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ABSTRACT 
One of tissue engineering (TE) challenges concerns the vascularization of engineered 
constructs upon implantation into the defect. In fact, for the survival of the engineered tissue 
beyond the oxygen diffusion limit, the formation of new blood vessels is mandatory. 
Therefore, this thesis aimed at designing routes towards advanced vascularized bone 
analogs, based on the combination of cells, biomaterials and inorganic components. The 
major objectives of this thesis were 1) to identify a single cell source to obtain both 
endothelial (ECs) and osteoblast-like cells (OBs); 2) to identify the optimal conditions in 
which these cells synergistically communicate; 3) to trigger the osteogenic differentiation of 
stem/stromal cells by inorganic osteoinducers and 4) to design 3D hydrogel systems for the 
controlled spatial distribution of cells. 
The use of adipose tissue (AT) as a cell pool for TE purposes is highly appealing, since its 
stromal vascular fraction (SVF) contains stem/stromal-like cells (hASCs) that can be 
differentiated into specific lineages, enhancing their potential use in a clinical setting. Under 
this context, the SSEA-4+ cellular subset of SVF (SSEA-4+hASCs) was proven to hold 
enhanced differentiation potential into ECs- and OBs-like cells, the most relevant cell types 
for bone vascularization TE routes. Using immunomagnetic selection tools, SSEA-4+hASCs 
were successfully separated and differentiated towards both endothelial and osteogenic 
lineages.  Furthermore, it was found that culturing these obtained ECs and pre-OBs at an 
initial ratio of 75:25 in a mixture of standard endothelial and osteogenic media, cells 
synergistically communicate to encourage the full differentiation of pre-OBs and the 
maintenance of ECs phenotype. Culturing SSEA-4+hASCs in presence of sNPs in basal 
condition lead to the deposition of a collagen-enriched matrix relevant for bone TE. When in 
combination with standard osteogenic factors, sNPs were able to significantly increase the 
osteogenic commitment of both hMSCs and SSEA-4+hASCs. 
Finally, to address the tri-dimensionality of the bone, hydrogels templates, based on kappa-
carrageenan (κ-CA) and chitosan (CHT), were designed to accommodate SSEA-4+hASCs-
derived ECs and OBs. The CHT coated κ-CA hydrogel microfibers, arranged in such a 
fashion to mimic the blood vessel network, were able to support the endothelial signature of 
entrapped ECs. These, upon assembly within a pre-OBs loaded matrix, are appealing to be 
templates to attain a 3D microvascular network. By decorating κ-CA with photocrosslinkable 
units, hydrogels with tunable mechanical properties and high recovery rates after 
deformation we obtained. The controlled spatial distribution of cells was achieved by 
patterning the hydrogels in well-defined geometries.  
In summary, the research work described in this thesis addressed new strategies within the 
TE field that might inspire the development of improved vascularized bone-engineered 
constructs. The use of SSEA-4+hASCs was proven to be an endearing choice of 
undifferentiated cells, while their combination with sNPs and κ-CA hydrogels displayed 
numerous advantages. Nonetheless, the unraveling of the real potential of these cells, alone 
or in combination with sNPs and/or κ-CA hydrogels, towards promoting vascularized bone 
formation yet requires in vivo confirmation.  
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RESUMO 
Um dos desafios da engenharia de tecidos consiste na vascularização após a implantação 
do implante no defeito. De facto, para a sobrevivência do substituto do tecido é essencial a 
difusão de oxigénio assim como a formação de novos vasos sanguíneos. Portanto, esta 
tese explora novas estratégias para o desenvolvimento de análogos de osso vascularizado, 
com base na combinação de células, biomateriais e componentes inorgânicos. Os objetivos 
principais desta tese foram: 1) identificar uma única fonte celular para obter tanto as células 
endoteliais (ECs), como as osteoblastos (OBs); 2) identificar as condições ideais em que 
estas células comunicam de uma forma sinérgica; 3) desencadear a diferenciação 
osteogénica das células estaminais através dos osteoindutores inorgânicos e 4) projetar 
sistemas de hidrogéis em 3D para controlar a distribuição espacial das células. 
O uso do tecido adiposo como uma fonte de células é altamente atraente para engenharia 
de tecidos. As células estaminais derivadas do tecido adiposo (hASCs) podem ser 
diferenciadas em linhagens específicas, melhorando assim o seu potencial para aplicações 
clínicas. Neste contexto, a população SSEA-4+, identificada na fração vascular do tecido 
adiposo (SSEA-4+hASCs), foi a que demonstrou melhor potencial de diferenciação em 
células endoteliais (ECs) e osteoblastos (OBs), as células mais envolvidas na 
vascularização óssea. Usando ferramentas de seleção imunomagnéticas, as SSEA-
4+hASCs foram separadas e diferenciadas em ambas linhagens: endotelial e osteogénica. 
Além disso, verificou-se que a cultura de ECs e pré-OBs numa razão inicial de 75:25, num 
meio de cultura misto, levou a uma comunicação celular sinérgica, incentivando a 
diferenciação completa das pré-OBs e a manutenção do fenótipo endotelial das ECs.  
A cultura das SSEA-4+hASCs na presença de nanopartículas de silica (SNPs) num meio 
basal, levou à deposição de uma matriz enriquecida em colagénio, essencial na 
regeneração óssea. Em combinação com fatores osteogénicos, as SNPs foram capazes de 
significativamente aumentar o compromisso osteogénico de ambas as células 
mesenquimais humanas e SSEA-4+hASCs.  
Finalmente, para resolver a tridimensionalidade do osso, modelos 3D com base em 
hidrogéis de kappa-carragenina (κ-CA) e quitosano (CHT), foram desenvolvidos para 
acomodar as ECs e OBs. Microfibras de κ-CA revestidas com CHT, dispostas de tal forma 
que mimetizam a rede vascular, foram capazes de manter a assinatura endotelial das ECs. 
Após o arranjo dentro de uma matriz enriquecida em pré-OBs, espera-se que agissem como 
padrões para gerir uma rede microvascular funcional. Seguinte, a decoração da κ- CA com 
unidades foto-reticulaveis rendeu hidrogéis com propriedades mecânicas ajustáveis e altas 
taxas de recuperação após a deformação. Uma distribuição controlada de células foi obtido 
por patterning em geometrias bem definidas. 
Em resumo, o trabalho de investigação descrito nesta tese propõe novas estratégias dentro 
da engenharia de tecidos que podem inspirar o desenvolvimento de construções de osso 
vascularizado. O uso das SSEA-4+hASCs provou ser uma escolha cativante de células não 
diferenciadas, enquanto a combinação com SNPs e hidrogéis de κ-CA exibiu várias 
vantagens. No entanto, o desenrolar do verdadeiro potencial destas células, individualmente 
ou em combinação com SNPs e/ou hidrogéis de κ-CA, no sentido de promover a formação 
de tecido ósseo vascularizado, ainda requer confirmação in vivo. 
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Chapter I 

Hydrogels in Bone Tissue Engineering: 
a Multi-Parametric Approach 

 

ABSTRACT 

Hydrogels have gained interest as templates in bone tissue engineering, essentially due to 

their resemblance to tissues extracellular matrix. In fact, due to their high hydration state, 

they provide a suitable environment for cell encapsulation, growth and differentiation, as well 

as active ingredients loading and release. However, they lack mechanical stability and ability 

to calcify. This chapter will review the multi-parametric aspects considered in the design of 

hydrogels as template for bone regeneration, by exploring current strategies aimed at 

improving hydrogels mineralization and consequently bone regeneration. Moreover, design 

tools for the introduction of micro-architectural features and generation of shape controlled 

tissue modules based on hydrogel matrices, will be also analyzed, with particular emphasis 

on targeting neovascularization, i.e., on the use of hydrogels as supportive templates for in 

situ development of vascular networks.  
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I.1. INTRODUCTION 

Bone is a complex supporting tissue with functions in the movement and in the maintenance 

of postural stability in cooperation with muscles. Despite its hard structure, bone exists in a 

constant state of dynamic turnover, known as remodeling, even when growth and modeling 

of the skeleton have been complete1,2. It is estimated that approximately 6% of all human 

bones are remodeled in a year3. However, upon injury, the quality of life of patients 

dramatically changes. The burden of severe long-term pain and limitation in performing 

basic tasks, such as walking, frequently causes social and psychological distress. Even 

though bone has a notable regenerative ability, a considerable bone loss and a hostile 

microenvironment, as it happens in the case of severe trauma, tumors resection, surgical 

revisions or developmental deformities, can hinder this capacity4. 

Despite decades of intensive research, the grafting of autologous bone derived from the iliac 

crest remains the gold standard of bone replacement treatments. Unfortunately, the amount 

of available bone graft is limited and the surgical harvesting involves sever donor-site pain 

and morbidity, which can be as high as 25%5. Moreover, besides being an expensive 

procedure, some complications, such as bone non-unions and blood loss6,7, may occur thus 

requiring additional medical procedures. Cadavers allogeneic bone grafts have been used 

as alternatives providing a structural host tissue to grow. Nonetheless, albeit avoiding donor-

site morbidity, these grafts possess low osteoinductive properties8 and their success is often 

jeopardized due to infections, transmitted diseases, delayed inosculation and 

immunogenicity issues9. 

The significant clinical shortcomings of auto/allografts have been a strong impetus for the 

development of alternative approaches for bone replacement and regeneration. Worldwide, 

approximately 2.2 million bone graft procedures (autologous or banked bone) take place 

annually9, and these numbers are expected to grow due to aging population. The bone graft 

substitute market was evaluated at $1.9 billion in 2010 and is forecast to reach $3.3 billion in 

2017. The main driving force of the market is the increase in orthopedic procedures, aging 

population and increased preference of emerging bone graft substitutes over auto/allografts.  

Demineralized bone matrix (DBM), produced by the extraction of the mineral content from 

allogeneic bone, contains growth factors and proteins relevant to the bone 

microenvironment10. Whilst the osteoinductive effect of DBM has been well documented in 

animal studies, there are merely few reports on human clinical studies11, as its-heterogeneity 

has an impact on DBM properties and clinical performance12. The increased interest in 

providing robust solutions has nourished the expansion of the researchers vision towards 

understanding the complex and multi-parametric aspects of bone regeneration (mechanics, 

chemistry, biological components, integration) using bio-inspired parameters for designing 

new bone substitutes.  



Chapter I. Hydrogels in Bone Tissue Engineering: a Multi-Parametric Approach 

 

 6 

The avenue of tissue engineering (TE) explores these facets of bone repair/healing by the 

use of cells, scaffolds and in some instances biological factors combinations towards the 

replacement, repair or restoration of function of a damaged tissue8,13,14. The selection of the 

most suitable material to produce the scaffolds to be used in bone TE is a determinant step 

towards achieving appropriate mechanical support, biocompatibility, proper integration with 

the host tissue, osteoinductive, osteoconductivity, among others. Several materials, such as 

metals15, ceramics16, and polymeric systems17, have been proposed for bone replacement, 

but in the context of TE, the poor degradability of ceramic scaffolds and the non-

degradability of metallic compounds impairs new bone tissue ingrowth. Polymers, on the 

other hand, are known for enabling the design of their chemistry and architecture during 

synthesis and processing, thus allowing tailoring 3D scaffolds degradation rate to match the 

regeneration/repair rate of the tissue to be replaced.  

Until recently, the majority of the polymeric bone substitutes were pre-fabricated constructs 

that require surgical implantation via invasive procedures. Clinically, there is an increased 

demand for materials that can be implanted under minimally invasive procedures, such as a 

simple injection18,19. Ideally, the viscosity of such materials should be low enough to allow its 

injection within the defect site and consequent hardening after injection taking advantage of 

mild crosslinking routines. This strategy would enable the incorporation of drugs, cells, and 

growth factors in the viscous solution before administration20. From a TE standpoint, and 

considering that within natural tissues cells are embedded in a tri-dimensional (3D) network 

combining a complex extracellular matrix (ECM), soluble bioactive factors products of homo- 

and hetero-typical cell-cell and cell-ECM interactions21, microenvironments that closely 

mimic those features are prone to successfully lead tissue regeneration. Various 3D 

templates based on hydrogels, that provide biomimetic environments depicting motifs 

inspired by the role of ECM in regulating bone regeneration, have been proposed22,23,24. 

Such matrices are conceived to integrate bone tissue and facilitate regeneration by 

potentiating the bone’s inherent capacity to heal, thus acting as in situ bioreactors. 

In this chapter, the bone matrix deposition and mineralization requirements will be presented 

in the perspective of using hydrogels as 3D templates with tunable properties that may fulfill 

these specifications. First, a brief overview on the bone biology and the dynamic role of ECM 

in bone remodeling/regeneration will be provided. Subsequently, this chapter will focus on 

strategies to engineer ECM-mimicking hydrogels by using inorganic components, matrix 

chemistry, spatial cells distributions and growth factors as elements of multi-parametric 

approaches towards a successful bone TE outcome. 
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I.2. BONE REGENERATION FEATURES 

I.2.1. A snapshot on bone biology and ECM role in regeneration 

Bone is a specialized connective tissue that is exquisitely designed as the load-bearing 

structure of the body. Its configuration, consisting in a combination of a dense, compact 

structure (cortical bone) with a highly porous one (cancellous/trabecular bone), provides the 

main resources to accomplish this task. Cortical bone makes up to 80% of the total bone 

mass in adults and comprises an extremely dense mineral structure, mainly hydroxyapatite, 

(HA), derived from calcium phosphates (CaPs)25, with low porosity (20%) and high 

mechanical compressive strength (190 MPa)26 and an elastic modulus of around 20 GPa27. 

The functional unit of cortical bone structure is represented by the osteon that contains 

central haversian hollow canals that host nerves and blood vessels28. In contrast, cancellous 

bone, which accounts for the remaining 20% of the total bone mass29, does not have 

osteons, due to the high porosity (50-90%) and surface area that encourages a superior 

penetration of blood microvessels. Due to its sponginess feature, the cancellous bone is 

characterized by low mechanical properties (~10MPa)26 and an elastic modulus of around 15 

GPa27.  Cancellous bone is mainly constituted of type I collagen and small amounts of non-

collagenous proteins (NCPs) such as osteocalcin (OCN), osteopontin (OPN), osteonectin 

(ONC), bone sialoproteins (BSPs), and bone morphogenetic proteins (BMPs)30,31. It has 

been demonstrated that collagen serves as an organic template or framework for bone 

mineralization and provides the bone tensile strength and flexibility32, while the anionic NCPs 

act as nucleators or inhibitors of mineral deposition31,33. Recent studies have identified a 

polysaccharide-enriched matrix, such as glycosaminoglycans (GAGs), at the organic-mineral 

interface in bone34, with important role in both bone formation and bone homeostasis, 

possibly guiding mineral size, morphology and crystallinity35. The carboxyl or sulfate groups 

of GAGs are thought to contribute to the interfacial interaction and balance between 

inorganic and organic phase (Figure I.1). On the other hand, the inorganic phase 

contributes to bone stiffness and is responsible for its compressive strength, due to its 

energy-storing capacity. Although collagen may have less effect on bones biomechanics 

than inorganic components, it may have a profound effect on bone brittleness32. There is 

evidence that reduction of collagen content can reduce the energy required to cause bone 

failure (toughness) and increase the fracture risk (osteoporosis)36.  

Bone mineralization is thought to start with the synthesis of the organic matrix that then acts 

as a template for the deposition of insoluble, dispersed, amorphous CaPs. The formation of 

CaPs depots is mediated by the presence of calcium-binding moieties and the enzyme-

mediated production of free phosphates37. The anionic proteins attached to collagen are 

believed to mediate the stabilization of the amorphous CaPs in the early stage of 

mineralization and the subsequent formation of nano-sized particles38. These precursors 
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undergo several crystalline phase transitions before reaching a stable crystalline apatitic 

CaPs, or HA. These nanocrystals act as nucleation sites for further crystal growth until the 

inorganic, crystalline phase overtakes the template39.  

 
Figure I.1.  Recapitulating the bone-matrix composition: representation of the inorganic and organic 

compartments, as well as the GAGs-enriched region at the organic–mineral interface.  

 
Bone is constantly remodeling its mineralized matrix, which is a complex process that relies 

on the synchronization of bone resorption and bone deposition events coordinated by cells 

(osteoprogenitors and differentiated, mature cells) (Figure I.2). Within the bone structure 

relies the bone marrow that comprises of hematopoietic cells and supporting stroma. Until 

recently, stromal cells were thought to contribute solely to the hematopoietic 

microenvironment, however, they are now recognized as being progenitor cells of skeletal 

tissues40,41 Osteoprogenitor cells  (osteoblast precursor cells) found on the internal surface 

of bones, can be also found on the external side of the bone, in the periosteum42 and may 

also reside in the microvasculature supplying bone. They are derived from 

mesenchymal/stromal stem cells (MSCs) in the bone marrow where they are found in a 

resting phase. Upon stimulation, these cells can be activated towards secreting and 

modeling bone matrix. As a consequence, many bone TE strategies rely on the ability of 

MSCs to commit towards osteogenic lineage and restore the mineralized matrix43. 

Osteoblasts, anchorage dependent cells, are highly responsive to the mechanical and 

chemical stimuli that are propagated through multiple cell-cell and cell-matrix interactions44. 

During collagen-enriched matrix deposition, osteoblasts secrete bone-related proteins and 

active factors that trigger the invasion of endothelial cells and the development of a vascular 

network within the matrix45,46, concomitant with the matrix mineralization30. Osteocytes, 

terminally differentiated osteoblasts, are entrapped in the mineralized ECM and have an 

active role in the maintenance of ECM and homeostasis46. They are also responsible for 

sensing the mechanical stress and signaling for bone remodeling47. While osteoblasts 

deposit the organic matrix, osteoclasts that are easily recognized by their multinuclearity, are 
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responsible for bone breakdown and resorption48. Additionally, an unbalanced remodeling 

can lead to osteoporosis (bone resorption > bone formation) or osteopetrosis (bone 

resorption < bone formation)49. Despite its intrinsic ability to self-regenerate and remodel, 

inherent osseous processes are not able to repair a large defect.  It is therefore mandatory 

to consider the structural features of ECM along with the biological principles that master the 

cell-cell and cell-matrix interactions while developing novel strategies towards bone 

regeneration.  

 
Figure I.2. Bone remodeling cycle orchestrated by the osteo-relevant cells: osteoprogenitors, 

osteoclasts, osteoblasts and osteocytes. Bone remodeling involves the removal of mineralized bone 

by osteoclasts followed by the formation of bone matrix through the osteoblasts that subsequently 

become mineralized. The remodeling cycle consists of three consecutive phases: resorption, during 

which osteoclasts digest old bone; reversal, when mononuclear cells appear on the bone surface; and 

formation, when osteoblasts lay down new bone over the area previously remodeled by osteoclasts, 

until the resorbed bone is completely replaced. The activity of osteoclasts and osteoblasts is 

controlled by the osteocytes.  

 

I.2.2.  Growth factors involved in bone regeneration  

Bone regeneration is a multistep process that involves the interplay between several cells 

such as inflammatory cells, vascular cells, mesenchymal progenitor cells and osteocytes. In 

vivo, their behavior is orchestrated by a specific set of growth factors (GFs) and cytokines 

that dictate cellular proliferation, migration and differentiation during bone repair50. In the first 

step of bone healing, inflammatory GFs and cytokines, including fibroblast growth factor 

(FGF), interleukin-1 (IL-1) and -6 (IL-6), macrophage colony-stimulating factor (M-CSF) and 

tumor necrosis factor-α (TNF-α), are involved in the recruitment of inflammatory cells. As the 

formation of the fracture callus occurs, high concentrations of pro-osteogenic factors, such 

as platelet-derived growth factor (PDGF), TGF-β, FGF-1, insulin-like growth factor (IGF), and 

bone morphogenic proteins (BMPs), stimulate the engagement of mesenchymal progenitor 

cells and their subsequent proliferation and differentiation. Concomitantly, pro-angiogenic 
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factors, such as vascular endothelial growth factor (VEGF), FGF, BMPs and TGF-β, trigger 

the invasion of endothelial cells (ECs) into the newly formed soft callus re-establishing 

vascular network connection. Additionally, the intimate crosstalk between osteoblasts and 

ECs is mediated through the release of VEGF by osteoblasts that act on ECs to promote 

angiogenesis, and through the release of BMPs by ECs, which lead osteogenic 

differentiation51. The role of indirect cellular signaling, through the release of endogeneous 

GFs, is complemented by the direct cell-cell contact via gap junctions coupling, for example 

between ECs and osteoblasts52.  

 

I.3. HYDROGELS 

Hydrogels are 3D crosslinked insoluble and hydrophilic polymeric networks that are formed 

by the reaction of one or more monomers through hydrogen bonds or van der Waals 

interactions between the constitutive chains24,53. The hydrogel network can be fabricated via 

physical or chemical crosslinking methods. While physical crosslinking is achieved by the 

formation of physical bonds, the chemical crosslinking consists in the formation of stable 

covalent bonds, mediated by crosslinking agents, between the polymer chains54. Hydrogels 

can be classified according to their origin (natural or synthetic), method of preparation 

(homopolymers, copolymers, interpenetrating networks), internal architecture (amorphous, 

semicrystalline or hydrogen bonded structures) or electric charge (anionic, cationic, neutral, 

amphiphilic)24. In addition, hydrogels exhibit a great versatility for the integration of 

biomacromolecules or sensitive drugs aimed at directing tissue regeneration. The mild 

encapsulation options enable the controlled load/release of these active ingredients without 

jeopardizing their activity (Figure I.3). From a practical point of view, there is a number of 

hydrogels can be implanted using minimally invasive surgical procedures, at the target 

(injury) site, since they can be applied as a liquid that further hardens in situ.  

 
Figure I.3. Hydrogels bear the potential of incorporating cells, bioactive agents and inorganic 

ingredients, thus, enabling the formation of a 3D biomimetic mineralized bone-like template.  

 

I.3.1. Synthetic vs natural hydrogels 

Synthetic hydrogels provide chemically programmable and reproducible platforms as their 

architecture can be easily tailored, allowing a better control over their properties, such as 
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degradation, swelling, mechanical performance, bioactivity etc. Polyethylene glycol (PEG) is 

one of the most extensively used non-degradable polymer for hydrogels fabrication due to its 

hydrophobicity and facilitated chemical functionalization through available reactive end-chain 

moieties. Other non-degradable polymers used for bone tissue engineering applications 

include poly(2-hydroxyethyl methacrylate) (PHEMA)55 and poly(methyl methacylate) 

(PMMA)56. Polymers such as poly(vinyl alcohol) (PVA)57, poly(actic-co-glycolic) acid 

(PLGA)58, poly(propylene oxide) (PPO)59, poly(propylene fumarate) (PPF)60 or 

oligo(poly(ethylene glycol) fumarate) (OPF)61 have been also proposed for applications in 

TE. Worth mentioning are the thermoresponsive polymers, such as poly(N-

isopropylacrylamide) (PNIPAAm)62,63, that are able to form free-standing hydrogels at 

physiological temperature (37oC), enabling their use as injectable delivery devices without 

the use of external crosslinkers, that might jeopardize the cellular viability or the activity of 

growth factors.  Even though there is a wide range of synthetic polymers, with tailorable 

chemical backbone, their use is often limited by biocompatibility issues and poor 

degradability64.  

On the other hand, natural-origin polymers stand out as nature-inspired bio-entities with 

attractive biocompatibility and biodegradability features. In fact, these materials are more 

prone to undergo enzymatic degradation as many of the enzymes responsible for that 

process are found in the human body. The monomer chemistry, chain length and flexibility 

enable a unique control of hierarchical organization (macromolecular architecture) and 

functionality. This molecular print directly influences the crosslinking, gelation and 

processing/handling properties together with the degradation patterns and cellular 

response65. Hence, there is a wide range of natural-origin polymers (chitosan66, hyaluronic 

acid67, chondroitin sulphate68, pullulan, dextran69, alginate70, xanthan71, pluronic F12772, 

carboxymethyl cellulose73, carrageenan74 or gellan gum75) that have been intensively 

investigated under the scope of TE. However, their use is associated with high degrees of 

variability, limited processing routes or lack of cellular responsive tags, respectively. For both 

synthetic and natural-origin polymers, the grafting of peptide sequences within their 

backbone, such as arginine-glycine-aspartate (RGD) or matrix metalloproteinases (MMPs)-

sensitive domains, allows modulating the cells attachment, as well as their migration and 

proliferation within the hydrogel along with its controlled degradation76.  

For a more comprehensive review on natural and synthetic hydrogels used in TE field, 

please consult other exhisting literature17,65. The following section will focus on the current 

strategies towards the use of hydrogels as templates to sup ort mineralization, blood vessels 

formation and bone formation.  
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I.3.2. Hydrogels as ECM mimics 

Hydrogels are characterized by their ability to retain large amounts of water or biological 

fluids (up to 99%), due to the presence of the insoluble 3D polymeric and interconnected 

microporous network. The aqueous environment enables the oxygen diffusion and fluid 

transport, such as nutrients and cell metabolic by-products, in and out of the hydrogels24,77. 

This 3D environment facilitates the mastering of biochemical and biomechanical interactions 

with encapsulated cells. Moreover, by grafting functional groups, specific cellular processes 

such as adhesion, spreading, proliferation, differentiation and consequent matrix deposition 

and organization can be triggered. These features resemble those of the native ECM, 

therefore, hydrogels have been increasingly considered as candidate materials for TE 

applications. For instance, protein-based scaffolds or hydrogels, such as collagen78,79, 

gelatin80,81 and fibrin82 are very attractive due to their ability to mimic the ECM 

biodegradability and inherent biochemical properties.  

Recently, it has been also proposed obtaining hydrogels incorporating DBM, as it contains 

GFs, NCPs and type I collagen, key elements of the bone ECM. In order to facilitate 

handling, formulation and reliable delivery in clinical applications, the DBM particles were 

incorporated into water-soluble gels, such as the hyaluronic acid83 or 

carboxymethylcellulose84.  Sawkins et al. proposed the processing of DBM as a soluble, 

hydrogel-like formulation, to avoid the use of liquid carriers. The DBM processing involved a 

mineral extraction in acid conditions, followed by lyophilization steps. Further, the DBM was 

dissolved in pepsin and the gelation of the DBM pre-gel solution occurred within at 37oC, 

upon pepsin neutralization. The DBM hydrogels exhibited sigmoidal gelation kinetics 

(formation of collagen aggregates at higher concentration) consistent with the nucleation and 

growth mechanism found in bone85. However, further studies need are required to assess 

the osteoinductivity and osteoconductivity of these hydrogels, and where their in vitro 

potential can be translated into in vivo settings.  

Meanwhile, bone TE strategies have extensively exploited the glycan components (GAGs) 

to address the formation and maintenance of bone tissue. The carboxyl or sulfate groups of 

GAGs are thought to contribute to the interfacial interaction and balance between inorganic 

and organic phase. The resemblance of some polysaccharides with GAGs chemistry has 

enabled their use as templates for bone mineralization66. Several GAGs-analogs were 

proposed for bone tissue engineering, such as chitosan66, hyaluronic acid67, chondroitin 

sulphate68, pullulan and dextran69, together with other biomaterials (alginate70, xanthan71, 

pluronic F12772, carboxymethyl cellulose73, carrageenan74 or gellan gum75). 

TE approach aims at replicating the interactions that naturally occur in the bone tissue by 

using ECM-like structures (scaffolds), cells and/or growth factors in a coordinated fashion to 

achieve a biomimetic construct. Moreover, these scaffolds should be finely tailored towards 
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mimicking the intricate and organized ECM meshwork into a dynamic native 

microenvironment (Figure I.4). 

 
Figure I.4. TE approach for the bone regeneration and restoration of vascularization, including a 

multi-faceted strategy: cells, inorganic components, soluble factors and 3D matrix.  

 

I.4. HDYROGELS MINERALIZATION 

The development of bone-like composites with improved mechanical and biomineralization 

features calls for a biomimetic approach inspired in natural bone. The use of hydrogels as 

modular scaffolds has been mainly considered for soft TE (skin, cartilage, cardiovascular 

applications), however, their versatility has resulted in increased interest in assessing their 

potential to replicate the organic phase involved in bone healing together with acting as 

templates for mineralization. Still, hydrogels are associated with a number of limitations, 

such as their lack of mineralization capacity upon implantation64, or the inherent poor 

mechanical properties that restrict their use to non-load-bearing applications86. However, the 

network biomimetic reinforcement can be achieved by the addition of other phases64,87,88 or 

other approaches, such as chemically-, GFs- or cell- induced mineralization, which will be 

briefly discussed below. 

 

I.4.1. Incorporation of inorganic components in hydrogels 

The concept of combining hydrogels with inorganic components for bone tissue engineering 

is inspired by the composite nature of bone itself. As it happens during bone healing, 

inorganic elements act as seeds for HA formation, enabling and reinforcing the integration 

with host surrounding bone tissue89. The hydrated state of hydrogels permits the initiation of 

apatite deposition by the heterogeneous nucleation of apatite induced by the phosphate, 

silica and calcium ions dissolved from the ceramic components38,90.  While hydrogels can 
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provide an excellent 3D template to foster cell growth and ECM deposition, the presence of 

inorganic minerals enables their osteoconductivity (i.e. supporting the bone formation) by 

acting as substrates with high affinity for proteins and GFs, which directly affects the 

adhesion, proliferation and differentiation of progenitor cells. Moreover, the addition of 

inorganic particles, by reinforcing the network strength, has been shown to increase 

hydrogels stiffness, in turn known to play a role in cell differentiation, including towards the 

osteogenic lineage91. Nonetheless, due to the elasticity of the hydrogel network and 

facilitated handling, brittle ceramic particles can be delivered in a moldable or injectable 

formulation. For instance, Oliveira et al.73 evaluated the potential of carboxymethylcellulose, 

hydroxypropylmethylcellulose and alginate hydrogels as injectable HA microspheres 

carriers, using an orthopedic injectable device designed for minimal invasive bone surgeries. 

There are many nano- and microstructured bioactive inorganic materials, such as bioglasses 

or apatitic CaPs (hydroxyapatite, HA) that can be used to render mineralized hydrogels. 

These materials form a strong bond with naturally occurring HA, present at the implantation 

site92, enabling a smooth integration of the implant with the host bone tissue. Bioglasses are 

amorphous solids containing silica (SiO2<60 w%) that are bioactive due to their high 

reactivity in aqueous environments. The most commonly used forms of CaPs are β-

tricalcium phosphate (β-TCP), amorphous calcium phosphates and apatitic calcium 

phosphate (HA). These ceramic materials strongly resemble the nanostructured mineral 

phase of bone and are found in many normal and pathological calcified tissues in the human 

body93. In addition, carbonated apatites have a buffering effect on the acidic pH caused by 

the degradation by-products, thus minimizing excessive acid environment and inflammation 

at the implantation/injury site94. 

In fact their combination with varied biomaterials and 3D structures aiming at bone 

regeneration has been following different strategies with interesting outcomes, recently and 

thoroughly reviewed95,96,97. 

Recently, carbon nanotubes (CNTs) and graphene98 were proposed as reinforcing agents of 

hydrogels, due to their outstanding mechanical properties. For instance, the rod-like shape 

and nanoscale dimensionality of CNTs allow the morphological mimicking of fibrillar (rod-

like) proteins, such as collagen, present in bone ECM, thus, acting as guiding templates for 

mineral deposition99,100.  Even more, the combination of nano-scaled single walled CNTs 

with biomimetic features and HA nanoparticles significantly enhanced the mechanical 

properties of a chitosan hydrogel and synergistically improved osteoblasts adhesion and 

proliferation101. Despite of being inert materials that cannot be mineralized, recent studies 

showed that graphene-based hydrogels promote cell adhesion, spreading and proliferation, 

and stimulate the osteogenic differentiation of stem cells, without additional inducers97. 

Graphene based hydrogels were shown to preserve the osteogenic differentiation of 
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encapsulated bone marrow MSCs, under hypoxic conditions102. When subcutaneously 

implanted in rats, the graphene films produced minimal capsule formation and mild host 

tissue response, with evidence of blood vessel formation and mineralization97. Thus, the 

nano-scale biomimetic features of these systems, together with the hydrogel 3D structure, 

created a favorable environment to support in vitro osteogenic differentiation of cells and in 

vivo mineralization. 

 

I.4.2. Soaking / incubation treatments  

Within the bone TE context, bioactive materials stand out as preferred candidates for 

development of bone-mimicking constructs, due to their ability to induce and sustain apatite 

deposition in physiological relevant conditions. If the organic polymer is provided with 

apatite-forming ability, it is expected to dynamically resemble the organic phase of bone. 

In literature, several in vitro methods have been developed to induce the spontaneous 

mineralization of biomaterials or to assess whether a certain material composition 

undergoes biomimetic mineralization. Amongst these methods, the soaking/incubation of 

materials in mineralization baths has gained considerable interest.  With the development of 

simulated body fluid (SBF), a polyionic mixture, that contains polyelectrolytes in 

concentrations nearly equal to those found in human plasma103, biomimetic processes to 

deposit/coat apatite on organic polymers have been proposed. The biomineralization 

process is based on the consumption of Ca2+ and PO4
3- ions, present in the SBF solution, 

thus, resulting in the spontaneous growth of bone-like apatite nuclei on the surface of 

biomaterials. Additionally, testing the apatite-forming abilities of biomaterials enables to 

predict their mineralization behavior in vivo after implantation. In fact, the bioactivity 

assessment, under SBF treatment, is a pre-requisite for screening material compositions as 

suitable for bone TE. Noteworthy, the outcome of an SBF treatment is highly depended on 

the composition of the formulation – either the chemical backbone possesses functional 

groups that sustain the biomimetic mineralization or the formulation contains CaPs 

precursors (already discussed in section I.4.1) that act as nucleation sites towards apatite 

deposition.   

For instance, knowing that carboxyl groups (–COOH) have a catalytic effect for 

heterogeneous apatite nucleation in SBF, Ichibouji et al.104 prepared hydrogels from various 

pectins containing –COOH groups. The authors report differences in the amount of bound 

calcium and mineral formation and suggest that the apatite-forming ability of the pectin gels 

is governed by not only the amount of carboxyl groups, but also changes in Ca2+ 

concentration and pH in surrounding solutions. 

Similarly, Zainuddin et al. showed the formation of a 0.5µm apatitic layer on the surface of 

chemically defined PHEMA hydrogels upon immersion in SBF105. The calcification process 



Chapter I. Hydrogels in Bone Tissue Engineering: a Multi-Parametric Approach 

 

 16 

occurred predominantly through spontaneous precipitation of CaPs. Reducing the relative 

number of oxygen atoms in the copolymers had a direct effect of early calcification, however, 

there were no differences in the extent of mineralization for prolonged soaking times. In the 

case of poly(ethylene imine) (PEI), the crosslinked hydrogels were shown to be efficient 

templates for CaPs deposition in SBF. In contrast, the non-crosslinked PEI did not lead to 

the phosphate nucleation and its subsequent growth in SBF106. The authors suggested that 

the un-crosslinked PEI is more protonated, and thus can release more protons, leading to 

the decrease of the local pH and, in consequence, a higher solubility of CaPs, hindering its 

precipitation.  

Despite the promising results, a limitation of using soaking treatments is the deposition of 

the apatitic layer only at the interface between SFB and the hydrogel substrate. The 

incorporation of CaPs precursors in the hydrogel during its formation allows a homogeneous 

distribution of bioactive aagents throughout the entire structure. Upon immersion in SBF, 

these precursors act as nucleation sites or inorganic “seeds” that lead to in situ formation of 

HA and further crystal growth. The addition of inorganic agents (detailed in section I.4.1.) is 

one of the most popular method to introduce nucleation sites within inert hydrogels. As an 

example, Couto et al.107 developed thermo-responsive hydrogels with bioactive features 

based on the combination of chitosan (CHT) / beta-glycerophosphate (βGP) and bioactive 

glass nanoparticles. A CaPs-like layer was detected at the surface of the hybrid hydrogels, 

however, at a closer view, crystalline deposits were detected in the interior of the hydrogels, 

indication that the mineralization occurred beyond their surface.  

Alternatives to the addition of inorganic agents during hydrogel formation, involve the 

diffusion of Ca2+ and PO4
3- ions that triggers the in situ deposition of CaPs. For instance, 

Azami et al.108 employed a double diffusion method whereby CaCl2 and Na2PO4 diffused in a 

gelatin hydrogel to form amorphous CaP in the bulk interior of the gel.  Subsequent 

incubation into SFB lead to the maturation of the mineral phase into nanocrystalline 

hydroxyapatite. Similarly, the development of nano-structured composites in alginate 

hydrogels was achieved by in situ crystallization of HA in the presence of CaCl2 and 

Na2HPO4
109. The nano-sized crystals were evenly distributed in the hydrogel network, while 

the crystal size and morphology could be controlled by the material properties.  

Concluding, entrapping precursor phases inside a hydrogel that result in their biomimetic 

conversion to nano-crystalline HA, is an attractive strategy for in vivo applications, as the 

crystal maturation process with SBF can be reproduced within the body. It should be 

mentioned that mineralization by incubation in SBF can be significantly enhanced by either 

functionalizing the chemical backbone with negatively charged moieties (see section I.4.4) or 

by incorporating biomacromolecules with calcium-binding domains, such as casein, fibroin 

and alginate (see section I.4.5).  
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I.4.3. Alkaline phosphatase-mediated mineralization 

The formation of in situ mineralization nucleation sites within hydrogels, catalyzed by 

enzymes that trigger its temporal and spatial development is becoming a route of great 

interest to generate matrices for bone regeneration 110.  

Alkaline phosphatase (ALP) is an important player in bone remodeling that acts as a catalyst 

in initiating calcification. More specifically, the catalytic mechanism involves the cleavage of 

phosphates from organic phosphomonoesters, thereby increasing the local concentration of 

inorganic phosphates that act as mineralization promoters, resulting into an enzyme-

mediated deposition of carbonated apatite111,112. At the same time, the catalytic nature of 

ALP extends to the role of decreasing the concentration of extracellular pyrophosphates that 

acts as inhibitors of apatite crystal growth. Consequently, ALP loaded hydrogels constitute 

not only an alternative to CaPs enriched matrices, in which the CaPs tend to 

aggregate113,114, but also work as in situ self-promoter of mineralization61,75,115. Although the 

harsh processing conditions of ALP-surface coated implants might compromise its activity, 

the entrapment of ALP into hydrogels during gelation was proved to be mild enough to 

preserve ALP initial catalytic activity61. In a similar approach, ALP was immobilized on 

PHEMA using a copolymerization method that did not affect the enzyme catalytic activity. As 

a result, after immersion in SFB for 17 days, mineralized depots could be observed116.  

Moreover, due to its molecular weight, 185 kDa117, and the reduced pore size of hydrogels, 

ALP release by diffusion61 and loss of active component at the injury site where the hydrogel 

was applied is significantly hindered.  After ALP incorporation, gels were incubated in a 

calcium glycerophosphate (Ca-GP) solution. Ca-GP diffused into the hydrogel, where under 

the action of ALP, phosphate was released which reacted with calcium ions to form CaPs. 

Incorporating ALP into gellan gum led to the formation of CaPs and increased in the stiffness 

of the matrix. The functionalization with polydopamine of ALP-loaded gellan gum hydrogels, 

not only improved the previous outcomes, but also enhanced cellular attachment and the 

cytocompatibility of the mineralized gels75.  

Xie et al.118 incorporated osteinductive HA particles into an alginate hydrogel matrix with 

physically immobilized ALP and showed that ALP-mediated mineralization provided a 

homogeneous mineral distribution, smaller crystal size, enabling the increase of Young’s 

moduli. Using a functionalized peptide amphiphile hydrogel matrix that resembles the 

scaffolding framework of natural collage, together with ALP, it is possible to drive the 

controlled spatial distribution of the enzyme-mediated nucleation sites and consecutively, 

templating the HA deposition. Even more, due to the role of ALP to control temporal 

variables in bone mineralization, Spoerke et al. proved that both spatial and temporal 

elements are essential to achieve in vitro mineralization110. 
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Moreover, it was shown that ALP induced the mineralization with CaP of injectable 

thermosensitive CHT/ βGP hydrogels while accelerating their gelation, which is an attractive 

feature for clinical applications115. The mechanism in which ALP accelerated the gelation 

process can be explained by the potential of ALP to split β-GP into phosphate ions and 

glycerol, which can promote the ionic and hydrophobic interactions between the chitosan 

chains, in turn promoting gel formation, concomitantly with their reaction with Ca2+, leading 

to in situ formation of CaPs61. 

In a similar manner, mineralization of collagen type I, PEG- or OPF-derived hydrogels was 

achieved by physically immobilizing ALP and, subsequently, soaking them in a Ca2+ and β-

GP containing solutions, that acted as substrates for ALP. When OPF hydrogels were 

implanted in a rat subcutaneous model, only those containing immobilized ALP were able to 

induce mineralization119. Specifically, small mineral deposits were observed at the periphery 

of the hydrogels near the dermis/scaffold interface, as a consequence of the ALP release. 

However, the covalent bonding of ALP constitutes an advantage over the physical 

immobilization of ALP and incorporation of inorganic particles within the hydrogel that are 

easily diffused to the transplantation site, thus reducing the expected level of mineralization. 

Therefore, ALP was covalently linked to dentine-derived collagen sheets to induce their 

mineralization, which was confirmed upon subcutaneous implantation in rats120. Similarly, 

covalently bonded ALP-fibrin scaffolds were shown to promote a significant increase in the 

percentage of bone volume per total volume when compared with the empty defect in vivo 

bone formation in a mouse calvarial defect121.  

Finally, ALP has also been used as a screening agent for assessing the mineralizability of 

novel hydrogel systems. Gongormus et al. used ALP-mediated mineralization to evaluate 

the mineral formation in several formulations of a self-assembled peptide hydrogels122.  

