations. For example, the
statechart in Figure 2 has two initial configurations ���� ���
and ���� ���, and satisfies the well-formedness rules of stat-
echarts. This does not fundamentally change the idea. When
we refine a statechart with multiple initial configurations,
we only need to find a simulation relationship containing
all the initial configurations of the abstract statechart. For
simplicity, we still assume the uniqueness of initial config-
uration.

s 1 s 2

s 0 e1

e2

e3 s 3

Figure 2. Statecharts with multiple initial con-
figurations

In Definition 4.6, it is required that the pair ���� � ����
of initial configurations must be included in the simulation

. This is a rather restricted condition. In general, we only

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

need to require that ��� is simulated by some configura-
tion in ���� , which is reachable from ��� by taking a se-
quence of transitions.

By choosing for the simulation relation � the empty re-
lation, one can always prove that there is a simulation be-
tween any two arbitrary statecharts. Such an anomaly can be
ruled out by adding the reachability requirement: The ini-
tial configuration of the abstract statechart must be related
to some configuration of the concrete one which is reach-
able from the initial configuration of the concrete statechart.
This is indeed a reasonable obligation for statechart refine-
ment.

4.4. Refinement Laws

Let us look at some refinement laws for statecharts. Ad-
ditional conditions are often added whose validity is re-
quired to ensure that a law can be successfully applied.
While from the theoretical point of view a complete and
powerful set of refinement laws might be desirable, from
the practical point of view it is more important that these
conditions can be effectively checked.

The laws we give here are very elementary. Their full
power only reveals by their adequate composition to more
powerful refinement laws.

Law 1 A development process may start by creating a new
statechart with arbitrary states and transitions.

��� � �� � ��

Law 2 Adding a state to an existing statechart is a refine-
ment:

�� � � �� �� ��� ��� � �� � ����� ��

if �� � �, �	 � �� 	� � � �, such that

�� � �	� � � � � �	��� � ���� � �� 	 �
� � ���� � ����
��� � �� � Æ�� � Æ��

where
 is the state being added to ��, and
�
� �

�
��� �� � ���
�� � ��
��.

Law 3 Removing an unreachable state from a statechart is
a refinement:

�� � � �� �� ��� ��� � �� � ����� ��

if �� � �, �	 � �� 	� � � �, such that

�� � �	� � � � � �	��� � �
 � �� � ���� � �� � �
��
�� � ���� � ���� �
 �� �

and �
� �
�
���� � ��� � ���
�� � ��
��.

Law 4 We allow for the refinement of a state into a more
fine grained set of states (statecharts).

�� � � �� �� ��� ��� � �� � ����� ��

if �� � �, �
 � �, �	 � �� 	� � � � � � , such that

�
 � �� � ��
� � � � 	� � ���
�

and �
� �
�
��� �
� ��
 � ���
�� � ��
��.

Law 5 The addition of transitions is a refinement if so far
no corresponding transitions exist.

�� � � �� �� ��� ��� � �� � ����� ��

if ��
 �� �, and ��� � �� � � ��, �� � ��,
such that

������ � ������� � ����� � ������ � ���� � ������

Law 6 Removal of transitions is a refinement if alternative
transitions exist.

�� � � �� �� ��� ��� � �� � ����� ��

if �� �
 ��, and �� � �� � �� �, ��� � �� �,
such that

������ � ������� � ����� � ������ � ���� � ������
����� � �������

Law 7 Changing the target of a transition entering a non-
concurrent composite state from the composite state to one
of its substate is a refinement if every other substate of the
composite state is reachable from this substate.

�� � � �� �� ��� ��� � �� � ����� ��

if �� � ��, ��� � �� �, such that

 �� � ��� � �� � � ���� � ������ � ��������
����� � ������ � ���� � ����� � ����� � �������
������� � ������

and �� � ������, � �� �������, �������������� ��

 ���������, such that ������� � �������, for
� � �� �� � � � � �� �, ������� � ���������, and ������� � �.

Law 8 Changing the source of a transition exiting a sub-
state of one non-concurrent composite state from the sub-
state to the composite state is a refinement.

�� � � �� �� ��� ��� � �� � ����� ��

if �� � ��, ��� � �� �, such that

 �� � ��� � �� � � ���� � ������ � ��������
����� � ������ � ���� � ����� � ����� � �������
������ � ��������

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

5. Conclusions

This paper discusses a coalgebraic semantics for UML
statecharts, which is consistent with an extension of its op-
erational semantics given in [13]. Then we define an equiva-
lence between statecharts which captures a two-way refine-
ment relation. After that, we investigate the notion of be-
havior refinement generically and its instantiation for state-
charts. Finally, a family of refinement laws for statecharts is
given.

A fundamental point to be remarked in concluding this
paper, is that the notion of “refinement” typically used in
the UML specification [19] is different from the usage of
this term in literature, e.g. [20]. Our proposal goes a bit
far, based on the general refinement mechanism proposed
in [16].