 

I.4.4. Functionalization of hydrogels  

Another approach that has been proposed to induce hydrogels mineralization is the 

functionalization of their side chains or backbone polymers with negatively charged moieties 

such as carboxyl (COOH-), hydroxyl (OH-) or phosphate (PO4
3-) groups. The rationale relies 

on mimicking the biomineralization mechanism that naturally occurs during bone healing, 

when NCPs calcium-binding proteins, generally negatively charged (acidic or 

phosphorylated)33, act as nucleation sites for apatitic nanocrystals growth. The anionic 

domains attract Ca2+ that, subsequently, leads to an ionic saturation that triggers the CaP 

precipitation. Similarly, by alternating sequences of PO4
3-, COOH- or OH- moieties along the 

polymeric chain of the hydrogels, it is possible to decorate the hydrogel with apatitic-

nucleating properties. Thus, the chemical modification of hydrogels with anionic functional 

groups enables the development of hydrogel with the ability to nucleate mineralization. 
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The modification of a PEG diacrylate (PEGDA) hydrogel with photoreactive phosphate-

containing molecule, ethylene glycol methacrylate phosphate (EGMP), lead to the formation 

of a mineral phase throughout the hydrogel, capable of sequestring osteopontin which then 

promoted MSCs adhesion and spreading123. Similarly, PEG hydrogels modified with 

phosphoesters groups were able to drive extensive and uniform mineralization upon 

immersion in osteogenic medium for 3 weeks124, while PEG hydrogel having pendant side 

chains terminating in –COOH were shown to act as templates for mineralization.  However, 

the ability of these hydrogels to undergo template mineralization was found to be strongly 

depended on the length of the side chain, which directly influenced the hydrophobicity of the 

material, a design parameter that needs to be taken into consideration for the development 

of bone-like materials125.  

The introduction of hydroxyl-containing silanol (Si-OH) in injectable PNIPAAm-PEG 

dimethacrylate copolymer initiated apatite formation90. The extent of Si-OH content enabled 

the system to be tuned in regard to the compressive moduli that can range from 50 to 

700kPa without altering the thermo-responsiveness ability of the hydrogels. These hydrogels 

provided Ca2+ bonding sites and induced subsequent mineralization when soaked in SBF. 

The challenge of this material system is to balance the network-forming and modulus-

enhancing copolymer, while maintaining an injectable hydrogel for potential tissue 

regeneration. 

By manipulating the structure and density of mineral-nucleating ligands presented on the 

hydrogels, Song et al. prepared libraries of PHEMA-based copolymerized with functional 

groups38. This study showed that synthetic organic matrices could be integrated with 

biominerals with varied affinity, morphology and cristallinity. Strong adhesion between the 

organic and inorganic phases was achieved for hydrogels functionalized with either 

carboxylate of hydroxyl ligands. The mineral-nucleating potential of hydroxyl-conjugated 

matrices broadened the design parameters for the development of bone-like composites and 

control over the material performance.  

 

I.4.5. Biomacromolecules-driven mineralization 

The primary amino acids sequence of the NCPs found in bone, BSP, OPN, OCN, ONC, 

includes a high density of aspartic and glutamic acids residues, which have a high affinity 

towards Ca2+ ions39. A wide range of naturally occurring biomacromolecules, such as 

proteoglycans, GAGs126, and casein96 or fibroin127, possess calcium-binding domains. 

Considering the hydrogel matrix as a bone ECM substitute, biomacromolecules can be 

immobilized within the matrix where they act as “ionic pumps” and encourage the formation 

of nucleation sites, thus enabling the initiation of apatitic mineral deposition and subsequent 

mineralization. For instance, casein, a calcium carrier phosphoprotein found in milk, lead to 
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the mineralization of PHEMA hydrogels to which was physically immobilized128. Interestingly, 

nucleation sites of CaPs deposits in the form of nano-scaled nodules (20-30nm) were 

observed exclusively in the casein-enriched domains.  

The interpenetrating network (IPN) formed by embedding silk fibroin in 3D polyacrylamide 

(PAA) networks allowed the deposition of apatitic-like minerals, when the hydrogels were 

immersed in SFB. The hydrogels were uniformly covered with a mineral layer whose 

morphology depended on their composition. A higher content of silk fibroin within the 

hydrogel (30/70, 50/50) led to a more uniform coating of the surface with an apatite-like 

mineral phase. However, increasing the silk fibroin:PAA ratio led to a decrease in the 

compressive strength of the gels (from 151 kPa for pure PAA to 62kPa for 50/50 ratio) due 

to the increased swelling of the hydrogel matrix129. Recently, Lin et al.130 proposed a ABA 

triblock copolymeric hydrogel with both thermoresponsive and mineralization properties. 

PNIPAAm was chosen as the stimuli-responsive outer blocks due to its phase transition 

temperature, while phosphorylated poly(acrylic acid) was designed as the B block of the 

copolymer, due to its high affinity towards calcium ions, that benefit the biomineralization 

process. These hydrogels were shown to have a self-mineralization capability after being 

incubated in SBF for 2 weeks, thus leading to in situ HA deposition. 

Alginates are one example of glycans with great affinity to calcium ions. A series of systems 

have been developed by the addition of alginate to hydrogels to promote mineralization in 

which alginate acts as a permeable organic matrix that supports the deposition of the 

minerals, while arresting the Ca2+ and PO4
3- ions inside the polymeric “cages”131. Gelatin, a 

denaturated form of collagen, was modified through intrinsic interactions with different 

concentrations of calcium-binding alginate, leading to the formation of porous IPN 

hydrogels131. The apatite-forming ability was favored by the increase of the alginate:gelatin 

ratio. In a similar manner, Cha et al. covalently incorporated negatively charged 

methacrylated alginate (MAlg) in poly(propylene glycol)monomethacrylate (PPGmM), so that 

charge density, hydrophobicity and pore size of the hydrogels could be separately controlled 

with mass fraction of MAlg and PPGmM. The authors highlighted that not only charge 

density (existence of Ca2+ binding sites), but also the hydrophobicity and pore size of the 

hydrogel are major variables to be considered in the integrative design of a 3D mineralized 

matrix that allow one to identify osteon variables, critical for bone development and repair. 

However, this should be preceded by studies that relate these hydrogel screening 

formulations to the incorporated amounts of apatite132. 

 

I.4.6. Peptide-mediated mineralization 

In a similar fashion as presented in the section above, peptidic sequences, with calcium 

binding affinity, can be conjugated on the hydrogel backbone, however, there are also 
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hydrogel formulations that are based exclusively on polymerized polypeptides. The 

versatility of the peptide design allows the synthesis of hydrogels with specific chemistries 

and architectures that enable the tuning of the properties of the molecular matrix towards 

different behaviors133, such as cell adhesion, proliferation and differentiation.  

The incorporation of bioactive peptide motifs such as RGD is one of the most popular route 

to enhance functionality, while proteolytically degradable peptide motifs (such as those 

recognized by cell-secreted MMPs, is a common approach to address biodegradability to 

levels that are more in tune with tissue remodeling and regeneration134. For instance, when 

MSCs were cultured with MMPs domain containing hyaluronic acid hydrogels, the 

osteogenic differentiation occurred accompanied by an intense mineralization of the matrix. 

However, switching to a less permissive matrix (without MMPs-domains), the differentiation 

of MSCs was shifted towards adipogenesis135. 

The combination of RGDs with MMPs is mandatory to render the networks to be degraded, 

via cell-secreted MMPs, and easily invaded by cells. Bone regeneration was shown to 

depended on the proteolytic sensitivity of these matrices that assist the MMP-mediated 

invasion of cells, as it affects their spreading, migration and organization136. For example, 

MMP-sensitive hyaluronic acid hydrogels loaded with BMP-2 and MSCs demonstrated to 

promote the highest mature bone formation in a calvaria defect137, when compared with 

hydrogel without MMPs-sensitive domain, with or without BMP-2. 

More recently, the incorporation of other biological components of the ECM, such as GAGs, 

and, in particular, heparin is yielding interesting results133. On the other side, there are 

strategies that focus on peptidic hydrogels with sequences that allow the dissolution of 

inorganic particles or calcium sequestration and subsequent mineralization. For example, 

Amosi et al. designed β-sheet-forming amphiphilic peptides rich in aspartic acid residues 

and carboxyl groups (PFD-5) to improve bone regeneration by β-TCP particles138. This 

peptide hydrogel formulation was found to accelerate the dissolution of β-TCP, while acting 

as efficient Ca2+ depots, and induce the osteoblast differentiation in vitro. The in vivo studies 

in a rat distal femoral model showed a stronger regeneration capacity obtained in those 

defects treated with β-TCP-loaded hydrogels, indicating that the peptidic hydrogels and the 

mineral synergistically act to enhance bone regeneration, in the same range as the 

performance of matrices presenting cell-binding motifs or loaded with GFs.  

Nonoyama et al. synthesized two β-sheet peptides with one ((LE)8) or two glutamic acid 

residues ((VEVSVKVS)2) per molecule, respectively, that self-assembled into nanofibers and 

formed a hydrogel structure in the presence of calcium ions139. The viscoelastic properties of 

both formulations increased with the addition of Ca2+ ions, reaching values that were 

compatible to their use as bone fillers, which potentiate their application to a defined 

injectable scenario. Then phosphate ions were added to the calcium containing (LE)8, 
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amorphous calcium phosphate was formed along the peptide fiber at neutral pH. On the 

other hand, (VEVSVKVS)2 hydrogels enabled the deposition of HA, at basic pH. Besides 

providing a template for mineralization, calcium ions increased the mechanical performance 

of both formulations, which had a direct influence over the cristallinity of HA.   

 

I.4.7. Growth factor-mediated mineralization 

In order to assess bone regeneration both in vitro and in vivo, numerous studies have 

elaborated hydrogel-based systems that allow the release of BMP-2 in a controlled manner, 

by manipulating the network properties. Solorio et al. encapsulated recombinant BMP-2 

(rhBMP-2) within gelatin hydrogel microspheres (2-6µm diameter) with different crosslinking 

degrees to induce bone formation using hMSCs. These authors showed that higher degrees 

of crosslinking of the gelatin resulted in higher loading efficiency and slower release rate. 

The release of rhBMP-2 from the microspheres caused a three- to eight-fold increase in the 

expression of BSP sialoprotein140. Even more, the release kinetics of GFs can be adjusted 

by the hydrogel diffusion properties. For instance, Ludmila et al. showed that rhBMP-2-

loaded hyaluronic acid hydrogels produced a more osteoinductive response when compared 

to a chitosan one of similar design141. However, it should be noted that, although more bone 

formation was observed in the hyaluronic acid hydrogel, the bone formed in the chitosan 

formulation was described as being in a more mature state with significantly higher levels of 

calcification. This increase in maturation within the chitosan/rhBMP-2 hydrogels was 

attributed to the more rapid breakdown of the hydrogel leading to a faster release of the 

rhBMP-2. In a further study conducted by the same group, the rhBMP-2 CHT hydrogel was 

supplemented with -TCP, which improved the osteoinduction at the cost of slower 

mineralization with more overall bone growth observed, but less mineralization. They 

attributed this effect to the slower release of rhBMP-2 from the scaffold due to the affinity of 

rhBMP-2 to bind to β-TCP142. Furthermore, since the complex process of in vivo bone 

regeneration involved the interaction of multiple GFs and cytokines, the combined delivery of 

multiple factors has attracted researcher’s interest. The association of the osteinductive 

activity of BMPs with the effect of other growth factors has been shown to enhance bone 

formation in vivo. Simmons et al. showed that the combination of BMP-2 and TGF-β3 in 

RGD-alginate hydrogels, results in a synergistic effect to enhance bone formation in a mice 

model143, that was not observed when GFs were delivered separately. In another study, 

Raiche et al.144 used a two-layered gelatin hydrogel  to obtain combined and sequential 

delivery of the BMP-2 and IGF-I. The early delivery of BMP-2 followed by increase release of 

BMP-2 and IGF-I after 5 days, resulted in the largest mineralized content. Even more, 

simultaneous delivery of both GFs did not significantly change ALP activity or matrix calcium 

content.  
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Recently, platelet-rich plasma (PRP) has been studied as a promising alternative source of 

bioactive agents that can be release in physiological concentrations. Upon activation, when 

PRP is called platelet lysates (PLs), releases a wide range of biologically relevant proteins, 

including GFs, such as PDGF, TGF-β, bFGF and VEGF among others. In fact, in 

combination with thrombin, PRP forms gel-like that can be exogenously applied to tissues to 

promote wound healing, bone growth, and tissue sealing due to the cocktail of GFs. 

Moreover, PLs are becoming attractive for bone regeneration, as they promote cell growth, 

differentiation and recruitment145. Santo et al. proposed PLs loaded chondroitin sulphate-

chitosan hydrogels for the enhancement of cellular viability, proliferation and calcium 

deposition, suggesting an increased osteogenic differentiation of MSCs68. Even more, PLs 

hold the potential of inducing the formation of a vascular network through the release of 

VEGF, simultaneously with that of BMP-2146.  

 

I.5. BOTTOM-UP /INTEGRATIVE APPROACHES  

Bottom-up approaches comprise bio-inspired strategies to reproduce the hierarchical 

architecture of natural bone tissue by mimicking its microstructural features. Single units at 

micro- or nano-scale that serve as building blocks for further assembling have been used to 

construct spatially controlled structures. These modular units can be created by cell 

sheeting, cell-laden microfabrication or 3D direct cell-loaded hydrogel printing, and 

assembled in such a way to mimic the native microstructural repeating biofunctional unit of 

the bone tissue, which is the osteon147. The osteon is comprised of a dense collagen 

network impregnated with inorganic precursors and NCPs. During bone formation, the 

organization of collagen into osteon-like structures enables hydroxyapatite deposition. These 

multifaceted aspects, allow the integrative spatio-temporal relations between bone organic 

matrix and hydroxyapatite mineral deposition. Osteon organization has inspired for example, 

a strategy in which osteoblast-like cells were seeded on dense collagen/chitosan hydrogel 

matrices that replicate the 3D fibrillar collagen pattern, and that showed to enhance bone-

like hydroxyapatite production148,149. Similarly, Xu et al.150 developed a multi-functional 

substrate for bone formation based on a fiber-reinforced laminated hydrogel nanocomposite 

system aimed at mimicking the laminar structures (osteons) of bone. Layers of electrospun 

poly(L-lactide) fiber mesh were coated with poly(lactide-co-ethylene oxide fumarate) 

(PLEOF) hydrogel precursor solution, previously loaded with HA and grafted with RGD 

sequences to create local adhesion sites for MSCs.  Subsequently, these layers were 

stacked, pressed together and crosslinked to produce a laminated fiber-reinforced 

composite with osteoinductive and cell adhesive properties. The lamination dramatically 

increased the Young modulus up to 570±130 MPa, within the range of wet human 

cancellous bone, when compared with the moduli of the hydrogel (0.5±0.07 MPa) or fiber 
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mesh (140±3 MPa), alone. However, these values are still below the elastic moduli of the 

native osteon lamellae (7-22.5GPa)151. The RGD-PLEOF hydrogel provided a bimodal 

degradation profile: a slow degradation rate for structural stability and a fast degradation rate 

of the hydrogel that was substituted by ECM deposited by the differentiating cells.  

 

I.5.1. Patterning hydrogels 

Micromolding and photolithography of hydrogels has been frequently used to generate 3D 

cell-laden microgel units. Micromolding of hydrogels uses poly(dimethyl siloxane) (PDMS) 

molds microfabricated with a variety of shapes and sizes. In the first step, the pre-polymer 

solution with encapsulated cells is casted over the PDMS mold, followed by the crosslinking 

by changing pH, temperature, ionic strength or UV light application to generate a hydrogel 

with the exact microstructural design of the PDMS molds147. As these platforms can provide 

spatial distribution of biochemical triggers, they may enable, for example, the study of guided 

tissue (bone) regeneration. For instance, PEG hydrogel micro-patterns (10µm) were 

deposited on the surface of silicon wafers, in order to create cell anti-adhesive templates, 

providing a spatial control over cell interactions with the substrate.  When loaded with VEGF, 

the cells aggregated at the boundaries of the PEG pattern and proceeded towards the 

osteogenic differentiation152.  

Similarly, photolithography allows the transfer of a certain pattern into a hydrogel, by using 

photomasks with different patterns in specific-localized regions. Using this technology, a pre-

polymer solution of a photocrosslinkable hydrogel containing a photoinitiator is placed under 

a mask and crosslinked under UV light exposure. The hydrogel crosslinks only in the areas 

under which the photomasks allow the penetration of the UV light, generating microstructural 

hydrogel modules with determined shape and size147.  Recently, Jeon et al. engineered a 

novel micro-patterned alginate/PEG hydrogel system to spatially control hydrogel physical 

properties on the micro-scale by single or dual-crosslinking mechanisms that allowed 

stiffness patterning, as well. The micro-patterned checkerboard, with single and double 

crosslinks, allowed the examination of the effect of the size of these hydrogel patterns on the 

behavior of encapsulated adipose derived stem cells. By manipulating the micro-pattern size 

and the crosslinking mechanisms, the physical properties of alginate hydrogels were 

spatially tunable. Thus, as the micro-pattern properties dictated the behavior of 

encapsulated cells, in the stiffer patterns, cells formed clustered structures, larger for 

increased pattern size, and differentiated into the osteogenic lineage. Following this 

approach the local control over cell behavior was achieved ultimately, allowed the 

engineering of complex bone constructs with dual cell-type using a single stem cell 

source153.  
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By applying photolithography principles it has been also possible to fabricate cell-laden 

microgels that can be assembled into 3D architectures154. So far, the bottom-up assembly of 

these units provides a powerful and highly scalable approach to form biomimetic 3D tissue 

constructs that replicate the microstructural organization of native tissue155. 

Another bottom-up approach that has been explored for bone TE is 3D cell, tissue and organ 

printing, based on rapid prototyping technologies, such as bioplotting, ink jet printing, laser 

deposition and dispensing tools156.  The printing of cell-laden hydrogels allows the mimicking 

of anatomical organization of cells, matrix and bioactive molecules for obtaining functional 

engineered tissue. To replicate the bone tissue, osteogenic cell-laden alginate hydrogels 

were deposited using a 3D fiber deposition method, in 0/90 and 0/45:0/90 configurations 156. 

By exchanging the printing syringe during deposition, it was possible to print hydrogels 

strands loaded with different cells (endothelial and MSCs) within a single scaffold, indicating 

that this 3D fiber deposition system can be suitable for the development of bone grafts 

containing multiple cell types157. The same authors performed an in vivo follow-up of printed 

thermosensitive gelatinous hydrogel loaded with MSCs and endothelial cells, and 

demonstrated the retention of spatially organized heterogeneous cell organization induced 

by the printing. The osteogenic differentiation of cells was localized in the parts 

corresponding to osteoprogenitor cells-loaded hydrogel units, while perfused blood vessels 

were formed in the endothelial progenitors cell-laden part of the constructs158. 

 

I.5.2. Gradients in hydrogels 

During bone remodeling and regeneration, spatial and temporal gradients regulate various 

cell behaviors such as proliferation, organization and differentiation. These gradients are 

often derived from the cell-cell and cell-ECM interactions within the surrounding 

environment159.  For instance, the engineering of bone-cartilage interface, referred as 

osteochondral TE, poses the challenge of addressing both bone and cartilage regeneration 

into an integrated approach. To date, the most commonly used strategy to engineer an 

osteochondral construct is the fabrication of a polymer scaffold consisting of two distinct 

regions, with different properties (porosity, mechanical strength, diffusion and biological 

performance) to mimic the natural bone and cartilage ECM environments.  

Recently, Galperin et al.160 developed an integrated  bi-layered scaffold based on 

degradable poly(hydroxyethyl methacrylate) hydrogels. The first layer was designed with a 

monodispersed pore size of 38 µm and pore surfaces decorated with HA particles to 

promote osteogenic differentiation of MSCs, while the second layer had 200µm pores coated 

with hyaluronan to trigger the articular cartilage regeneration. The bi-layered construct 

supported the simultaneous matrix deposition and cell growth of two distinct cell populations. 

Similarly, Kim et al.161 developed a bi-layered composite OPF hydrogel with modulating dual 
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growth factors release kinetics. IGF-1 and TGF-β3 were loaded in gelatin microparticles that 

were then embedded in the OPF hydrogel. At 12 weeks post-implantation in a rabbit model, 

the results showed that the delivery of IGF-1 alone positively affected osteochondral tissue 

formation, when compared with the dual delivery of GFs. However, this approach does not 

provide a continuous and smooth transition between the two layers, as it is found in the 

native osteochondral space. To overcome these drawbacks, Wang et al.162, designed a 

gradient gel maker to control the continuous bi-directional distribution of growth factors in 

alginate and silk hydrogels. The gradient distributions of PLGA and silk microspheres loaded 

with rhBMP-2 and with human recombinant IGF-1 (rhIGF-1), in the silk scaffold, enabled the 

osteogenic and chondrogenic differentiation of MSCs along the concentration gradients of 

rhBMP-2 and cross-gradient rhBMP-2/rhIGF-1. However, the MSCs differentiation did not 

follow the growth factor gradients in alginate scaffold, most likely due to the range and slope 

of gradients or due to the rapid diffusion of the active ingredients. These findings suggest 

that besides creating the gradient, the substrate properties need to be tuned in such a way 

to enable the concentration range and diffusion kinetics most suitable for the desired 

outcome.  

Beside the biochemical cues, matrix mechanics directly affect the cell differentiation. 

Chatterjee et al.163 developed a combinatorial screening method to rapidly screen the effect 

of hydrogels stiffness on the osteogenic differentiation of MSCs.  A stiffness gradient 

spanning a 30-fold range in compressive modulus (10 kPa to 300kPa) was created in a 6cm 

hydrogel slab, by increasing the concentration of photocrosslinkable PEG. The gradients 

enabled systematic screening of osteoblast differentiation and demonstrated that hydrogels 

of modulus ≈225 kPa (≈16% PEG by mass) or higher were required for inducing significant 

mineralization. These results demonstrate that variation of only a material property, stiffness, 

can be used to induce “graded” osteogenesis and generation of a mineralized tissue 

gradient that could be applied to integrate hard and soft tissues such as a tendon or a 

ligament.  

 

I.6. THE VASCULARIZATION HURDLE IN ENGINEERING OF BONE TISSUE  

Both cancellous and cortical bone, although presenting different organization, contain a 

highly vascularized network that is essential to supply nutrients and oxygen to the cells, and 

remove metabolic by-products. Despite the advances made in bone TE, the classical 

strategies have been restricted mainly due to the lack of vascularization within the 

engineered bone analog, resulting in a poor graft integration and failure of the construct 

upon implantation. In an effort towards clinical success of these constructs, new TE 

concepts have emerged to incorporate vascular cues and induce vascular network formation 

within engineered bone constructs in an attempt to recapitulate bone physiology. The need 
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for a vasculature network is even more demanding when engineering 3D large tissue 

constructs. Hydrogels have been proposed as delivery vehicles of vascular agents or as 

matrices that enable the invasion of the hosts own vasculature network into the construct. 

Among these are: (1) directing cellular responses by the release of growth factors and (2) 

microfabricating vascularized microscale structures using single or multiple-cell culturing 

approaches.  

 

I.6.1. Growth factor delivery 

As mentioned above, cells respond to chemical and physical inputs by the activation of a 

cascade of events that are mediated by growth factors signaling. A number of studies have 

been attempted to reproduce this signaling process in vitro and in vivo through the controlled 

delivery of exogenous growth factors to direct cell behavior and fate. The first clinical trials 

aimed at assessing strategies for promoting bone formation and neovascularization, 

included the delivery of VEGF and BMPs at the injury site. However, no significant effects or 

exhibited limited efficiency164 were observed, highlight their inability to activate the signaling 

machinery. The poor outcome of the direct injection was attributed to their mode of delivery, 

which usually was performed by simultaneous injection of both growth factors, as a bolus. 

Such uncontrolled delivery of growth factors results in rapid distribution into the body, which 

translates in systemic and diffused, rather than localized responses. Moreover, the relatively 

short half time of GFs, might render initial excess levels, followed by a shortage of GFs. 

Noteworthy, a relatively narrow therapeutic window of GFs dose is expected to target tissue 

regeneration, whereas extreme doses will most likely lead to severe side effects, as already 

observed165. Moreover, maintenance of constant GFs levels is only potentially achieved with 

multiple injections or continuous administration; bio-inspired alternative routes have been 

explored.  

In an ideal situation, the localized delivery of GFs should be compatible with physiologically 

relevant doses and allow preserving their activity for long periods of time. Moreover, the 

carrier materials should simultaneously foster the communication with host cells in order to 

play an active role in the regeneration process. The highly swollen 3D networks of 

hydrogels, have proved to be powerful candidates to fulfill these requirements166, as they 

can enable diffusion of relevant GFs, with tunable release profiles, while providing the 3D 

support for the formation of bone and/or a vascular network. The GFs can be either freely 

embedded in the hydrogel or covalently bound to the polymer backbone, while the release 

kinetics can be tailored by alternating the material diffusion coefficient, crosslinking degree, 

degradation rate or the initial loading dose. For example, the release profile of PDGF from 

carrageenan hydrogel microbeads matched that of usually required for the development of a 

fully functional vascular network, that demonstrate the potential of these systems for bone 
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TE167.  Even more, the dual delivery of PDGF and VEGF resulted in highly dense and well-

established vessel network compared with the bolus injection of either of the growth factors 

alone168. Similarly, PEG diacrylate hydrogels functionalized with heparin were shown to be 

able to deliver VEGF in a sustained and controlled manner. When implanted in a chick 

chorioallantoic membrane, the heparin-PEG hydrogel showed superior angiogenic potential 

in stimulating new blood vessel formation compared with un-functionalized ones, which were 

characterized by a more rapid release of VEGF169.  

Furthermore, the application of a VEGF/alginate hydrogel in critical–sized defects of rat 

calvariae resulted in increased blood vessel density, when compare with the bolus delivery. 

Even though there was no difference in bone regeneration at 4 weeks of implantation, there 

was a significant increase in bone regeneration in the VEGF/alginate treated defects. This 

study provides evidence that blood vessel formation is tightly coupled with bone formation170.  

As vascularization underlies the success of guided bone regeneration, the ideal scenario 

would be to deliver a cascade of multiple GFs to simultaneously induce angiogenesis and 

mineralization, in order to produce a vascularized bone tissue substitute. The simultaneous 

delivery of VEGF and BMP-2 from gelatin hydrogels resulted in a synergistic effect, 

promoting both high osteogenic responses and blood vessel formation in a 8mm rat cranial 

defect171. The effect of sequential delivery of GFs on supportive vascular network formation, 

in parallel with bone formation was also investigated by Kempen et al., who proposed a 

sequential dual delivery system, inspired by the sequential release of GFs observed during 

normal bone healing172. BMP-2 was loaded in PLGA hydrogel microspheres that were 

further embedded into a PPF rod by photo-crosslinking. In parallel, a gelatin hydrogel was 

processed as a tubular implant and impregnated with VEGF before association with the PPF 

rod previously loaded with BMP-2 loaded microspheres. The system allowed an initial 

release of VEGF, followed by a sustained release of BMP-2 in later time points. Although 

VEGF alone did not induce bone formation, it did increase the formation of a supportive 

vascular network in ectopic implants. In combination with local sustained release of BMP-2, 

VEGF significantly enhanced ectopic bone formation, when compared to BMP-2 alone173.  

These results indicate that correct GFs types and combinations, and delivery approach 

(simultaneous or sequential) greatly affect osteogenic differentiation of cells, new bone and 

blood vessel formation.    

 

I.6.2.  Microfabricated hydrogels for vascularized bone TE 

Angiogenesis, as a prerequisite for osteogenesis, implies an intimate crosstalk between 

osteoblast and ECs. The latter self-assemble into vascular tubes when surrounded by ECM 

and exposed to angiogenic factors, such as VEGF or BMPs. To stabilize the new blood 

vessels, endothelial cells must functionally interact with mural cells, such as pericytes or 
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smooth muscle cells that, in turn, provide support and stability. This particularity in terms of 

rearrangement as functional vascular networks, has been the inspiration model used in 

microfabrication techniques to design hydrogels structures to generate 3D-vascular–like 

networks. West et al.174 have decorated PEG hydrogels with RGD sequences to support 

ECs adhesion and alignment, while the covalent immobilization of VEGF on PEG patterned 

surfaces, enhanced tubule formation175. Nikkhah et al. created highly organized endothelial 

cord structures using micro-patterned methacrylated gelatin (GelMA). The alignment of 

HUVECs was significantly enhanced within 50µm microchannels and by varying the 

geometrical micro-features of the GelMA patterns, it was possible to optimize the formation 

of stable lumen-like structures for more that 2 weeks.  

The lumen configuration was reproduced by Lee et al.176 by using a microfluidic device to 

generate hollow alginate microfibers with different diameters (50-250 µm). These microfibers 

were loaded with ECs and were further embedded in agar-gelatin-fibronectin hydrogels, to 

assess the cellular viability and organization. Similarly, Takei et al.177 successfully fabricated 

artificial endothelized tubes with determined 3D configurations, as starting point for a self-

developing capillary-like network in a collagen gel. Briefly, cell-enclosing hydrogel fibers of 

250 and 500µm diameters were embedded in a collagen gel and used as templates. The 

enzymatic degradation of the hydrogels fibers resulted in the development of channels with 

the fibers 3D configurations. The degradation of the fibers allowed the release of endothelial 

cells and their adhesion to the collagen gel. Culturing the cells in FGF–enriched medium 

trigger the migration of ECs in the collagen gel and the self-assembly into capillary-like 

structures. 

The integration of these systems with matrices containing osteoprogenitor cells, osteoblast-

like cells, osteo-related GFs or bioactive agents is expected to address the development of a 

functional vasculature within the bone constructs, concomitant with mineralization and new 

bone formation. For example, Trkov et al. investigated the functional interactions between 

hMSCs and endothelial cells, using a simple, yet controllable hydrogel system178. Cells were 

encapsulated in 3D micro-printed fibrin hydrogel channels, to enable precise control of the 

cellular spatial distribution distance between two cell populations (500-2000 µm). The 

endothelial cells-secreted factors established a distance-dependent chemotactic gradient in 

the hydrogel matrix that stimulated directional protrusion of hMSCs within the construct, 

accompanied by uniform osteogenic differentiation. However, due to the lack of consensus 

over the appropriate cell combinations and culturing conditions, the hydrogels matrices are 

merely used as model platforms for the cellular interactions to be tested, limiting their 

potential applications as heterotypic cells matrices for bone remodeling.  
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I.7. FINAL REMARKS 

The complex organization of bone tissue requires the development of multi-faceted 

strategies that address its regeneration at all structural and functional levels. This chapter 

provides insights over the use of hydrogels as potential candidates for bone tissue 

engineering and regeneration. The highly hydrated state of the 3D network offers significant 

advantages over traditional ceramic and stiff polymers, in what concern biocompatibility, 

biodegradability, drug and cell delivery, and injectability. From a clinical standpoint, these 

features may prevail over hydrogels low mechanical properties and lack of bioactivity. 

Moreover, current tissue engineering strategies address these disadvantages rendering 

hydrogels with high controllable mechanical robustness and patterned mineralization 

features, by (1) addition of inorganic phases, (2) in situ crystallization of hydroxyapatite 

inside the hydrogels (3) enzymatically induced mineralization, (4) functionalization of 

hydrogel with negative moieties or (5) calcium-binding molecules. Moreover, bottom-up 

approaches have been stimulating scientists as they envisage reconstruction of bone 

physiology using cell-laden building blocks by spatially controlling cellular and mechanical 

distribution.  Additionally, hydrogels can be engineering in such a way that they acquire the 

ability to guide the restoration of functional vasculature within the bone tissue-engineered 

construct, simultaneously promoting functional bone formation.  

Ultimately, hydrogels are versatile tools that, through a multi-parametric design, allow the 

development of functionalized bone analogs that can be easily implanted at the defect/injury 

site, and further integrated within the host tissue.  
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Chapter II 
Materials and Methods 

 

ABSTRACT 

The main aim of this chapter is to describe, in a more detailed manner, the setups and 

protocols related to experiments performed in this PhD thesis. Although each chapter of the 

current thesis contains a “materials and methods” sections, herein it is intended to provide a 

more descriptive and comprehensive view over the procedures and the rationale for the 

selection of materials and characterization techniques.  
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II.1. MATERIALS 
Hydrogels are tri-dimensional (3D) crosslinked insoluble networks of hydrophilic polymers. 

Due to their hydrated state, they exhibit a great versatility for incorporating bioactive 

molecules (drugs, growth factors) or cells, without threatening their activity and/or 

functionality. Even more, they enable the oxygen diffusion and fluid transport, such as 

nutrients and metabolic by-products, in and out of the network1,2. Altogether, these dynamic 

features resemble those of natural extracellular matrix (ECM)3, hence hydrogels are 

recognized as cell instructive matrices with widespread applications in tissue engineering 

(TE) and regenerative medicine. The hydrogels developed under the context of this thesis 

were based on natural origin polymers. They possess functional groups (sulfates –OSO3
-, 

amides –NH2, carboxyl –COOH, etc.) that are encountered in the chemical backbone of 

biological relevant biomacromolecules, such as glycosaminoglycans (GAGs), which play an 

important role in developmental and structural cellular processes4. Specifically, kappa-

carrageenan (κ-CA), a sulfated polysaccharide, was the material selected to develop 

hydrogels that could enable the encapsulation and controlled distribution of cells within the 

frame of bone TE (chapters VII and VIII). Chitosan (CHT), a cationic natural-origin material, 

was used in combination with κ-CA for the development of fiber-like hydrogel templates 

(chapter VII).  

Inspired by the natural bone healing process, when inorganic elements act as nucleation 

sites for hydroxyapatite formation, enabling and reinforcing the integration with host 

surrounding bone tissue5, silicate nanoplatelets (sNPs) were proposed as osteo-enhancers 

during osteogenic differentiation of stem cells (chapters V and VI). 

II.1.1. Carrageenans  

Carrageenans (CAs) are a class of marine-origin polysaccharides with a 15 to 40% of ester-

sulfate content and a highly flexible structure that enables the formation of gels at room 

temperature6. They are widely used as gelling, emulsifier, thickening, or stabilizing agents in 

pharmaceutical, cosmetic and food industry7. CAs are high molecular-weight structures that 

consist of repeating β-D-galactose (G) and 3,6-anhydro-D-galactose (AG) units jointed by 

alternating α-(1!3) and β-(1!4) glycosidic linkages8. They are classified according to the 

number of –OSO3
- present on the repeating unit, which confers to the chemical backbone an 

anionic character. Briefly, while kappa (κ-) has one –OSO3
- group, lambda (λ-) and iota (ι-) 

have two and three –OSO3
- groups, respectively, per disaccharide unit9,8 (Figure II.1). The 

galactose-based structure and the –OSO3
- content of CA resembles the chemistry of GAGs 

that compose the ECM of tissues (chondroitin sulfate, dermatan sulfate and keratin sulfate8). 

The presence of these functional groups allows CAs to be easily modified, rendering 

improved functions. 
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Figure II.1. Chemical structure of carrageenans (4-sulphate-β-D-galactose and 3,6-anhydro-D-

galactose units jointed by alternating α-(1!3) and β-(1!4) glycosidic bonds. 

 

Due to the half-ester sulfate moieties, CAs are strongly anionic, being comparable with 

inorganic sulfate in this respect10. In the case of κ- and ι- formulations, the structural 

architecture permits the formation of double-helical bundles that, under mild conditions, such 

as temperature and presence of cationic ions, can further organize into a gel conformation8 

(Figure II.2). At higher temperature, thermal agitation overcomes the tendency to form 

helices and the polymer exists in solution as a random coil. Upon cooling, it undergoes a sol-

gel transition from random coil to coaxial double helices, forming small soluble clusters or 

“domains”. This conformational organization renders the formation of 3D hydrogel network 

that is maintained by the interaction of the polymeric chains through hydrogen bridges. 

Further crosslinking of these domains into a cohesive gel structure involves the formation of 

junction zone through the side-by-side association of double helices from different domains. 

Helix-helix aggregation occurs via ionic interactions in the presence of cations (K+ for κ- and 

Ca2+ for ι-CA), which can suppress the electrostatic repulsion between highly charged 

participating chains. For the λ-formulation, the removal of the anhydrous bridge locks the 

formation of double helix configurations, thus it does not undergo conformation 

rearrangement and consequently does not form gels. 
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Figure II.2. Domain model gelation of carrageenans (adapted from11). The structural architecture 

permits the formation of double-helical bundles that, under mild conditions, such as temperature and 

presence of cationic ions, can further organize into a gel conformation. At higher temperature, thermal 

agitation overcomes the tendency to form helices and the polymer exists in solution as a random coil. 

Upon cooling, it undergoes a sol-gel transition from random coil to coaxial double helices, forming 

small soluble clusters or “domains”. 

 

Some of the advantages that distinguish CAs hydrogels from others described in the 

literature include the thermo-reversible and ionic characteristics that provide mild conditions 

for cell encapsulation purposes and versatility of processing into various shapes/formats. 

 

II.1.1.1. Kappa-carrageenan 

The primary differences that influence the properties of κ, ι- and λ-CA are the number and 

position of the ester –OSO3
- groups on the repeating galactose units. Higher levels of ester –

OSO3
- lower the solubility temperature of the CAs and produce lower strength gels, or 

contribute to gel formation inhibition (λ-CA). For instance, κ-CA produces strong, rigid gels, 

while the ι-CA, which has intermediate –OSO3
- content, produces soft gels that provide 

excellent freeze/thaw stability. λ-CA, which is highly sulphated, is less likely to form a gel 

structure9. K-CA has been proposed as a potential candidate in TE and regenerative 

medicine applications12,13 due to its gelation properties, mechanical strength and its higher 

resemblance to GAGs. These features together with the extensive knowledge in the 

development of κ-CA-based hydrogels14,15,16 available at the 3B’s Research Group 
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supported the selection of κ-CA under the scope of this thesis (chapters VII and VIII).  

The κ-CA solutions possess a mild thixotropic behavior, which means that by applying 

mechanical stress (pumping, shear, agitation) the conformational arrangement of the double 

helices is destroyed, but it recovered once the deformation is removed. This thixotropic 

property is particularly useful for the development of injectable carrier devices for the 

delivery of cell and biomacromolecules at a specific implantation site, under minimally 

invasive procedures17. In the presence of K+ ions, κ-CA forms firm, but brittle hydrogels that 

are unstable when temperature increases. However, due to the uncontrollable exchange of 

monovalent ions with other cations present in the physiological environment, the 3D 

structure collapses. To increase their stability, several methods are currently employed, 

among which complexation with cationic polymers, such as chitosan (CHT) and chemical 

modification, with photocrosslinkable moieties, which were used within the experimental 

setting of the present thesis. Thus, due to its versatility in processing, crosslinking 

mechanism and modification, κ-CA was considered as suitable to produce hydrogel 

microfibers for endothelial cells encapsulation along with their arrangement within a hydrogel 

disc containing osteoblast-like cells (chapter VII), as well as to obtain stable covalently-

crosslinked micro-patternable hydrogels (chapter VIII).   

For the work developed in this thesis, κ-CA (CAS 11114-20-8) was purchased from Sigma 

(Germany, Cat. No 22048) in chapter VII and from TCI (USA, Cat. No C1804) in chapter VIII, 

and used without further purification. The molecular weight (MV) of the commercial κ-CA 

ranges from 400 to 700kDa, however, the commercial forms of κ-CA usually contain traces 

of other CAs forms, whose exact concentration can vary from batch to batch8,10.  

II.1.1.2. Methacrylated κ-CA  

The major drawback of ionically crosslinked κ-CA hydrogels is that they are highly 

dependent on the properties of the surrounding environment. Thus, once implanted in vivo, 

these ionotropic hydrogels might lose their stability, due to the permanent exchange of 

monovalent ions that are present in the physiological environment. To overcome this 

disadvantage, the chemical modification of κ-CA to introduce photocrosslinkable moieties, 

was expected to allow the formation of stable covalently crosslinked κ-CA hydrogels, while 

retaining the anionic character of κ-CA. 

For the work described in this thesis (chapter VIII), ester bonds were introduced in the κ-CA 

backbone, enabling the formation of chemically crosslinked hydrogels upon exposure to 

ultraviolet (UV) light. Methacrylated κ-CA (MA-κ-CA), with various degrees of methacrylation 

(DM), was synthesized by substituting the hydroxyl (–OH) groups of κ-CA with methacrylic 

groups (Figure II.3). Briefly, κ-CA was dissolved in distilled water (diH2O) at a final 

concentration of 1% (wt/v) at 50oC until the polymer was fully dissolved. Methacrylic 
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anhydride (MA, Sigma, Germany, Cat No 276685) was added, at once, to the κ-CA at 

concentrations of 4, 8 and 12% (v/v) and allowed to react for 6h, under continuous stirring, at 

50oC. The pH of the mixture was kept constant (pH=8) by adding, when necessary, small 

volumes of 5M NaOH drop wise. After the completion of the reaction, the mixture was 

dialyzed against diH2O using 12-14 kDa cut-off dialysis-tubing systems (Fischer Scientific, 

USA), at 4oC, for 3 days, to remove unreacted MA. The dialysis bath was changed twice a 

day. Purified MA-κ-CA solutions were frozen at -80oC and lyophilized for 3 days, protected 

from light. The obtained powder was stored at -20oC until further use.   

 
Figure II.3. Methacrylation of κ-CA in the presence of methacrylic anhydride. Methacrylated κ-CA 

(MA-κ-CA), with various degrees of methacrylation (DM), were synthesized by substituting the 

hydroxyl (–OH) groups of κ-CA with methacrylic groups. 

II.1.1.2.1. Proton nuclear magnetic resonance 

The principle of proton nuclear magnetic resonance (1H NMR) is related to the magnetic 

properties of the isotope hydrogen-1 (1H) nuclei. The technique is based on the fact that, at a 

specific radio frequency, each 1H isotope found on the chemical backbone of the material to 

be analyzed requires a slightly different magnetic field to bring it to the resonance condition. 

This is dependent on the type of bonds the 1H isotope is engaged in the molecule. Thus, 1H 

NMR spectrum provides information regarding the 1H isotope environment in the molecule. 

Since 1H NMR spectra are recorded in solution, protons from the solvent should not interfere 

in the analysis, thus, samples must be dissolved in a proton-free solute. Deuterated solvents 

(e.g. deuterium oxide D2O) are based on the used of deuterium (2H), a stable isotope of 

hydrogen, and usually preferred for the analysis.  
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The chemical modification of κ-CA (chapter VIII) was quantified by 1H NMR spectroscopy. 

Briefly, κ-CA and MA-κ-CA were dissolved in D2O at a concentration of 10mg/mL and their 
1H NMR spectra were collected at 50oC, at a frequency of 500 MHz using a Varian INOVA 

NMR spectrometer with a single axis gradient inverse probe. All spectra were analyzed 

using 1D NMR Processor software (ACD/Labs 12.0). Phase correction was applied to obtain 

accurate absorptive peaks, followed by a baseline correction to obtain the integrals of the 

peaks of interest. The obtained chemical shifts were normalized against the protons of the 

methylene group of the D-galactose units as an internal standard, which is present at 

 δ= 3.89 ppm18. The DM was calculated referring to the peaks at δ= 1.9–2 ppm (methyl) and 

δ= 5.5–6 ppm (double bond region) as percentage (%) of the free –OH substituted with 

methacrylate groups. 

II.1.1.2.2. Fourier transform infrared spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is an analytical method used to obtain 

information about the sample’s chemical structure and chemical bonding. It is based on the 

adsorption of infrared (IR) light by the material that triggers discrete energy transitions of the 

vibrational states of atomic and molecular units within a molecule. Thus, one can identify the 

presence of chemical groups on the sample through the FTIR spectrum. The attenuated 

total reflection (ATR) sampling mode can be used to increase the intensity of the surface 

signal, because it analysis the region near the surface. However, FTIR-ATR is not truly 

surface sensitive, due to the high penetration depth of the IR beam (1-5µm)19, thus care 

should be taken while preparing the sample. Nevertheless, the rich structural information 

that the IR spectra provide makes the FITR-ATR, a valuable technique to evaluate chemical 

changes, such as the grafting of polymers with functional groups. 

The chemistry of the MA-κ-CA reported in chapter VIII was analyzed by FTIR-ATR. The 

infrared spectra were recorded on a Bruker Alpha FTIR spectrophotometer (Bruker Optics, 

USA). The spectra were recorded at a resolution of 4 cm-1 and the results were reported as 

an average of 24 scans. The peaks appearing around 1550cm-1 and 1680-1750 cm-1 

correspond, respectively, to the C=C and C=O of the ester groups and are found in the MA-

κ-CA, but not in κ-CA.  

II.1.1.2.3. Rheological analysis 

At room temperature, κ-CA solutions are highly viscous and are difficult to manipulate 

resulting in poor processability20. By increasing the temperature, the viscosity of κ-CA 

solutions dramatically decreased mainly due to the thermodynamic instability of the polymer 

chains. However, the range of temperature that must be employed (50–70°C) is higher than 

the physiological temperature (37oC), which can compromise the viability of the cells or the 



Chapter II. Materials and Methods 

!

! 49 

activity of other bioactive components at the time of incorporation. Even more, the 

information about the viscosity give indication over the injectability potential and the 

conditions that are required to extrude a solution through needles. 

Within this context, the viscosity of the MA-κ-CA and κ-CA solutions was evaluated (chapter 

VIII). Furthermore, the effect of DM on the rheological properties of MA-κ-CA was also taken 

into consideration. Thus, 1mL of solution was injected between the plates of AR2000 stress 

controlled rheometer (TA instruments, New Castle, DE, USA) equipped with a 20mm flat 

geometry and a gap of 500µm. Flow experiments were performed to evaluate the viscosity 

of polymer solution at 37°C by varying the shear rate/frequency from 0.1 to 100 radians/s.  

 

II.1.2. Chitosan  

Chitosan (CHT) is a deacetylated variant of chitin, the second most abundant biopolymer 

found in nature, present in the exoskeleton of crustaceans, insects, spiders or the cell walls 

of many algae or fungi21. CHT has been reported to be biocompatible, biodegradable and to 

present antibacterial and wound-healing properties22. These features might result from the 

structural similarities of CHT with GAGs.   

Structurally, CHT is a linear polysaccharide composed of randomly distributed β-(1!4)-

linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit) 

(Figure II.4). The free amino (–NH2), and N-acetyl groups play a major role in determining 

CHT’s solubility, particularly, below its pKa (pH=6.5-6.8). At these range, the amino groups 

are protonated which triggers the solubilization of the polymeric chains. This strong and 

unique cationic behavior allows the formation of polyelectrolyte complexes (PECs) with 

anionic compounds21 with improved properties, both in the terms of stability, as well as 

cellular behavior23. Likewise, the electrostatic interactions between κ-CA and CHT already 

lead to the development of nanoparticles16, beads24 and layer-by-layer systems25. Thus, in 

chapter VII, we took advantage of the cationic behavior of CHT to develop CHT-coated κ-CA 

fibers improving the stability of κ-CA fiber-shaped hydrogels.   

 

 

 

 

 
Figure II.4.  Chemical structure of CHT consisting of N-acetyl-D-glucosamine (acetylated unit) and D-

glucosamine (deacetylated unit) linked by β-D-(1→4) glycosidic bonds.   

 

II.1.2.1. Purification of Chitosan 

The term chitosan (CHT) refers to a series of deacetylated chitins with different molecular 
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weights (50-2000 kDa), viscosity and deacetylation degree (DD=40-98%). Prior use, a 

purification step was set up and the products from 3 independent purifications were mixed to 

obtain a final homogeneous batch of purified CHT. This batch was used for all the 

experiments described in chapter VII, in order to avoid concerns about the influence of the 

N-deacetylation (DD)/ N-acetylation (DA) degree or molecular weight (MW) on the material 

modification, formation of polyelectrolyte complexes and in vitro cellular behavior.  

For the purification step, medium grade CHT obtained from crab shells and purchased from 

Sigma (Germany, Cat. No 448877, CAS 9012-76-4), was dissolved in an aqueous 1% (v/v) 

acetic acid solution at a final concentration of 1% (wt/v). The obtained solution was filtered 

(Whatman® ashless filter paper, 20-25µm) and then precipitated by adding a NaOH solution 

(final pH~8). The precipitated gel was sieved to remove the exuded liquid and thoroughly 

rinsed with distilled water until stable pH was reached. The CHT gel was further washed with 

ethanol, freeze-dried, grounded to powder and dried overnight at 50oC. The DD of purified 

CHT was determined by 1H NMR26 at 83.8% (section II.1.1.2.1).  

 

II.1.2.2. Optimization of the pH of CHT working solutions 

Since CHT dissolves only at very low pH (<2), its use in combination with biological 

compounds (cells, bioactive agents, etc.) is limited. Previous studies27,28 have demonstrated 

that the strong acid pH of CHT solutions can be increased up to physiological pH (=7.4) with 

the addition of beta-glycerophosphate (βGP), without jeopardizing its solubility (i.e. no 

precipitation). Thus, a curve of the variation of the pH of CHT solution as function of 

βGP/CHT ratio was performed, in order to establish those conditions upon which CHT 

solution exhibit a pH suitable for cell encapsulation, while maintaining its solubility and 

cationic character (Figure II.5). For this purpose, a CHT solution was prepared by dissolving 

the purified polymer into a 1% (v/v) acetic acid solution to a final concentration of 0.5% 

(wt/v). Slowly, anhydrous βGP (Sigma, Germany, Cat. No G9422) was added to the CHT 

solution and the pH of the solution was measured (Figure II.5A).  

 

II.1.2.3. Optimization of zeta potential of CHT working solutions 

Zeta (ζ–) potential was chosen as a parameter to evaluate the stability of polymeric 

dispersion. From a theoretical viewpoint, ζ–potential is the potential difference between the 

dispersion medium and the stationary layer of fluid attached to the dispersed particle. Thus, 

ζ–potential is an (relative) indicator for the surface potential of particles, as well as a 

fundamental parameter known to affect the stability of colloid dispersions. For molecules and 

particles that are small enough, a high ζ–potential will confer stability, i.e. the solution or 

dispersion will resist aggregation. When the potential is low, attraction exceeds repulsion 

and the dispersion will break and flocculate. So, colloids with high ζ–potential (negative or 
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positive) are electrically stable, while colloids with low ζ–potentials tend to coagulate or 

flocculate. 

Within this thesis, ζ–potential was used as a parameter to predict the susceptibility of CHT 

solution to coagulate with the addition of βGP to the CHT solution. Additionally, a positive ζ–

potential confirmed the strong cationic behavior of CHT, and thus its potential successful 

combination with anionic entities (e.g. κ-CA). Although the electrical charge is not measured 

directly, it can be calculated using established theoretical models. The most widely used 

theory is the one developed by Marian Smoluchowski, which was also applied for the 

measurements performed within the scope of this thesis. This model can be applied to 

dispersed particles of any shape and any concentration. Briefly, ζ–potential measurements 

were performed on CHT solutions with different pHs (upon addition βGP), by using a 

Malvern Zeta Sizer Nano ZS (Malvern Instruments, UK) and applying the Smoluchowski 

model. Each sample was diluted in de-ionized water at a final CHT concentration of 0.1% 

(wt/v). Each measurement was performed for 120sec, at 25oC (Figure II.5B). The 

experiments were performed in triplicates. 

Additionally, the ζ–potential of a κ-CA solution was determined to confirm its anionic 

character that can enable the interaction with a positively charged system, such as CHT. 

 

Figure II.5.  Tuning the pH of CHT solutions with βGP. (A) A curve of pH variation of CHT solution 

with the addition of βGP was determined. At pH=5.5-6, CHT is fully dissolved and no sign of 

precipitation was noticed. However, above these values, the precipitation of CHT occurred. (B) With 

the addition of βGP, the overall charge of CHT solution dramatically decreased. Choosing pH=5.5 for 

the working solution, the full solubility and an overall positive charge of CHT was assured.   
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II.1.3. Silicate nanoplatelets  

With a demand for therapies that are able to boost the regeneration and restoration of bone 

tissue function29, new research routes have been exploring the potential of new bioactive 

materials that are able to direct stem cell differentiation and facilitate functional bone 

formation in a reproducible and highly controllable fashion30. Inorganic bioactive 

nanomaterials, including bioactive glasses (Na2O–CaO–SiO2–P2O5), hydroxyapatite (HA) 

(Ca10(PO4)6(OH)2), β-tricalcium phosphate (β-TCP) (Ca3(PO4)2), β-wollastonite (CaO-SiO) 

and A-W (Apatite-Wollastonite) glass ceramics31, due to their enhanced surface interactions 

with cells, are attractive for hard TE as bone replacement composites and nanovehicles for 

delivering therapeutics. However, difficulties persist, including lack of osteoinductive 

properties, poor processing abilities and insufficient degradation, with many of these 

materials. 

Synthetic silicate nanoplatelets (sNPs) have drawn our attention mainly due to their intricate 

chemistry comprising a collection of elements and ions that are known to be involved in 

bone formation mechanisms. Even more, there are only few studies that highlight sNPs 

potential in TE application32,33 and up to our knowledge and the conclusion of this thesis, 

there are no studies that have explored the interactions of sNPs with stem cells. Thus, under 

the scope of this thesis, Laponite XLG sNPs (Na0.7[Mg5.5Li0.3Si8O20(OH)4]) were evaluated as 

potential osteoinducers and osteoconductors during osteogenic differentiation of hMSCs 

(chapter V) and further, as tools to improve the osteogenic differentiation of SSEA-4+hASCs 

(chapter VI). 

Generally, Laponite sNPs consist of layers of [SiO4] tetrahedra sandwiching sheets of Mg2+, 

which complement their octahedral coordination by bridging –OH groups (Figure II.6). This 

unitary cell is repeated around 1500 times in two dimensions to form each disc shaped 

called Laponite platelet. The nanostructure of Laponite is best described as strongly 

anisotropic, characterized by a primary particle diameter of approximately 25nm, a thickness 

of less than 1 nm and a large surface area (applying Brunauer–Emmett–Teller theory) of 

370m2/g and bulk density of 1mg/cm3. The partial substitution of Mg2+ in the octahedral 

sheets by Li+ charges the faces of the sNPs with a -0.7eV charge. These elementary 

charges are uniformly distributed over the Laponite sNPs and therefore, depending on the 

pH of the solution, some positive charges appear on the edge originated by some broken 

bonds34. Thus, Na+ is accommodated on or between the faces of the sNPs (interlayers) for 

charge compensation in the solid powders35. This charge distribution enables strong 

interactions with a range of compounds (ions, dyes, proteins, polymers). Laponite sNPs are 

soluble in water and at concentrations higher than 40mg/mL form a physical nanoclay gel 

due to electrostatic and van der Waals interactions, that result in the formation of a “house of 

cards” structure36. 
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Figure II.6. Laponite sNPs. (A) An idealized single Laponite disc (1nm thick and 25-30nm in 

diameter) with specific charge distribution (negatively charged facets and positively charged sides). 

(B) A side view of two unit cells (the dimensions refer to a single crystal structure analysis, taken from 

Lezhnina et al.35):  the chemical structure of the unitary cell of Laponite sNPs is constituted by six 

octahedral Mg2+ ions sandwiched between two layers of four tetrahedral Si atoms groups. 

 

II.1.3.1. Transmission electron microscopy  

Transmission electron microscopy (TEM) has been found to be an excellent tool for 

characterizing the size of nanoparticles, namely to determine the mean nanoparticle size (in 

projection). The projected area diameter estimated by TEM is theoretically defined as the 

area of a sphere equal to the projected area of a particle in a stable position37. 

TEM is a microscopy technique in which a beam of electrons is interacting with the 

specimen as it passes through. An image is then formed from the interaction of the electrons 

transmitted through the specimen, magnified and focused onto an imaging device. 

Generally, TEM analysis of a biomaterial requires it's sectioning, since a nano-sized sample 

is needed for the analysis. However, since sNPs are of nano-scale size, the embedding and 

sectioning steps were not necessary. Thus, samples were prepared by dispersing sNPs in 

diH2O/ethanol solution. A drop of the mixture was placed on a copper grid coated with a thin 

layer of carbon (for contrast purposes) and allowed to dry in vacuum. The TEM images of 

sNPs were obtained using JEOL JEM-1400 TEM (JEM1400) installed with cool beam 

illumination system (resolution: 0.2nm line, 0.38nm point) and 11Mpix AMT cooled CCD 

camera at 80kV. The nano-size feature and the disc shape morphology of sNPs was 

confirmed (Figure II.7). 

 
Figure II.7. TEM analysis confirmed the nano-size and disc-shaped morphology of Laponite sNPs.  

B"A"
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II.1.3.2. Hydrodynamic size and zeta–potential of sNPs 

When sNPs were added to water, they formed a clear and colorless solution with a viscosity 

similar to the water. In a diluted suspension, sNPs were well dispersed, negatively charged 

and kept their disc-like features. Laponite sNPs interact with each other through a short-

range van der Waals attractive forces and long-range repulsive forces, due to the 

electrostatic screened interactions. Nevertheless, even at very low concentration of sNPs, 

the solution evolves spontaneously on time towards a more viscous state, until reaching an 

arrested phase (Figure II.8). The most likely explanation is that with the increase in the 

concentration, the attractive forces overtake the repulsive ones in such way that the sNPs 

will adhere to each other irreversibly, leading to the formation of agglomerates, and 

consecutively, to gelation36,38.  

 
Figure II.8. Increased turbidity of sNPs solutions for increased concentrations (0-20mg/mL), 

associated with higher aggregate size.  

 

Nowadays, the microstructure of the arrested state is widely studied by different methods 

such as neutron, x-ray and light scattering. Dynamic light scattering (DLS) technique 

provides an important contribution in these studies, because it provides information about 

the dynamics of the system. As far as DLS is concerned, the theory states that when a 

dispersed particle moves through a liquid medium, a thin electric dipole layer of the solvent 

adheres to its surface. This layer influences the movement of the particle in the medium39. 

Although, an estimation of the projected area diameter can be performed through TEM, the 

measurement is related solely to the inorganic core, as the hydration layer is not present. 

For aqueous solutions, the hydrodynamic diameter was suggested as an important 

parameter for understanding and optimizing the nanoparticles' performance in biological 

assays, as well as comprehending the in vitro mobility of the sNPs. Concretely, the 

hydrodynamic diameter provides information on the inorganic core along with any coating 

material and solvent layer attached to the particle, as it moves under the influence of the 

Brownian motion. Thus, the hydrodynamic diameter is always greater than the size 

estimated by TEM. 
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Together with hydrodynamic diameter, DLS enables the determination of the electrical 

charge of particles by ζ–potential measurements (see section II.1.2.3). Hydrodynamic size 

and ζ–potential of sNPs solutions (0-20mg/mL) were determined in de-ionized water and 

PBS using a 633nm laser in a Malvern ZEN3600 (Malvern Instruments, UK). SNPs were 

dissolved using vortex (10min) and ultrasonication (10min). The refractive index of sNPs 

was selected as 1.5 (obtained from MSDS of Laponite XLG), applying the Smoluchowski 

model. Each measurement was performed for 120sec, at 25oC. The experiments were 

performed in triplicates. 

 

II.2. DEVELOPMENT AND CHARACTERIZATION OF 3D HDYROGELS SYSTEMS 
 In order to recapitulate more closely the in vivo architectural features of tissues, a number of 

techniques have been employed in vitro40. As discussed in the first chapter of the present 

thesis, hydrogels are 3D cross-linked insoluble, hydrophilic networks of polymers that 

partially resemble the physical characteristics of native ECM41. They exhibit high 

permeability towards oxygen, nutrients and other soluble factors, essential for sustaining 

cellular metabolism42. The hydrogel network can be fabricated via physical or chemical 

crosslinking methods. While physical crosslinking is achieved by the formation of physical 

bonds, the chemical crosslinking consists in the formation of stable covalent bonds, 

mediated by crosslinking agents, between the polymer chains43. 

Within this thesis, κ-CA was the material selected to develop hydrogels for bone TE 

applications, due to its processing versatility and mild crosslinking conditions. The gelation of 

κ-CA occurs through ionic interactions, which foster the condensation of the double helices 

into strong 3D networks that can be processed different sizes and shapes. However, there is 

still inadequate control over the swelling properties, stability and mechanical performance of 

κ-CA hydrogels. In order to improve the stability and processability of κ-CA hydrogels, two 

strategies were taken into consideration: (1) reinforcement of the ionically crosslinked κ-CA 

hydrogels with a CHT coating (chapter VII) and (2) chemical modification of κ-CA to obtain 

covalently crosslinked κ-CA-based hydrogels (chapter VIII).  

II.2.1. Development of CHT coated κ-CA fibers  

Development of vessel-like structures in vitro has attracted attention to be used for 

applications in TE, as the lack of a vasculature system that can sustain the nutrient and 

oxygen demands within the tissue-engineered construct is a major limiting factor in creating 

thick artificial tissues44. Thus, developing vessel-like networks as integrated templates within 

bio-inspired TE constructs, will be essential for creating real-size replicas of the primary 

tissues or organs45,46. 

Several hydrogels-based processing methods (such as prototyping/printing47, microfluidics48 
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and photolitography49) are available to encapsulate ECs and develop vessel-like 

architectures using fiber structures with microsize features (~50µm49 to 1mm47) as building 

units. However, they usually involve extensive manipulation procedures, elaborated 

experimental settings and complex optimizations, thus limiting their applicability. As 

alternative to these methods, wet spinning of hydrogels was chosen as a simple and 

straightforward method to produce microfibers able to accommodate endothelial cells 

(chapter VII).  

 

II.2.1.1. Development of κ-CA fibers through wet spinning and ionotropic gelation 

The κ-CA hydrogel fibers were obtained by the wet spinning technique, which consists of the 

extrusion of a polymer solution through a needle immersed in a coagulation bath50, and 

ionotropic gelation (IG) (Figure II.9A). Briefly, a 1.5% (wt/v) κ-CA solution was prepared by 

dissolving the polymer into diH2O and heated up to 50°C, under constant stirring, until 

complete dissolution was achieved. Subsequently, the κ-CA solution was loaded into 5mL 

syringes headed with needles of different gauge (G). The needles were immersed into a 5% 

(wt/v) KCl solution prepared in diH2O, which acted as a coagulation bath. κ-CA fibers with 

different diameters were obtained by extruding the polymeric solution through the needles 

directly into the coagulation bath. The presence of K+ ions initiated the IG, by 

counterbalancing the negative charges of κ-CA. The fibers were allowed to harden in the 

coagulation bath for 10min, enough for the κ-CA hydrogels to assemble into a fiber shape51. 

Noteworthy, the gelation time was relatively short (10min), compared to standard gelation 

times (15 to 30min)50-52. 

The obtained fibers were then washed with phosphate buffered saline (PBS), in order to 

remove the excess of salts. Using a needle range from18 to 27G (0.838 - 0.210mm internal 

diameter), it was possible to obtain fibers with different diameters, directly proportional to the 

internal diameter of the needles. The fibers produced within these settings have a diameter 

ranging from 0.55 to 1.2mm (Figure II.9B). Fibers obtained with needles of 25 and 27G, with 

a diameter below 1mm more appealing for other applications53,54,55, were selected for all the 

subsequent assays, such as carriers for SSEA-4+hASCs-derived ECs (chapter VII).  
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Figure II.9. Development of κ-CA fibers by IG. (A) A 1.5% (wt/v) κ-CA was extruded into a 

coagulation bath (5% KCl) through small needles. (B) By varying the needle size (18 to 27G), it was 

possible to control the diameter of the κ-CA fibers (from 1.2 cm to 0.55cm).  

II.2.1.2. Development of CHT coated κ-CA fibers through polyelectrolyte complexation 

Although, encouraging results have shown the potential of using κ-CA hydrogels in the TE 

field50,56, the ionically crosslinked κ-CA hydrogels exhibits high swelling ratios and are 

mechanically unstable in physiological conditions57. To increase the stability of hydrogels, 

several approaches have been exploited, such as chemical modifications with 

photocrosslinkable moieties58, blending with other biopolymers50, 59, addition of 

nanocomposites to the polymer solution60, formation of interpenetrating networks61 or PECs 

with polycations, such as CHT62.  

The method of choice for the reinforcement of κ-CA fibers obtained through IG was the 

formation of a PEC with CHT, as it is a fast, straightforward and cell-friendly method (Figure 

II.10). The short gelation time during IG enabled the partial crosslinking of κ-CA so that 

negative –OSO3
- groups are still available to interact with protonated amino (–NH3

+) groups 

of CHT. Thus, the immersion of the κ-CA fibers within the 0.5% (wt/v) CHT solution (pH=5.5, 

optimal pH, section II.1.2.2) for 20min, allowed the formation of PECs between CHT and the 

non-crosslinked chains of κ-CA at the surface of the fibers and to the formation of a localized 

CHT nano-sized layer, as also shown in other studies23,25. CHT coated κ-CA microfibers 

were washed with PBS in order to remove the excess of CHT.   

Therefore, the formation of CHT-coated κ-CA fibers was achieved through a two-steps 

procedure that combines the IG of κ-CA into microfibers and the reinforcement of these 

fibers by PEC between κ-CA and CHT. The presence of the CHT coating was evaluated by 

staining the fibers with Eosin Y (Sigma, Germany) (Figure II.10insert). 
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Figure II.10. Schematics of the development of CHT coated κ-CA hydrogel fibers. The process 

involved the formation of fibers by IG in a KCl coagulation bath, followed by their immersion in a CHT 

solution (at optimized parameters). The PEC occured between negatively the charged κ-CA chains 

and the positively charged CHT, by electrostatic interactions. (insert) By staining the fibers (without 

(w/o) or with (w/) CHT coating) with Eosin Y, it was possible to detect the CHT coating (pink).  

 

 II.2.2. Photocrosslinkable MA-κ-CA-based hydrogels 

The chemical functionalization of κ-CA with methacrylate pendant groups enabled the 

crosslinking of the κ-CA hydrogel through covalent bonds, thus confering high stability to the 

polymer network63. Moreover, the chemical modification did not affect the inherent ionic 

character of κ-CA, thus, by combining chemical and physical crosslinking methods, it was 

possible to obtain physically, chemically and dual crosslinked hydrogels. 

 

II.2.2.1. Preparation of TMSPMA treated glass slides  

The surface modification of glass slides with 3-(trimethoxysilyl)propyl methacrylate 

(TMSPMA) allowed the production of hydrophobic glass surfaces. This surface treatment 

introduced terminal acrylate functional groups on the glass. During UV exposure-driven 

polymerization, these acryl groups established bonds with the (metha)acrylate groups of the 

MA-κ-CA, thus covalently anchoring the polymer on the surface of the treated glass. This 

procedure enabled the attachment of crosslinked hydrogel units on slides with different 

shapes and sizes, thus, reducing the direct manipulation of the hydrogel.  

Briefly, glass slides (Fisherbrand plain microscope slides, 25x75x1mm) were cleaned 

overnight with a NaCl solution (10% w/v). After that period, glass slides were washed 3 

times with deionized water. Afterwards, each slide was rinsed 3 times with 100% ethanol 

and left to dry. Cleaned glass slides were stacked in a clean beaker and 4mL of TMSPMA 
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(Sigma, Germany, Cat. No 440159, CAS 2530-85-0) were poured over the longitudinal side 

of the slides, using a syringe. After 30min, the stack was flipped upside down to get even 

coating due to capillary forces. The TMSPMA coated glass slides were incubated overnight 

at 80ºC. The final step of the surface modification consisted on cleaning with 100% ethanol 

(3 times) the TMSPMA treated surfaces and left to air dry. Treated glass slides were 

wrapped with aluminum foil and baked again for 1-2h at 80oC, after which they were stored 

wrapped in aluminum foil at room temperature. 

 

II.2.2.2. Photocrosslinked MA-κ-CA hydrogels 

Freeze dried MA-κ-CA macromer with different DM, as well as non-modified κ-CA were 

added to a photoinitator (PI) solution consisting of 0.25% (wt/v) 2-hydroxy-1-(4- 

(hydroxyethoxy)phenyl)-2-methyl-1-propanone (Irgacure 2959, CIBA Specialy Chemicals) in 

diH2O and left at 80°C until complete dissolution. Chemically crosslinked hydrogels were 

obtained by pipetting 100µL of polymer solution between a Teflon substrate and a glass 

coverslip separated by a 1mm spacer, followed by UV light exposure at 6.9mW/cm2 (320–

480nm, EXFO OmniCure S2000, Ontario, Canada) for 40sec (Figure II.11).  

 
Figure II.11. Production of chemically crosslinked crosslinked MA-κ-CA. (A) Hydrogels discs with 

variable thickness were produced by varying the thickness of the spacers. (B) To create a hydrogel 

network, MA-κ-CA was crosslinked using UV irradiation in the presence of Irgacure 2959 as PI, 

leading to the formation of covalent bonds between the (metha)acrylate groups.  

II.2.2.3. Dual crosslinked hydrogels 

The introduction of methacrylate groups into the κ-CA backbone enabled the formation of 

chemically crosslinked gels via UV exposure. Furthermore, as the anionic character of MA-κ-

CA was not affected, it was still possible to form gels in the presence of K+ salts. Thus, the 

presence of two functional groups (–OSO3
- and methacrylate) was independently used to 

tune physical properties.   
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Dual crosslinked hydrogels were prepared by combining UV exposure with immersion in 5% 

(wt/v) KCl coagulation bath for 10min (Figure II.12). As a consequence, hydrogels with 

different shape and sizes (discs and fibers) were produced, demonstrating the versatility of 

the system and the range of potential applications within the TE field. 

 

 
 

Figure II.12. Dual crosslinked MA-κ-CA hydrogels were produced either as (A) discs or (B) fibers by 

chemical and physical crosslinking methods.  

 

II.2.3. Techniques used for characterizing the developed 3D hydrogel systems 

II.2.3.1. Scanning electron microscopy  

Scanning electron microscopy (SEM) is a method that has been widely used to study the 

morphology of polymeric materials and structures, at a smaller scale than optical 

microscopy64. SEM micrographs can be obtained from secondary electrons emitted from the 

surface of the sample, as a result of the impact of a focused electron beam, revealing the 3D 

topography of the specimen and providing details on its structure, down to the sub-micron 

level with a penetration depth of 5Å65.  

As wet samples (i.e., hydrogels) cannot be directly visualized under SEM, they need to 

undergo a process of dehydration. Thus, the hydrogels samples tested in chapters VII and 

VIII were subjected to a rapid snapshot cooling using liquid nitrogen, to maintain their 

microstructure features, and then to a freeze-drying process to remove the solvent (water) 

by sublimation. 

Furthermore, high magnifications are generally not possible in SEM, because of the intensity 
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of the electron beams that damages the thin polymeric surface, leading to deformation, and 

even melting of the specimen. To overcome this limitation, polymeric samples are usually 

spur coated with conductive materials, such as gold or palladium. 

Within this thesis, SEM technique was applied to visualize the outer surface of κ-CA fibers 

with and without CHT coating (chapter VII) and to analyse the effect of DM over the 

microstructure and pore size distribution of MA-κ-CA hydrogels. Briefly, the κ-CA fibers, with 

and without CHT coating (chapter VII) and the dual crosslinked MA-κ-CA (chapter VIII) were 

snap frozen in liquid nitrogen, transferred to micro-centrifuge tubes and freeze-dried 

overnight. The dried samples were carefully mounted on samples holders using double-

sided carbon tape. Prior mounting, dried MA-κ-CA samples were fractured to expose the 

core of the sample. The coating of κ-CA fibers was performed with gold (Fisons Instruments, 

sputter coater SC502, UK), while MA-κ-CA samples were coated with gold and palladium 

using a Hummer 6.2 sputter (Ladd Research, Williston, VT, USA). The coating procedures 

were performed at 15mA for 2min. While κ-CA fibers were analyzed under a Nano-SEM FEI 

Nova 200 (FEI, Netherlands), MA-κ-CA samples were analyzed under a JSM 5600LV 

(JEOL, USA). The pore size distribution of MA-κ-CA samples was  determined using NIH 

ImageJ software, based on the SEM pictures. 

 

II.2.3.2. Energy-dispersive X-ray spectroscopy  

SEM, which is closely related to the electron probe, is primarily designed for producing high-

resolution images of a sample surface. Backscattered electron images in the SEM display 

compositional contrast that results from different atomic number elements and their 

distribution. Energy dispersive spectroscopy (EDS) allows identifying, mapping and 

localizing if needed, those particular elements, if an X-ray spectrometer is added 

(EDS/EDX). Thus, upon the interaction between X-ray and a sample, each unique atomic 

structure (i.e. atomic element) generates a unique set of peaks on a X-ray spectrum, thus 

providing information about the elemental composition of the sample.  

EDS/EDX technique was applied in chapter VII, to confirm the presence of the CHT coating 

on κ-CA fibers, by tracing nitrogen (present in CHT, but not in κ-CA) on the surface of coated 

κ-CA. The presence of the coating was evaluated up to 21 days and at different time points 

on κ-CA and on CHT-coated κ-CA immersed in PBS. Elemental analysis was carried out 

with an energy dispersive spectrometer (EDS/EDX; EDAX-Pegasus X4M), attached to the 

SEM equipment used in section II.2.3.1. Therefore, the samples were analyzed as prepared 

for SEM. All observations/image acquisitions and measurements were made at an 

acceleration voltage of 15 kV. 

 



Chapter II. Materials and Methods 

!

!62 

II.2.3.3. Physical characterization 

II.2.3.3.1. Swelling  

In the context of TE, it is important to expose the polymeric networks to conditions that 

mimic as much as possible the in vivo environment. A proper evaluation of their behavior 

within this setup will help predicting their in vivo performance. Swelling is a trademark of 

hydrogels, as they are able to retain water in various percentages dependent on their 

chemistry1. Moreover, the swelling of polymeric networks is significantly influenced by water-

material interactions. These affect the mass transport characteristics, determinant for 

nutrient and oxygen diffusion to encapsulated cells and their metabolic waste disposal, and 

consequently, the mechanical properties as well as overall features, such as shape and size 

of a given hydrogel geometry or pattern. 

The swelling behavior of κ-CA-based hydrogels was evaluated as function of the CHT 

coating (chapter VII) and DM, as well as crosslinking mechanism for the MA-κ-CA hydrogels 

(chapter VIII) at physiological temperature (37°C) and under humidified atmosphere with 5% 

of CO2.  

The influence of the CHT coating on the swelling of κ-CA fibers was determined by 

evaluating the water absorption kinetics upon immersion of the coated and uncoated fibers 

in standard culture medium for up to 21 days. Standard medium, Dulbecco’s Modified Eagle 

Medium (DMEM, Gibco, USA) supplemented with 10%(v/v) heat-inactivated fetal bovine 

serum (HiFBS, Gibco, USA) and 1%(v/v) penicillin/streptomycin (Pen/Strep, 

100U/100µg/mL, Gibco, USA) was used envisioning the subsequent use of the fibers for 

cells encapsulation/culturing. Medium was replenished every 3-4 days. Fibers were allowed 

to reach equilibrium in DMEM and at days 7, 14, and 21, samples (n=3) were retrieved and 

blotted with KimWipe paper to remove the excess of liquid. Samples were weighted (wet 

weigth – Mw) and then freeze-dried to obtain the final dry weight (MDF). The swelling kinetics 

was defined as the ratio between the liquid uptake (MW-MDF) and the final dry mass (MDF), 

according to equation I.1.  

 

Mass swelling ratio =  (Mw - MDF) / MDF *100      (equation I.1) 

 

Complementarily, the diameter of the hydrogel fibers was measured in at least three 

micrographs of each sample using NIH ImageJ software (http://rsbweb.nih.gov/ij/). 

Similarly, the effect of the DM of MA-κ-CA and of the crosslinking mechanisms on the 

hydrogel swelling ratio at equilibrium was evaluated in Dulbecco’s Phosphate Buffered 

Saline (DPBS) and DMEM. For this purpose, MA-κ-CA hydrogels with different DM (Low, 

Medium or High) and obtained with different crosslinking procedures (physical, chemical and 

dual) were lyophilized and weighted (initial dry weight, MDI) before being transferred to 1.5 
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mL micro-centrifuge tubes. MA-κ-CA hydrogels were allowed to reach equilibrium over 24h 

in PBS or DMEM under dynamic conditions (shaking plate 40 rpm). Then, samples were 

retrieved from the swelling solution and weighted to determine the MW, after being blotted off 

with a KimWipe paper to remove the excess liquid. Then the samples were lyophilized to 

determine their WDF. The mass swelling ratio of MA-κ-CA was obtained according to 

equation II.1. 

Concomitantly, the dissolution degree for dual crosslinked MA-κ-CA hydrogels (with different 

DM) was defined as the percentage of dry mass loss after swelling (equation II.2). 

 

Dissolution degree =  MDF / MDI *100      (equation II.2) 

 

The purpose of the dissolution studies was to evaluate the integrity and stability of the MA-κ-

CA hydrogels in physiological conditions. The dissolution degree of dual crosslinked MA-κ-

CA hydrogels in DPBS and DMEM was evaluated over a period of 21 days. 

II.2.3.3.2. Viscoelastic properties 

Most hydrogels in their swollen state can be considered as rubbers that are lightly 

crosslinked networks with a rather large free volume that allows them to respond to external 

stress with a rapid rearrangement of the polymer segments. The response of the polymer 

network to such external forces provides information on network susceptibility to collapse, 

and thus on its stability. The viscoelastic behavior reflects the combined elastic and viscous 

responses, under shear stress. Generally, the parameters that describe this behavior are the 

storage modulus G' (storage modulus), associated with the elastic properties, and G′′ (loss 

modulus), related to the viscous properties. The ratio between the G′′ and G' moduli is 

defined as the tangent of the phase angle (Tan Delta, tanδ = G′′/G′), is a useful quantifier of 

the presence and extent of elasticity in a fluid and a measure of the internal friction of the 

material in that condition. When G′′<G' then tanδ < 1, which means the sample is solid-like 

(more elastic than viscous), and vice versa, when G′′>G' then tanδ > 1 and one can say that 

the sample is more liquid-like (more viscous than elastic). The crossover point, when tanδ is 

1 (G′′=G'), corresponds to the change of the viscoelastic behavior from solid-like (G′′<G') to 

liquid-like (G′′>G') comportment. This transition is correlated to the collapse of polymeric 

network and consequently the disruption of the crosslinking bridges that hold the 3D 

network. 

Within the present thesis, oscillatory shear experiments were performed to analyze the effect 

of DM on the viscoelastic properties of the dual crosslinked MA-κ-CA hydrogels (chapter 

VIII). An oscillatory stress sweep was applied between 0.1 to 1000Pa at 37oC and at a 

constant frequency of 0.1Hz, in a AR2000 stress controlled rheometer (TA instruments, 
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USA). The G′ and G′′ of the swollen samples, were measured using a gap of 500µm  and a 

20mm parallel plate geometry. A solvent (PBS) trap was used in order to minimize the drying 

of the swollen hydrogels undergoing analysis. 

II.2.3.3.3. Mechanical properties 

Considering hydrogels as cell carriers, modulators and delivery systems, it is important to 

address the stability of the polymeric network under stress-relaxation cycles, reproducing the 

repetitive force loads that native tissues are exposed to. The ionic crosslinking of κ-CA 

enables the formation of strong, but brittle network, not compatible with sustained loadings. 

In gels with ionic crosslinks, stress relaxes mainly through breakage and consecutive 

readjustment of the crosslinked bonds. In contrast, in gels with covalent crosslinks, like the 

methacrylate moieties, stress relaxes through the migration of water within the network66 

rendering a higher degree of stability to the network. 

Thus, the mechanical performance of 1.5%(wt/v) κ-CA hydrogels prepared by physical 

(ionic) crosslinking and MA-κ-CA with different DM (Low, Medium, High) and concentrations 

(2.5, 5, 7.5 and 10%wt/v), prepared by physical (ionic), chemical (UV exposure) or both 

crosslinking mechanisms was evaluated (chapter VIII) using an Instron 5542 mechanical 

machine (Instron, USA). Samples obtained immediately after crosslinking (as prepared 

samples) and samples that were allowed to swell in PBS for 24h before testing (hydrated 

samples), were analyzed. κ-CA and MA-κ-CA hydrogel discs (1mm thick, 8mm in diameter, 

n=6) were tested at a rate of 10%strain/min (0.1mm/min) until fracture. The compressive 

modulus (or Young’s modulus) was defined as the slope of the linear region of the strain-

stress curve, corresponding to 5–15% strain. 

Besides determining the strength of the hydrogel, that indicates how much force the 

hydrogels can withstand, toughness was also taken into consideration as an indication of 

how much energy the hydrogels can absorb before fracturing. In order to be tough, a 

material must be both strong and ductile, withstand both high stresses and high strains. For 

example, brittle materials (like ceramics) that are strong but with limited ductility, are not 

tough; conversely, very ductile materials with low strengths are also not tough. Toughness 

was determined by measuring the area under the strain-stress curves as energy of 

mechanical deformation per unit of volume prior to fracture (kJ/m3). 

For the dual-crosslinked 5%(wt/v) MA-κ-CA hydrogels with different DM (Low, Medium and 

High) and 1.5%(wt/v) κ-CA prepared by physical crosslinking, 5 complete loading-unloading 

cycles were applied (strain range=0-50%). These cycles involve the representation of two 

curves: one for applying increased force (loading curve) and another one for decreasing the 

applied force at the same rates it was applied (0.1mm/min). On unloading, the sample gives 

up less energy (area under the unloading curve) than the energy it takes up to deform (area 
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under the loading curve). The difference between these two energies (area enclosed by the 

loop) is the energy lost during deformation. This energy loss is absorbed by the polymeric 

chain and is eventually dissipated as heat. Measuring the energy loss provides information 

over the material response after applying external forces. The higher the energy loss, the 

less the sample is able to recover to its initial shape after deformation. Thus, energy loss 

during deformation was determined as the area under loading-unloading strain-stress curves 

(hysteresis) for cycle 1 and 2.    

The energy loss during deformation (within a loading-unloading cycle or consecutive loading 

curves) is strongly related to the recovery percentage after removing the external force and 

the fatigue of the sample. The recovery of the samples measures the differences in loadings 

between cycles. The recovery of the samples between cycle 1 and 2 was determined by 

calculating the percentage of area under loading curve of cycle 2 from the area of the 

loading curve of cycle 1. The higher the percentage, the higher the recovery of the samples 

to their initial mechanical performance, which is an aspect to pursue for development of 

materials that can withstand repetitive loading cycles without losing their mechanical 

behavior.  

II.3. CELL SOURCES AND CULTURING PROTOCOLS 
Stem cells have raised increased interested due to their ability to self-renew and to 

differentiate into multiple lineages. Thus, the scientific and medical community recognizes 

the potential of stem cells in TE and regenerative medicine. 

Adult stem cells can be isolated from different tissues, including bone marrow, adipose 

tissue, umbilical cord, blood, and skin, among others67.  In the present thesis, two sources of 

stem cells were used: adipose tissue and bone marrow, respectively to isolate human 

adipose derived stem cells (hASCs, chapters III, IV, VI and VII) and human bone marrow 

stem cells (hMSCs, chapter V).  

The concept of using hASCs for regenerative medicine applications is highly appealing, 

mainly due to their resemblances to hMSCs68,69, the “gold standard” cells for bone TE, 

demonstrated by their similar morphology, common surface markers and gene expression 

profiles70,71,67, as well as their differentiation potential towards multiple lineages, namely the 

osteogenic72, chondrogenic72, adipogenic72, myogenic72 and neurogenic73. 

The major advantage of hASCs over hMSCs is their accessibility for harvesting under 

minimally invasive procedures, and their abundance (upon isolation more than 2% of cells 

feature potential for multi-lineage differentiation compared to the 0.002% of the bone 

marrow74,70,75).   

Primary endothelial cells isolated from human umbilical cord of newborn babies (HUVECs) 

(chapter III) and were used as positive control for the endothelial differentiation of hASCs. 
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For the work described in chapter V, hMSCs were used as a cell pool equivalent to ASCs. 

In chapter VIII mouse fibroblast cell line NIH-3T3 was used to obtain a preliminary evaluation 

of the potential of MA-κ-CA with different DM for cell encapsulation purposes, as these cells 

were robust and easy to culture and expand.   

HASCs were obtained from human adipose samples obtained under protocols previously 

established between the 3B’s Research Group and Hospital da Prelada (Porto, Portugal) 

and (Hospital Sao Marcos, Braga, Portugal). These protocols were approved by the 

hospitals ethics committee to assure that the requirements concerning donors’ informed 

consent and anonymity (declaration of Helsinki guidelines 

http://www.wma.net/en/30publications/10policies/b3/) were fulfilled. Donors were healthy 

females, with an average age of 42 years, undergoing lipoaspiration procedures under 

cosmetic/esthetic purposes.  

Bone marrow hMSCs were purchased from Lonza, Switzerland (Cat. No PT-2501, passage 

1).  

II.3.1. Adipose derived stem cells 

II.3.1.1. Isolation of stromal vascular fraction 

Tissue samples were transported to the laboratory facilities in transportation buffer (PBS 

supplemented with 10%(v/v) Pen/Strep (Gibco, UK) at a final concentration of 

1000U/1000µg/mL) and processed within 24h post-surgery, according to an adapted 

isolation protocol72. The lipoaspirates were washed in PBS to remove blood, anesthetic and 

transportation buffer residues, and digested with 0.075% (chapter III) or 0.05% (wt/v) 

(chapters IV, VI and VII) collagenase II A (Sigma, Germany, Cat. No C6885, CAS 9001-12-1) 

in PBS, for 30 min, at 37oC in a shaking water bath.  Following digestion, the crude was 

filtered using a 200-µm pore size strainer. Mature adipocytes and connective tissue cells 

were separated by centrifugation at 1000xg, for 10min at 4oC. The cell pellet was 

resuspended and incubated for 10min at room temperature in an in-house prepared 

erythrocyte lysis buffer (155mM NH4Cl (Merck, Germany), 5.7mM anhydrous K2HPO4 

(Riedel-de-Haen, Germany), 0.1mM EDTA (Sigma, Germany) in diH2O, final pH=7.4). The 

cell suspension was centrifuged at 800xg for 10min at 4oC. The pellet was resuspended in 

PBS and filtered with a 100µm cell strainer to obtain the stromal vascular fraction (SVF) of 

the AT (Figure II.13).  
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Figure II.13. The typical aspect of human lipoaspirates before (left) and after (right) processing. The 

lipoaspiration procedure consists in the disruption of fat depots and their collection in a container with 

transportation buffer. Since the fat tissue is light, tissue clumps float in a solution containing blood, 

anesthetic and buffers (left). After digestion of the tissue with collagenase and lysis of the red blood 

cells, the cellular suspension is homogeneous and deprived from tissue clumps.  

 

II.3.1.2. Immunomagnetic beads coating and selection of SSEA-4+hASCs  

In the context of bone TE, the development of strategies that could effectively induce the 

microcirculation within the engineered constructs, while addressing the regeneration of the 

bone tissue, has become a major pursuit76. Previous in vivo studies showed that 

vascularization within engineered constructs using mature endothelial cells (ECs) improved 

blood perfusion, cell viability and their survival after implantation77,78,79. However, the limited 

availability and proliferation capability of mature ECs hinders their use in TE approaches80. 

Therefore, it became priority to find a suitable source of ECs that does not present such 

constrains and that will be ready-to-use for therapeutic applications.  

The SVF of the AT is a heterogeneous cellular suspension that comprises several cellular 

sub-sets characterized by a specific surface marker signature. These cellular subpopulations 

are characterized by increased differentiation potential towards a certain lineage when 

compared with the heterogeneous population. For instance, STRO-1+hASCs81, 

CD49d+hASCs81, p75+hASCs81, CD90+hASCs81,82, and CD105-hASCs83 were shown to 

exhibit a higher osteogenic differentiation than the hASCs, while the CD29+hASCs and 

CD105+hASCs81 exhibit a higher chondrogenic differentiation potential. These studies 

highlighted the potential of different cellular sub-sets that reside within SVF and, thus, the 

relevance of enriching SVF-derived cell population based on the expression of a surface 

marker. However, the greatest challenge for bone TE is to find the population that 

possesses a high differentiation potential towards both endothelial and osteogenic 

differentiation lineages that could act a single-cell source. Within the context of the current 

thesis, one of the aims was to establish a one-step cell selection protocol to deliver both 
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endothelial and osteoblast-like cells (chapter III) and to determine the culturing conditions in 

which both cell types retain their phenotype and functionality, envisioning the translation of 

these findings in a 3D cell-scaffold construct.  

Stage specific embryonic antigen (SSEA-4) has been widely used as a marker to evaluate 

and monitor the undifferentiated state of human embryonic stem cells84,85. Based on the 

hypothesis that the SSEA-4+hASCs are at an earlier maturation stage, thus exhibiting a 

higher potential towards endothelial and osteogenic lineages, relevant for bone TE, the 

selection of this subpopulation using immunomagnetic selection protocols was employed. 

This method is based on the attachment of small magnetic particles to cells via antibodies or 

lectins. When the mixed population of cells is placed in a magnetic field, those cells that 

have beads attached will be attracted to the magnet and may thus be separated from the 

unlabeled cells.  

Within this thesis, immunomagnetic selection was employed to obtain the SSEA-4+ 

subpopulation residing within the SVF (SSEA-4+hASCs). For this purpose, immunomagnetic 

beads (4.5µm diameter, Dynabeads® M-450 Epoxy, Invitrogen, USA, Cat. No 14011) were 

coated with SSEA-4 antibody (clone MC813, 200µg/mL, SantaCruz Biotech, Cat. No sc-

59368) as it follows: 50µL of immunomagnetic beads suspension were washed with 0.1M 

sodium phosphate buffer, resuspended with 10µL of the SSEA-4 antibody at a final 

concentration of 2µg/total volume, and then incubated, overnight, at room temperature, 

under gentle stirring. Following the coating, the SSEA-4 coupled beads were separated with 

Dynal MPC® magnet and washed with 0.2%(wt/v) bovine serum albumin (BSA) in PBS 

(BSA/PBS) and again separated using the magnet. This procedure was repeated three 

times. The SSEA-4 coupled beads were resuspended in 0.2%BSA/PBS at a concentration 

of 4x108 beads/mL. Coated beads were mixed with freshly isolated SVF in order to select 

the SSEA-4+hASCs residing within the cell crude. The cells-bead coupling procedure was 

performed at 4°C, for 30 min, under gentle stirring. Subsequently, the mixture was washed 

with 0.2% BSA/PBS, and the cells bonded to the beads were separated from the rest of the 

cell suspension using the magnet (Figure II.14).  
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Figure II.14. Schematics of the immunomagnetic selection of SSEA-4+hASCs from freshly isolated 

SVF.  

II.3.2. Cell culturing protocols 

All cells used under the experimental procedures of this thesis were cultured on tissue 

culture polystyrene surfaces (TCPS) such as flasks, well plates, coverslips, at 37oC, in a 

humidified atmosphere with 5% CO2. The cell culture medium was chosen based on the 

pursued application (proliferation or differentiation, Figure II.15). All media formulations are 

described in Table II.1. During cell culture, medium was replenished every 3-4 days, if not 

otherwise specified, and cells were cultured until 70-80% confluency and trypsinized with 

trypsin (0.25% trypsin-EDTA solution, Sigma, Germany, chapters III, V and VIII) or 

1xTrypLETM Express (Invitrogen, USA, Cat. No 12605-028, chapters IV, VI, VII). All cells, 

except the NIH 3T3 cell line, were used until passage 4. 
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Figure II.15. Cell culturing schematics: hASCs and SSEA-4+hASCs cells were expanded in 

expansion medium (α-MEM) and their differentiation potential towards endothelial and osteogenic 

lineages was assessed upon their culturing in specific media formulations. 

 

 The freshly isolated SVF was cultured in α-MEM medium. After 24h, non-adherent cells 

were removed by washing the tissue flasks with PBS. Adhered cells (i.e. hASCs) were 

cultured in α-MEM medium until confluence, trypsinized and then re-plated at a 1:5 ratio. 

The correspondent SSEA-4+hASCs subsets were cultured following the same procedure, 

with the exception of the washing step. HMSCs were expanded in MSCs medium, while 

mouse fibroblast NIH3T3 cells were cultured in DMEM and HUVECs in M199 (Table II.1.) 
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 Table II.1. Composition of the cell culture media  

Cells Medium Composition Chapter 
SV

F,
 h

A
SC

s 
an

d 
SS

EA
-4

+ hA
SC

s 

Expansion 

medium 

α-MEM 

1% (wt/v) α-MEM (Gibco, USA, Cat No 12000-063), 

supplemented with 1.1% (wt/v) NaHCO3 (Sigma, Germany), 

10% (v/v) FBS (Gibco, USA, Cat No 10270-106) and 1% (v/v) 

Pen/Strep (100U/100µg/mL, Gibco, USA, Cat No 15240-062) 

III, IV 

Endothelial 

medium 

 ENDO 

 

EGM-2 MV (Lonza, Switzerland, Cat No CC-3162): 500 mL of 

EBM-2 (Cat No CC-3156) supplemented with EGM-2 

SingleQuot Kit supplements and growth factors (Cat. No CC-

4176)*: 25mL of FBS, 0.2mL hydrocortisone, 2mL hFGF-B, 

0.5mL ascorbic acid, 0.5mL VEGF, 0.5 mL Long hR3-IGF-1, 

0.5 mL hEGF, 0.5 mL heparin and 0.5mL 

gentamicin/amphotericin 

*concentrations of supplements are not disclosed by the 
manufacturer 

III, IV, 

VII 

Osteogenic 

medium 

OC and OI 

Osteoconductive (OC) 

Osteogenic differentiation medium consisting in α-MEM 

medium with osteogenic supplements: 10mM (Sigma, 

Germany, Cat. No G9422) and 50µg/mL AA (Sigma, 

Germany, Cat. No A8960) 

V 

Osteoinductive (OI or OST) 
OC medium supplemented with 10-8M Dex (Sigma, Germany, 

Cat. NoD4902) 

III, IV 

V, VI 

SS
EA

-

4+ hA
SC

s 

MIX 

medium 

EGM-2 MV with osteogenic supplements (βGP, AA and Dex 

at the same concentration as in OST medium) 
IV 

hM
SC

s MSCs 

medium 

Mesenchymal stem cell growth medium (PoieticsTM 

MSCGMTM
 BulletKitTM, Lonza, Switzerland, Cat. No PT-3001)* 

containing 440mL of MSCBMTM supplemented with 

SingleQuotsTM of growth supplements 
*concentrations of supplements are not disclosed by the 
manufacturer 

V 

H
U

VE
C

s 

M199 

1.47% (wt/v) M199 medium (Sigma, Germany, Cat No 

M2520) supplemented with 20%(v/v) HiFBS (Gibco, USA, 

Cat No 10270-106, 1%(v/v) Pen/Strep (100U/100µg/mL, 

Gibco, USA, Cat. No 15240-062), 50µg/mL ECGS (BD 

Biosciences, USA, Cat. No 356006), 1.7mL Glutamax I 

(Gibco, USA, Cat No 35050-038) and 50µg/mL sodium 

heparin (Sigma, Germany, Cat No H3149) 

III  
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Abbreviations: 
α-MEM = Minimum Essential Medium Eagle-alpha Modification; AA = L-ascorbic acid 2-phosphate 
sesquimagnesium salt hydrate; βGP = beta-glycerophosphate disodium salt hydrate dehydrate; Dex 
= dexamethasone; DMEM = Dulbecco's Modified Eagle Medium; EBM = Endothelial basal medium; 
ECGS = endothelial cell growth supplement; EGM-2 MV = Endothelial growth medium; FBS = fetal 
bovine serum; hEGF = human epidermal growth factor; HiFBS = heat inactivated fetal bovine serum; 
hFGF-B = human fibroblat growth factor-basic with heparin; MSCBM = mesenchymal stem cell basal 
medium; MSCGM = mesenchymal stem cell growth medium; NaHCO3 = sodium bicarbonate; 
Pen/Strep =  penicillin/streptomycin; hR3-IGF-1 = human recombinant insulin-like growth factor 
(substitution of arginine for glutamine at position 3); VEGF = vascular endothelial growth factor. 
 

II.3.2.1. Endothelial differentiation 

 Standard endothelial differentiation protocols involve the use of VEGF86 in concentration 

that range from 1087,88 to 50ng/mL89. However, concentration of 50ng/mL of VEGF might 

impair the therapeutic application of the differentiated cells, while lower VEGF 

concentrations are usually associated with other procedures such as applying shear stress90 

and/or co-culturing with other cells types (e.g. vascular smooth muscle cells88).  

EGM-2 MV medium is a medium formulation that contains a cocktail of growth factors (see 

Table II.1) that was designed for the maintenance and growth of microvascular ECs cultures 

(e.g. umbilical vein, pulmonary artery, aortic artery, umbilical artery microvascular 

endothelial cells).  Although the manufacturer does not provide the concentrations of the 

growth factors, the concentration of VEGF in the kit was determined to be < 5ng/mL91.  

Within the current thesis, freshly isolated SVF, adhered hASCs and corresponding SSEA-4+ 

hASCs were cultured in complete EGM-2 MV, without additional supplementation with 

VEGF. Cells were cultured until passage 5. At each passage, cells were retrieved to be 

characterized in terms of endothelial phenotype. Cells cultured in α-MEM were used as 

negative controls. 

 

II.3.2.2. Osteogenic differentiation 

The differentiation of MSCs towards the osteogenic lineage is very well documented in 

literature and it requires the supplementation of culture medium with ascorbic acid, beta-

glycerophosphate (βGP) and dexamethasone (Dex), that trigger and support the 

commitment into the osteogenic pathway92,93. Ascorbic acid (or vitamin C) has been 

demonstrated to be involved in the hydroxylation of proline and lysine residues of collagen, 

thus enabling the organization of the polypeptide chains into the conformation necessary to 
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form the collagen triple helix. In fact, the prolonged exposure of cultures of human 

connective-tissue cells to ascorbic acid induced an eight-fold increase in the synthesis of 

collagen with no increase in the rate of synthesis of other proteins94. Ascorbic acid has also 

been demonstrated to increase alkaline phosphatase (ALP) activity, a prerequisite for the 

subsequent bone-like matrix deposition and mineralization95. As ascorbic acid has a very 

short half-life in cell culture conditions, a long active derivative, L-ascorbic acid 2-phosphate 

(AA), was used to supplement the culture medium. 

Together with AA, βGP was found to be a prerequisite for the formation and mineralization of 

the extracellular matrix. βGP is the organic phosphate source, playing an important role in 

the modulation of osteoblasts activities, namely on the ALP activity and osteocalcin (OCN) 

production. 

While AA and βGP favor the commitment into the osteogenic lineage by inducing the 

deposition of a collagen-enriched matrix and its further mineralization, Dex, a synthetic 

gluco-corticosteroid, triggers and sustains the cascade of events, including chemokine and 

calcium signaling96 that lead to the full commitment and maturation of osteoblast-like cells.  

Therefore, in order to address the osteogenic potential of hASCs and SSEA-4+ (chapter VI) 

in the presence of sNPs, cells were seeded at a density of 2,000 cells/cm2, allowed to 

adhere to TCPS and further in either growth or osteogenic media (Table II.1) after addition 

of sNPs suspensions (1, 10 and 100µg/mL. At pre-selected time points (3, 7, 14, 21 and 28 

days), samples were retrieved to characterize the cells in terms of osteogenic phenotype. 

Furthermore, in chapter V, hMSCs were cultured with α-MEM medium with AA and βGP 

without Dex (osteoconductive medium, OC) and with Dex (OI medium), in order to address 

the effect of sNPs as a Dex substitute during the osteogenic differentiation. In all 

experiments, cultures in α-MEM were used as negative controls. 

 

II.3.2.3. Establishment of the co-cultures 

In the context of bone development and regeneration, the intimate association of the 

microvascular endothelium with osteogenic cells suggests that ECs may directly regulate the 

differentiation of osteoprogenitor cells and the mineralization ability of osteoblasts (OBs). 

The current co-culturing protocols involve the use of cells obtained from tissues containing 

fully committed cells (OBs from bone; ECs or EPCs from peripheral blood or new born 

umbilical cord) or undifferentiated hMSCs from bone marrow. However, the difficulty in 

retrieving these cells and their low availability might hamper their use in a prospective 

clinical application. Thus, after confirming that SSEA-4+hASCs can be successfully 

differentiated into the endothelial and osteogenic lineages, this sub-population was 

considered as a suitable cell source for establishing a co-culture of osteoblast- and 

endothelial-like cells. In literature, the combination of mature OBs with ECs97, hMSCs with 
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ECs98,99,100, hMSCs with EPCs101 or pre-differentiated osteoblast cells with ECs102 have been 

proposed. Amongst these, the combination of less differentiated osteoblastic cells with 

mature and fully differentiated ECs proved to be the most effective102,103. Additionally, 

together with the cell sourcing, other questions regarding the optimal medium for the co-

culture, which cell combination is the most effective and in which ratio, still exist. 

The co-culture experiments performed under the scope of this thesis were designed 

considering the use of endothelial differentiated SSEA-4+hASCs (i.e. ECs) and pre-

conditioned osteoblast-like SSEA-4+hASCs (pre-OBs) (Figure II.16). The latter were derived 

from SSEA-4+hASCs cultured in α-MEM at passage 1, followed by a 7-day culture in 

osteogenic medium (OST). Cells were then trypsinized and mixed with SSEA-4+hASCs-

derived ECs at different cell ratios (ECs:pre-OBs; 100:0, 75:25, 50:50, 25:75 and 0:100). 

Cells suspensions, at appropriate ratios, were seeded in 24 well plates at a density of 2,000 

cells/cm2 with 500µL of EGM-2 MV, OST and MIX media. The MIX medium was defined to 

sustain the growth of ECs using the standard culture medium (EGM-2 MV) while 

accompanying the full differentiation of pre-OBs, due to the presence osteogenic factors 

(AA, βGP and Dex) (Table II.1). Monocultures of ECs (100:0) and pre-OBs (0:100) in the 

three media formulations served as controls. 

 
Figure II.16. Schematics of the experimental co-culture setup describing the (A) selection of SSEA-

4+hASCs, (B) endothelial differentiation of SSEA-4+hASCs and osteogenic conditioning prior initiation 

of co-culture experiments, and (C) the co-culture conditions. 
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II.4. IN VITRO STUDIES  
II.4.1. Culturing cells in the presence of sNPs  

II.4.1.1. Fluorescent labeling of sNPs 

In chapters V and VI, a fluorescent labeling of the sNPs was performed, in order to be able 

to visualize/track them. Briefly, sNPs were added to a 0.1%(wt/v) rhodamine B isothicyanate 

(Sigma, Germany, excitation: 550nm and emission: 570nm) or 0.05% Cy3 tagged lysozyme 

(Nanocs, USA, excitation: 550nm and emission: 570nm) solution prepared in 

dimethylsulphoxide (DMSO, Sigma, Germany), protected from light. The mixture was kept 

under continuous stirring, for 24h at 4oC. Several washing steps with absolute ethanol were 

performed to promote the separation of the sNPs from the organic phase and to remove the 

excess of dye. The sNPs were air dried, and kept at room temperature in dark sealed vials 

until further use. 

 

II.4.1.2. Addition of sNPs to cells 

Intrinsic and extrinsic properties of nanoparticles such as specific surface area and charge, 

functionality, and size and shape play direct roles in determining specific cellular 

responses104. Thus, under the context of this thesis the effect of sNPs over the cell behavior 

was investigated by assessing the cytotoxicity, internalization mechanism and influence on 

cellular morphology and differentiation potential (Figure II.17). In chapter V, sNPs were 

added to hMSCs, while in chapter VI, SSEA-4+hASCs were cultured in the presence of 

sNPs, at concentrations ranging from 0 to 2mg/mL, according to culturing protocols 

described in section II.3.2.2.    

 
Figure II.17. Representation of the addition of sNPs to cells and the subsequent interaction.   

 

II.4.2. Cell encapsulation  

Encapsulating cells in hydrogels offers numerous attractive features for TE, including highly 

hydrated tissue-like environments for cell and tissue growth that potentiate the ability to form 

in vivo functional systems. Many of the properties that are important to the design of 
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hydrogels, such as swelling, mechanical properties, degradation, and diffusion patterns, are 

closely linked to the crosslinking degree of the hydrogel, which is controlled through a variety 

of different processing conditions. Within the present thesis, cells were encapsulated in 

hydrogels obtained by physical (IG and PEC, chapters VII and VIII) and chemical (UV 

exposure, chapter VIII) crosslinking (Figure II.18). Because cells are present during the 

gelation process, it is important to use mild experimental methods (preparation, handling, 

culturing), so that the viability and functionality of the cells is not jeopardized. 

 
Figure II.18. Cell encapsulation in 3D hydrogel network obtained through physical (IG and PEC) and 

chemical (UV exposure) crosslinking methods. 

 

 II.4.2.1. Cell encapsulation within κ-CA fibers (with and without CHT coating) 

In chapter VII, SSEA-4+hASCs-derived ECs in passage 3 (obtained as described in section 

II.3.2.1), were resuspended in a 1.5%(wt/v) κ-CA solution, at a final cell density of 2x106 

cells/mL, that was then extruded through 25 and 27G needles to produce the fibers with or 

without CHT coating, according to the procedure described in sections II.2.1.1 and II.2.1.2. 

The cell-loaded fibers were then transferred to adherent 24-well plate and maintained in 

culture for 21 days in EGM-2 MV medium at 37°C in a humidified atmosphere with 5% of 

CO2, with the replenishment of cell culture medium every 3-4 days (Figure II.19). Prior 

encapsulation, the κ-CA, CHT and KCl solutions were sterilized at 120°C for 30min.  Fiber 

formation and cell encapsulation procedures were carried out at room temperature and 

under asseptic conditions.  

 
Figure II.19. Schematics of the encapsulation of endothelial cells derived from SSEA-4+hASCs into κ-

CA hydrogels fibers, with and without CHT coating.  
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The shape of the developed cell laden fibers (with or without CHT coating), as well as the 

presence/absence of cells on the bottom of the well, were examined using a 

stereomicroscope (Stemi 1000 PG-HITEC, Zeiss, Germany) and the images were obtained 

using a digital PowerShot G6 camera (Canon, Japan).  

 

II.4.2.2. Assembling of κ-CA fibers into 3D hydrogel discs 

Cell-laden κ-CA fibers containing SSEA-4+hASCs-derived ECs were labeled with a green 

fluorescent (Calcein-AM) tag, transferred to a petri dish and allowed to settle randomly. A 

freshly prepared solution of 1.5% (wt/v) κ-CA containing SSEA-4+hASCs-derived OBs 

(section II.3.2.2) labeled with a red fluorescent (rhodamine B) tag, was poured on top of the 

fibers until full coverage. The crosslinking of the κ-CA solution was achieved by the addition 

of a 5%(wt/v) KCl solution, for 10min. After crosslinking, the cells nuclei were stained with 

DAPI (Sigma, Germany). The hydrogels discs containing the fibers were then washed with 

PBS and observed under a confocal laser scanning microscope (CLSM, Fluoview 1000, 

Olympus, USA). YZ and XY projections were performed in order to evaluate the cellular 

distribution throughout the structures (chapter VII). 

 

II.4.2.3. Retrieval of cells from κ-CA fibers 

In order to assess the maintenance of the phenotype of the SSEA-4+hASCs-derived ECs 

after 21 days of culture (chapter VII), κ-CA fibers containing cells were transferred to sterile 

micro-centrifuge tubes and treated with 0.1% (wt/v) proteinase K (vWR, Portugal) in 1mM 

EDTA (Sigma, Germany), 50mM TrisHCl (Sigma, Germany) and 1mM iodoacetamide buffer 

(Sigma, Germany), for 1h at 37oC, under constant agitation, to release the cells from the 

fibers. The cellular pellet recovered after centrifugation (10min, 400xg) was resuspended in 

EGM-2 MV medium and plated into tissue culture flasks. Cells were cultured until reaching 

confluence, after which they were characterized as described in sections II.5.5-6 and 

II.5.9.3.   

 

II.4.2.4. Cell encapsulation within MA-κ-CA hydrogels  

The formation of MA-κ-CA hydrogels relies on the presence of a photoinitiator (PI), that 

under UV exposure generates free radicals that then initiate and propagate the crosslinking 

of the polymeric chains. It is important that PIs exhibit low toxicity, thus making it possible to 

polymerize a cell suspension and thus encapsulate viable cells within hydrogels. Amongst 

the PIs usually used during the photopolymerization process and implicitly during hydrogels 

formation, Irgacure 2959 (2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone) 

was proven to cause minimal cell death over a broad range of mammalian cell types105. 

Additionally, long exposures to UV light can affect cellular integrity and viability, thus short 
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exposures are desirable. Thus, in chapter VIII, a low concentration of Irgacure 2959 (0.25% 

wt/v) and a short exposure to UV (40sec) were the chosen parameters to obtain cell 

enclosing MA-κ-CA hydrogels.  

NIH-3T3 fibroblasts were encapsulated within MA-κ-CA hydrogels with different DM (Low, 

Medium and High) prepared by applying both physical and chemical crosslinking. Briefly, 

cells were resuspended in 5% (wt/v) MA-κ-CA polymer containing 0.25% (wt/v) PI at a 

density of 2x106 cells/mL polymer solution. The cells suspension was poured onto a Teflon 

sheet and using coverslip spacers, cell-laden hydrogels of 450µm and 1cm diameter were 

formed after UV light exposure. After attaching the crosslinked hydrogels on TMSPMA 

coated glass, the hydrogels containing cells were further crosslinked in a coagulation bath, 

as previously described (section II.2.2.3). Afterwards, hydrogels were rinsed with PBS, 

placed into 6-well culture plates and cultured in DMEM medium.  

 
II.4.2.5. Cell encapsulation within patterned MA-κ-CA hydrogels  

PDMS is an elastomeric silicon-based material widely used in microfabrication approaches 

owing to its biocompatibility, optical transparency, gas permeability, mechanical elasticity, 

and electrical insulation, as well as due to its capability to consistently replicate micro- and 

nano-features106,107. Since PDMS pre-polymer is liquid at room temperature, it can flow over 

nearly any micro- and nano-feature. At Increased temperatures PDMS cures forming an 

elastic material.  

To obtain a PDMS mold, a mixture of PDMS pre-polymer and curing agent (10:1) was 

poured on a silicon wafer  (master pattern) that was first silanized with (tridecafluoro-

1,1,2,2,-tetrahydrooctyl)-1-trichlorosilane to facilitate subsequent release/detach of patterned 

PDMS stamp. The PDMS mold, replicating the feature of the master, was cured at 70oC for 

1h..  

In chapter VIII, PDMS molds (100µm diameter x 300µm depth) were used to obtain circular 

patterns in cell loaded MA-κ-CA hydrogels (Medium DM), based on the fact that PDMS 

allows the UV light to pass through, so that the MA-κ-CA solution could be crosslinked.  A 

MA-κ-CA cellular suspension (obtained as described in section II.4.2.4) was pipetted on a 

TMSPMA coated glass slide. The solution was stamped with the PDMS mold and the micro-

patterns of the PDMS were transferred to the hydrogel upon UV exposure (6.9mW/cm2, 40 

sec, as described in section II.2.2.2). The non-crosslinked polymer was gently removed by 

immersing the TMSPMA slide containing the pattern in PBS (Figure II.20).  
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Figure II.20. Schematics for the fabrication of patterned MA-κ-CA hydrogels with controlled 

distribution of cells. 

 
II.5. BIOLOGICAL EVALUATION OF THE DEVELOPED SYSTEMS  
II.5.1. Morphological evaluation 

II.5.1.1. Monitoring of the cultures 

An initial indication of the cellular phenotype is the evaluation of the morphology of the cells. 

While undifferentiated hASCs, SSEA-4+hASCs and hMSCs were characterized by an 

elongated, fibroblast-like morphology, SSEA-4+hASCs-derived ECs and HUVECs displayed 

a cobblestone-like morphology. Based on these characteristics, the morphology of cells 

cultured in the absence (chapter III) and presence of sNPs (chapter V and VI), in co-culture 

(chapter IV) and released from the κ-CA fibers (chapter VII) was monitored along the time 

using a stereo microscope Stemi 1000 (Zeiss, Germany). 

 

II.5.1.2. Evaluation of cytoskeleton organization upon addition of sNPs 

The effect of sNPs concentrations over the morphology of cells was addressed in chapters V 

and VI. Briefly, hMSCs and SSEA-4+hASCs, both at passage 2, were seeded on tissue 

culture polystyrene (TCPS) coverslips (Sarstedt, USA) in 24-well plates, at a cell density of 

2x103 cells/cm2 and allowed to adhere. After 24h, rhodamine or lysozyme-cy3-labeled sNPs 

(at concentrations below IC80: 0, 1, 10 and 100µg/mL) were added to the culture wells. After 

additional 24h of standard culture, samples were washed with PBS and fixed with 10% 

formalin. Cell cytoskeleton was stained either with phalloidin-rhodamine (Invitrogen, USA) or 

with CytoPainter F-actin (abcam, USA, Cat. No ab112124). Cell nuclei were counterstained 

with DAPI, at a 1:10,000 dilution in PBS, for 10min, and then washed three times. Samples 

were visualized under a fluorescence microscope and photographed by suitable acquisition 

software. 
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II.5.2. Cytotoxicity screening  

II.5.2.1. Reactive species  

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated as 

natural products of the cell respiratory metabolism and are overproduced as an immediate 

response to stress, upon which other cellular events are favored or not. For instance, 

elevated levels of ROS and RNS are implicated in cell injury and death by inducing oxidative 

and nitrosative stress108. It has been also reported that cancer cells could be locally 

damaged using specifically targeted gold nanoparticles and laser pulse irradiation, due to 

the high concentrations of ROS formed within the irradiated cells109, with minimum damage 

to the nearby particle-free tissue.  

The formation of photocrosslinked hydrogels relies on the presence of a PI that under UV 

exposure generates free radicals that initiate and propagate the crosslinking of the polymeric 

chains. Amongst the PIs usually used during the photopolymerization process and implicitly 

during hydrogels formation, Irgacure 2959 was proven to cause minimal toxicity (cell death) 

over a broad range of mammalian cell types105.  

Thus, envisioning TE applications and the therapeutic usage of nanoparticles or 

photocrosslinkable hydrogels, the levels of reactive species must be as low as possible. 

Therefore, it is important to determine the “safe dosage window” where cells are not 

significantly affected by the addition of nanoparticles110,111 or UV light exposure and 

presence of PI. .  

 

II.5.2.1.1. Reactive oxygen species production by hMSCs in the presence of sNPs  

In chapter V, the production of reactive species by hMSCs upon exposure to a concentration 

range (0-10mg/mL) of sNPs was taken into consideration as the initial response of cells 

when encountering the sNPs. Superoxide (SOx) and nitric oxide (NOx) production was 

assessed as representative units for ROS and RNS, respectively.  

Intracellular production of SOx and NOx was evaluated respectively using the 

dihydroethidium (DHE, Molecular Probes, USA, Cat. No D1168) and the 4,5-

diaminofluorescein diacetate (DAF-2DA, Calbiochem, USA, Cat. No 251505) oxidation 

assays. HMSCs (2x104 cells) in passage 4 were seeded on 24-well plate and allowed to 

adhere. After reaching 70% confluence, cells were pre-incubated with DHE (25µM) for 10 

min and DAF-2DA (10µM) for 30min at 37oC. Cells were then washed with PBS and sNPs 

suspensions (0, 1, 10, 100, 1.000, 10,000, 20,000µg/mL) in phenol red-free DMEM (Gibco, 

USA, Cat. No 11880-036) without FBS were added to the cells. After 2h of incubation, cells 

were washed with PBS and then fixed with 4% paraformaldehyde for 40min. Samples were 

examined using a Eclipse TE2000-U fluorescence microscope (Nikon,Japan) equipped with 

FITC filter (ex: 450–505nm; polychromatic mirror: 510–555nm; barrier filter: 515–545nm) 



Chapter II. Materials and Methods 

!

! 81 

and FITC-Texas Red filter (ex: 560–580nm; polychromatic mirror: 585–665nm; barrier filter: 

600–650nm).  

The quantification of the fluorescent signal was performed using NIH ImageJ software and 

considering the intensity of fluorescence per single cell for each of the evaluated conditions.  

 

II.5.2.1.2. Reactive species production in NIH-3T3 upon encapsulation in MA-κ-CA 

hydrogels  

In chapter VIII, the production of SOx and NOx, as indicators of oxidative and nitrosative 

stress in cells, was evaluated to determine to which extent the chemistry (DM) and 

crosslinking mechanism (chemical, physical or both) of hydrogels affected the encapsulated 

cells. Intracellular production of SOx and NOx was evaluated as previously described 

(section II.5.2.1.1). NIH-3T3 fibroblasts (2x105 cells) pre-incubated with 25µM DHE and 

DAF-2DA were washed with PBS, centrifuged at 1200rpm, for 5min, and resuspended in 

1.5% κ-CA (wt/v) and 5% (wt/v) MA-κ-CA solution with different DM (Medium, Low, High) 

and 0.25% PI (wt/v). The cells-containing MA-κ-CA solutions were UV crosslinked for 40sec 

and the obtained hydrogels were immersed in a bath of 5% KCl for 10min for further 

crosslinking. Control κ-CA hydrogels containing cells were obtained by crosslinking in the 

same coagulation bath for 10min, with and without the UV exposure. All cell-loaded 

hydrogels were washed with PBS and incubated at 37oC in phenol-red free DMEM for 2h for 

SOx and 1h for NOx quantification. Pre-incubated cells (in suspension), mounted on glass 

slides using Fluoromount mounting media (Sigma, Germany), were used as threshold for 

SOx and NOx levels, respectively. Visualization and quantification were performed as 

described above. Initial SOx and NOx levels were attributed to stress exercised on cells by 

trypsinization, centrifugation, resuspension and incubation period with the reagents.  

II.5.2.2. Released lactate dehydrogenase quantification 

Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme that is found in all cells in 

small amounts. LDH is rapidly released into the cell culture supernatant when the plasma 

membrane is damaged, thus LDH is commonly used as an indicator of cell damage110,111. 

LDH has been also extensively used as a marker of lethal cell injury in both in vitro and in 

vivo screenings to assess the cytotoxicity of nanoparticles112. Thus, within this thesis, LDH 

was used to evaluate the cytotoxicity of sNPs (chapter V) by using the CytoTox96® Non-

Radioactive Cytotoxicity Assay (Promega, WI, USA, Cat. No G1780). Cells (hMSCs) were 

seeded in a 96-well plate, in MSCs medium (Table II.1), and allowed to adhere for 24h , 

treated with different amounts of sNPs (0, 1, 10, 100, 1,000µg/mL) and incubated for 24h at 

37oC. Following the manufacturers protocol, the culture medium of untreated cells was used 

as negative control (0% cytotoxicity) and a suspension of the lysed cells was used as 



Chapter II. Materials and Methods 

!

!82 

positive control (100% cytotoxicity). At the end of the incubation time, the well plate was 

centrifuged at 600xg for 10min, 10µL of supernatant from each sample well and controls 

were transferred into 96 well plates, 100µL of the LDH reaction mix was added to each well 

and the plate was incubated for 30min at room temperature. Absorbance measurements 

were performed at 490nm in a SpectraMax M5 microplate reader (Molecular Devices, USA).  

 

II.5.2.3. Metabolic activity quantification 

After addressing the production of reactive species and LDH release as cells immediate 

response to the addition of sNPs, the assessment of the metabolic activity was carried on 

(chapters V and VI).    

In chapter V, the metabolic activity of hMSCs upon addition of sNPs was evaluated using an 

MMT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide)-based assay (MTT Cell 

Proliferation Assay, ATCC, USA, Cat. No 30-1010K). This assay is based on the conversion 

of MTT into formazan crystals by living cells, which determines mitochondrial activity. Since 

for most cell populations the mitochondrial activity is related to the number of viable cells, 

this assay is broadly used to measure in vitro cytotoxic effects on cell lines or primary 

cells113. HMSCs (passage 3) were seeded in 96-well plates at a density of 2x103/cm2 in 

MSCs medium (Table II.1) and allowed to adhere for 24h. SNPs (concentration 0, 1, 10, 

100, 1,000, 10,000, 20,000µg/mL) were added to the cells and allowed to interact for 24h. 

After this period, the medium was replaced with 100µL of fresh culture medium and 10µL of 

MTT solution. Samples were incubated at 37oC for 4h. After the incubation time, 100µL of 

lysis buffer were added to each well and plates were further incubated at 37oC for 2h. The 

absorbance was measured at 540nm in 100µL of the lysed samples in a SpectraMax M5 

microplate reader (Molecular Devices, USA). The metabolic activity was normalized with the 

control (without any sNPs). The concentration at which the metabolic activity of hMSCs was 

reduced to 50% was defined as the half maximal inhibitory concentration (IC50) and 

determined to be 4mg/mL of silicate concentration. 

In chapter VI, the effect of sNPs over the metabolism of adhered SSEA-4+hASCs was 

investigated using the MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium) – based assay. The MTS assay is often described as a 'one-

step' MTT assay, which offers the convenience of adding the reagent straight to the cell 

culture without the intermittent steps required in the MTT assay. However, this convenience 

makes the MTS assay susceptible to colorimetric interference, as the intermittent steps in 

the MTT assay remove traces of any colored compounds (e.g. phenol red, serum, etc.), 

whilst these remain in the microtitre plate in the one-step MTS assay. Thus the addition of 

MTS reagent is performed in phenol-free medium without FBS.  

SSEA-4+hASCs (passage 2) were seeded in 48-well plates, at a density of 2x103 cells/cm2 
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and cultured in complete α-MEM. After 3 days, sNPs were added to the cells in different 

concentrations (0, 0.5, 1, 5, 10, 25, 50, 100, 250, 500, 1,000, 2,000, 10,000µg/mL). At pre-

selected time points (days 1, 3 and 7), cells were washed thoroughly with PBS, and 250µL 

MTS working solution consisting in serum- and phenol-red free DMEM medium and MTS 

reagent in a 5:1 ratio, was added to the cells. Samples were incubated for 3h, after which 

100µL of each sample were transferred to 96-well plates and absorbance was measured at 

490nm on a microplate reader (Synergy HT microplate reader, Biotek, USA). The metabolic 

activity was normalized with the cells-control group (without any sNPs) to determine the 

dose response. The concentration at which the metabolic activity of hMSCs was reduced to 

80% was regarded as the inhibitory concentration-80 (IC80) and was considered as an 

exclusion parameter. 

MTS assay was also chosen to evaluate the metabolic activity of co-cultured SSEA-

4+hASCs-derived ECs and pre-OBs as a function of ratio, culture media and time (chapter 

IV). At pre-selected time points (days 4, 7, 14 and 21) cells were washed thoroughly with 

PBS and the assay performed as described above.   

 

II.5.2.4. Cell proliferation assessment  

II.5.2.4.1 AlamarBlue® assay 

The AlamarBlue® assay incorporates a fluorometric/colorimetric oxidation-reduction 

(REDOX) that both fluoresces and changes color in response to chemical reduction of 

growth medium resulting from cell growth. The active ingredient of alamarBlue®, resazurin is 

a non-toxic, cell permeable dye that is blue and weakly fluorescent. It is used as an 

oxidation-reduction indicator that undergoes colorimetric change in response to chemical 

reduction of growth medium resulting from cell growth114.  The reduced form resorufin is pink 

and highly fluorescent. The amount of fluorescence is proportional to the number of living 

cells; therefore it is an ideal indicator to generate a quantitative measure for cell growth and 

indirectly for cytotocixity 

In chapter V, AlamarBlue® was used to evaluate the effect of sNPs (0, 1, 10 and 100µg/mL) 

over the growth of hMSCs. At determined time points, the culture media was removed and 

the cells were washed twice with PBS. Then the PBS was replaced with 10% (v/v) of 

AlamarBlue® reagent (AbD Serotec, UK, Cat. No BUF012B) and incubated at 37oC, 5% CO2 

humidified atmosphere for 3h. At the end of the incubation period, the supernatant of the 

cultures was transferred into 96-well plate in triplicates and a colorimetric reading was 

performed using a microplate reader (Epoch, Biotek, USA) at 570 and 600nm, respectively 

excitation and emission wavelengths. Culture medium was used as negative control. After 

supernatant removal, cells were washed in PBS and fresh medium was added to maintain 

the culture. The proliferative potential of cells was reported as percentage (%) of reduced 
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AlamarBlue® 

II.5.2.4.2 DNA Quantification 

The total amount of double-stranded DNA (dsDNA) is constant for individual cell types and 

therefore its quantification directly correlates to the cell number. PicoGreen® is a 

fluorochrome that selectively binds to dsDNA, circumventing the interference from single 

stranded DNA (ssDNA) and other contaminants, such as proteins, RNA and extraction 

buffers in the quantification of the number of cells. When bound to dsDNA, fluorescence 

enhancement of PicoGreen® is exceptionally high and little background occurs since the 

unbound dye has virtually no fluorescence. In the present work, cell counts and proliferation 

rate were quantified by Quant-iTTMPicoGreen®dsDNA assay (Invitrogen, USA, Cat. No 

P7589).  

A protocol was defined according to manufacturer instructions and applied in chapters IV-VI 

after obtaining a cell lysate by subjecting the samples to consecutive osmotic and thermal 

shocks. The samples and standards were mixed with the PicoGreen® reagent, previously 

diluted 200-fold in Tris-EDTA buffer, on a 1:1 ratio in a 96-well opaque plate (Corning, USA) 

and incubated for 5min protected from light. The fluorescence of the dye was measured at 

an excitation wavelength of 485/20nm and at an emission wavelength of 528/20nm, in a 

microplate reader (Synergie HT, Bio-Tek, USA or SpectraMax M5, Molecular Devices, USA). 

Triplicates were made for each sample and per culturing time. The dsDNA concentration for 

each sample was calculated using a standard curve (dsDNA concentration ranging from 0.0 

to 1.5µg/mL) relating the quantity of dsDNA and fluorescence intensity. 

II.5.2.4.3. Calcein- Etidium/Propidium Iodide staining 

The viability of the cells is an essential parameter that must be taken into consideration 

when designing hydrogel for TE application. Immediately after encapsulation, an evaluation 

of cellular viability will determine whether the tested system and its processing (crosslinking 

times, UV exposure, photoinitiator etc.) is suitable to retain the viability of the cells and 

whether it should be continued with longer culture periods. Also, one must take into 

consideration the chemistry of the material and the stiffness of the polymeric network that is 

formed upon crosslinking. A stiff and tight network with small pores, usually associated with 

low swelling rates, can “squize” the cells and thus, compromise their viability, growth and 

functionality. 

The viability of the SSEA-4+hASCs-derived ECs and NIH-3T3 (chapter VII and VIII) was 

assessed immediately after encapsulation and for culture times longer than 3 days, 

considering that the viability can be affected by the lack of diffusion of oxygen and nutrients 

(for thick samples) or presence of toxic photoinitiators, such as Irgacure 2959, was 

assessed. The standard method to qualitatively assess cellular viability relies on a Live/Dead 
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assay (Invitrogen, Carlsbad, CA, USA) that provides a two-color fluorescence simultaneous 

visualization of live and dead cells. It is based on the use of acetomethoxy derivate of 

calcein (Calcein-AM) that is a non-fluorescent dye that easily permeates live cells and is 

then hydrolytically converted to calcein, a strong green fluorescent dye (excitation/emission: 

494/517nm). On the other hand, dead cells are identified with ethidium homodimer (EthD-1, 

excitation/emission: 571/617nm) or propidium iodide (excitation/emission: 536/617nm). 

These dyes pass the membrane of damaged cells and bind to the nucleic acids. Cells with 

intact plasma membrane exclude EthD-1 and propidium iodide.  

In chapter VII, the viability of SSEA-4+hASC-derived ECs (section II.3.2.1) loaded in κ-CA 

fibers without CHT (section II.2.1.1) and with CHT coating (section II.2.1.2), was evaluated 

at selected time culturing points (1, 7, 14 and 21 days). Cell-loaded fibers were washed with 

PBS and incubated with 4µM Calcein-AM (live) for 40min followed by 10min incubation with 

1µM propidium iodide (dead). Samples were then washed and fixed for 40 min in 10% 

formalin. After fixation, samples were washed with PBS and cell nuclei were counterstained 

with DAPI. Representative fluorescent micrographs were acquired using the Axioplan 

Imager Z1 fluorescence microscope (Zeiss, Germany) and the AxioVision 4.8 software 

(Zeiss, Germany). 

In chapter VIII, the effect of DM, as well as the photocrosslinking conditions, on the cells 

viability was evaluated by encapsulating NIH-3T3 fibroblasts within gels prepared by 

applying both physical and chemical crosslinking, as described in section II.2.2.3. The 

viability of the encapsulated cells was evaluated at 3 and 72h of culture. Briefly, cells were 

incubated with calcein AM/EthD-1 solution prepared by mixing 20 µL of EthD-1 (2 mM) and 5 

µL of Calcein-AM (4mM) in 10 mL of phenol red-free DMEM (Gibco, USA, Cat. No 11880-

036), without FBS for 40min. Samples were then washed and fixed for 40min in 10% 

formalin. Fluorescence images were taken with an inverted fluorescence microscope (Nikon, 

Eclipse TE 2000U, Japan). 

 

II.5.3. Evaluation of SNPs contact with cells and internalization mechanism 

In order to further investigate the interaction between cells and sNPs (cell-membrane 

interaction and intracellular uptake, chapter VI) and obtain an insight over the internalization 

mechanism, a cell suspension of SSEA-4+hASCs (passage 2) cultured in complete α-MEM 

was transferred to 25cm2 culture flasks (2x103 cells/cm2). Upon cells adhesion, the culture 

medium was replaced by α-MEM-containing rhodamine-labeled sNPs (obtained in section 

II.4.1.1) at a final concentration of 0, 1, 10, 20, 50, 100 and 200µg/mL.  In order to separate 

the two modes of interaction the internalization via endocytosis from the external contact of 

the cells with the sNPs, cells were cultured in the presence of rhodamine-labeled sNPs and 

10-6M colchicine, an endocytotic restrictive drug. Cells were cultured for 24h, after which 
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they were washed thoroughly with PBS, trypsinized and fixed with PBS containing 10% 

formalin and 0.1% sodium azide (acquisition buffer). SSEA-4+hASCs cultured in α-MEM in 

the presence of colchicine, but without sNPs, were used as negative control. Samples were 

analyzed in a BD FACS Calibur flow cytometer (BD Biosciences, USA). Cells of interest 

were gated in a forward versus side scatter dot plot with a linear scale. Acquired data were 

displayed as histogram plots created using the CellQuest software (BD Biosciences, USA). 

All experiments were carried out in triplicate.  

In parallel, SSEA-4+hASCs (passage 2) were seeded on TCPS coverslips (Sarstedt, USA) in 

24-well plates, at a cell density of 2x103 cells/cm2 and allowed to adhere. After 24h, 

rhodamine-labeled sNPs were added to the culture wells. After additional 24h of culture, 

samples were washed with PBS and fixed with 10% formalin. Cell nuclei were 

counterstained with DAPI. Samples were visualized as previously described. 

II.5.4. Flow cytometry 

Flow cytometry technology provides multi-parametric single-cell measurements of a 

population of cells. Within this thesis, flow cytometry measurements were performed in order 

to determine the phenotype of isolated hASCs, SSEA-4+hASCs and hMSCs (chapters III-VI). 

To address the undifferentiated, multipotent stage of mesenchymal stem cells, the choice of 

markers was based on the minimal criteria for defining multipotent mesenchymal 

stem/stromal cells established by the International Society for Cellular Therapy115. The cells 

to be analyzed were resuspended in cold PBS with 2% (w/v) bovine serum albumin (BSA, 

Sigma, USA) solution in PBS (BSA/PBS). Each cell suspension (100µL) containing 5x105 

cells, was incubated with the antibodies at the concentration advised by the manufacturer 

(Table II.2).  

After incubation for 20min at room temperature, in the dark, hASCs, SSEA-4+hASCs and 

hMSCs were washed with PBS/BSA and resuspended in acquisition buffer until analysis. 

Cells were analyzed in a BD FACScalibur flow cytometer (BD Biosciences, USA). Cells of 

interest were gated in a forward versus side scatter dot plot with a linear scale. A minimum 

of 20,000 gated events were acquired and displayed as histograms or dot plots as 

previously described  
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II.5.5. Immunocytochemistry 

Immunocytochemistry was used as a tool to detect specific cellular markers in order to 

assess the identity and localize a specific cell sub-set. Thus, in chapters III-VII, endothelial-

specific markers, such as platelet endothelial cell adhesion molecule-1 or CD31, von 

Willebrand factor (vWF) and CD34, as well as osteogenic-specific markers: Runt-related 

transcription factor-2 (RUNX-2), osteopontin (OPN), osteocalcin (OCN), collagen type I and 

II were targeted. At selected time points, samples were washed with PBS, fixed with 10% 

formalin for 20min and washed again. Non-specific binding was blocked by incubating the 

fixed cells with a 1.5-3% (wt/v) BSA/PBS or 10% (v/v) goat serum for 30min. For the CD31, 

vWF and RUNX-2 detection, an additional permeabilization step was performed, by 

incubating the fixed samples with 0.1% (v/v) TritonTM 100x  (Sigma, Germany, Cat No T8787, 

CAS 9002-93-1) solution for 5min, followed by several washings with PBS. Further on, cells 

were  incubated for 1h at room temperature or overnight at 4oC with the primary antibodies, 

at optimized dilutions (Table II.3).  

Table II.2.    Panels of antibodies used to characterize cells by means of flow cytometry 

Cell 
type Antibodies Chapter 

hM
SC

s 

mouse anti-human CD31-APC (R&D Systems, USA) 
mouse anti-human CD34-PE (BD Biosciences, USA) 
mouse anti-human CD45-FITC (BD Biosciences, USA) 
mouse anti-human CD73-PE (BD Biosciences, USA) 
mouse anti-human CD90-APC (eBioscience, USA) 
mouse anti-human CD105-FITC (AbD Serotec, UK) 

V 

SV
F 

mouse anti-human SSEA-4-Alexa Fluor 488 (eBioscience, USA) 
mouse anti-human CD34-PE (BD Biosciences, USA) 
mouse anti-human CD45-FITC (BD Biosciences, USA) 
mouse anti-human CD73-PE (BD Biosciences, USA) 
mouse anti-human CD90-APC (eBioscience, USA) 
mouse anti-human CD105-FITC (AbD Serotec, UK) 

III 

hA
SC

s 
 

mouse anti-human SSEA-4-Alexa Fluor 488 (eBioscience, USA) 
mouse anti-human CD31-APC (R&D Systems, USA) 
mouse anti-human CD34-PE (BD Biosciences, USA) 
mouse anti-human CD45-FITC (BD Biosciences, USA) 
mouse anti-human CD73-PE (BD Biosciences, USA) 
mouse anti-human CD90-APC (eBioscience, USA) 
mouse anti-human CD105-FITC (AbD Serotec, UK) 

III 

SS
EA

-
4+ hA

SC
s mouse anti-human CD31-APC (R&D Systems, USA) 

mouse anti-human CD34-PE (BD Biosciences, USA) 
mouse anti-human CD73-PE (BD Biosciences, USA) 
mouse anti-human CD90-APC (eBioscience, USA) 
mouse anti-human CD105-FITC (BD Bioscience, USA) 

III, IV, VI, 
VII 
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Table II.3.   Antibodies used to perform immunocytochemistry to characterize 

different cultured cells 

Cellular 
lineage 

Antibody            Company Info Dilution Chapter 

PRIMARY ANTIBODIES 
 mouse anti-human  

SSEA-4   (clone MC813) 
Abcam, UK 
Cat. No ab16287 1:50 III 

EN
D

O
TH

EL
IA

L 

polyclonal rabbit anti-human  
von Willebrand factor 

Dako, Denmark 
Cat. No A0082 1:200 III 

mouse anti-human  
CD31  (clone JC70A) 

Dako, Denmark 
Cat. No JR610 1:50 III 

mouse anti-human 
CD34-PE (clone 8G12) 

BD Biosciences, USA 
Cat. No 340667 1:50 III 

mouse anti-human  
CD105-APC 

eBioscience, USA 
Cat. No 17-1057 1:50 III 

O
ST

EO
G

EN
IC

 

monoclonal mouse anti-human  
collagen I 

abcam, UK 
Cat. No ab90395 1:50 VI 

polyclonal rabbit anti-human  
collagen II 

abcam, UK 
Cat. No ab34712 1:50 VI 

mouse anti-human RUNX-2  
(clone AS110) 

Milipore 
Cat. No 05-1478 1:100 V 

polyclonal rabbit anti-human  
osteocalcin 

abcam, UK 
Cat. No ab14173 1:100 V 

monoclonal mouse anti-human  
osteocalcin (clone 2H9F11F8) 

AbD Serotec, UK 
Cat. No 0400-0041 1:50 III 

mouse anti-human osteopontin Abcam, UK 
Cat. No ab69498 1:100 V 

rabbit anti-human osteopontin Abcam, UK 
Cat. No ab8448 1:50 III 

 SECONDARY ANTIBODIES 

 donkey anti-mouse Alexa Fluor 
488 

Invitrogen, USA 
Cat. No A21202 1:500 III 

rabbit anti-mouse Alexa Fluor 
488  

Invitrogen, USA 
Cat. No A11059 1:100 V 

donkey anti-mouse Alexa Fluor 
594 

Invitrogen, USA 
Cat. No A21203 1:500 III 

goat anti-mouse Alexa Fluor 594  Invitrogen, USA 
Cat. No A11055 1:100 V 

Cell 
nuclei 

4,6-Diamidino-2-phenylindole 
dilactate DAPI 

Invitrogen, USA 
Cat. No D3571 

1:10,0
00 III-VIII 
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All antibody dilutions were performed in 1.5% BSA/PBS. Upon this incubation, cells were 

washed three times with PBS and incubated with the appropriate secondary antibody for 1h 

(Table II.3). Cell nuclei were counterstained with DAPI for 10min, and then washed three 

times. Negative control samples were prepared by replacing the primary antibody with PBS. 

Immunolabeling was qualitatively analyzed under a Eclipse TE2000-U fluorescence 

microscope (Nikon, Japan) or Axioplan Imager Z1 fluorescence microscope (Zeiss, 

Germany).

II.5.6. Real Time Reverse Transcriptase-Polymerase Chain Reaction 

Quantitative Real Time Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) was 

used to evaluate the expression of several endothelial (CD31 and vWF in chapters III and 

IV) and osteogenic (RUNX2, OPN, OCN, chapters III, IV, and VI) related genes. The whole 

procedure consists of 3 steps: (1) extraction of mRNA, (2) single-strand complementary 

DNA (cDNA) production from the extracted messenger RNA (mRNA) and (3) amplification 

and real-time quantification of the expression of the defined genes. 

II.5.6.1. RNA extraction and cDNA production 

The mRNA of the samples (chapters III, IV and VI) was extracted using TRI Reagent® 

(Sigma, Germany, Cat. No T3809), following the manufacturer instructions. Proteins were 

extracted using 160µL chloroform (Sigma, Germany) and the RNA pellets were washed with 

an equal volume of isopropanol (Sigma, Germany) and 70% ethanol. The total mRNA was 

reconstituted in 12µL RNAse/DNAse-free water (Gibco, USA) and its quantity and purity 

were assessed with a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, 

USA). Samples with a 260/280 ratio between 1.6 and 2.0 were used for the synthesis of 

cDNA. The synthesis of cDNA was performed using qScript™ cDNA synthesis Kit (Quanta 

BIosciences, USA) and the thermoblock of the Mastercycler ep realplex thermal cycler 

(Eppendorf, USA). An initial amount of 1µg of mRNA was used in a total volume of 20µL.  

 

II.5.6.2. Quantitative real time PCR 

The quantification of the transcripts of the genes of interest was carried out by RT-PCR 

using 50ng of cDNA and PerfeCTA™ SYBR® Green FastMix kit (Quanta Biosciences, USA) 

following the procedure suggested by the manufacturer. The primers were previously 

designed using the Primer 3 online software (v0.4.0, Whitehead Institute, USA) and 

synthesized by MGW Biotech (Germany). For each sample, the transcripts expression data 

were normalized to glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as housekeeping 

gene. The primers sequences and annealing temperatures, specific for endothelial-specific 

genes: CD31 and vWF, bone-specific genes: RUNX-2, OPN, OCN, and that of GAPDH, are 
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described in Table II.4. A concentration of 100nM of primer was used in a final volume of 

20µl of sample. Each real time RT-PCR reaction as carried out with an initial incubation at 

95oC for 2min, followed by forty fives cycles of denaturation (95oC, 10sec), annealing 

(specific for each gene, 30sec) and extension (72oC, 30sec) in a real-time Mastercycler ep 

realplex thermal cycler (Eppendorf, USA). The relative quantification of targeted genes 

expression was performed using the 2-∆∆CT method116. The transcripts expression data were 

first normalized against endogeneous GAPDH values and then against the values of 

corresponding controls in each experiment. 

 

II.5.7. Quantification of ECM protein content 

In chapter V, the amount of protein produced by hMSCs as a function of the sNPs 

concentrations was determined. hMSCs were allowed to grow in the presence of sNPs (0-

100µg/mL) for 21 days. After 21 days, cells were washed thrice with PBS. The ECM proteins 

were extracted using sodium dodecyl sulphate (SDS), an ionic detergent used in biological 

buffers to dissolve and denature proteins. 2% (wt/v) SDS (Sigma, Germany, Cat. No L3771, 

CAS 151-21-3) solution in PBS was added to samples for 6h. The amount of total protein 

was determined by the Micro BCATM Protein Assay Kit (Thermo Fisher Scientific, USA, Cat 

No 23235), according to the manufacturer’s indications.   

II.5.8. Quantification of VEGF release  

In chapter IV, the secretion of VEGF was determined by enzyme-linked immunosorbent 

assay (ELISA) in the supernatants of the co-cultures of days 14 and 21 stored at -800C. The 

amount of human VEGF was quantified following instructions provided in the ELISA 

Table II. 4.  Primer pair sequences for the studied genes 

GENE SEQUENCE 
NCBI 

REFERENCE 

GAPDH 
Forward (5’!3’) 

Reverse (3’!5’) 

ACAGTCAGCCGCATC 

GACAAGCTTCCCGTTCTCAG 
NM_002046.4 

CD31 
Forward  

Reverse  

AAGGCCAGATGCACATCC 

TTCTACCCAACATTAACTTAGCGG 
NM_000442 

vWF 
Forward  

Reverse  
CCCTGGGTTACAAGGAAGAAAT 

AGTGTCATGTGTCCTCCTCTAG 
NM_000552 

OPN 
Forward  

Reverse  

GGGGACAACTGGAGTGAAAA  

CCCACAGACCCTTCCAAGTA 
NM_001040058 

OCN 
Forward  

Reverse  

CTGGAGAGGAGCAGAACTGG 

GGCAGCGAGGTAGTGAAGAG 
NM_099173 
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development kit (PeproTech, USA, Cat No 900-K10). Thawed samples were added to in-

house coated ELISA plates (Nunc MaxiSorp, eBioscience, USA). Absorbance was 

measured in a multi-well microplate reader at 405/650nm. Standard samples in a range of 

concentrations of 0 to 1ng/mL of recombinant human VEGF were used to obtain a 

calibration curve. 

II.5.9. Assessment of the endothelial phenotype 

II.5.9.1. DIL-ac-LDL uptake 

ECs possess scavenger receptors at their surface specific for acetylated low density 

lipoprotein (ac-LDL)117. When taken up by cells, ac-LDL accumulates intracellularly, which 

allows to target and to identify ECs. This technique was used to confirm the endothelial 

phenotype of the differentiated SSEA-4+hASCs (section II.3.2.1).   

In chapter III, ac-LDL uptake was assessed by incubating cells with 0.2µg/mL or 2 µg/mL of 

ac-LDL labeled with 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine (DIL-ac-LDL, 

Invitrogen, USA, Cat. No L3484) for 4h or overnight, respectively. Cells were then washed 

with warm medium and fixed for 20min with 10% formalin solution, protected from light. Cell 

nuclei were counterstained with DAPI. Cells were visualized using Axioplan Imager Z1 

fluorescence microscope (Zeiss, Germany). The same labeling was performed during co-

culture as a discriminative marker for SSEA-4+hASCs-derived ECs allowing identifying and 

analysing their distribution amongst SSEA-4+hASCs-derived OBs (chapter IV). 

II.5.9.2. Lectin binding 

Human ECs possess the ability to selectively bind the lectin Ulex europaeus agglutinin I 

(UEA I)118. Thus this marker has been also used to confirm cells endothelial phenotype as 

was the case of the SSEA-4+hASCs-derived ECs cultured in EGM-2 MV (chapter III). Cells 

were incubated with 100µg/mL FITC-conjugated lectin UEA-1 (Sigma, Germany, Cat. No 

L9006) for 1 h at 37°C and protected from light. Cells were then washed twice with PBS, 

fixed for 20min in 10% formalin solution and analyzed by fluorescence microscopy as 

described for the immunocytochemistry. 

 

II.5.9.3. Tubular-like structures formation on Matrigel  

The capacity of cells to form tubular-like structures on Matrigel in vitro is associated to 

endothelial cells due to their ability to sprout, migrate, and form vascular networks in vivo. 

Matrigel contains a pro-angiogenic mixture of basement membrane components from 

Engelbreth-Holm-Swarm murine sarcoma. When seeded on Matrigel coated surfaces, ECs 

form intricate capillary-like hexagonal structures that cannot be observed when cells are 

cultured on plastic surfaces. Such networks are highly suggestive of the microvascular-like 
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potential of ECs, thus, it is extensively used to confirm the endothelial phenotype of ECs119.   

Thus, in this thesis, Matrigel assay was used to analyze the capacity of SSEA-4+hASCs-

derived ECs to form tubular-like structures in vitro thus confirming their phenotype (chapter. 

III, IV and VII).  A 96-well cell culture plate, chilled at 4°C, was loaded with 32µL of Matrigel 

(BD Biosciences, USA) and incubated at 37°C. Cells were suspended in the EGM-2 MV 

medium at a concentration of 2.1x105 cells/mL and 64µL of this cell suspension was seeded 

onto the surface of the solidified Matrigel. Cells were incubated (37°C, 5% CO2) for 4h. After 

incubation, samples were fixed with 10%(v/v) buffered formalin (Sigma, Germany) for 20min 

at room temperature. Images were recorded using an inverted microscope, Axiovert 40 

(Zeiss, Germany), equipped with digital image capture software. 

Once the cells were proven to have the ability to form capillary-like networks on Matrigel, 

they were used for the experiment described in sections II.3.2.3 and II.4.2.1-2 and as a 

confirmation of the maintenance of endothelial phenotype of the SSEA-4+hASCs-derived 

ECs retrieved from the κ-CA fibers (chapter VII). 

II.5.10. Osteogenic differentiation evaluation 

The osteogenic differentiation of hMSCs (chapter V), hASCs and SSEA-4+hASCs in the 

absence (chapters III) and presence of sNPs (chapter VI), as well as of SSEA-4+hASCs-

derived ECs (chapter IV) was evaluated by following specific markers at different temporal 

checkpoints. Within the present work, alkaline phosphatase activity (early marker), matrix 

deposition (intermediate marker) and matrix mineralization (end marker) were monitored 

along the culture period.  

 
II.5.10.1. Alkaline phosphatase activity: quantification and qualitative analysis 

Alkaline phosphatase (ALP), a membrane bound enzyme, is among the first functional 

genes expressed in the process of calcification.  It is therefore likely that at least one of its 

roles in the mineralization process occurs at an early stage121. The mechanism with which 

this enzyme carries out its function is not completely understood, but it appears to act both 

to increase the local concentration of inorganic phosphate, a mineralization promoter, and to 

decrease the concentration of extracellular pyrophosphate, an inhibitor of mineral 

formation122. The enzyme is localized in the outerside of the cellular plasma membrane and 

of the membrane of matrix vesicles. 

Within this thesis, the quantification of ALP activity was performed in the same cell lysates 

used for the dsDNA quantification, obtained by osmotic and thermal shocks, and using an 

end-point colorimetric procedure that quantified the conversion of colorless p-nitrophenol 

phosphate (pNPP) into yellow p-nitrophenol (pNP) by the ALP enzyme present in the 

sample. 
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 In chapters IV and VI, 20µL of lysate were incubated with 80µL of pNPP, 0.2% wt/v in 1M 

diethanolamine (Fluka BioChemika, Austria), in a transparent 96-well microplate, at 37oC, for 

45min. The reaction was stopped using 80µL of a 2M NaOH (Sigma, USA) and 0.4mM 

EDTA (Sigma, USA) solution. A calibration curve was previously prepared using the pNP 

(Sigma, USA) standards of 0, 0.05, 0.10, 0.15, 0.20 and 0.5µmol/mL and used to extrapolate 

the ALP activity values. Triplicates of each sample and standards were made, and the ALP 

activity read off from the standard curve. The optical density (OD) of the samples and 

standards was read at 405nm, using a microplate reader. Results were normalized against 

dsDNA results obtained for the same samples. 

In chapter V, the ALP activity was measured using a commercially available colorimetric 

endpoint kit (Abcam, USA, No ab83369). Briefly, samples and the assay buffer solution 

(5mM pNPP) were added to a 96-well plate. After 1h of incubation, the absorbance was read 

at 405nm in a microplate reader (Epoch microplate reader, Biotek, USA). A standard curve 

was made from standards (0–20µM) prepared with the provided pNPP and ALP enzyme 

solutions. Sample and standards triplicates were analyzed and sample concentrations read 

off from the standard curve, as described above. 

Furthermore, to qualitatively analyse the ALP activity within the 2D cell cultures, the staining 

of ALP-enriched areas was performed based on the combination between nitro blue 

tetrazolium (NBT) and alkaline phosphatase substrate 5-bromo-4-chloro-3-indolyl phosphate 

(BCIP) (chapters V and VI). NBT/BCIP in the presence of ALP produces an insoluble NBT 

diformazan end-product that is blue to purple in color enabling the localization of ALP-

containing areas. A ready-to-use, single component, 1-step NBT/BCIP (Thermo Scientific, 

USA, Cat. No 34042) solution was added to fixed cells for 30min, after which the samples 

were washed with PBS and visualized under a transmitted light microscope. 

II.5.10.2. Qualitative and quantitative analysis of collagenous and non-collagenous protein 

deposition 

The presence and distribution of collagen and non-collagenous proteins within the 

extracellular matrix deposited by hASCs and SSEA-4+hASCs in the presence and absence 

of sNPs (chapter VI) were determined by differential staining with two dyes, Sirius Red and 

Fast Green. Sirius Red binds specifically to collagen, whereas Fast Green stains the non-

collagenous proteins. As a general remark, collagen stained by Sirius Red displays a fibrillar 

pattern, whereas non-collagen proteins stained with Fast Green show a more diffused 

pattern. Since many types of collagen can be detected with Sirius Red (type I, II, III, IV and 

V)123 at a variety of ratios and the color equivalence for each type of collagen has not been 

determined, one color equivalent value is used for all types of collagen. 

The effect of sNPs over the collagen-like matrix production was assessed by using the Sirius 
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Red/Fast Green collagen staining micro-assay kit (Chondrex, USA, Cat No 9046). The dye 

(mixture of 0.1% Sirius Red and 0.1% Fast Green dissolved in water saturated with picric 

acid) was added to the fixed samples (21 days of culture). After 30min the dye was removed 

and samples rinsed with diH2O water. Stained samples were imaged with a transmitted light 

microscope. 

The quantification of the proteins was carried out after extraction of the dyes from the 

stained samples using 0.05M NaOH in methanol, and the absorbance measured at 540nm 

(Sirius Red) and 605nm (Fast Green). To calculate the amount of collagen, several 

corrections were performed. First, the OD540 was corrected by subtracting the contribution 

of Fast Green at 540nm, which is 29.1% of the OD605 value. The color equivalence (OD 

values/µg protein) is 0.0378 for collagen and 0.00204 for non-collagenous protein at OD540 

and 605, respectively (equations II.3 and II.4). 

 

Collagen (µg/section) = [OD540 value - (OD605 value x 0.291)] / 0.0378    (equation II.3) 

Non-collagenous proteins (µg/section) = OD605 value / 0.00204   (equation II.4) 

 

The assay was performed independently three times for each experimental sample. Values 

were normalized against corresponding dsDNA values.  

 

II.5.10.3. Mineralization 

II.5.10.3.1. Direct calcium quantification 

In chapter IV, the detection of inorganic calcium was performed at the end of 21 days of 

culture, using the o-cresolphtalein-complexon method with colorimetric detection (Roche 

Cobas kit, Roche Diagnostics, Germany), according to the manufacturer instructions. In a 

96-well plate, 175µL of reagent 1 (ethanolamine, 1M, pH10.6) were mixed with 10µL of each 

sample, dissolved with a 6M HCl solution, and incubated for 5min at room temperature. 

70µL of reagent 2 (o-cresolphtalein-complexon 0.3mM, hydroxy-8-quinoleine 13.8mM, HCl 

122mM) were added and further incubated at 37oC for 2min. The absorbance of the samples 

was read at 570nm in a microplate reader. The calcium concentration was extrapolated from 

the calibration curve obtained using serial dilutions of a 200mg/L CaCl2 solution and then 

normalized against the corresponding dsDNA content. 

 

II.5.10.3.2. Indirect calcium quantification: Alizarin Red S 

Alizarin Red S (ARS), an anthraquinone derivative, is one of the most used qualitative 

methods to detect the mineralization process in osteoblasts culture124. ARS forms a stable 

complex with calcium by chelation generating bi-refringent end product 124. The identification 

of mineralized tissue with ARS was carried out to evaluate the osteogenic differentiation of 
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hMSCs in the presence of sNPs (chapter V), and of hASCs and SSEA-4+hASCs in the 

presence and absence of sNPs (chapters III, V and VI), at the end point.  Cells cultured on 

TCPS and at determined time points (days 7, 14, 21 and 28) were fixed in 10% (v/v) formalin 

solution (Sigma, Germany), at room temperature, for 20 min. After that, cells were washed in 

PBS to remove the formalin and then with diH2O, in order to remove any salt residues. A 

solution of 2% (wt/v) of ARS (Sigma, Germany, Cat. No A5533, CAS 130-22-3) with a pH 

adjusted to 4.2, was then added and incubated for 10min at room temperature. The excess 

of ARS was washed with diH2O and the staining was imaged using a reflected light 

microscope. 

ARS is particularly versatile because the qualitative analysis can be coupled with its 

quantification after being extracted from the stained samples by acid solution. Samples were 

incubated in 10% acetic acid overnight (chapters V and VI), then centrifuged for 15min at 

2,000xg and the supernatants neutralized with ammonium hydroxide, 10% (Sigma Aldrich, 

Germany). Finally, 100µL of each sample was added to 96-well plates and the absorbance 

was read at 405nm using an Epoch or Synergy HT microplate reader. A calibration curve 

obtained from different concentrations of ARS in diH2O at pH=4.2, adjusted with 10% (v/v) 

ammonium hydroxide was drawn. The assay was performed three times independently for 

each experimental sample. 

 

II.6. STATISTICAL ANALYSIS 

Data was obtained from at least 3 separate experiments with 3 replicates for each condition 

and averaged. Standard deviation (SD) is reported as a measure of sample deviation. 

Statistical analysis was performed using GraphPad Prism 5.00 software (San Diego, USA). 

Firstly, a Shapiro-Wilk test was used to ascertain about the data normality125. Then either a 

student t-test for n>4 or one way ANOVA test was applied. The student t-test was applied to 

test the difference between the means of two independent groups subjected to different 

treatments (chapter VII). When more than two groups were compared at the same time 

(chapters III-VIII), one-way ANOVA was applied followed by a Tukey-Kramer method as a 

post-hoc pairwise comparison test. Values were considered statistically significant for 

p<0.05. 
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Chapter III 
Human Adipose Tissue-Derived SSEA-4 Sub-Population  

Multi-Differentiation Potential Towards the  
Endothelial and Osteogenic Lineages 

 

ABSTRACT  

Human adipose tissue has been recently recognized as a potential source of stem cells for 

regenerative medicine applications, including bone TE. Despite the gathered knowledge 

regarding the differentiation potential of hASCs, in what concerns the endothelial lineage 

many uncertainties are still present. The existence of a cell subpopulation within the human 

adipose tissue that expresses a SSEA-4 marker, usually associated to pluripotency, raises 

expectations on the differentiation capacity of these cells (SSEA-4+hASCs). In the present 

study, the endothelial and osteogenic differentiation potential of the SSEA-4+hASCs was 

analyzed, aiming at proposing a single-cell source/subpopulation for the development of 

vascularized bone TE constructs. SSEA-4+hASCs were isolated using immunomagnetic 

sorting and cultured either in α-MEM, in EGM-2 MV (endothelial growth medium), or in 

osteogenic medium. SSEA-4+hASCs cultured in EGM-2 MV formed endothelial cell-like 

colonies characterized by a cobblestone morphology and expression of CD31, CD34, 

CD105, and vWF as determined by quantitative reverse transcriptase-polymerase chain 

reaction, immunofluorescence and flow cytometry. The endothelial phenotype was also 

confirmed by their ability to incorporate ac-LDL and form capillary-like structures when 

seeded on Matrigel. SSEA-4+hASCs cultured in α-MEM displayed a fibroblastic-like 

morphology and exhibited mesenchymal surface marker profile (>90% 

CD73+/CD90+/CD105+). After culture in osteogenic conditions, an overexpression of 

osteogenic-related markers (OPN and OCN) was observed both at molecular and protein 

levels. Matrix mineralization confirmed SSEA-4+hASCs osteogenic differentiation. Herein, 

we demonstrate that from a single-cell source, and by selecting the appropriate 

subpopulation it is possible to obtain microvascular-like endothelial cells and osteoblasts, the 

most relevant cell types for the creation of vascularized bone tissue-engineered constructs. 

_________________________________________________________________________ 
This chapter is based on the following publication:  

Mihaila SM, Frias AM, Pirraco RP, Rada T, Reis RL, Gomes ME and Marques AP, “Human adipose 

tissue-derived SSEA-4 sub-population multi-differentiation potential towards the endothelial and 

osteogenic lineages”, Tissue Engineering part A, 19(1-2): 235-46. doi: 10.1089/ten.TEA.2012.0092 
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III.1. INTRODUCTION 

The concept of using adipose tissue (AT) as a source of adult stem cells for regenerative 

medicine applications is highly appealing mainly due to its abundance and accessibility for 

harvesting following minimally invasive procedures1. Human adipose-derived stem cells 

(hASCs) isolated from the stromal vascular fraction (SVF) of the adipose tissue bear 

resemblances to bone marrow-derived mesenchymal cells (BMSCs)2,3 demonstrated by their 

similar morphology, and common surface markers and gene expression profiles4,5,6. 

However, the SVF of the AT harbors more than 2% of cells featuring potential for multi-

lineage differentiation compared to the 0.002% of the bone marrow1,4,7. Additionally, a large 

number of studies have proven the hASCs differentiation potential towards multiple lineages, 

namely the osteogenic8, chondrogenic8, adipogenic8, myogenic8 and neurogenic9. Also, the 

developmental plasticity of hASCs was demonstrated both in vitro10 and in vivo11. Therefore, 

hASCs clearly hold a great promise in tissue regeneration therapies, including the creation 

of a wide range of autologous tissue-engineered substitutes1.  

Although there has been extensive research effort to create functional engineered tissues, 

the success of such approaches still relies on the construction of vascular networks capable 

of delivering oxygen and nutrients within the engineered constructs12. Thus, in the context of 

bone tissue engineering (TE), the development of strategies that could effectively induce the 

microcirculation within the engineered constructs has become a major pursuit13.  

Previous in vivo studies showed that vascularization within engineered constructs using 

mature endothelial cells (ECs) improved blood perfusion, cell viability and their survival after 

implantation14,15,16. However, the limited availability and proliferation capability of mature ECs 

hinders their use in TE approaches17. Therefore, it became priority to find a suitable source 

of ECs that do not present such constrains and that will be ready-to-use for therapeutic 

applications. A significant number of studies has been reported regarding the isolation of 

endothelial progenitor cells (EPCs)18,19,20 and the endothelial differentiation of both 

embryonic21,22 and adult stem cells from different origins23,24,25. The distinction between adult 

mesenchymal stem cells and endothelial precursors based on cell surface markers is far 

from ideal as these cells share many common markers. However, the selection of specific 

sub-populations has gained increasing interest and has revealed significance for cell-based 

therapies as a way to overcome difficulties imposed by the heterogeneity of each tissue 

populations. 

Considering AT as a pool of cells containing multipotent stem cells, Rada et al. 

demonstrated the osteogenic and chondrogenic differentiation potential of distinct sub-

populations residing in the SVF26,27. These results together with other studies28,29 underline 

the complexity of the SVF of AT composed by several sub-populations exhibiting distinct 
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differentiation potentials. Other sub-populations, within SVF and hASCs fractions have been 

identified as possessing endothelial differentiation30,31,32,33. Martínez-Estrada et al.34 

expanded the sub-population expressing Flk-1, a receptor for vascular endothelial growth 

factor and one of the earliest markers of EPCs31, residing within the adipose stroma, and 

were able to lead their maturation into endothelial-like cells.  Miranville et al.32 and Sengenes 

et al.30,33 have demonstrated that the CD34+/CD31- sub-population when cultured under 

appropriate conditions give rise to functional endothelial cells as demonstrated after 

intravenous injection in a mouse ischemic hind limb model. The hASCs-derived CD31-

/CD45- sub-population under shear stress and treatment with endothelial cell growth 

supplement (ECGS) also acquired some endothelial characteristics but not others such as 

nitric oxide synthase (eNOS), von Willebrand factor (vWF) expression, which suggests the 

need to further knowledge regarding this sub-population prior to its use in cell-based 

therapies35. So far, the definition of the appropriate surface marker(s) to isolate a specific 

sub-population from human adipose tissue, relevant for vascularization purposes was 

restricted to endothelial or hematopoietic progenitor markers.  

Stage-specific embryonic antigen (SSEA-4) has been widely used as one of the markers for 

monitoring the maintenance of an undifferentiated state of human embryonic stem cells36,37.  

Moreover, SSEA-4+ cells retain features of pluripotency, characterized by nearly unlimited 

self-renewal and differentiation capacity into any of the three germ layers37,38,39.  Riekstina et 

al.36 examined the expression of embryonic stem cell markers within adult mesenchymal 

stem cell populations derived from different cell sources and showed the presence of 

approximately 8% of SSEA-4+ cells within the AT36. Based on these findings, we 

hypothesized that the SSEA-4+hASCs sub-population might exhibit multipotent features 

relevant for bone TE applications. By triggering its differentiation towards the endothelial and 

osteogenic lineages, we were able to demonstrate the usefulness of the proposed strategy 

to obtain these two cell types from the same cell source, in opposition to using the entire 

SVF. Furthermore, this work comprises the first step to assemble a TE construct using a 

sub-population whose differentiation level might be modulated towards the two most relevant 

lineages to achieve a successful in bone regeneration approach. 

 

III.2. MATERIALS AND METHODS 

III.2.1. HASCs and HUVECs cells harvest 

All the human samples were obtained after written protocols were established between the 

3B’s Research Group and the provider-involved institutions. The protocols were approved y 

the respective ethical committees to assure that the requirements defined by the Helsinki 
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declaration guidelines regarding human rights, thus assuring the patient’s informed consent 

as well as patient’s anonymity were followed. 

The lipoaspirate samples were kindly provided by Hospital de Prelada, Porto, Portugal and 

HUVECs were obtained from umbilical cord of healthy babies provided by Hospital de Sao 

Marcos (Braga, Portugal). In more detail, human abdominal subcutaneous fat tissue 

samples were obtained from healthy females (n=6), with an average age of 42 years old, 

undergoing lipoaspiration procedure, after informed consent. The tissue samples were 

transported to the laboratory in phosphate buffered saline (PBS) supplemented with 10% 

penicillin-streptomycin (Pen/Strep, Gibco, UK) at a final concentration of 1000U/1000µg/mL 

and processed within 24h after surgery, according to a standard isolation protocol40. Briefly, 

the lipoaspirates were digested with 0.075% collagenase II A (Sigma-Aldrich, Germany) in 

PBS, at pH 7.4 for 45min and at 37ºC in a shaking water bath and finally filtered using a 

strain with 200µm pore size. Mature adipocytes and connective tissue cells were separated 

by centrifugation at 1000xg, for 10 min at 4ºC. Cell pellet was resuspended and incubated 

for 10 min at room temperature in a pH 7.4 erythrocyte lysis buffer of 155mM NH4Cl (Merck, 

Germany), 5.7mM K2HPO4 (Riedel-de-Häen, Germany) and 0.1mM EDTA (Sigma-Aldrich, 

Germany) in distillated water. The cell suspension was centrifuged at 800xg for 10min at 

4ºC. The pellet was resuspended in PBS and filtered with a 100µm cell strainer to obtain the 

SVF. 

Primary cultures of macrovascular human umbilical vein endothelial cells (HUVECs) were 

used as a positive control for endothelial phenotype. Cells were obtained according to a 

previously published method41.   

 

II.2.2. Immunomagnetic beads cell separation 

The immunomagnetic beads (Dynal M-450 Epoxy beads from Dynal Biotech, Carlsbad, CA, 

USA) were first coated with SSEA-4 antibody (Abcam, Cambridge, UK) following the 

manufacturer instruction. For this purpose 50µL of the immunomagnetic beads solution 

containing 2x107 beads, were washed in the coupling buffer (0.1M sodium phosphate buffer: 

pH 7.4-8.0), resuspended with 10µL of the SSEA-4 antibody at a concentration of 200 µg/mL 

and then incubated, overnight, at room temperature, under gentle stirring. After this period, 

the SSEA-4 coupled beads were separated with Dynal MPC® magnet (Dynal Biotech, 

Carlsbad, CA, USA) and the supernatant discarded. The coupled beads were mixed and 

incubated for 5min with gentle rotation in 1mL of a 0.2% (w/v) bovine serum albumin (BSA, 

Sigma-Aldrich, Germany) solution in PBS (0.2%BSA/PBS), at pH 7.4 and again separated 

using the magnet. This procedure was repeated three times. The antibody coupled beads 
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were resuspended in 0.2%BSA/PBS at a concentration of 4x108 Dynabeads/mL until further 

use. 

In order to select the SVF sub-population of interest for the study, (SSEA-4+hASCs), the 

SSEA-4 antibody coated beads were mixed with the SVF and incubated for 30min at 4°C 

under gentle stirring. Subsequently, the mixture was washed with 0.2% BSA/PBS and the 

cells bonded to the beads were separated from the rest of the cell suspension using the 

magnet as previously described. 

 

III.2.3. Cell culture 

The SVF and the SSEA-4+hASCs, were both cultured in α-MEM medium (Sigma Aldrich, 

Germany) with 10% fetal bovine serum (FBS, Gibco, UK) and 1% Pen/Strep (100U/100 

µg/mL), and in microvascular endothelial cell growth medium (EGM-2 MV bullet kit (Lonza, 

Basel, Switzerland) containing 5% FBS and the supplemental growth factors (provided in the 

culture medium kit) and maintained until confluence. Cells were detached from the culture 

flasks using trypsin (0.25% trypsin–EDTA solution; Sigma, Germany) and kept under the 

same conditions along the passages. All the subsequent experimental procedures/ study 

groups are summarized in the Supplemental Figure III.1. HUVECs were cultured in M199 

medium (Sigma, Germany) supplemented with 20% FBS (Sigma, Germany), 1% Pen/Strep 

(100U/100µg/mL), 2mM glutamax I (Life Technologies, Germany), 50 µg/mL sodium heparin 

(Sigma-Aldrich, Germany) and 50 µg/mL endothelial cell growth supplement (ECGS, BD 

Biosciences, Franklin Lakes, NJ, USA).  

 

III.2.4. Osteogenic differentiation 

Confluent hASCs and SSEA-4+hASCs (passage 3), were removed from the culture flasks 

using trypsin and seeded at a density of 2,000 cells/cm2 in α-MEM medium supplemented 

with 10% fetal bovine serum, 1% antibiotic/ antimycotic, 10mM β-glycerophosphate (Sigma 

Aldrich, Germany), 10-8M dexamethasone (Sigma Aldrich, Germany) and 50µg/mL L-

ascorbic acid 2-phosphate sesquimagnesium salt hydrate (Sigma Aldrich, Germany). Cells 

were incubated in a humidified environment at 37oC with 5% CO2 for 7, 14, 21 and 28 days 

with culture media replenishment every 3-4 days. Cells cultured in the same medium, but 

without the osteogenic factors were used as controls. 

 

III.2.5. Alizarin Red staining 

Cells cultured under osteogenic differentiation conditions were fixed at the different time 

points with 10% formalin solution and washed, firstly with PBS and then with distilled water 

(diH2O). The cells were then incubated for 10min with a 2% (wt/v) Alizarin Red S solution 
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(Merck, Germany) in diH2O, at a pH of 4.1-4.3.  After incubation, cells were washed again 

with diH2O and the staining observed under a stereo microscope Stemi 1000 (Zeiss, 

Germany). 

 

III.2.6. Flow cytometry 

The freshly isolated SVF, the hASCs and SSEA-4+hASCs cultured in α-MEM medium and 

EGM-2 MV were harvested with trypsin upon reaching 80% confluence, along 4 passages. 

About 5x105 cells from each one of the experimental conditions were incubated for 30min on 

ice with the following primary antibodies: mouse anti-human CD31-APC (R&D Systems, 

Germany), mouse anti-human CD90-APC (eBioscience, San Diego, CA, USA), CD73-PE 

(BD Biosciences, Franklin Lakes, NJ, USA), mouse anti-human CD105-FITC (AbD Serotec, 

UK), mouse anti-human SSEA-4-Alexa Fluor 488 (eBioscience, San Diego, CA, USA), 

mouse anti-human CD34-PE (BD Biosciences, Franklin Lakes, NJ, USA), mouse anti-

human CD45-FITC (BD Biosciences, Franklin Lakes, NJ, USA). After washing with PBS, the 

cells were resuspended in acquisition buffer (PBS containing 1% formaldehyde and 0.1% 

sodium azide) until analysis. In each run, at least 20,000 events were acquired with FACS-

Calibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and the results analyzed 

with the CellQuest software (BD Biosciences, Franklin Lakes, NJ, USA). The number of 

positive events for each cell-specific marker was expressed as a percentage of the total cell 

number within each condition.  

 

III.2.7. Immunocytochemistry 

SSEA-4+hASCs and hASCs cultured onto tissue culture polystyrene (TCPS) slides 

(Sarstedt, Newton, NC, USA) in α-MEM and EGM-2 MV, passage 0 to 4, and in osteogenic 

conditions at the selected time points, were washed twice with PBS, fixed with 10% formalin 

for 30min, washed again with PBS and stored at 4ºC until use. Fixed cells were washed with 

PBS, permeabilized with 0.2% Triton 100x solution for 2min and non-specific binding was 

blocked with a 3% BSA/PBS solution. Cells were incubated for one hour at room 

temperature with the primary antibodies mouse anti-human CD31 (1:50, Dako, Denmark), 

rabbit anti-human von Willebrand factor (1:200, vWF, Dako, Denmark), mouse anti-human 

SSEA-4 (1:50, Abcam, Cambridge, UK), CD34-PE (1:50, BD Biosciences, Franklin Lakes, 

NJ, USA), mouse anti-human CD105 (1:50, eBioscience, San Diego, CA, USA), mouse anti-

human osteocalcin (OCN, 1:50, AbD Serotec, UK) and rabbit anti-human osteopontin (OPN, 

1:50, Abcam, Cambridge, UK). All antibody dilutions were performed in 1.5% BSA/PBS. 

After incubation, cells were washed 3 times with PBS for 5min and incubated 1h with the 

appropriate secondary antibody, either donkey anti-rabbit Alexa Fluor 488 (Invitrogen, 
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Carlsbad, CA, USA), or donkey anti-mouse Alexa Fluor 594 (Invitrogen, Carlsbad, CA, USA) 

diluted 1:500 in 1.5% BSA/PBS. Cell nuclei were counterstained with 4,6-Diamidino-2-

phenyindole dilactate (DAPI), at a 1:10,000 dilution in PBS, for 10min and then washed 3 

times. Negative control samples were prepared by replacing the primary antibody incubation 

with PBS. Immunolabelling was qualitatively analyzed under the Axioplan Imager Z1 

fluorescence microscope (Zeiss, Germany) and photographed using the Axio Cam MRm 

camera (Zeiss, Germany) and the AxioVision 4.8 software (Zeiss, Germany).  

 

III.2.8. Real Time RT-PCR 

III.2.8.1. mRNA extraction and cDNA synthesis 

Total mRNA of hASCs and SSEA-4+hASCs cultures in α-MEM and EGM-2 MV from 

passage 1 to 3 were extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer instructions.  Briefly, 800µL of TRIzol Reagent were added to 

each sample and stored at −80ºC until further analysis. Upon thawing, 160µL of chloroform 

(Sigma Aldrich, Germany) were added to each sample, incubated for 15min at 4ºC and 

centrifuged at the same temperature at 13,000×g for 15min. After the centrifugation, the 

aqueous part was collected and an equal part of isopropanol (Sigma Aldrich, Germany) was 

added. After a 2h incubation at −80ºC, the samples were washed in ethanol, centrifuged at 

4ºC and 9,000×g for 5min and resuspended in 12µL of water RNase/DNase free (Gibco, 

UK). mRNA quantity and purity were determined using the NanoDrop ND-1000 

Spectrophotometer (Thermo Fischer Scientific, MA, USA). For the complementary DNA 

(cDNA) synthesis only the samples with a 260/280 ratio between 1.7 and 2.0 were used. 

The cDNA synthesis was performed with the qScript cDNA Synthesis kit (Quanta 

Biosciences, Gaithersburg, MD, USA), and the Mastercycler ep realplex thermal cycler 

(Eppendorf, Hamburg, Germany), using an initial amount of total RNA of 2µg in a total 

volume of 20µL. 

 

III.2.8.2. Real time RT-PCR 

The quantification of the transcripts of the genes of interest was carried out by real time 

reverse transcriptase polymerase chain reactions (RT-PCR) method using 5ng of cDNA and 

the PerfeCTA SYBR Green FastMix kit (Quanta Biosciences, Gaithersburg, MD, USA) 

following the procedure suggested by the manufacturer, in a Real-Time Mastercycler ep 

realplex thermal cycler (Eppendorf, Hamburg, Germany). The primers were previously 

designed using the Primer 3 online software (v0.4.0) (Supplemental Table III.1) and 

synthesized by MGW Biotech, Germany. For each sample, glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) was used as housekeeping gene. A concentration of 300nM was 
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used for all the primers, in a final volume of 20µL. Samples with RNAse free water (Gibco, 

UK), SYBR Green (Quanta Biosciences, Gaithersburg, MD, USA) and without cDNAwere 

used as blanks. The relative quantification of the gene expression was performed using 

Pfaffl method to obtain the ΔΔCt42. All values were first normalized against GAPDH values 

and then to the SSEA-4+cells separated from the freshly isolated SVF (for the expression of 

the endothelial markers: CD31 and vWF) or to the two cell types cultured in α-MEM: hASCs 

and SSEA-4+hASCs, respectively (for the expression of osteogenic related markers: OPN 

and OCN). 

 

III.2.9. Acetylated low density lipoprotein (ac-LDL) uptake and lectin binding 

Low Density Lipoprotein (LDL) uptake was assessed by incubating the hASCs and SSEA-

4+hASCs cultured in EGM-2 MV and α-MEM (passage 4) for 4h at 37ºC with 2µg/mL of 

acetylated LDL labeled with 1,1´-dioctadecyl-3,3,3´,3´-tetramethylindocarbocyanine (Dil-ac-

LDL, Invitrogen, Carlsbad, CA, USA). Cells were incubated with FITC-conjugated lectin Ulex 

Europaeus-1 (UEA-1, Sigma Aldrich, Germany) 100µg/mL for 1h at 37ºC along with the Dil-

ac-LDL and protected from light. Cells were then washed twice with PBS, fixed for 15min in 

10% formalin solution and analyzed by fluorescence microscopy as described for the 

immunocytochemistry. 

 

III.2.10. Matrigel assay 

To analyze the capacity of the SSEA-4+hASCs and hASCs cultured in EGM-2 MV and α-

MEM to form tubular structures at different passages (1 to 4), a 96-well cell culture plate, 

chilled at 4ºC, was loaded with 32µL of Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) 

and incubated at 37ºC. Cells were suspended in EGM-2 MV medium at a concentration of 

2.1x105 cells /mL and 64µL of this cell suspension was seeded in each well onto the surface 

of the solidified Matrigel. Cells were incubated at 37ºC in a 5% CO2 humidified atmosphere 

for 4h. HUVECs cells were used as a control and were seeded following the procedure 

mentioned above. Three representative images of each condition were recorded using an 

inverted microscope Axiovert 40 (Zeiss, Germany) equipped with digital image capture 

software. 

 

III.2.11. Statistical analysis 

The flow cytometry data collected from 6 independent experiments, and the RT-PCR data, 

obtained from 3 independent experiments, with 3 replicates for each experiment are 

expressed as arithmetic means ± standard deviation (SD). The RT-PCR results were 

analyzed with the ANOVA single factor method (post-testing for pair wise comparisons were 
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performed using Tukey´s range test).  The values were considered statistically significant for 

p ≤ 0.05. 

 

III.3. RESULTS 

III.3.1. SVF and hASCs characterization  

The percentage of cells expressing mesenchymal stem cell markers: CD105, CD90 and 

CD73, the pluripotency marker: SSEA-4, the endothelial marker: CD31 and the 

hematopoietic markers: CD34 and CD45, were examined by flow cytometry. Within the SVF, 

2.86% of the total isolated cell expressed the pluripotency marker SSEA-4, while only about 

1.86% were positive for the endothelial cell surface marker CD31 and 8.12% of the total 

population expressed CD34 (Figure III.1A). After selection by plastic adherence and culture 

in α-MEM, the obtained hASCs displayed a homogeneous fibroblast-like morphology 

characteristic of mesenchymal cells that was maintained up to passage 4 (Figure III.1B-C).  
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Figure III.1. Morphology and surface marker profile characterization of human adipose derived stem 

cells (hASCs) and SSEA-4+hASCs. (A) Cell surface marker profile of stromal vascular fraction (SVF), 

obtained by flow cytometry. Optical micrographs showing the morphology of hASCs (B, C) and SSEA-

4+hASCs (E, F) cultured in α-MEM at passage 0 (P0) and 4 (P4). Immunocytochemistry of selected 

SSEA-4+ cells cultured for 3 days in α-MEM confirming the majority of the cells expressing SSEA-4 

(D). Cell nuclei were counterstained with DAPI. Scale bar represents 100µm. 

 

The surface marker profile confirmed the hASCs mesenchymal phenotype by the co-

expression of CD90, CD105 and CD73 in more than 90% of the cells, while lacking 

expression of CD45 and CD34 (Table III.1). The absence of cells expressing CD31 after the 

selection by adherence was also verified. These characteristics were conserved along the 

passages, contrarily to the percentage of cells expressing SSEA-4 that diminished from 

9.18% to 1.86%, respectively from passages 1 to 4 (Table III.1). 
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III.3.2. SSEA-4+hASCs sub-population characterization  

SSEA-4+hASCs were obtained by immunomagnetic selection of the SSEA-4+ fraction (about 

3%) of the SVF. The success of the method was confirmed by the immunocytochemistry 

results after 2 days of culture in α-MEM showing the majority of the adhered cells expressing 

SSEA-4 (Figure III.1D). SSEA-4+hASCs cultured in α-MEM displayed the same fibroblast-

like morphology as the hASCs cultured under the same conditions, independently of the 

passage, and up to passage 4 (Figure III.1E-F). However, from passages 1 to 4, the flow 

cytometry analysis revealed that CD105+, CD90+ and CD73+ cells, comprised more than 

90% of the total population, whereas SSEA-4+ cells dramatically decreased (1.98 ± 0.59%) 

by passage 4. The selected SSEA-4+hASCs sub-populations were also negative for CD31 

and a low percentage of cells, from 3.34% at P1 to 1.40% at P4, were positive for CD45. 

The percentage of CD34+ cells (13.2% at P1) did not significantly vary with the passage 

(Table III.2). 

 

 

 

Table III.1. Cell surface marker profile of hASCs cultured in α-MEM at different passages,  

obtained by flow cytometry 

Percentage of positive cells within the considered population (%, mean ± SD) 

Passage CD105 CD90/CD73 CD31 SSEA-4 CD34 CD45 

1 87.9 ± 9.05 89.7 ± 8.98 0.17 ± 0.04 9.18 ± 3.21 5.52 ± 0.09 0.25 ± 0.02 

2 88.3 ± 11.2 91.2 ± 11.1 0.11 ± 0.03 7.40 ± 3.23 0.23 ± 0.07 0.01 ± 0.01 

3 89.5 ± 9.10 93.7 ± 8.45 0.01 ± 0.00 4.60 ± 2.45 0.13 ± 0.03 0.01 ± 0.00 

4 94.2 ± 3.56 96.3 ± 7.67 0.02 ± 0.00 1.86 ± 0.23 0.34 ± 0.01 0.05 ± 0.01 

Table III.2. Cell surface marker profile of SSEA-4+hASCs cultured in α-MEM at different passages, 

obtained by flow cytometry 

Percentage of positive cells within the considered population (%, mean ± SD) 

Passage CD105 CD90/CD73 CD31 SSEA-4 CD34 CD45 

1 88.5 ± 12.2 94.8 ± 8.94 0.20± 0.02 4.35 ± 1.29 13.2 ± 4.69 3.34 ± 0.95 

2 90.2 ± 6.34 93.5 ± 4.23 0.01 ± 0.00 5.23 ± 1.21 16.9 ±3.45 2.98 ± 1.03 

3 89.2 ± 0.60 93.4 ± 5.14 0.00 ± 0.00 2.73 ± 1.57 15.8 ± 4.69 2.52 ± 0.70 

4 94.5 ± 5.31 95.5 ± 4.82 0.00 ± 0.00 1.98 ± 0.59 13.6 ± 2.36 1.40 ± 0.62 
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III.3.3. hASCs and SSEA-4+hASCs osteogenic differentiation  

Induction of hASCs and SSEA-4+hASCs into the osteogenic lineage was maintained up to 

28 days of culture. Real Time RT-PCR analysis was performed in order to study the 

expression of the osteogenic related markers osteopontin (OPN) and osteocalcin (OCN). 

This analysis demonstrated that the osteogenic differentiation of both hASCs and SSEA-

4+hASCs was triggered within the first 7 days of culture in osteogenic medium and that by 

day 14 the expression of OPN reached a 600-fold increase (Figure III.2A). From day 21 to 

day 28 a significant down-regulation of OPN transcripts occurred in both cell populations. In 

contrast, a significant up regulation was observed for OCN from day 7 up to day 28 at which 

reached a maximum 2750-fold. Immunocytochemistry confirmed, at the protein level, the 

molecular analysis; both hASCs and SSEA-4+hASCs cells cultured under osteogenic 

conditions started to deposit OPN and OCN (Figure III.2B-C).  Furthermore, the Alizarin 

Red staining confirmed an intense matrix mineralization from day 14 onwards, again for both 

hASCs and SSEA-4+hASCs cultured under osteogenic conditions, although it seems that 

mineralization occurred faster and in a more homogeneous mode by the SSEA-4+hASCs 

(Figure III.2D). 
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Figure III.2. In vitro osteogenic differentiation of hASCs and SSEA-4+hASCs. (A) qRT-PCR results 

showing the over-expression of osteogenic related genes, osteocalcin (OCN) and osteopontin (OPN) 

in both cell populations along the culture in osteogenic conditions (B-C) Immunostaining of OPN 

(green) and OCN (red) deposition by hASCs (B) and SSEA-4+hASCs (C) at days 14, 21 and 28 of 

culture under osteogenic conditions confirming the osteogenic differentiation. Cell nuclei were 

counterstained with DAPI (blue). (D) Optical micrographs showing the gradual mineralization of the 

deposited matrix after Alizarin Red S staining from day 7, 14, 21 and 28. Scale bar represent 50µm. 

 
III.3.4. Endothelial differentiation  

Cells differentiation into the endothelial lineage was pursued by culturing the SVF and the 

SSEA-4+hASCs sub-population in EGM-2 MV. Despite the small endothelial-like colonies 

present in the SVF derived culture at early time points, these were surrounded by fibroblast-

like cells (Figure III.3A), which took over the culture along the passages (Figure III.3B). In 

contrast, when the SSEA-4+hASCs were cultured in the same conditions, small cobblestone-

like colonies could be first observed between days 3 and 7. These colonies were able to 



Chapter III. Human Adipose Tissue-Derived SSEA-4 Sub-Population  

Multi-Differentiation Potential Towards the Endothelial and Osteogenic Lineages 

!

! 119 

grow until confluence (Figure III.3C) maintaining the endothelial-like cobblestone 

morphology up to passage 4 (Figure III.3D).  

 
Figure III.3. Optical micrographs showing the morphology of hASCs (A-B) and SSEA-4+hASCs (C-D) 

cultured in EGM-2 MV at passages 0 (A,C) and 4 (B,D). hASCs at passage 0 exhibit endothelial like 

colonies  (limited by white dash line) surrounded by fibroblast-like cells (A) but depict a homogeneous 

fibroblast-like morphology at passage 4 (B).  SSEA-4+hASCs at passage 0 are characterized by 

presenting a cobblestone morphology consistent with the endothelial phenotype (C), which was kept 

up to passage 4 (D). Scale bar represents 100µm. 

 
The shifting of phenotype of the SSEA-4+hASCs sub-population along the passages was 

followed by the analysis of the relative expression of CD31 and vWF genes, in order to 

confirm the endothelial phenotype. As it can be seen in Figure III.4A, SSEA-4+hASCs-

derived cells cultured in EGM-2 MV exhibited significantly increased levels of expression of 

the endothelial markers at different passages when compared with freshly selected SSEA-

4+hASCs. The expression levels of CD31 and vWF reached respectively around 1000- and 

7000- fold increase in comparison to the initial selected sub-population. The gene 

expression study was complemented by flow cytometry analysis (Figure III.4B). The 

percentage of cells expressing CD31 and CD34 increased respectively from 79.2% and 

79.0% (P1) to 97.3% and 94.3% (P4), respectively. Moreover, in comparison to the SSEA-

4+hASCs cultured in α-MEM, this sub-population grown in EGM-2 MV revealed a significant 

down regulation of CD90, maintaining similar percentages of the CD105+ and CD73+ 

fractions, around 90% of the total population.  
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Concerning hASCs cultured in EGM-2 MV, only 22% of the cells were positive for CD31 at 

passage 1. The expression of this marker rapidly decreased along passages and at passage 

4, only around 2% of the total population was expressing it. Moreover, while the percentage 

of cells expressing CD34, CD45 and SSEA4 can be considered neglectable, CD90+ and the 

CD73+ cells comprise around 90% of the total population. These levels were maintained 

along passages. Contrarily, the percentage of CD105+cells decreased from 26.3% at 

passage 1 to 15.3% at passage 4 (Figure III.4C). By passage 4, the percentage of 

CD31+/CD34+ cells within the hASCs cultured in EGM-2 MV was neglectable, whereas in the 

SSEA-4+hASCs cultured under the same conditions reached 90.9% of the total population 

(Figure III.4D). 

 
Figure III.4. Characterization of hASCs and SSEA-4+hASCs cultured in EGM-2 MV. (A) RT-PCR 

results showing the over-expression of endothelial related genes, CD31 and vWF at different 

passages in hASCs and SSEA-4+hASCs in relation to freshly selected SSEA-4+hASCs (P0). ^ and  ≈ 

indicate statistical significance (*p<0.05) when compared with P3. (B-C) Cell surface marker profile of 

SSEA-4+hASCs (B) and hASCs (C) at different passages, obtained by flow cytometry. (D) 

Representative dot plots of hASCs and SSEA-4+hASCs expressing CD34 and CD31 markers at P4 

demonstrating the endothelial differentiation of SSEA-4+hASCs. Values in histogram plots indicate 

averages ± SD from 6 independent experiments. 
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The flow cytometry results regarding the endothelial phenotype were confirmed by 

immunocytochemistry to monitor the expression of vWF and CD31. A low number of hASCs 

cultured in EGM-2 MV showed expression of vWF at P0 (Figure III.5A). This feature was 

lost at passage 1. Contrarily, for the SSEA-4+hASCs in EGM-2 MV, vWF was present in the 

cell cytoplasm as small dotted pattern surrounding the nuclei representing the Weibel-

Palade bodies and in the majority of the cells starting with P0 (Figure III.5B). In addition, the 

CD31 pattern of SSEA-4+hASCs-derived cells, corresponding to cell-cell contact, was found 

predominant for all the cells in passage 4 (Figure III.5C). Moreover, the CD34 marker was 

absent in hASCs cultured in EGM-2 MV (Figure III.5D), while the majority of SSEA-4+hASCs 

in EGM-2 MV were found positive for the same marker (Figure III.5E). 

 
Figure III.5. Immunostaining of hASCs and SSEA-4+hASCs cultured in EGM-2 MV. Immunostaining 

of (A, B, E) vWF (green) / CD31 (red) and (C, D) CD34 expressed by hASCs and SSEA-4+hASCs. At 

P0, only some hASCs expressed (A) CD31 (red) and vWF (green) and (C) CD34 (red), while (B, D) 

the majority of the SSEA-4+hASCs expressed these markers. (E) The stability of the expression of 

CD31/vWF by differentiated SSEA-4+hASCs was confirmed at P4. Cell nuclei were counterstained 

with DAPI (blue).   
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The endothelial phenotype of the SSEA-4+hASCs-derived cells was also assessed by their 

ability to uptake DIL-ac-LDL complex and to bind lectin UEA-1, as well as to form capillary-

like network when seeded on Matrigel. In contrast to SSEA-4+hASCs cultured in α-MEM, 

SSEA-4+hASCs growing in EGM-2 MV were able to uptake the labeled acetylated 

lipoprotein into secondary lysosomes (Figure III.6A) and to bind the UEA-1 (Figure III.6B). 

Furthermore, SSEA-4+hASCs cultured in EGM-2 MV were capable of forming, similarly to 

HUVECs, tubular structures when seeded on Matrigel (Figure III.6C).  When SSEA-

4+hASCs-derived cells and hASCs cultured in α-MEM medium were seeded on Matrigel, 

they remained spherical and formed cell aggregates without forming tubular structure 

(Figure III.6D). Nevertheless, hASCs cultured in EGM-2 MV exhibited a slow but evident 

formation of tubes on Matrigel substrate (Figure III.6E). Still, this ability was lost after 

passage 2.  

 
Figure III.6. Endothelial-like cells obtained by culturing SSEA-4+hASCs in EGM-2 MV. Cells were 

able to (A) uptake acetylated low-density lipoprotein (ac-LDL) (red) and (B) bind lectin from UEA-1 

(green). Cell nuclei were counterstained with DAPI (blue). (C) When seeded on Matrigel at different 

passages, cells had the capacity to form capillary-like structures similarly to (F) HUVECS, used as 

control. (D) Contrarily, SSEA-4+hASCs cultured in α-MEM, independently of the passage, aggregated 

in small clumps without any tubular-like structure appearance. (E) hASCs cultured in EGM-2 MV were 

only able to form these structures on Matrigel at passage 1. These are likely to result from the 

organization of the microvascular endothelial cells present in the stromal vascular fraction of the 

adipose tissue and proved to be present at this stage of culture as CD31+ cells.  
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III.4. DISCUSSION 

The use of human microvascular endothelial cells is limited by the low availability of the 

source, the reduced proliferation rates and the small number of the isolated cells that are 

often contaminated by fibroblasts and other stromal cells 43. In addition, the benefits of 

mature endothelial cells, as well as of other endothelial progenitors, as part of tissue 

engineered constructs, over the anostomosis, perfusion and survival of those constructs are 

still not clear.  The present study emphasizes the possibility of obtaining endothelial-like and 

osteogenic cells from a single cell source by selecting a sub-population residing within the 

adipose tissue that expresses a marker associated with pluripotency, the SSEA-4. This 

approach, in addition to provide new insights regarding the differentiation potential of the 

SSEA-4+ sub-population present in the SVF of adipose tissue, might be of high value for 

defining innovative bone tissue engineering strategies. The co-existence of different cell sub-

populations expressing CD105, CD90, CD73, CD31, CD34 and SSEA-4 within SVF 

confirmed previous works26, 29. Interestingly, a sub-population comprising almost 3% of the 

SVF was found to express the SSEA-4 marker, associated to the pluripotent character of 

other stem cells36. This marker was used to successfully select the sub-population of interest 

at the time of the SVF isolation. In fact, the percentage of hASCs, expressing SSEA-4, 

cultured both in α-MEM and EGM-2 MV medium, was reduced along the passages. 

Likewise, the selected sub-population also lost the SSEA-4 expression along the passages 

and under the same culture conditions. While in the culture with EGM-2 MV medium this 

feature could be associated to the differentiation of the SSEA-4+hASCs into the endothelial 

lineage, in the culture in α-MEM was connected with the acquirement of a mesenchymal 

phenotype characterized by fibroblast-like morphology of the cells and the expression of 

mesenchymal cell surface markers. This phenotypic pattern was kept stable along passages 

and allowed the osteogenic differentiation when cells were cultured in osteo-inductive 

conditions.   

Our data suggests that the composition of the culture medium exerted major effects on the 

differentiation of SSEA-4+hASCs. The EGM-2 MV medium in particular, has been often 

presented as a suitable cell culture environment to trigger the endothelial differentiation of 

embryonic stem cells21 and MSCs44 or the maturation of endothelial progenitor cells45. We 

were also able to confirm that the selected SSEA-4+hASCs were differentiating into 

endothelial-like cells as demonstrated by their morphology, markers profile and in vitro 

capacity to form tubular-like structures, when cultured in EGM-2 MV. In opposition, this sub-

population cultured in α-MEM did not demonstrate this capacity of differentiation into the 

endothelial lineage. Therefore, these results confirm that factors present in EGM-2 MV, but 

not in α-MEM, such as angiogenic factors, fibroblast growth factors (FGFs) and vascular 
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endothelial growth factors (VEGFs), might be involved in the endothelial differentiation of the 

SSEA-4+hASCs sub-population. Others have used VEGF in concentrations that range from 

1046 to 50ng/mL23,45,47 to induce and lead endothelial differentiation. However, concentrations 

in the order of 50ng/ml of VEGF might significantly impair the therapeutic application of 

those cells. EGM-2 MV, with a concentration of VEGF lower than 5ng/ml 48, allowed deriving, 

from the SSEA-4+hASCs sub-population, a population of cells in which around 80% 

expressed the CD31 and CD34 markers at passage 1 and more than 95% at passage 4. 

Moreover, cells were concomitantly expressing CD105 while lacking the expression of 

CD45, altogether a characteristic markers profile of endothelial cells 49.  

Recent investigations have clearly confined the expression of CD34 in association with the 

expression of CD105, CD73 and CD31 to microvascular-like endothelial cells 50. The fact 

that 95% of the differentiated SSEA-4+hASCs were CD34+ and within the control 

macrovascular HUVECs population (95% CD31+) only 13% expressed CD34 reinforces that 

the cells generated by the differentiation of SSEA-4+hASCs possess a microvascular 

endothelial-like phenotype. Interestingly, during the endothelial differentiation of SSEA-

4+hASCs, the levels of expression of CD90 rapidly decreased. Being counter-receptor for 

the leukocyte integrin Mac-1 (CD11b/CD18) present in polymorphonuclear neutrophils and 

in monocytes, the expression of CD90 by endothelial cells is only expected upon activation 
51, which might indicate a resting state of the obtained cells. Future studies should be 

performed in order to analyze the molecular mechanism that governs the endothelial 

differentiation and the influence of other growth factors or other stimuli to trigger this 

process. An evaluation of the endothelial-specific markers and adhesion molecules upon 

stimulation with inflammatory cytokines would better assess the behavior of the endothelial-

like SSEA-4+hASCs.   

SSEA-4+hASCs can also give rise to fibroblastic-like cells, phenotypically resembling MSCs 

when cultured in α-MEM. Besides the expression (>90%) of CD90, CD73 and CD105 and 

absence of CD34 and CD45 positive cells, these cells were able to differentiate, in addition 

to the endothelial lineage, into osteoblasts and chondrocytes (data not shown). The 

osteogenic differentiation of hASCs and SSEA-4+hASCs was followed at molecular and 

protein levels by the expression of the osteogenic related markers (OCN and OPN)52 and by 

subsequent deposition and mineralization of the extracellular matrix. For each cell 

population, the inverse expression profile of OPN and OCN, respectively with higher levels 

at earlier and later time points, confirmed the expected progress of the osteogenic 

differentiation. Moreover, all together these results confirm the advanced stage of 

osteogenesis53 in the later culturing time points.  
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Overall, the discussed results underline the high potential of SSEA-4+hASCs sub-population. 

EGM-2 MV was sufficient to trigger the differentiation of SSEA-4+hASCs into the endothelial 

lineage giving rise to microvascular-like endothelial cells while the same culture conditions 

were not sufficient to trigger the endothelial differentiation of hASCs. Moreover, the capacity 

of the SSEA-4+hASCs to differentiate towards the osteogenic lineage is similar to the 

hASCs. Numerous advantages derive from the use of SSEA-4+hASCs amongst which is the 

relatively ease retrieval of the SSEA-4+cells, while preserving their differentiation potential. 

Furthermore, the acceptance of adipose tissue as an abundant source of cells allows 

overcoming the potential issue of the low percentage (<2%) of cells that SSEA-4+cells sub-

population represents within the SVF. Under this context, we consider that obtaining relevant 

number of SSEA-4+cells to be applied in the future in a bone TE strategy to improve tissue 

vascularization constitute a realistic scenario.  

 

III.5. CONCLUSIONS 

This study reports that human adipose tissue contains a sub-population defined by the 

expression of the pluripotent marker, SSEA-4, that can be obtained using an 

immunomagnetic selection. Cells with mature microvascular-like endothelial profile could be 

generated by culturing the SSEA-4+hASCs in EGM-2 MV. In addition, the same sub-

population could undergo osteogenic differentiation, as observed by an intense extracellular 

matrix deposition and mineralization. Therefore, this sub-population contains cells that under 

specific culture condition can give rise to both osteoblastic and microvascular endothelial-

like cells. We demonstrated that from a single cell source and by selecting the appropriate 

sub-population, it is possible to obtain the relevant types of cells when envisioning 

engineering vascularized bone tissue. 
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SUPPLEMENTAL INFORMATION  

 
Supplemental Figure III.1. Scheme of the experimental setup. The SVF culture in α-MEM medium 

aimed at selecting by adherence the human adipose tissue-derived stem cells (hASCs) (P0) and at 

maintaining their MSCs phenotype along the passages. A sub-population expressing SSEA-4 marker 

was isolated from the SVF with magnetic beads (SSEA-4+hASCs) and maintained in α-MEM as the 

hASCs. Both hASCs and SSEA-4+hASCs were also cultured in EGM-2 MV intending to trigger their 

differentiation towards the endothelial lineage. The phenotypical evaluation of cultures was assessed 

from passage 0 up to passage 4. As the culture in α-MEM was regarded as the standard medium 

capable of maintaining the hASCs and SSEA-4+hASCs subpopulation without significant phenotypic 

variations along passages, their differentiation into the osteogenic lineage was also carried out. 

 

 

Supplemental Table III.1. Product size, annealing temperature, primer (Fwd-forward and Rev-

reverse) sequences and reaction conditions1,2  used for the RT-PCR analyses of endothelial (CD31, 

vWF)- and osteogenic (OCN and OPN)-related  markers and the housekeeping gene (GAPDH). 
1 PCR conditions: 2min at 95ºC (hot start) followed by 45 cycles of 95ºC for 15sec and annealing 

temperature (noted in the table) for 1min. A 20min melting curve at 55ºC was performed at the end. 
2PCR conditions: 2min at 95ºC (hot start) followed by 45 cycles of 95ºC for 15sec, annealing 

temperature (noted in the table) for 1min and an extension step at 68ºC for 20sec. A 20min melting 

curve at 55 ºC was performed at the end. 

 

   Gene 
Product 

size 
(bp) 

Annealing 
temperature 

(ºC) 
Primer pair sequence NCBI reference 

vWF1 100 60 Fwd: CCCTGGGTTACAAGGAAGAAA AT 
Rev: AGTGTCATGTGTCCTCCTCTTAG NM_000552 

CD311 179 60 Fwd: AAGGCCAGATGCACATCC 
Rev:TTCTACCCAACATTAACTTAGCAGG NM_000442 

OCN2 230 61.6 Fwd: CTGGAGAGGAGCAGAACTGG 
Rev: GGCAGCGAGGTAGTGAAGAG NM_099173 

OPN2 244 57.9 Fwd: GGGGACAACTGGAGTGAAAA 
Rev: CCCACAGACCCTTCCAAGTA NM_001040058 

   GAPDH 
1,2 87 60.6 Fwd: TGCACCACCAACTGCTTAGC 

Rev: GGCATGGACTGTGGTCATGAG NM_002046 
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Chapter IV 
Co-culture of Single Source Derived Endothelial and Pre-

Osteoblast Cells: Optimization of Culture Medium and Cell Ratio  
 

ABSTRACT  

New bone formation relies on several complex processes that require well-orchestrated 

interactions between several cell types, among which bone-forming cells (osteoblasts, OBs) 

and micro-vessel forming endothelial cells (ECs) play a crucial role. The co-culture of these 

cells has been proved relevant to investigate the mechanisms underlying their mutual 

interaction, as well as to mimic specific features of the bone niche. 

Herein, we propose the co-culture of microvascular-like ECs and pre-OBs derived from a 

single cell source, the SSEA-4+ cell sub-population from the stromal vascular fraction of 

human adipose tissue (SSEA-4+hASCs), to define the conditions in which cells 

synergistically communicate to support the full differentiation of pre-OBs and the 

maintenance of ECs phenotype. Co-cultures of different ratios of both cell types were 

established and maintained up to 21 days in standard endothelial maintenance (ENDO) and 

osteogenic differentiation media (OST), as well as in a mixture of these two (MIX). The 

osteogenic maturation of pre-OBs (ALP activity, OPN and OCN expression, calcium 

deposition), as well as the evolution of ECs number (quantification of CD31+ cells), 

maintenance of endothelial phenotype (CD31 and vWF expression, up-take of low density 

lipoprotein) were assessed as a function of cell ratio and culture media along the time. The 

obtained results demonstrate that the ECs number has a significant effect over the 

osteogenic differentiation of pre-OBs, depending on the medium used. While in the ENDO 

medium the osteogenic differentiation was not observed, in the OST and MIX medium it was 

attained at similar levels, except for the co-culture in MIX medium in which a higher number 

of ECs was initially used. These findings demonstrate that the use of SSEA-4+hASCs as a 

single cell source, is a promising endeavor to attain 3D tissue-like models that require 

intricate settings and design to promote the regeneration of vascularized bone tissue. 
 

This chapter is based on the following publication:  

Mihaila SM, Resende MF, Reis RL, Gomes ME and Marques AP, “Co-culture of Single Source 

Derived Endothelial and Pre-Osteoblast Cells: Optimization of Culture Medium and Cell Ratio”, 

submitted 2014 
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IV.1. INTRODUCTION 

Bone is a complex and highly specialized tissue that undergoes continuous regeneration 

and remodeling throughout life1. This intrinsic feature enables bone development and growth 

under normal physiological conditions, as well as in case of injury or trauma. The pre-

requisite to maintain this remarkable capability is an appropriate blood supply and the 

coupling of the vasculature with the bone remodeling cells. In fact, the intimate crosstalk 

between bone forming (osteoblasts, OBs) and bone resorbing (osteoclasts) cells, and the 

microvascular endothelium, orchestrates the spatial and temporal cellular activities that lead 

to bone regeneration2,3,4. Several in vitro studies have been investigating the mechanisms 

underlying this mutual interaction during bone formation using various co-culture models of 

OBs and endothelial cells (ECs) as tools, to replicate the bone niche5,6. Two dialogues were 

identified as essential for bone remodeling: a paracrine effect through growth factors, like 

vascular endothelial growth factor (VEGF)7, insulin-like growth factor I and II8 and bone 

morphogenetic proteins (BMPs)9, and a juxtacrine mechanism through gap junctional 

communication5.  

Several research groups have been co-culturing osteogenic and vasculogenic cells to 

enable the occurrence of such dialogues, as well as the translation into complex 3D 

structures that recreate the native tissue. In the attempt to further mimic and eventually 

control the regenerative niche, the selection of the cellular combinations has been 

significantly varied; ECs were co-cultured with mature OBs10, pre-committed osteoblast cells 

(pre-OBs)6 or mesenchymal stem cells (MSCs)11,12,13,14. Similarly, the cell source ranges 

from bone samples to obtain fully committed OBs, peripheral and umbilical cord blood to 

retrieve ECs or endothelial progenitor cells (EPCs), and bone marrow to isolate 

undifferentiated MSCs. However, in addition to some limitations associated to the cell 

sources availability/accessibility, the ideal combination of cells and the respective conditions 

necessary to maximize their potential in a therapeutic approach are yet to be defined.  

Adipose tissue has been widely exploited as a source of a myriad of cell types relevant in 

the context of tissue engineering (TE) and regenerative medicine. The relatively easiness of 

the adipose tissue harvesting (enabling low site morbidity and patient discomfort), and high 

cellular yield are among the factors that have been increasingly favoring the use of adipose-

derived stem cells (hASCs) over bone marrow MSCs. Previous studies15,16 have also 

showed that the stromal vascular fraction (SVF) of the adipose tissue comprises of several 

cellular subsets that, in comparison to the heterogeneous population, hASCs, are 

characterized by increased differentiation potential towards specific lineages. For instance, 

in the context of bone TE, STRO-1+hASCs15, CD105-hASCs17, CD90+hASCs15,18 and 

p75+hASCs15 were shown to possess higher osteogenic differentiation potential than hASCs. 
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Interestingly, few works and with limited outcomes have reported the isolation of 

microvascular ECs from SVF19 or the differentiation of hASCs into the endothelial lineage20. 

In a previous work, we showed that within the SVF of the adipose tissue resides a sub-

population that exhibits both osteogenic and endothelial differentiation capacity21. This sub-

population, characterized by the expression of the pluripotent marker SSEA-4 (SSEA-

4+hASCs), can be selected from SVF and gives rise to osteoblastic and endothelial-like cells 

that can be further expanded into phenotypically stable populations. Thus, the use of SSEA-

4+hASCs as a single cell source to recreate a microenvironment that potentiates bone 

regeneration is considered of major relevance. Under which conditions can the potential of 

this sub-population be maximized is the question yet to be answered.  

Previous studies have proved that the combination of less-differentiated osteoblastic cells 

(pre-OBs) with mature and fully differentiated ECs is the most effective in terms of 

osteogenic differentiation and endothelial tubule formation capacities6,22. Moreover, a major 

concern regarding the preservation of the ECs phenotype has been dictating the tested 

conditions23. Thus, this work was designed under the hypothesis that SSEA-4+hASCs-

derived pre-OBs and ECs synergistically communicate to support the concomitant full 

differentiation of pre-OBs into an osteogenic phenotype and the maintenance of ECs 

phenotype. Co-cultures of different ratios of both cell types were established and maintained 

up to 21 days. Moreover, in order to confirm the cellular crosstalk and assess its overall 

effect over the osteogenic and endothelial phenotypes along the culture, several culture 

media were tested and the involvement of VEGF evaluated. 

 

IV.2. MATERIALS AND METHODS 

IV.2.1. Isolation of SVF  

Human abdominal subcutaneous adipose tissue samples were obtained from healthy 

females (42.3±15.9 years), undergoing lipoaspiration procedure, after informed consent. 

Samples were transported in phosphate buffer saline (PBS, Sigma, Germany) supplemented 

with 10% (v/v) penicillin/streptomycin (Pen/Strep, 1000U/1000µg/mL, Gibco, USA), under a 

protocol previously established between the Department of Plastic Surgery of Hospital da 

Prelada (Porto, Portugal) and the 3B’s Research Group (Guimarães, Portugal) and 

approved by the local Ethical Committee. All tissue samples were processed within 24h after 

the surgical procedure, as described elsewhere21. Briefly, the lipoaspirates were digested 

with 0.05% (wt/v) collagenase type IIA from Clostridium histolyticum (Sigma, Germany) in 

PBS, for 45min and under agitation in a shaking bath set at 37°C. The digested tissue was 

filtered through a 200µm strainer, followed by centrifugation (800xg, 10min) to remove the 

floating mature adipocytes and connective tissue. Lysis was performed with an in-house 
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prepared lysis buffer consisting of 155mM NH4Cl (Merck, Germany), 5.7mM anhydrous 

K2HPO4 (Riedel-de-Haën, Germany) and 0.1M EDTA (Sigma, Germany), in order to disrupt 

the red blood cells and further purify the cellular crude. After several centrifugation and 

washing steps, the crude was resuspended in PBS and filtered through a 100µm cell strainer 

to ensure a single cell suspension consisting of the SVF of adipose tissue.  

IV.2.2. SSEA-4+hASCs sub-population selection and culture 

IV.2.2.1. Immunomagnetic selection of SSEA-4+hASCs 

The SVF sub-population expressing SSEA-4 (SSEA-4+hASCs) was isolated by 

immunomagnetic selection with SSEA-4 (clone MC813) antibody (Santa Cruz 

Biotechnology, USA) coated Dynabeads® M-450 Epoxy beads (Invitrogen, USA) adapting 

the manufacturer’s instructions, as previously described elsewhere21.  

 

IV.2.2.2. Endothelial differentiation  

The freshly selected SSEA-4+hASCs were filtered through a 100µm cell strainer to separate 

the single cells from the aggregates formed during coupling that might contain contaminating 

cells (fibroblasts, etc.). SSEA-4-hASCs cells were immediately cultured in Endothelial Cell 

Basal Medium (EGM-2MV, Lonza, Switzerland) containing growth factors and 5% fetal 

bovine serum (FBS). Cells were incubated in a humidified environment at 37°C with 5% 

CO2, with culture medium replenishments every 3-4 days. For all experiments, endothelial 

differentiated SSEA-4+hASCs (microvascular-like endothelial cells, ECs) were used in 

passage 2, after 80% confluence and passaging with TrypLETM Express (Invitrogen, USA). 

 

IV.2.2.3. Osteogenic pre-conditioning  

Freshly selected SSEA-4+hASCs were cultured in basal medium comprising of Minimum 

Essential Medium Eagle-Alpha modification (αMEM, Gibco, USA) supplemented with sodium 

bicarbonate (NaHCO3, Sigma, Germany), 10% FBS (Gibco, USA) and 1% Pen/Strep 

(100U/100µg/mL) for expansion. Osteogenic pre-conditioning was achieved by culturing 

SSEA-4+hASCs, at passage 1, for 7 days in osteogenic medium (basal medium 

supplemented with 10mM beta-glycerophosphate (βGP, Sigma, Germany), 10-8M 

dexamethasone (Dex, Sigma, Germany), 50mg/mL L-ascorbic acid 2-phosphate 

sesquimagnesium salt hydrate (AA, Sigma, Germany)), prior the initiation of the co-culture 

experiments.  

 

IV.2.3. Co-culture setup 

The ECs derived from the SSEA-4+hASCs sub-population were cultured together with 

osteogenic pre-conditioned SSEA-4+hASCs (pre-OBs) at different cell ratios: 
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75%ECs:25%pre-OBs (75:25), 50%ECs:50%pre-OBs (50:50) and 25%ECs:75%pre-OBs 

(25:75) and in three different media: EGM-2 MV (ENDO), osteogenic (OST) and a 

combination of both (MIX), as detailed in Table IV.1. Monocultures of 100%ECs (100:0) and 

100%pre-OBs (0:100) were used as controls. All cells were used in passage 2. 

 
EBM-2 = Endothelial basal medium; hEGF = human epidermal growth factor; hFGF-B = human 
fibroblast growth factor-basic with heparin; hR3-IGF-1 = human recombinant insulin-like growth factor; 
VEGF = vascular endothelial growth factor. 
 

Cell suspensions at the defined ratios were seeded in 24-well plates at a density of 

2x103cells/cm2 and in 500µL of the defined medium. Media were changed twice a week.  

The morphology of cells was evaluated along the culture and at pre-selected time points 

(days 4, 7, 14 and 21) all groups were photographed using a stereo microscope Stemi 1000 

(Zeiss, Germany). 

In each experiment, each condition was always set in triplicate. Each experiment was 

carried out 3 independent times, each time with SSEA-4+hASCs derived from a different 

donor.  

 

IV.2.4. Flow cytometry 

The phenotype of the cells used to set the co-cultures, after the endothelial differentiation 

and osteogenic pre-conditioning, was screened by flow cytometry using the following 

antibodies: CD73-PE, CD34-PE and CD31-APC (all from BD Bioscience, USA) and CD105-

FITC and CD90-APC (eBiosciences, USA). Cells were harvested with TrypLETM Express 

(Invitrogen, USA) and 2x105 cells in 2% (wt/v) BSA/PBS in 0.1% (wt/v) sodium azide were 

incubated with the antibodies at the concentration recommended by the manufacturer, for 

30min at room temperature, in the dark. After incubation, cells were washed with 2% (wt/v) 

BSA/PBS and resuspended in acquisition buffer (1% (v/v) formaldehyde, 0.1% (wt/v) sodium 

azide in PBS). During the co-culture time frame, at pre-selected time points, samples from 

Table IV.1. Composition of the cell culture media used in the co-cultures 

Medium Composition 

BASAL αMEM supplemented with NaHCO3, 10% FBS and 1% Pen/Strep 
(100U/100µg/mL) 

ENDO 

EGM-2 MV= each 500mL of EBM-2 are supplemented with 25mL of FBS, 
0.2mL hydrocortisone, 2mL hFGF-B, 0.5mL ascorbic acid, 0.5mL 
Gentamicin/Amphotericin, 0.5mL VEGF, 0.5mL Long R3-IGF-1,  

0.5mL hEGF, 0.5mL heparin 
OST Basal medium supplemented with 10mM βGP, 10-8M Dex and 50µg/mL AA 

MIX EGM-2 MV supplemented with 10mM βGP, 10-8M Dex and 50µg/mL AA 
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all experimental groups were retrieved and incubated with CD31-APC, as described above, 

to quantify the percentage of ECs present in culture.  

Samples were analyzed in a BD FACScalibur flow cytometer (BD Biosciences, USA). A 

minimum of 2x104 gated events were acquired and the cells of interest were gated in a 

forward versus side scatter dot plot with a linear scale using the FlowJo 10.0.6 software 

(Tree Star, USA). Histogram plots were used to determine the percentage of CD31+ (ECs) 

and CD31- (pre-OBs).  

 

IV.2.5. Endothelial phenotype analysis 

In addition to the flow cytometry, the phenotype of the ECs used to set the co-cultures was 

further analyzed based on their capacity to form tubular-like structures and to uptake the 

acetylated low density lipoprotein (ac-LDL) complex. This distinctive capacity of ECs was 

also used to label the ECs at pre-selected time points (days 4, 7, 14 and 21) of the co-

culture, to obtain information over the ECs distribution amongst the pre-OBs. 

 

IV.2.5.1. Matrigel assay  

A 96-well cell culture plate, chilled at 4°C, was loaded with 32µL of Matrigel (BD 

Biosciences, USA) and incubated at 37°C. Cells were suspended in the ENDO medium at a 

concentration of 2.1x105 cells/mL and 64µL of this cell suspension was seeded in each well 

onto the surface of the solidified Matrigel. Cells were incubated (37°C, 5% CO2) for 4h. After 

incubation, samples were fixed with 10% (v/v) buffered formalin (Sigma, Germany) for 20min 

at room temperature and further incubated with rhodamine-phalloidin (Sigma, Germany) to 

observe the organization of the cell cytoskeleton. Cells nuclei were counterstained with 4,6-

diamidino-2-phenyindole dilactate (DAPI, Invitrogen, USA), for 10min, and then washed with 

PBS three times. Samples were visualized using an Axioplan Imager Z1 fluorescence 

microscope (Zeiss, Germany) and photographed using an Axio Cam MRm camera (Zeiss, 

Germany) running on AxioVision 4.8 software (Zeiss, Germany). 

 

IV.2.5.2. DIL-ac-LDL uptake 

ECs were incubated overnight with 0.2µg/mL of ac-LDL labeled with 1,1’-dioctadecyl-

3,3,3’,3’-tetramethylindocarbocyanine (DIL-ac-LDL, Invitrogen, USA). Pre-OBs were also 

submitted to the same procedure, to confirm the lack of DIL-ac-LDL complex uptake ability. 

Cells were then fixed with 10% (v/v) buffered formalin for 20min at room temperature, 

protected from light. Cell nuclei were counterstained with DAPI. Samples were further 

visualized as previously mentioned. 
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IV.2.6. Cell number: dsDNA quantification 

The total amount of double stranded DNA (dsDNA) in each of the mono- and co-culture 

groups was determined using a fluorimetric dsDNA quantification kit (PicoGreen, Molecular 

Probes, Invitrogen, USA), according to the manufacturer’s instructions. At pre-selected time 

points (days 4, 7, 14 and 21 of culture), cells were lysed by osmotic and thermal shocks. 

Fluorescence was measured using an excitation wavelength of 480nm and emission 

wavelength of 538nm in a microplate reader (Synergy HT, Biotek Instruments, USA). 

Standards were prepared with concentrations ranging between 0 and 2mg/mL.  

 

IV.2.7. Metabolic activity assay 

Cellular metabolic activity during co-culture was measured using the CellTiter® Proliferation 

assay (MTS, Promega, USA), according to the instructions of the manufacturer. Briefly, a 

MTS working solution was prepared in a 1:5 (v/v) ratio with phenol red- and serum-free 

Dulbecco's modified Eagle medium (DMEM, Gibco, USA). At pre-selected time points (days 

4, 7, 14 and 21), cells were washed thoroughly with PBS and 50µL of MTS working solution 

were added to each well. Plates were incubated for 2h (37°C, 5% CO2), protected from light, 

after which optical density (OD) at 490nm was measured. The metabolic activity was 

normalized against the total amount of dsDNA determined for the respective test condition.  

 

IV.2.8. Alkaline phosphatase activity qualitative and quantitative analysis  

The alkaline phosphatase (ALP) activity was measured using an end-point colorimetric 

procedure, following an adapted p-nitrophenol (pNP) assay, on the same cell lysates used 

for dsDNA quantification. Briefly, 20µL of sample were incubated with 80µL of 0.2% wt/v p-

nitrophenyl phosphate solution (pNPP) in 1M diethanolamine (Fluka BioChemika, Austria). 

The OD of the samples and of the calibration curve samples, prepared using p-nitrophenol 

standards (Sigma, Germany) with values ranging from 0 to 1µM/mL, was read at 405nm. For 

the monocultures, ALP activity was normalized against the total dsDNA. In the co-cultures, 

values were normalized against the amount of dsDNA of the CD31-cells (µmol pNP/h/µg 

dsDNA of CD31- cells), in the corresponding sample, with the assumption that ALP activity 

detected for the ECs monocultures is neglectable. ALP activity was represented as the 

amount of (pNP) obtained in 1h in each cell.  

The ALP activity was also qualitatively assessed by staining the samples fixed with 10% 

(v/v) buffered formalin (Sigma, Germany) with nitro-blue tetrazolium/5-bromo-4-chloro-3-

indolyl-phosphate! (NBT/BCIP, Thermo Scientific, USA). Images were acquired as 

mentioned above.  
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IV.2.9. Real time reverse transcriptase-polymerase chain reaction (RT-PCR) 

IV.2.9.1. RNA extraction and cDNA production 

The mRNA of the mono- and co-culture samples was extracted using TRI Reagent® (Sigma, 

Germany), following the manufacturer’s instructions. Proteins were extracted using 160µL 

chloroform (Sigma, Germany) and the RNA pellets were washed with an equal volume of 

isopropanol (Sigma, Germany) and 70% ethanol. The total mRNA was reconstituted in 12µL 

RNAse/DNAse-free water (Gibco, USA) and its quantity and purity were assessed with a 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, USA). Samples with a 

260/280 ratio between 1.6 and 2.0 were used for the synthesis of single-strand 

complementary DNA (cDNA). The synthesis of cDNA was performed using qScript™ cDNA 

synthesis Kit (Quanta BIosciences, USA) and the thermoblock of the Mastercycler ep 

realplex thermal cycler (Eppendorf, USA). An initial amount of 1µg of mRNA was used in a 

total volume of 20µL.  

 

IV.2.9.2. Quantitative Real Time RT-PCR 

The quantification of the transcripts of the genes of interest was carried out by reverse 

transcriptase polymerase chain reaction (RT-PCR) using 50ng of cDNA and PerfeCTA™ 

SYBR® Green FastMix kit (Quanta Biosciences, USA), following the procedure suggested 

by the manufacturer. The primers for the genes of interest (Table IV.2) were previously 

designed using the v0.4.0 Primer 3 online software (Whitehead Institute, USA) and 

synthesized by MGW Biotech, Germany. For each sample, the transcripts expression data 

were normalized against the glyceraldehyde-3-phosphate-dehygrogenase (GAPDH) 

housekeeping gene. A concentration of 100nM of each primer was used in a final volume of 

20µL of sample.  

 

 

Each real time RT-PCR reaction was carried out with an initial incubation at 95°C for 2min, 

followed by forty fives cycles of denaturation (95°C, 10sec), annealing (specific for each 

gene, 30sec) and extension (72°C, 30sec) in a Mastercycler ep realplex thermal cycler 

Table IV.2.  Primer pair sequences for the studied genes 

Gene Sequences NCBI reference 
Forward (5’!3’) Reverse (3’!5’)  

GAPDH ACAGTCAGCCGCATC GACAAGCTTCCCGTTCTCAG NM_002046.4 

CD31 AAGGCCAGATGCACATCC TTCTACCCAACATTAACTTAGCGG NM_000442 

vWF CCCTGGGTTACAAGGAAGAAAT AGTGTCATGTGTCCTCCTCTAG NM_000552 

OPN GGGGACAACTGGAGTGAAAA CCC ACAGACCCTTCCAAGTA NM_001040058 

OCN CTGGAGAGGAGCAGAACTGG GGCAGCGAGGTAGTGAAGAG NM_099173 
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(Eppendorf, USA). The absolute transcripts expression data was normalized against 

endogenous GAPDH values. The relative quantification of targeted genes expression, 

CD31, vWF, OCN and OPN, was performed using the 2-∆∆CT method24,25. The CD31 and 

vWF expression values were normalized against the ECs monoculture (100:0) in ENDO and 

against the number of CD31+cells obtained from the flow cytometry data for each condition. 

The OCN and OPN expression values were normalized against the pre-OBs monoculture in 

OST (0:100) and the number of CD31-cells for each condition. The normalization was 

performed for each time point with the corresponding control samples.   

 

IV.2.10. Immunocytochemistry 
At day 21, the cells were fixed with 10% formalin for 30min, washed with PBS and incubated 

with a 3%(wt/v) BSA/PBS solution to block non-specific binding. Cells were incubated for 1h 

at room temperature with mouse anti-human osteocalcin (OCN, 1:50, AbD Serotec, UK) or 

rabbit anti-human osteopontin (OPN, 1:50, Abcam, Cambridge, UK) primary antibodies 

diluted in 1.5%(wt/v) BSA/PBS. Samples were then washed with PBS and incubated 1h with 

the appropriate secondary antibody, either donkey anti-mouse Alexa Fluor 488 (Invitrogen, 

Carlsbad, CA, USA), or donkey anti-rabbit Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA) 

diluted 1:500 in 1.5%(wt/v) BSA/PBS. Cell nuclei were counterstained with DAPI. Negative 

control samples were prepared by replacing the primary antibody incubation with PBS. Prior 

fixation, cells were incubated with DIL-ac-LDL, as described above, to allow ECs 

localization, by microscopic analysis, within the produced extracellular matrix. 

 

IV.2.11. ELISA  

The secretion of vascular endothelial growth factor (VEGF) was determined by enzyme-

linked immunosorbent assay (ELISA) in the supernatants of the co-cultures between days 

14 and 21. The supernatant was centrifuged and filtered before storing at -80°C. The 

amount of human VEGF was quantified following the instructions provided in the ELISA 

development kit (PeproTech, USA). Absorbance was read in a multi-well microplate reader 

at 405 and 650nm. Standard samples in a range of concentrations of 0 to 1ng/mL of 

recombinant human VEGF were used to obtain a calibration curve. 

 

IV.2.12. Calcium content quantification 

The detection of inorganic calcium was performed at the end time point of the co-cultures 

(21 days) using a colorimetric detection kit (Roche, Switzerland), according to the 

manufacturer’s instructions. Briefly, samples were dissolved in a 6M HCl solution and 

transferred to microcentrifuge tubes. In a 96-well plate, 175µL of reagent 1 (ethanolamine, 
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1M, pH10.6) was mixed with 10µL of each sample and incubated for 5min at room 

temperature. 70µL of reagent 2 (0.3mM o-cresolphtalein-complexon, 13.8mM hydroxy-8-

quinoleine and 122mM HCl) was added in each well and incubated at 37°C for 2min. The 

OD of the samples was read at 570nm and the calcium concentrations were extrapolated 

from the calibration curve obtained using serial dilutions of a 200µg/mL CaCl2 solution.  

 

IV.2.13. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 5.00 software (San Diego, USA). 

Shapiro-Wilk test was used to ascertain data normality. The results indicated that non-

parametric test should be employed for all comparisons. Statistical analysis of the data was 

carried using one-way analysis of variance (ANOVA) test, followed by post hoc Tukey test 

for all pair-wise mean comparisons. Significance levels were set for p values lower than 

0.05.  

 

IV.3. RESULTS 

IV.3.1.The endothelial phenotype and an osteogenic pre-commitment of the cells prior 

co-cultures setting confirmation 

The phenotype of SSEA-4+hASCs sub-population after endothelial differentiation and 

osteogenic pre-conditioning was analyzed prior setting the co-culture (Figure IV.1). 

Endothelial differentiated SSEA-4+hASCs (ECs) were characterized by the co-expression of 

CD31 (94.6%), CD34 (98.6%), CD73 (97.8%) and CD105 (99.7%), while lacking CD90 (3%) 

(Figure IV.1A). The osteogenic pre-conditioned SSEA-4+hASCs (pre-OBs) exhibited a 

surface marker signature (>98% CD31-/CD34-/CD73+/CD90+/CD105+) compatible with a 

mesenchymal phenotype26 (Figure IV.1B). Morphologically, ECs were characterized by a 

cobblestone-like appearance (Figure IV.1C1), while pre-OBs displayed an elongated, 

spindle-like morphology, again characteristic of mesenchymal stem cells and similar to 

hASCs morphology (Figure IV.1C2).  

The ECs phenotype was also confirmed by their discriminative ability to uptake the LDL 

complex (Figure IV.1D1), as well as to form capillary-like network when seeded on Matrigel 

(Figure IV.1E1). In contrast, pre-OBs were not able to uptake DIL-ac-LDL (Figure IV.1D2), 

and on Matrigel formed aggregates (Figure IV.1E2). Moreover, the levels of endothelial-

specific transcripts CD31 and vWF, also showed a 1500- and, 5000-fold increase in 

comparison with the levels displayed by undifferentiated SSEA-4+hASCs (Figure IV.1F).  

The commitment of the pre-OBs towards the osteogenic lineage was evaluated considering 

the activity of ALP, an early maker of differentiation, and the variation of the molecular 

expression of OPN and OCN, respectively intermediate and late osteogenic-specific 



Chapter IV. Co-culture of Single Source Derived Endothelial and Pre-Osteoblast Cells:  

Optimization of Culture Medium and Cell Ratio  

!

!142 

markers. The pre-OBs, SSEA-4+hASCs cultured for 7 days in osteogenic medium, depicted 

significantly higher ALP activity (p<0.001) than un-committed cells (SSEA-4+hASCs cultured 

in basal medium) and ECs (Figure IV.1G). Moreover, a 2.5-fold up-regulation was detected 

in the expression of OPN, while the levels of OCN transcripts did not vary in relation to the 

un-committed cells (Figure IV.1H).  

 
Figure IV.1. Characterization of the endothelial derived-(ECs) and osteogenic pre-conditioned (pre-

OBs) SSEA-4+hASCs. (A) ECs exhibit a >94% CD31+/CD34+/CD73+/CD90-/CD105+ phenotype, (B) 
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while pre-OBs possess a typical mesenchymal surface markers pattern, >97% CD31-/CD34-

/CD105+/CD73+/CD90+. Both cells can be discriminated based on their characteristic morphology: 

(C1) ECs possess a cobblestone-like shape, (C2) whereas pre-OBs are characterized by an 

elongated, fibroblast-like morphology. (D1) ECs can also be discerned by their ability to uptake the 

LDL complex, (D2) while pre-OBs lack this behavior. (E1) ECs have the ability to form tubular-like 

networks when seeded on Matrigel. (E2) On the contrary, pre-OBs remain spherical and form 

aggregates without any evidence of a network formation. (F) Levels of endothelial-specific transcripts 

CD31 and vWF in ECs in comparison to undifferentiated SSEA-4+hASCs. The commitment of the pre-

OBs towards the osteogenic lineage was confirmed by (G) an increased activity of alkaline 

phosphatase and (H) an up-regulation of OPN and OCN transcripts in relation to undifferentiated 

SSEA-4+hASCs. Data are expressed as mean±standard deviation (SD, n=3, ***p<0.001). 

IV.3.2. Co-culture growth and cellular metabolism dependence with cell ratio and 

culture media 

The behavior of ECs and pre-OBs along the (co-)culture was dependent on the cell ratio, as 

well as on the culture medium. At initial time points, it was possible to discern the spindle-

like morphology of pre-OBs and the cobblestone-like aspect of the ECs, independently of the 

initial cell ratio. For longer time points, fibroblast-like cells took over the culture forming a 

dense cellular layer (Supplemental Figure IV.1A). The discriminative ability of ECs to 

uptake ac-LDL was used to visualize the presence and arrangement of ECs along the 

culture (Figure IV.2A-B). Stable ECs monocultures were maintained in both ENDO and MIX 

media until the end of culture. However, OST medium was not able to support ECs 

monocultures, although small DIL-ac-LDL+ colonies were identified at day 21 in the 75:25 

and 50:50 co-cultures (Figure IV.2B). Thus, although ECs colonies surrounded by DIL-ac-

LDL- cells (pre-OBs derived cells) were observed in all the co-cultures, fewer and smaller 

DIL-ac-LDL+ colonies were identified with the decrease of ECs ratio.  

The cell proliferation results confirmed the dependence of cellular growth with the cell ratio 

and culture medium (Figure IV.2C). In general, all the co-cultures exhibited significant 

proliferation up to day 14 (p<0.05). Pre-OBs monocultures in ENDO and MIX medium 

exhibited the highest growth rates and a significantly lower growth (p<0.05) than in OST. 

This trend was also observed for the co-cultures in the respective media. The dsDNA 

quantification also corroborated the morphological analysis of the cultures, showing that ECs 

have a significantly lower (p<0.05) proliferation rate than the pre-OBs mono- and co-

cultures, in both ENDO and MIX media, and that OST medium does not support ECs 

culture.  

The metabolic activity results showed that, for the earliest time point and independently of 

the ratio, cells were significantly more active (p<0.001) in the MIX than in the ENDO 

medium. However, differences were detected at day 14, for the 75:25 ratio in MIX in 
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comparison to the same ratio in ENDO and OST. Moreover, the metabolic activity of ECs 

monocultures in OST medium was significantly lower than in the other two media, and in the 

other cell ratios in the same medium (Figure IV.2D). Thus, cellular metabolism was mainly 

influenced by the culture medium and predominantly at early time points.  
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Figure IV.2. Evaluation of cells’ organization and proliferation along the culture. (A-B) ECs were 

distinguished from the pre-OBs by their specific ability to uptake the LDL complex (red), and were 

found arranged in small colonies amongst DIL-ac-LDL-cells in all the co-cultures, although fewer and 

smaller colonies were identified with the decrease of ECs ratio. Stable ECs monocultures were 

maintained in both ENDO and MIX, but not in OST media. Cells’ nuclei were counterstained with 

DAPI (blue). (C) Cell proliferation, traduced by the dsDNA content along time shows a strong 

dependency on the cell ratio and culture medium. (D) The cellular metabolism was influenced by the 

culture media, but only at early time points.  Along time, only the metabolic activity of ECs in 

monoculture and the 75:25 condition in OST medium was significantly lower than in the other two 

media. Data is expressed as mean±SD (n=3, *p<0.05, **p<0.01, ***p<0.001). 

IV.3.3. Evolution of endothelial phenotype along the culture  

To clearly follow the behavior of ECs along the culture, the percentage of CD31+ in the co-

cultures was determined by flow cytometry.  The CD31- profile of pre-OBs monocultures was 

confirmed by the lack of CD31 expression during the 21 days of culture, regardless of the 

culture media. On the contrary, more than >95% of the ECs in monocultures in ENDO and 

MIX media expressed CD31, which was maintained until the end of culture (Figure 

IV.3A).  The percentage of CD31+ cells in each one of the cell ratios did not vary between 

the ENDO and the MIX media for the entire duration of the culture, except for the 75:25 cell 

ratio at day 21 in MIX, in which the percentage of ECs cells was significantly higher 

(p<0.001) than in the ENDO medium. Nonetheless, neither ENDO, nor MIX media were 

capable to preserve the initial cell ratio. Even more, the percentage of CD31+ cells in the 

OST medium was always significantly lower than in those two media up to 7 days for all the 

defined cell ratios. However, at day 14, for the 25:75 cell ratio, and at day 21, for the 50:50 

and 25:75 cell ratios, the percentage of CD31+ cells in the three media was similar.  

In addition to the evolution in terms of growth, the stability of the endothelial phenotype of 

ECs in co-culture was evaluated by the analysis of the expression of CD31 and vWF genes 

(Figure IV.3B-C) in relation to the ECs monocultures in ENDO medium, that showed a 

stable expression of both CD31 and vWF during 21 days of culture (Supplemental Figure 

IV.2A). We also confirmed that the pre-OBs monocultures did not express CD31 or vWF in 

any of the three culture media, maintaining this neglectable expression profile along the 

culture (Supplemental Figure IV.2B). While the expression levels of CD31 and vWF were 

not affected by the culture in MIX and ENDO media, the ECs phenotype was altered by the 

culture in OST medium. A down-regulation of both genes was observed in the ECs 

monocultures up to 21 days of culture, and of CD31 in the 75:25 co-cultures at day 4. 

However, in all the other co-culture conditions, the expression of CD31 and vWF was stable 

regardless of the culture media (Figure IV.3B-C). 
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Figure IV.3. Evolution of endothelial phenotype along the culture. (A) Percentage of CD31+cells 

determined by flow cytometry. The CD31- profile of pre-OBs monocultures was confirmed by their lack 

of CD31 expression during the 21 days of culture, regardless of the culture media. On the contrary, 

more than >95% of the ECs monocultures in ENDO and MIX media expressed CD31, which was 

maintained until the end of culture. Neither ENDO nor MIX media were capable to preserve the initial 

cell ratio. The stability of the endothelial phenotype of ECs in co-culture was evaluated by the analysis 

of the expression of (B) CD31 and (C) vWF genes in relation to the ECs monocultures in ENDO 

medium. While the expression levels of CD31 and vWF were not influenced by the MIX medium, the 

ECs phenotype in the monocultures up to 21 days of culture, and in the 75:25 co-cultures at day 4, 

was affected by the OST medium. The relative expression of each gene was normalized against ECs 

monocultures in ENDO medium and against the number of CD31+cells obtained from the flow 

cytometry data for each condition with the assumption that only the CD31+ cells contribute to CD31 

and vWF transcripts. Data is expressed as mean±SD (n=3, *p<0.05, **p<0.01, ***p<0.001).  

IV.3.4. Evolution of osteogenic differentiation along the culture  

To analyze the progress of the pre-OBs along the culture time and under the various study 

conditions, a panel of markers associated to the different stages of osteogenic differentiation 
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was assessed. The quantification of the ALP activity of the cultures in ENDO medium did not 

reveal variations along time in relation to the initial pre-OBs value for any of the cell ratios, 

including the pre-OBs monocultures (Figure IV.4A). In opposition, the typical profile of ALP 

activity associated to osteogenic differentiation was observed for all the co-cultures and the 

pre-OBs monocultures both in OST and MIX media. An activity peak was reached at day 7, 

with significantly higher (p<0.001) values than the constitutive activity and the corresponding 

group in ENDO medium. Interestingly, the ALP activity detected for the 75:25 cell ratio in 

MIX medium was significantly higher (p<0.05) than for the pre-OBs monocultures in MIX and 

OST media.  

The quantitative analysis of the ALP activity was corroborated by the qualitative results. The 

constitutive ALP activity of both ECs and pre-OBs was represented by the staining of the 

randomly dispersed cells in the different conditions in ENDO medium at day 4 (Figure 

IV.4B). At the endpoint of the experiment, a slight variation of the staining intensity due to 

the higher number of cells was detected in ENDO medium, but significantly less intense than 

for the co-cultures and pre-OBs monocultures in OST and MIX media (Figure IV.4B).  

 
Figure IV.4. Alkaline phosphatase (ALP) activity along the culture. (A) The quantification of the ALP 
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activity of the cultures in ENDO medium did not reveal variations along the time in relation to the initial 

pre-OBs value for any of the cell ratios, including the pre-OBs monocultures. In opposition, the typical 

profile of ALP activity associated to osteogenic differentiation was observed for all the co-cultures and 

the pre-OBs monocultures both in OST and MIX media. The quantitative analysis of the ALP activity 

was corroborated by the qualitative results showing (B) the constitutive ALP activity of both ECs and 

pre-OBs (purple) in the different conditions in ENDO medium at day 4, with a significantly lower 

intensity than in the co-cultures and pre-OBs monocultures in OST and MIX media and (C) the 

confirmation of osteogenic differentiation only in OST and MIX, at day 21. For the monocultures, ALP 

activity was normalized against the total dsDNA. In the co-cultures, values were normalized against 

the amount of dsDNA of the CD31-cells (µmol pNP/h/µg dsDNA of CD31-cells), in the corresponding 

sample, with the assumption that ALP activity detected for the ECs monocultures is neglectable. ALP 

activity is represented as the amount of (pNP) obtained in 1h in each cell. Data is expressed as 

mean±SD (n=3, *p<0.05, **p<0.01, ***p<0.001).  

 

The osteogenic differentiation of the pre-OBs in the co-cultures was confirmed at the 

molecular levels by quantifying the expression of the osteogenic-specific genes osteopontin 

(OPN) and osteocalcin (OCN) in relation to the pre-OBs monoculture in OST (Figure IV.5A-

B), at each corresponding time point. In order to make this comparison, the complete 

differentiation of the pre-OBs monoculture in OST was confirmed (Supplemental Figure 

IV.3A1-A2). The expression of OPN, an intermediate marker of differentiation, significantly 

(p<0.001) increased until reaching a maximum of 90-fold at day 7. Consistently, the 

expression of OCN, known as a late marker of differentiation, significantly increased 

(p<0.001) along time reaching at day 21 a 2500-fold gain. Thus, the analysis of the 

expression of OPN and OCN in the co-cultures in OST and MIX media did not show 

significant differences in relation to the pre-OBs monocultures. An exception was  noticed for 

the 75:25 cell ratio in MIX medium, in which the expression of OPN and OCN, respectively 

at days 7 and 14, was significantly higher (p<0.01) than in the pre-OBs monocultures in both 

in OST and MIX media (Figure IV.5A-B). Additionally, pre-OBs mono- and co-cultures in 

ENDO medium displayed significantly (p<0.001) lower expression of OPN and OCN than the 

respective reference conditions, pre-OBs monoculture in OST (Figure IV.5A-B). The gene 

expression results were confirmed at the protein level. The deposition of an OPN- and OCN-

enriched matrix surrounding small ac-LDL+ colonies was confirmed by immunocytochemistry 

(Figure IV.5C). 

The ultimate marker of osteogenic differentiation, matrix mineralization, was indirectly 

assessed by quantification of the amount of inorganic calcium present in culture27 (Figure 

IV.5D). While in the ECs monocultures the residual amount of calcium (approx. 0.5 

µg/µgdsDNA) did not vary with the medium, in the pre-OBs monocultures and co-cultures a 
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medium- and ratio-dependent calcium content was detected. Moreover, the level of calcium 

found in the ECs monocultures and in the pre-OBs monocultures and co-cultures in ENDO 

medium, was comparable. In opposition, in OST and MIX media the levels of calcium 

significantly increased (p<0.001). Interestingly, in MIX medium, the amount of calcium 

detected in the 75:25 co-culture was significantly higher than in all the other conditions in the 

same medium (p<0.001), and in co-cultures in OST (p<0.001) and pre-OBs monoculture 

(p<0.001) in OST medium, observation that is valid for the 50:50 ratio in MIX as well. No 

differences between the 25:75 and pre-OBs monocultures in MIX and OST were observed.  

 
 
Figure IV.5. Characterization of the osteogenic differentiation along the culture.  The osteogenic 

differentiation of the pre-OBs in the co-cultures was confirmed by the expression of the osteogenic-

specific genes (A) osteopontin (OPN) and (B) osteocalcin (OCN) at the molecular and (C) protein 

levels as indicated by the deposition of an OPN- and OCN-enriched matrix surrounding small DIL-ac-

LDL+ colonies. The OPN and OCN expression values were normalized against the pre-OBs 

monoculture in OST (0:100) and the number of CD31-cells for each condition. (D) The amount of 

inorganic calcium deposited in the extracellular matrix, an indirect indicator of mineralization, was 

evaluated after 21 days of culture for all conditions. The highest levels of calcium were found in the 

75:25 ratio. Data is expressed as mean±SD (n=3, *p<0.05, **p<0.01, ***p<0.001). Δ represents a 

significant difference (p<0.05) from 0:100 in OST condition at the same time point. 
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IV.3.5 Osteogenic differentiation synergizes with culture medium to support 

endothelial phenotype through VEGF 

The amount of VEGF secreted in the different cultures at the end time point was determined 

in order to confirm a possible VEGF-mediated crosstalk between the endothelial and 

osteogenic cells in different conditions (Figure IV.7A). In OST medium, the amount of VEGF 

did not vary with the cell ratios. In opposition, both the cells ratios and the ENDO and MIX 

media affected the secretion of VEGF. The 75:25 cellular ratio in ENDO medium showed a 

significantly higher (p<0.001) VEGF release than the ECs and pre-OBs monocultures, and 

the 25:75 ratio. Nonetheless, that amount of VEGF was significantly lower (p<0.001) than 

the one detected for the same cell ratio (75:25) in MIX medium (9.1±1.8ng/mL), in turn 

significantly higher (p<0.01) than in the other conditions in MIX medium. Notably, the VEGF 

level for the 75:25 and 50:50 in MIX were significantly higher than in all cultures in OST. 

Furthermore, the VEGF secretion in the ECs monocultures in ENDO (0.61±0.34ng/mL) and 

MIX (0.60±0.36ng/mL) media and in the pre-OBs monoculture in ENDO was comparable 

and significantly lower (p<0.001) than in all the other conditions.  

 

Figure IV.6. VEGF-mediated crosstalk between the endothelial and osteogenic cells. (A) VEGF 

secretion quantified in the supernatant of the cultures at the end time point. Data is expressed as 

mean±SD (n=3, *p<0.05, **p<0.01, ***p<0.001). (B) Schematic representation of the paracrine 

signaling between differentiated pre-OBs and ECs involved in the increased matrix mineralization and 

maintenance of the endothelial phenotype in the 75:25 MIX condition. It is proposed that the presence 

of ECs, maintained by the VEGF of the medium, synergizes with the osteogenic factors present in the 

medium enhancing osteogenic differentiation of the pre-OBs. This leads to increased VEGF release 

by the pre-OBs/differentiated cells sustaining the ECs phenotype and growth and promoting a VEGF-

associated signaling loop. 

IV.4. DISCUSSION 

During bone tissue regeneration, the metabolic requirements of the local environment lead 
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to the up-regulation of multiple downstream events that aim at promoting vessel ingrowth 

and support osteogenic functionality. These phenomena rely on the intimate cooperation 

between bone forming cells precursors and microvascular endothelial cells. There are 

several studies4,22,28 on the reciprocal regulation and functional relationship between pre-

osteoblasts and endothelial cells which, in turn, may be greatly influenced by the degree of 

osteogenic maturation of pre-OBs and culturing conditions. Though the beneficial effects 

seem to be conserved, there is still lack of consensus regarding the ideal combination of 

cells and the respective conditions necessary to maximize their potential. This work intends 

to tackle this issue by determining in which cell ratio and culture conditions SSEA-4+-derived 

pre-OBs and ECs synergistically communicate to support the full differentiation of pre-OBs 

and the maintenance of the ECs phenotype.  

Culture medium has been the most useful tool in in vitro cell culture to guarantee the 

minimal requirements for cell survival, growth and eventually differentiation. We defined the 

ENDO medium composed by a cocktail of growth factors, amongst which VEGF (<5ng/mL29) 

that significantly contributes to the maintenance of the endothelial phenotype, and the 

standard osteogenic medium30 (OST), as the ideal conditions respectively for SSEA-4+-

derived ECs and pre-OBs. Considering our goal, we assumed that by combining the 

ingredients of the two media (MIX), both cell types would be provided with the required 

factors at the standard optimum concentrations. Similar approaches have been followed in 

previous works13,22, though, the ENDO and OST media were mixed at a 1:1 ratio reducing to 

half the concentrations of the provided factors. 

While the selection of the media is somehow consensual, the EC:pre-OBs ratios that have 

been tested represent a wide range of variations from 95:513, 80:2013,31,32, 75:2523, 66:335-

6,33, 50:5010,34, 25:7523 down to 2:9813. A common outcome refers to the need for a higher 

percentage of ECs in long-term cultures, as pre-OBs, OBs or even hMSCs have a higher 

proliferation rate, and thus overtake ECs and hinder their modulatory behaviour5,31, and 

consequently, the osteogenic commitment. Based on this, and considering our previous 

knowledge regarding the SSEA-4+hASCs-derived ECs proliferation ability, we selected the 

75:25 (ECs:pre-OBs) and the 50:50 ratios, as well as the 25:75 ratio to corroborate the 

literature findings with other cells.  

Both cell ratio and culture medium impacted cell growth and the metabolic activity of the co-

cultures. Although ECs did not survive in OST medium as expected, ECs colonies were 

found in the 75:25 and 50:50 conditions. Thus, our results showed that not only the 

presence of the pre-OBs supports the ECs survival, but also that an equivalent or higher 

starting number of SSEA-4+hASCs-derived ECs allows the maintenance of the co-cultures 

up to 21 days. This is in agreement with previous studies13,23,35 that showed the lowest 
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reduction of ECs coupled with the highest proliferation of differentiating cells, in the 

conditions with the highest ratios of ECs in the starting culture. We were also able to prove 

that both cell types were metabolically active and highly proliferating in both ENDO and MIX, 

although with significantly different growth rates as expected. Interestingly MIX and ENDO 

media showed similar results in terms of cell proliferation, but cells were significantly 

metabolically more active in the MIX medium, particularly at early time points. Interestingly, 

each monoculture displayed a higher initial metabolic activity in the MIX, than in its own 

standard culture medium. We believe that the enriched formulation of the MIX medium 

potentiates the immediate adjustment of both ECs and pre-OBs, alone or in co-culture, to its 

components, as they were previously cultured in ENDO and OST.  

In agreement with the conditions that support the survival of ECs along the culture, in the 

ENDO and MIX media, ECs monocultures retain their endothelial signature. In the OST 

medium, a down-regulation of OPN and OCN expression was observed only in the ECs 

monocultures. Moreover, the percentage of CD31+ cells in the 75:25 cell ratio and MIX 

medium was significantly higher than in ENDO. These results suggest that the supplements 

present the ENDO medium are essential for the survival, growth and maintenance of the 

endothelial phenotype, as already reported elsewhere13, 23, but not sufficient to enhance their 

growth when cultured together with pre-OBs. Moreover, the presence of pre-OBs is 

mandatory to maintain the endothelial phenotype most likely due to the crosstalk with the 

ECs. In fact, pre-OBs at different stages of differentiation are known to influence ECs activity 

by the release of angiogenic factors, among which VEGF7,36,37, present in both the MIX and 

ENDO media, but not in the OST.  

Interestingly, both ENDO and MIX media, containing the elements that were shown to trigger 

the endothelial differentiation of freshly isolated SSEA-4+hASCs21, failed to induce the 

acquisition of endothelial-like features by pre-OBs. This, in addition to the increased values 

of ALP activity, an early hallmark of osteogenic differentiation and a pre-requisite for the 

upfront events involving osteogenic matrix deposition and consequent mineralization38, 

confirmed the SSEA-4+hASCs osteogenic pre-conditioning after 7 days of culture in OST 

medium. The absence of expression of intermediate (OPN) and late (OCN) markers of 

differentiation also proved the early stage of the process. Osteogenic differentiation was 

completed in all the co-cultures and pre-OBs monocultures both in OST and MIX media, but 

not in ENDO, as demonstrated by the ALP activity profile, the expression and deposition of 

OPN and OCN, and the amount of calcium. Our results with ENDO medium are in 

agreement with several works that showed higher ALP activity in co-cultures of hMSCs and 

ECs! than in hMSCs monocultures,! but the completion of the osteogenic differentiation, 

characterized by an extensive matrix mineralization, had not been achieved5,10. Thus, though 
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the activation of ALP occurs upon co-culturing, in the absence of osteo-inductive factors 

(Dex, AA and βGP), the osteogenic differentiation is not completed.  

Additionally, the concentration of the osteogenic factors is also of relevance, as it was 

confirmed in another work13. A 1:1 mixture of ENDO and OST media did not support the 

osteogenic differentiation of hMSCs in co-culture with ECs and in monoculture, in opposition 

to the increased mineralization observed in OST medium. These findings reinforce the need 

for defining a suitable composition of the medium that besides sustaining the maintenance of 

the endothelial phenotype would foster the crosstalk between ECs and osteogenic cells. 

This was attained with our MIX medium that contains the required factors at the standard 

optimum concentrations.  

Moreover, the differences observed for the varied cell ratios suggest an additional 

modulatory effect of the ECs over pre-OBs differentiation. A significantly higher ALP activity 

(at day 7) and expression of OPN and OCN, respectively at day 7 and 14, as well as calcium 

content was detected in the 75:25 cell ratio in relation to pre-OBs monocultures (in both MIX 

and OST media) and the other cell ratios (in MIX medium). The same trend was observed 

for the levels of VEGF, known to be secreted by osteoblasts7 in response to the presence of 

ECs7. Interestingly, significantly higher levels of VEGF were also detected for the 50:50 

group in MIX medium in comparison to 25:75 and pre-OBs monocultures in MIX and OST 

media. However, no differences were observed regarding the osteogenic markers 

suggesting that the minimal number of SSEA-4+hASCs-derived ECs at which cells in co-

culture synergistically communicate to support the full differentiation of the pre-OBs and the 

maintenance of the ECs phenotype was reached. 

Based on our observations and on previous knowledge on deciphering the intimate dialogue 

between bone forming cells and microvascular-like ECs, we propose a model of the cellular 

interactions responsible for superior osteogenic maturation that occurs in the presence of a 

specific ECs:pre-OBs cell ratio in MIX medium (Figure IV.7B). We believe that the presence 

of ECs in a high percentage is maintained by the VEGF in the medium and synergizes with 

the osteogenic factors present in the medium enhancing the osteogenic differentiation of the 

pre-OBs. This leads to increased VEGF release by the pre-OBs/differentiated cells 

sustaining the ECs phenotype and growth and promoting a VEGF-associated signaling loop. 

 

IV.5. CONCLUSIONS 

The herein presented findings allow defining the ideal combination of SSEA-4+hASCs-

derived pre-OBs and ECs, as well the conditions necessary to maximize their potential 

under the context of engineering vascularized bone tissue. By co-culturing SSEA-4+hASCs-
+-derived ECs and pre-OBs at an initial rate above 50:50 in a mixture of standard endothelial 
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maintenance and osteogenic differentiation media, cells synergistically communicate to 

support the full differentiation of the pre-OBs and the maintenance of the ECs phenotype, 

through the activation of a VEGF-mediated signaling loop. Therefore, SSEA-4+hASCs can 

act as an optimal cellular source to build a bone tissue engineering construct combining pre-

committed cells into the osteogenic lineage and fully differentiated ECs with potential to 

promote the regeneration of vascularized bone tissue. 
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SUPPLEMENTAL INFORMATION 

 

Supplemental Figure IV.1. Effect of culture conditions over cell morphology. ECs maintain their 

cobblestone-like morphology in ENDO and MIX, whereas in OST, they are sparse not being able to 

recover along the culture.  
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Supplemental Figure IV.2. Relative expression levels of endothelial-specific markers CD31 and vWF 

for ECs monocultures in ENDO medium (A1-2) and pre-OBs monocultures in all three culture media 

(B1-2) in comparison to ECs monocultures at the beginning of the experiment. While ECs were 

characterized by a stable expression, pre-OBs in ENDO medium lack the expression of these 

markers as in the beginning of the experiment. Data is expressed as mean±SD (n=3). 
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Supplemental Figure IV.3. Relative expression levels of osteogenic-specific markers OPN and OCN 

for pre-OBs monocultures in OST medium (A1-2) and ECs monocultures in all three media (B1-2) in 

comparison to pre-OBs monocultures at day 0. While pre-OBs gained an osteoblastic-like phenotype 

as shown by the significant up-regulation of OPN and OCN, ECs were characterized by stable gene 

expression levels.  Data is expressed as mean±SD (n=3, ***p<0.001). 
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Chapter V 
Bioactive Silicate Nanoplatelets for  

Osteogenic Differentiation of Human Mesenchymal Stem Cells 
 

ABSTRACT 

Novel silicate nanoplatelets (sNPs) that induce osteogenic differentiation of human 

mesenchymal stem cells (hMSCs) in the absence of any osteoinductive factor are reported. 

The presence of the sNPs triggers a set of events that follows the temporal pattern of 

osteogenic differentiation. These findings underscore the potential applications of these 

sNPs in designing bioactive scaffolds for musculoskeletal tissue engineering (TE). 
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V.1. INTRODUCTION 

With an aging U.S. population, the occurrence of injuries and degenerative conditions are 

subsequently on the rise. As a direct result, there is an increase in demand for therapies that 

are able to repair damaged tissues and produce replacement organs1. In particular, there is 

a great need for new bioactive materials that can direct stem cell differentiation and facilitate 

the formation of functional tissues2. Several types of bioactive materials have been reported 

for musculoskeletal tissue engineering (TE) in the last few years that have clinical relevance 

including bioactive glasses (Na2O–CaO–SiO2–P2O5), hydroxyapatite (HA) (Ca10(PO4)6(OH)2), 

β-tricalcium phosphate (β-TCP) (Ca3(PO4)2), β-wollastonite (CaO-SiO) and A-W (Apatite-

Wollastonite) glass ceramics3. Difficulties persisting with many of these known materials 

include lack of osteoinductive properties, poor processing abilities and insufficient 

degradation. Although, demineralized bone matrix (DBM) have been identified as an 

alternative to autografts (gold standard), its clinical application has been limited by its batch 

to batch variability due to its biological nature, immunogenicity and high production costs4.  

Recently, bioactive nanomaterials have emerged as the next generation of advanced 

materials for biotechnological and biomedical applications due to their enhanced surface 

interactions. Synthetic silicate nanoplatelets (sNPs) have shown promise in developing 

strong matrix5, high-performance elastomers6, super hydrophobic surfaces7, super barrier 

thin films8, flame retardant materials9, moldable hydrogels10, hierarchical structures11, and 

drug delivery devices12. Although the above-mentioned reports have investigated synthetic 

sNPs for a range of applications, their interaction with biological tissue at cellular levels has 

not yet been taken into consideration. Here, we present bioactive sNPs based on synthetic 

silicate (Laponite (Na+
0.7[(Mg5.5Li0.3)Si8O20(OH)4]-0.7)) that are cytocompatible and promote in 

vitro osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence 

of any osteoinductive factor, such as BMP-2 or dexamethasone. To our knowledge, this is 

the first study that shows sNPs can induce osteogenic differentiation of hMSCs. The impetus 

for introducing this material for biological applications is due to the urgent unmet needs for 

bioactive materials for therapeutic applications in the field of regenerative medicine. 

Synthetic sNPs are plate-like poly-ions composed of simple or complex salts of silicic acids 

with a heterogeneous charge distribution and patchy interactions13. Synthetic sNPs forms 

physical gel at higher concentration (40 mg/mL) due to electrostatic and van der Waals 

interactions that result in the formation of a “house of card” structure14. This is attributed to 

the discotic charged nature and patchy interactions of the silicate sNPs15. Due to strong 

physical interaction between sNPs, they have been extensively used for various commercial 

and industrial applications such as food additives, filler materials (glass, ceramics, 
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refractories), catalysts, adsorbents and anticaking agents, but have not been previously 

considered for biological and medical applications16.  

We are highly interested to introduce these sNPs to the field of regenerative medicine, as 

their dissolution products have properties that are useful for TE applications17. Synthetic 

sNPs (such as Laponite) dissociate into non-toxic products (Na+, Mg2+, Si(OH)4, Li+) in 

aqueous solution14. It is reported that magnesium ions play a significant role in cellular 

adhesion to biomaterial surfaces mediated by the adhesion proteins of the integrin family18. 

Orthosilicic acid (Si(OH)4), another dissolution product of silicate, promote collagen type I 

synthesis19 and has been shown to be absorbed by the human body20. Additionally, lithium 

activates Wnt-responsive genes by inhibiting the glycogen synthase kinase-3-[beta] activity 

that controls osteogenesis via regulating Runt-related transcription factor-2 (RUNX2) 

activity21. Thus, we believe that sNPs may have potential in triggering specific cellular 

responses towards bone-related TE approaches. 

 

V.2. MATERIALS AND METHODS 

V.2.1. Materials 

Synthetic sNPs (Laponite XLG) containing SiO2 (59.5%), MgO (27.5%), Na2O (2.8%) and 

Li2O (0.8%) with low heavy metals content was kindly gifted by Southern Clay Products, Inc. 

(Louisville, USA). The specific surface area (Brunauer–Emmett–Teller, BET) of sNPs was 

370 m2/g and bulk density of 1 mg/cm3. Hydrodynamic size and zeta potential of the sNPs 

were determined in deionized water (DI) and PBS using a 633 nm laser in a Malvern 

ZEN3600 (Malvern Instruments, UK). sNPs were dissolved in the solution using vortexes (10 

minutes) and ultrasonication (10 minutes). The refractive index of sNPs was selected as 1.5 

(obtained from MSDS of Laponite XLG). The transmission electron microscopy (TEM) 

images of sNPs was obtained using JEOL JEM-1400 TEM (JEM1400) installed with cool 

beam illumination system (resolution: 0.2 nm line, 0.38 nm point) and 11 Mpix AMT cooled 

CCD camera at 80 KV. The sample was prepared by dispersing silicate nanoplatelets in 

DI/ethanol solution and then putting a drop on the TEM grid and allowed it to dry in vacuum.  

 

V.2.2. Human mesenchymal stem cell culture 

Bone marrow-derived hMSCs (Lonza, Switzerland) were grown in normal growth (N) 

medium (Poietics™ MSCGM™ BulletKit™ (Lonza, Switzerland). The cells were cultured 

until 70-75% confluence and were used before passage 5 for all the experiments. The cells 

were trypsinized (trypsin/EDTA, Lonza, Switzerland) and seeded in 24-well plates at the 

density of 4,000 cells/well (2,000 cells/cm2) in normal growth medium. After 24 hours, the 

media was replaced with the N, osteoconductive (OC) and osteoinductive (OI) media. OC 
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medium was supplemented with 10mM β-glycerophosphate (Sigma, Germany) and 50µg/mL 

L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (Sigma, Germany) and OI 

medium consisted in supplemented with 10-8M dexamethasone (Sigma, Germany) to induce 

osteogenic differentiation of hMSCs. We used N and OC media without sNPs as negative 

controls. 

 

V.2.3. Cytotoxicity assays: LDH and reactive species (SOx/NOx) 

Cytotoxicity of sNPs was determined using (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Pre-seeded 

hMSCs were treated with different amount of sNPs solution for 24 hours. MTT  assay was 

performed as described by the manufacturer’s protocol (ATCC, USA). In brief, media was 

removed and replaced with 100µL of fresh culture medium and 10µL of MTT solution to 

each well. Samples were incubated at 37°C for 4 hours. After the incubation, 100µL of lysis 

buffer was added to each well and incubated at 37°C for 2 hours. Samples were nicely 

mixed and absorbance was measured at 540 nm. For LDH assay (Promega, USA), following 

the manufacturers protocol, the culture medium of untreated ells were used as negative 

control (0%) and a suspension of lysed cells was used as positive control (100%). It was 

made sure that the cell seeding in all the wells was uniform. Cells were incubated with the 

samples at 37°C for 24 hours. At the end of the incubation time, cells were centrifuged at 

600xg for 10 min. 10µl supernatant from each sample well and the controls were transferred 

into 96 well plates and 100µl LDH reaction mix was added to each well and incubated for 30 

min at room temperature. Absorbance measurement was done at 450 nm. 

Intracellular production of (a) superoxide was evaluated using dihydroethidium (DHE, 

Molecular Probes, Eugene, USA) oxidation assay and (b) nitric oxide was assessed using 

4,5-diaminofluorescein diacetate (DAF-2DA, Calbiochem, San Diego, USA) oxidation assay. 

hMSCs (2x104 cells), passage 4, were seeded on 24-well plate and allowed to adhere. After 

reaching 70% confluency, cells were pre-incubated with 25µM DHE for 10 min and 10µM 

DAF-2DA for 30 min at 37°C. Cells were then washed with PBS and sNPs suspension (0, 1, 

10, 100, 1000, 10000, 20000 µg/mL) in phenol-red-free DMEM without FBS was added to 

the cells. After 2 hours of incubation, cells were washed with PBS and then fixed with 4% 

paraformaldehyde (pFA) in PBS for 40 min. Samples were examined using Nikon Eclipse 

TE2000-U fluorescence microscope (Japan) equipped with FITC filter (ex: 450–505 nm; 

polychromatic mirror: 510–555 nm; barrier filter: 515–545 nm) and FITC-Texas Red filter (ex: 

560–580 nm; polychromatic mirror: 585–665 nm; barrier filter: 600–650 nm). 
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V.2.4. Alkaline phosphatase activity 

Alkaline phosphatase (ALP) activity was measured using a colorimetric endpoint assay 

(abcam, USA), which quantified the conversion of p-nitrophenol phosphate (pNPP) to yellow 

p-nitrophenol (pNP) by ALP enzyme. Briefly, samples and the assay buffer solution of 5mM 

pNPP were added to a 96-well plate. After 1 hour of incubation, the absorbance was read at 

405 nm in a microplate reader (Epoch microplate reader, Biotek, USA). A standard curve 

was made from standards (0–20µM) prepared with a pNPP solution. Sample and standard 

triplicates were analyzed and sample concentrations read off from the standard curve. The 

amount of double-stranded DNA (dsDNA) was measured using a PicoGreen dsDNA 

Quantification Kit (Invitrogen, USA). For this purpose, cells were washed with PBS after 

each end point. 1ml filtered DI water was added to each well and then the cell lysate was 

transferred to eppendorfs and stored at −80°C. Prior to DNA quantification, samples were 

thawed and sonicated for 15 min. Experimental samples and standards (0–2µg/ml) were 

added to a 96-well plate and analysed according to the manufacturer instructions. 

Fluorescence was quantified using a microplate reader (SpectraMax M5) at an excitation at 

480 nm and emission at 520 nm. 

 

V.2.5. Quantification of extracellular matrix protein content 

HMSCs were allowed to grow in presence of different concentration of sNPs for 21 days. 

After 21 days, cells were washed thrice to remove any intracellular component or dissolved 

protein. Then 2% sodium dodecyl sulphate (SDS) solution was added to samples for 6 hours. 

This step aimed to dissociate and dissolve the proteins constituting the extracellular matrix. 

The amount of protein was determined by Micro BCA Protein Assay Kit (Thermo Fisher 

Scientific, USA) according to manufacturer’s protocol.  

 

V.2.6. Immunocytochemistry  

Cells were cultured in N, OC and OI media in the presence of sNPs as described above. At 

different time points (0, 7, 14, 21 and 28 days) after the addition of sNPs, cells were fixed 

with 4% pFA for 20 min, washed again with PBS and stored at 4ºC until cytochemistry 

labeling. Cells were permeabilized with 0.1% Triton-100x solution for 5 minutes and 

nonspecific binding blocked with a 10% goat serum solution (Invitrogen). Cells were 

incubated overnight at 4ºC with the primary antibodies: mouse monoclonal anti-human 

RUNX2 (1:100 dilution, Millipore, USA), mouse monoclonal anti-human osteocalcin (1:100 

dilution, Abcam, USA) and mouse monoclonal anti-human osteopontin (1:100 dilution, 

Abcam, USA). After incubation, cells were washed 3 times with PBS for 5 minutes and 

incubated for one hour with the appropriate secondary antibody, either Alexa Fluor 488 
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rabbit anti-mouse (IgG) (Invitrogen, USA), or Alexa Fluor 594 goat anti-mouse (IgG) 

(Invitrogen, USA), at a 1:100 dilution. Cell nuclei were counterstained with 4,6-diamidino-2-

phenyindole dilactate (DAPI), at a 1:1000 dilution in PBS, for 10 minutes and then washed 3 

times. Negative control samples were not subjected to primary antibody incubation. 

Immunolabeling was qualitatively analyzed under a Nikon Eclipse TE2000-U fluorescence 

microscope (Japan) equipped with FITC filter (ex: 450–505 nm; polychromatic mirror: 510–

555 nm; barrier filter: 515–545 nm) and FITC-Texas Red filter (ex: 560–580 nm; 

polychromatic mirror: 585–665 nm; barrier filter: 600–650 nm). 

 

V.2.7. Alizarin Red S staining 

At different time points (1, 7, 14, 21 and 21 days), cells were fixed with 4% pFA (20 minutes) 

and then washed three times with PBS. The fixed cell were further washed with DI in order 

to remove any salt residues and then a solution of 2% (wt/v) Alizarin Red S (ARS, Sigma 

Aldrich, Germany) with a pH adjusted to 4.2, was added so that it covered the entire surface 

of the wells containing cells. After an incubation of 10 minutes at room temperature, the 

excess of ARS was washed with DI. The ARS staining was imaged using a Zeiss Discovery 

V8 Stereo Microscope (DISV8). To quantify the orange-red coloration of ARS, 10% acetic 

acid (Sigma Aldrich, Germany) was added to the cells. After an overnight incubation, the 

cells with the acetic acid were transferred to tubes and centrifuged for 15 minutes at 

20,000xg. The supernatant was removed to other tubes and neutralized with ammonium 

hydroxide, 10% (Sigma Aldrich, Germany). 100µL of each sample was added to 96-well 

plates and the absorbance was read at 405nm was read using an Epoch microplate reader 

(Biotek, USA).  

 

V.2.8. Flow cytometry 

Before differentiation, hMSCs cultured in normal media were harvested with trypsin and 

analyzed for the presence of mesenchymal panel surface markers. About 106 cells were 

incubated for 1 hour in ice with the primary antibodies at an optimized dilution as follows: 

mouse anti-human CD31-APC (R&D Systems, Germany), mouse anti-human CD34-PE (BD 

Bioscience, USA), mouse anti-human CD45-FITC (BD Bioscience, USA), CD73-PE (BD 

Bioscience, USA), mouse anti-human CD90-APC (eBioscience, USA) and mouse anti-

human CD105-FITC (AbD Serotec, UK). After washing with PBS, the cells were 

resuspended in acquisition buffer until further analysis. At least 20,000 events were acquired 

using a BD LSRFortessa Cell Analyzer High Throughput Sampler (BD Bioscience, USA). 

The results were analyzed with the CellQuest software (BD Bioscience, USA). The number 
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of positive cells was expressed as a percentage of the total cell number when compared 

with non-labeled cells. 

 

V.2.9. Cytoskeleton organization 

Cell morphology and cytoskeleton organization were evaluated by treating the pre-seeded 

hMSCs (5,000 cells/well in 24-well plate) on circular glass coverslips (number 1.5) in 1 mL of 

media, with different concentration of silicate nanoplatelets. After 24 hours, the media was 

removed and the cells were washed with PBS twice and were fixed with 4% pFA (in PBS), 

followed by PBS washing three times. Subsequently the cells were treated with 0.1% Triton 

X100 in PBS. The actin filaments (F-actin) were stained with Alexa Fluor 488 Phalloidin 

(Invitrogen, USA, 25µL/ml of 1% BSA in PBS) for 20 minutes.). After the incubation, cells 

were washed thrice with PBS. The coverslips were loaded in mounting media on glass slides 

and sealed. The slides were stored in dark, at 4°C until imaged. Imaging was performed 

using a confocal microscopy (Olympus FV1000). 

 

V.2.10. Metabolic activity assay (Alamar Blue) 

The metabolic activity of hMSCs was determined using alamarBlue® assay (Invitrogen, 

USA). Alamar blue is an indicator dye, which incorporates an oxidation-reduction reaction. 

Active ingredient of Alamar Blue is resazurin, which is a non-toxic, cell permeable compound 

and virtually non-fluorescent.  Upon entering cells, viable cells reduce resazurin to resorufin, 

which produces very bright red fluorescence. This assay was performed on the day 0, 1, 3, 7, 

10, 14, 21 and 28 according the manufacture’s protocol. After predetermined duration, the 

media was removed and the cells were washed twice with PBS. Then the PBS was replaced 

with 10% (v/v) of Alamar blue reagent and incubated at 37°C, 5% CO2 humidified 

atmosphere for 3 hours. At the end of the incubation period the supernatant of the cultures 

was aliquoted into 96-well plate in triplicates and a colorimetric reading was performed using 

a microplate reader (Epoch, Biotek, USA) at 570 nm and 600 nm, respectively excitation and 

emission wavelengths. Culture medium was used as negative control. After supernatant 

removal, cells were washed in PBS and fresh medium was added. 

 

V.2.11. Statistical analysis 

Data are presented as mean ± standard deviation (SD) of the mean values. Statistical 

analysis was performed using GraphPad Prism 5.00 software (San Diego, USA) to 

determine the statistical differences. Statistical differences (p<0.05) were determined using 

one-way analysis of variance (ANOVA) for an average of three to six replicates followed by 

post hoc Tukey’s method to test all pair-wise mean comparisons. 
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V.3. RESULTS AND DISCUSSION 

Intrinsic and extrinsic properties of sNPs such as specific surface areas, surface charge, 

functionality, size and shape, play direct roles in determining specific cellular responses22. 

Synthetic sNPs show a disc-shaped morphology, 20–30 nm in diameter (Figure V.1A and 

Supplemental Figure V.1). The effect of sNPs on cellular metabolism was investigated by 

monitoring the metabolic activity of adhered hMSCs. The metabolic activity was normalized 

to the hMSCs control (without any sNPs) to determine the dose response. The addition of 

sNPs did not significantly affect the metabolic activity of hMSCs until the concentration of 

sNPs reached 1 mg/mL (Figure V.1B). However, at higher sNPs concentrations (5 mg/mL) 

the metabolic activity dropped drastically. The concentration at which the metabolic activity 

of hMSCs was reduced to 50% was regarded as the half maximal inhibitory concentration 

(IC50). The IC50 for sNPs was determined by fitting the dose response curve and was 

obtained as 4 mg/mL of sNPs concentration. A possible explanation to the decrease in the 

metabolic activity of hMSCs could be that, at a high sNPs concentration, a significant 

amount of sNPs adhere to the cell surface and are internalized, which restricts the cellular 

functionality. The confocal imaging confirmed the attachment of the sNPs to the cells and 

also showed the internalization of the sNPs within the cell body as seen by the middle 

section of the z -stacked images of the cells (Figure V.1C). Additionally, the charged sNPs 

also interact with the media proteins and results in the formation of aggregates that cannot 

be engulfed by the cells. This might also contribute to decrease in metabolic activity at 

higher sNPs concentrations. Contrary to other bioactive materials such as hydroxyapatite 

nanoparticles (size = 50 nm, IC50 ≈ 250 µ g/mL)23 and silica nanoparticles (size = 30 nm, 

IC50≈ 400–500 µg/mL)24, synthetic sNPs show cytotoxicity at 10-fold higher concentration 

(IC50≈ 4 mg/mL). 
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Figure V.1. Cytotoxicity and cellular evaluation of sNPs. (A) TEM image showing the size and 

morphology of sNPs. The inset shows the image of a single sNP platelet with 25.4 nm in diameter. (B) 

IC50 of the sNPs was assessed by evaluating the metabolic activity of hMSCs in the presence of sNPs 

in the media using MTT assay at 48 hours of post seeding. The metabolic activity was normalized 

with the control (without any sNPs). The dotted line shows fitted dose response curve, and the IC50 

was found at sNPs concentration of 4 mg/mL. (C) Internalization of sNPs was determined by 

incubating hMSCs with different concentrations of sNPs (0, 1, 10 and 100µg/mL). Cells cytoskeleton 

was stained for F-actin (blue) and the sNPs were tagged with Cy3-labeled Lysozyme (red). 

Fluorescence images depicting cells fibroblast-like morphology, specific for hMSCs, as noticed by the 

stretch of F-actin (blue), which also indicates that the addition of sNPs does not interfere with the 

adhesion properties of the cells. The overlapping of F-actin with sNPs suggests the high interaction 

between cells and sNPs, both at membrane and cytoplasmatic levels (scale bar = 20 µm). The 

quantification of the fluorescence intensity indicates significant uptake of sNPs by hMSCs was 

observed due to the increase in sNPs concentrations, confirming the strong affinity of the sNPs 

towards hMSCs (one-way ANOVA, followed by Tukey post-hoc, *p < 0.05, ***p < 0.001). 

The high surface area of sNPs, due to their disc shaped morphology, provides them with a 

high chemical reactivity as well as high biological activity. The chemical reactivity and 

cytotoxicity of sNPs can also be determined by monitoring the generation of intracellular 

reactive oxygen species (ROS), such as super oxide (SOx) and reactive nitrogen species 
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(RNS), such as nitric oxide (NOx), as an evaluation of the immediate responses of cells 

when put in contact with the sNPs. An appropriate amount of ROS and RNS plays a vital 

role in the functionality of stem cells, which directly affects their self-renewal capacity, and 

differentiation potential25. However, an excessive amount of ROS and RNS results in 

increased oxidative stress, inflammation and consequent damage to proteins, membranes 

and DNA, triggering a series of events that can lead to senescence, apoptosis and/or stem 

cell transformation25. 

Figure V.2. The formation of radicals as a measure of intracellular stress that usually generates a 

cytotoxic response was determined. The intracellular production of two reactive species, ROS and 

RNS, was evaluated after hMSCs incubation in the presence of different sNPs concentrations. As the 

sNPs concentration increased, no intracellular ROS was noticed until 100µg/mL. However, at higher 

sNPs concentrations (>1 mg/mL), a significant increase in ROS was observed as quantified using 

ImageJ. Similarly, at higher sNPs concentrations (>10 mg/mL), a significantly higher amount of RNS 

was observed. These results are in agreement with the IC50 results (determined by MTT assay) that 

indicated that particle concentration >1 mg/mL affects cellular function. Therefore, further studies 

were carried out with the sNPs concentration below 1 mg/mL (scale bar = 100 µm) (one-way ANOVA 

followed by Tukey post-hoc, *p < 0.05, ***p < 0.001). 
 

To investigate the interaction of sNPs with hMSCs, pre-seeded hMSCs were exposed to 

several sNPs concentrations (0–20 mg/mL).  The addition of sNPs to hMSCs resulted in the 

enhanced production of ROS and RNS. At a low sNPs concentration (<1 mg/mL), hMSCs 
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were able to effectively manage oxidative stress, but at higher sNPs concentrations (>1 

mg/mL), a significant increase in ROS and RNS production was observed (Figure V.2). 

These results are in agreement with the cytotoxicity findings that highlight that the cellular 

metabolic activity was affected at high concentrations of sNPs (>1 mg/mL). The high 

concentration of sNPs enables the formation of large aggregates that can jeopardize the 

internalization efficiency of the sNPs, while at the same time, generating external stress to 

the cell cytoskeleton. 

We further investigated the cytotoxicity of sNPs by quantifying plasma membrane damage 

using LDH assay. It was also observed that the addition of sNPs below the IC50 values did 

not change the LDH levels in media, compared with the control (without sNPs), providing 

additional evidence of cytocompatibility of sNPs in the given concentration range 

(Supplemental Figure V.2). Furthermore, attachment and internalization of sNPs did not 

alter cellular morphology and the function of the hMSCs, as we did not observe any 

alterations in cell-proliferation profiles over the period of 28 days (Supplemental Figure V.3). 

Based on the cell-nanoplatelets interactions, cytotoxicity, and proliferation studies, we 

selected sNPs concentrations of 0, 1, 10 and 100 µg/mL for further long-term studies. 

Overall, it can be concluded that sNPs show nearly no cytotoxicity at concentrations lower 

than 1 mg/mL and can potentially be used for biomedical applications. 
We hypothesize that these sNPs possess a bioactive feature that promotes and further 

enhances the osteogenic phenotype of hMSCs. Furthermore, we believe that these sNPs 

could act as an osteoinductive agent when cells are cultured in N medium, by triggering the 

formation of mineralized matrix. The bioactivity of sNPs was investigated by monitoring the 

ALP activity of hMSCs and the production of mineralized matrix in N, OC and OI media. We 

had chosen different culture media to investigate the effect of sNPs on the osteogenic 

differentiation of hMSCs in the absence or presence of osteoinducting factors (such as 

dexamethasone). The N medium is a maintenance medium that does not trigger the 

osteogenic differentiation of hMSCs26. On the other hand, OC medium (N medium 

supplemented with β-glycerophosphate and ascorbic acid salts) supports the osteogenic 

differentiation of hMSCs and also promotes the formation of mineralized matrix in presence 

of bioactive materials26. In contrast, the OI (N medium supplemented with β-

glycerophosphate, ascorbic acid and dexamethasone) induces and supports the osteogenic 

differentiation of hMSCs26. 

Amongst the major osteogenic hallmarks, the up-regulation of ALP activity is a key event 

occurring during the early time points of osteogenesis27. In N medium, residual ALP activity 

was observed that was stable during the culture period (Supplemental Figure V.4), which 

was considered as a residual activity of non-differentiated hMSCs, we did not observe any 
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significant increase in ALP activity due to the addition of sNPs in N medium. On the other 

hand, an increase in ALP activity was observed in OC medium with a peak at day 21 

(Figure V.3A). The addition of sNPs significantly enhances the upregulation of ALP activity, 

indicating that the presence of sNPs within the intra- and extra-cellular environment can 

trigger an up-regulation of ALP, correlated with the first check-point for osteogenic 

differentiation. More than a 3-fold increase in peak ALP activity was observed due to the 

addition of a small amount of sNPs (1 and 10 µg/mL) in OC media compared to the control 

(without sNPs in OC media). As expected, in OI media, ALP peak was shifted towards day 

14, due to the addition of dexamethasone, known for triggering the osteogenic differentiation. 

An almost 2-fold increase in peak ALP activity was observed due to the addition of sNPs (1 

µg/mL). Moreover, it is important to note that the addition of silicates (1 µg/mL) has a similar 

effect in ALP peak activity and cellular organization (Supplemental Figure V.5) when 

compared to the positive control (hMSCs in OI media). Overall, the results indicate that 

sNPs can support and sustain the upregulation of ALP activity without the addition of 

dexamethasone. 

At the same time, it is equally important for the cells to produce extracellular matrix (ECM), 

followed by a subsequent mineralization. The effect of sNPs on the production of ECM was 

investigated by determining the amount of insoluble proteins after 21 days. We show that the 

addition of sNPs significantly enhanced the ECM production (Figure V.3A). Further 

evaluation of ECM indicates that cells subjected to sNPs are characterized by an increase in 

the RUNX2 and an enhanced production of osteo-related proteins, like osteocalcin (OCN) 

and osteopontin (OPN) (Figure V.3B-C). RUNX2 belongs to the RUNX family of 

transcription factors and is exclusively expressed in mineralized tissues28. It is considered as 

a focal point for integration of a variety of signals affecting osteogenesis as it stimulates 

osteo-related genes that encode type I collagen, OCN, and OPN28. We observed that the 

addition of sNPs significantly promotes RUNX2 expression. In the OC medium condition, the 

addition of sNPs significantly promotes an increase of RUNX2 when compared with the OC 

medium without sNPs. On the other hand, in the OI condition the effect is similar. 

Concomitantly, we also evaluated the presence of osteo-related proteins (OCN, OPN) that 

constitute the ECM produced by osteoblast-like cells. OCN is the most abundant bone-

specific non-collagenous protein synthesized by osteoblasts and serves as a marker to 

evaluate osteogenic maturation and bone formation29. On the other hand, OPN is a 

structural protein synthesized by pre-osteoblasts, osteoblasts, and osteocytes, and is 

considered an important factor in bone remodeling30. The presence of these two proteins 

sets the basis for the upcoming mineralization as they sustain the formation of bone-like 

nodules that can further develop into complex 3D mineralized structures. Due to the addition 
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of sNPs, an enhancement in the deposition of these bone-related proteins was observed 

(Figure V.3B-C). The presence of the sNPs results in two-fold increase in bone-related 

matrix proteins deposition (OCN and OPN) when compared to hMSCs subjected to 

dexamethasone. Taken together, we believe that the sNPs act as a trigger from both the 

exterior (by acting as growth nuclei for matrix deposition), as well as from the interior of the 

cells (by proving the chemical cues to the cells organelle to shift their metabolism towards 

the osteogenic differentiation). Even more, the concentration of sNPs directly affects the 

intensity of this outcome and the further mineralization process. 

Figure V.3. Effect of sNPs on hMSCs differentiation. (A) The addition of sNPs up-regulates alkaline 

ALP activity of hMSCs. Cells grown in N medium show a residual ALP activity, which is stable during 

the considered cell culture period (Supplemental Figure V.3). In OC medium, an up-regulation of 
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ALP activity was observed and a ALP peak was observed at day 21. The addition of small amounts of 

sNPs (1 and 10 µg/mL) resulted in an almost 3-fold increase in ALP activity. On the other side, for the 

cells grown in OI medium, the ALP activity peaks shifts to an earlier time point (day 14). These data 

suggest that sNPs enhance the ALP activity that results in osteogenesis. Addition of sNPs 

significantly enhances production of ECM after 21 days. A similar trend was observed in OC and OI 

media. (B) The increase in the RUNX2 (green) and production of bone-related proteins, such as OCN 

(green) and OPN (red) was observed due to the addition of sNPs (scale bar = 200 µm). Cells in N 

medium, without sNPs, acted as negative control, whereas cells in OI served as a positive control. 

Cell nuclei were counterstained with DAPI (blue). (C) The protein production was quantified using 

image analysis from the fluorescence images. The intensity of protein per cell was quantified and later 

normalized by the control (hMSCs in N media with no sNPs) to obtain the fold increase in the 

production of protein. The addition of sNPs (100 µg/mL) results in the production of RUNX2, OCN, 

and OPN in N medium, which indicates a strong bioactive character of sNPs. The addition of OC and 

OI media further enhances the production of bone-related proteins. The results indicate that the sNPs 

promote an increase in the production of essential proteins for the osteogenesis of hMSCs (one-way 

ANOVA followed by Tukey post-hoc, *p < 0.05, **p < 0.01, ***p < 0.001). 

We analyzed the efficiency of the mineralization stage by using the Alizarin Red S staining 

as a marker for the inorganic calcium, a common characteristic to bone-like structures. 

Figure V.4 and Supplemental Figures V.6 and V.7 show the effect of sNPs concentration 

on the formation of mineralized matrix in N, OC and OI media on days 14 and 21. The effect 

of sNPs on nodule formation was evident at higher sNPs concentrations (100 µg/mL) in N 

medium. These findings reinforce the statement that the sNPs can act as a promoter of 

osteogenic differentiation, by enhancing the protein production and its subsequent 

mineralization. On the other hand, in OC media, a significant increase in the number of 

nodules and the amount of mineralized matrix was observed due to addition of sNPs. The 

negative controls (N and OC media, without sNPs) did not show any nodules formation. 

These results indicate that sNPs are bioactive and promote osteogenic differentiation of 

hMSCs in the absence of other osteoinductive factors. Similar results were obtained in OI 

medium, where samples containing small amounts of sNPs had much higher amount of 

mineralized matrix compared to the positive control (OI medium without sNPs), underlining 

the role of sNPs in the enhancement of osteogenic differentiation efficiency. 

Taken together, the data presented here clearly showcases that synthetic sNPs can induce 

osteogenic differentiation of stem cells in the absence of any external osteoinductive factors 

(e.g., dexamethasone). Our results indicate that these synthetic sNPs are cytocompatible 

and strongly interact with the cells. Even more, the presence of the sNPs triggers a set of 

events that follow the temporal pattern of osteogenic differentiation (ALP/ RUNX2 transcripts 

up-regulation, bone-related matrix protein deposition (OCN and OPN), followed by matrix 
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mineralization). 

 
Figure V.4. Effect of sNPs on production of mineralized ECM. The mineralized matrix was stained 

with ARS on days 14 and 21. (A) At day 14, hMSCs were not able to produce any mineralized matrix 

in N medium (negative control). Similarly, in OC medium, no obvious mineralization was observed, 

however the presence of sNPs triggered the formation of large mineralized depots. In OI medium 

(positive control), formation of mineralized nodules was observed. Addition of sNPs significantly 

enhanced the production of mineralized matrix as determined by the quantification of ARS staining. 

(B) Similar behavior was observed on day 21. In N medium, mineralized matrix was not observed, but 

the addition of sNPs significantly enhanced the ability of hMSCs to promote the matrix mineralization. 

This indicates that the sNPs induce the reorganization and remodeling of the ECM towards 

osteogenesis. On the other hand, in OC and OI media, with the increase in sNPs composition, an 

enhanced calcification response was observed (scale bar = 1 mm) (one-way ANOVA followed by 

Tukey post-hoc, *p < 0.05, **p < 0.01, ***p < 0.001). 

IV.4. CONCLUSIONS 

The advantage of using silicate nanoplatelets as osteoinductive agents is that they are 

applied in a single dose, while other agents (dexamethasone and BMP-2) have to be added 

when changing the culture media (every 3–5 days). To our knowledge, this is the first study 
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showing that synthetic silicate nanoplatelets alone can induce osteogenic differentiation of 

hMSCs. This unique bioactive property of silicate nanoplatelets may be processed to 

construct devices such as injectable tissue repair matrixes, bio-active fillers, or therapeutic 

agent for triggering specific cellular responses towards bone-related tissue engineering 

approaches. 

REFERENCES 
1. (a) Langer, R.; Tirrell, D. A., Designing materials for biology and medicine. Nature 2004, 428 
(6982), 487-92; (b) Khademhosseini, A.; Vacanti, J. P.; Langer, R., Progress in tissue engineering. 
Scientific American 2009, 300 (5), 64-71; (c) Peppas, N. A.; Langer, R., New challenges in 
biomaterials. Science 1994, 263 (5154), 1715-20; (d) Khademhosseini, A.; Langer, R.; Borenstein, J.; 
Vacanti, J. P., Microscale technologies for tissue engineering and biology. Proceedings of the 
National Academy of Sciences of the United States of America 2006, 103 (8), 2480-7. 
2. (a) Lutolf, M. P.; Gilbert, P. M.; Blau, H. M., Designing materials to direct stem-cell fate. 
Nature 2009, 462 (7272), 433-41; (b) Kraehenbuehl, T. P.; Langer, R.; Ferreira, L. S., Three-
dimensional biomaterials for the study of human pluripotent stem cells. Nature methods 2011, 8 (9), 
731-6; (c) Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R., Nanotechnological strategies for 
engineering complex tissues. Nature nanotechnology 2011, 6 (1), 13-22. 
3. Hench, L. L., Bioceramics: from concept to clinic. Journal of the American Ceramic Society 
1991, 74 (7), 1487-1510. 
4. Urist, M. R., Bone: formation by autoinduction. Science 1965, 150 (3698), 893-9. 
5. (a) Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, 
H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A.; Kotov, N. A., Ultrastrong and stiff layered polymer 
nanocomposites. Science 2007, 318 (5847), 80-3; (b) Bonderer, L. J.; Studart, A. R.; Gauckler, L. J., 
Bioinspired design and assembly of platelet reinforced polymer films. Science 2008, 319 (5866), 
1069-73; (c) Gaharwar, A. K.; Schexnailder, P.; Kaul, V.; Akkus, O.; Zakharov, D.; Seifert, S.; Schmidt, 
G., Highly extensible bio-nanocomposite films with direction-dependent properties. Advanced 
Functional Materials 2010, 20 (3), 429-436; (d) Gaharwar, A. K.; Schexnailder, P. J.; Kline, B. P.; 
Schmidt, G., Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell 
adhesion and mineralization. Acta biomaterialia 2011, 7 (2), 568-77. 
6. (a) Liff, S. M.; Kumar, N.; McKinley, G. H., High-performance elastomeric nanocomposites via 
solvent-exchange processing. Nature materials 2007, 6 (1), 76-83; (b) Gaharwar, A. K.; Rivera, C. P.; 
Wu, C. J.; Schmidt, G., Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and 
silicate nanoparticles. Acta biomaterialia 2011, 7 (12), 4139-48. 
7. Lin, L.; Liu, M.; Chen, L.; Chen, P.; Ma, J.; Han, D.; Jiang, L., Bio-inspired hierarchical 
macromolecule-nanoclay hydrogels for robust underwater superoleophobicity. Advanced materials 
2010, 22 (43), 4826-30. 
8. Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Super Gas Barrier of Transparent 
Polymer-Clay Multilayer Ultrathin Films. Nano letters 2010. 
9. Li, Y. C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; 
Grunlan, J. C., Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. 
ACS nano 2010, 4 (6), 3325-37. 
10. (a) Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T., 
High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 2010, 
463 (7279), 339-43; (b) Haraguchi, K., Synthesis and properties of soft nanocomposite materials with 
novel organic/inorganic network structures. Polymer Journal 2011, 43, 223–241. 
11. (a) Gaharwar, A. K.; Schexnailder, P. J.; Dundigalla, A.; White, J. D.; Matos-Perez, C. R.; 
Cloud, J. L.; Seifert, S.; Wilker, J. J.; Schmidt, G., Highly extensible bio-nanocomposite fibers. 
Macromolecular rapid communications 2011, 32 (1), 50-7; (b) Dundigalla, A.; Lin Gibson, S.; Ferreiro, 
V.; Malwitz, M. M.; Schmidt, G., Unusual Multilayered structures in PEO/Laponite nanocomposite 
films. Macromolecular rapid communications 2005, 26, 143-149; (c) Gaharwar, A. K.; Kishore, V.; 
Rivera, C.; Bullock, W.; Wu, C. J.; Akkus, O.; Schmidt, G., Physically crosslinked nanocomposites 
from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human 
mesenchymal stem cells. Macromolecular bioscience 2012, 12 (6), 779-93. 



Chapter V. Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of 

 Human Mesenchymal Stem Cells 
 

!180 

12. Dawson, J. I.; Kanczler, J. M.; Yang, X. B.; Attard, G. S.; Oreffo, R. O., Clay gels for the 
delivery of regenerative microenvironments. Advanced materials 2011, 23 (29), 3304-8. 
13. (a) Pignon, F.; Piau, J. M.; Magnin, A., Structure and pertinent length scale of a discotic clay 
gel. Physical review letters 1996, 76 (25), 4857-4860; (b) Ruzicka, B.; Zaccarelli, E.; Zulian, L.; 
Angelini, R.; Sztucki, M.; Moussaid, A.; Narayanan, T.; Sciortino, F., Observation of empty liquids and 
equilibrium gels in a colloidal clay. Nature materials 2011, 10 (1), 56-60. 
14. Thompson, D. W.; Butterworth, J. T., The nature of laponite and its aqueous dispersions. 
Journal of Colloid and Interface Science 1992, 151, 236–243. 
15. Kegel, W. K.; Lekkerkerker, H. N., Colloidal gels: Clay goes patchy. Nature materials 2011, 
10 (1), 5-6. 
16. Okada, A.; Usuki, A., Twenty years of polymer- clay nanocomposites. Macromol Mater Eng 
2006, 291, 1449-76. 
17. Hoppe, A.; Guldal, N. S.; Boccaccini, A. R., A review of the biological response to ionic 
dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32 (11), 2757-74. 
18. (a) Zreiqat, H.; Howlett, C. R.; Zannettino, A.; Evans, P.; Schulze-Tanzil, G.; Knabe, C.; 
Shakibaei, M., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly 
used orthopaedic implants. Journal of biomedical materials research 2002, 62 (2), 175-84; (b) Anast, 
C. S.; Mohs, J. M.; Kaplan, S. L.; Burns, T. W., Evidence for parathyroid failure in magnesium 
deficiency. Science 1972, 177 (4049), 606-8. 
19. Reffitt, D. M.; Ogston, N.; Jugdaohsingh, R.; Cheung, H. F. J.; Evans, B. A. J.; R.P.H, T.; 
Powell, J. J.; Hampson, G. N., Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic 
differentiation in human osteoblast-like cells in vitro. Bone 2003, 32, 127–135  
20. (a) Martin, K. R., The chemistry of silica and its potential health benefits. J Nutr Health Aging 
2007, 11 (2), 94-7; (b) Carlisle, E. M., Silicon: a possible factor in bone calcification. Science 1970, 
167 (3916), 279-80. 
21. (a) De Sarno, P.; Li, X.; Jope, R. S., Regulation of Akt and glycogen synthase kinase-3 beta 
phosphorylation by sodium valproate and lithium. Neuropharmacology 2002, 43 (7), 1158-64; (b) 
Kubota, T.; Michigami, T.; Ozono, K., Wnt signaling in bone metabolism. Journal of bone and mineral 
metabolism 2009, 27 (3), 265-71; (c) Kugimiya, F.; Kawaguchi, H.; Ohba, S.; Kawamura, N.; Hirata, 
M.; Chikuda, H.; Azuma, Y.; Woodgett, J. R.; Nakamura, K.; Chung, U. I., GSK-3beta controls 
osteogenesis through regulating Runx2 activity. PloS one 2007, 2 (9), e837. 
22. Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R., Towards a 
definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature 
nanotechnology 2009, 4 (10), 634-41. 
23. Motskin, M.; Wright, D. M.; Muller, K.; Kyle, N.; Gard, T. G.; Porter, A. E.; Skepper, J. N., 
Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and 
biostability. Biomaterials 2009, 30 (19), 3307-17. 
24. (a) Napierska, D.; Thomassen, L. C.; Rabolli, V.; Lison, D.; Gonzalez, L.; Kirsch-Volders, M.; 
Martens, J. A.; Hoet, P. H., Size-dependent cytotoxicity of monodisperse silica nanoparticles in 
human endothelial cells. Small 2009, 5 (7), 846-53; (b) Park, M. V.; Annema, W.; Salvati, A.; Lesniak, 
A.; Elsaesser, A.; Barnes, C.; McKerr, G.; Howard, C. V.; Lynch, I.; Dawson, K. A.; Piersma, A. H.; de 
Jong, W. H., In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica 
nanoparticles. Toxicology and applied pharmacology 2009, 240 (1), 108-16. 
25. Barry, F. P.; Murphy, J. M.; English, K.; Mahon, B. P., Immunogenicity of adult mesenchymal 
stem cells: lessons from the fetal allograft. Stem cells and development 2005, 14 (3), 252-65. 
26. Coelho, M. J.; Fernandes, M. H., Human bone cell cultures in biocompatibility testing. Part II: 
effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. 
Biomaterials 2000, 21 (11), 1095-102. 
27. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; 
Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R., Multilineage potential of adult human 
mesenchymal stem cells. Science 1999, 284 (5411), 143-7. 
28. Ducy, P.; Schinke, T.; Karsenty, G., The osteoblast: a sophisticated fibroblast under central 
surveillance. Science 2000, 289 (5484), 1501-4. 
29. Ducy, P.; Desbois, C.; Boyce, B.; Pinero, G.; Story, B.; Dunstan, C.; Smith, E.; Bonadio, J.; 
Goldstein, S.; Gundberg, C.; Bradley, A.; Karsenty, G., Increased bone formation in osteocalcin-
deficient mice. Nature 1996, 382 (6590), 448-52. 
30. Butler, W. T., The nature and significance of osteopontin. Connect Tissue Res. 1989, 23 (2-3), 
123-36. 
 



Chapter V. Bioactive Silicate Nanoplatelets for Osteogenic Differentiation of