Although equivalence of statecharts has already been in-
vestigated by a number of authors (see, e.g., [14]), there is
still a lack of a formal definition of refinement for state-
charts and corresponding refinement laws. One of the ben-
efits of the notion of refinement discussed in this paper is
that one can verify not only the equality between state-
charts, but also when a statechart behaves better than an-
other, a quite common situation in UML-like software de-
velopment. Bisimulation and simulation provide the proof
techniques for, respectively, equivalence and refinement un-
der this coalgebraic framework. Furthermore, the refine-
ment laws provide a syntax-based approach for construct-
ing implementations from abstract software specifications
written in statecharts, which is consistent with the seman-
tics. Results given here should be useful in reasoning and
transforming component-based designs.

For sake of brevity, transitions in a statechart triggered
by timing event are not described in this paper. One imme-
diate topic for our future work is to specify them as monoid
actions in this coalgebraic framework, like in [7], and make
the description more fine-grained.

References

[1] L. S. Barbosa and S. Meng. Generic components. In G. Hut-
ton, editor, Proceedings of First APPSEM-II Workshop, Not-
tingham, March 2003. APPSEM Network Report.

[2] A. Corradini, R. Heckel, and U. Montanari. Compositional
SOS and beyond: a coalgebraic view of open systems. The-
oretical Computer Science, 280:163–192, 2002.

[3] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8:231–274, 1987.

[4] D. Harel and A. Naamad. The STATEMATE Semantics of
Statecharts. ACM Transactions on Software Engineering and
Methodology, 5(4):293–333, 1996.

[5] C. A. R. Hoare, H. Jifeng, and J. W. Sanders. Prespecifi-
cation in data refinement. Information Processing Letters,
25:71–76, 1987.

[6] B. Jacobs. Objects and classes, co-algebraically. In B. Fre-
itag, C. Jones, C. Lengauer, and H.-J. Schek, editors, Object-
Orientation with Parallelism and Persistence, pages 83–103.
Kluwer, 1996.

[7] B. Jacobs. Object-oriented hybrid systems of coalgebras plus
monoid actions. Theoretical Computer Science, 239:41–95,
2000.

[8] B. Jacobs and J. Hughes. Simulations in coalgebra. In H. P.
Gumm, editor, Elect. Notes in Theor. Comp. Sci. (CMCS’03
- Workshop on Coalgebraic Methods in Computer Science),
volume 82, pages 245–263, Warsaw, April 2003.

[9] B. Jacobs and H. Tews. Assertional and Behavioural Re-
finement in Coalgebraic Specification. In Electronic Notes
in Theoretical Computer Science, volume 47. Elsevier Sci-
ence Publishers, 2001.

[10] H. Jifeng. Process simulation and refinement. Formal As-
pects of Computing, 1(3):229–241, 1989.

[11] J. Jürjens. Formal semantics for interacting UML subsys-
tems. In B. Jacobs and A. Rensink, editors, 5th International
Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS 2002), pages 29–44. Kluwer
Academic Publishers, March 2002.

[12] A. Kock. Strong functors and monoidal monads. Archiv für
Mathematik, 23:113–120, 1972.

[13] D. Latella, I. Majzik, and M. Massink. Towards a formal op-
erational semantics of UML statechart diagrams. In Proc.
FMOODS’99. Kluwer, 1999.

[14] A. Maggiolo-Schettini, A. Peron, and S. Tini. Equivalences
of Statecharts. In 7th International Conference on Concur-
rency Theory (CONCUR’96), volume 1119 of LNCS, pages
687–702. Springer, August 1996.

[15] S. Meng and B. K. Aichernig. Towards a Coalgebraic Se-
mantics of UML: Class Diagrams and Use Cases. Technical
Report 272, UNU/IIST, January 2003.

[16] S. Meng and L. S. Barbosa. On Refinement of Generic State-
based Software Components. In Proceedings of 10th In-
ternational Conference on Algebraic Methods And Software
Technology, AMAST’04, LNCS. Springer, 2004.

[17] E. Mikk, Y. Lakhnech, and M. Siegal. Hierarchical au-
tomata as models for statecharts. In R. Shyamasundar and
K. Euda, editors, Third Asian Computing Science Confer-
ence. Advances in Computing Science - ASIAN’97, volume
1345 of LNCS, pages 181–196. Springer, 1997.

[18] J. N. Oliveira. A reification calculus for model-oriented soft-
ware specification. Formal Aspects of Computing, 2(1):1–23,
1990.

[19] OMG. OMG Unified Modeling Language Specification, Ver-
sion 1.4 , 2001.

[20] A. W. Roscoe. The Theory and Practice of Concurrency.
Prentice Hall, 1998.

[21] J. Rutten. Universal coalgebra: a theory of systems. Theo-
retical Computer Science, 249:3–80, 2000.

[22] B. Selic, G. Gullekson, and P. Ward. Real-time Object Ori-
ented Modeling and Design. J. Wiley & Sons, 1994.

Proceedings of the Second International Conference on Software Engineering and Formal Methods (SEFM’04)
0-7695-2222-X/04 $ 20.00 IEEE

	footer1:

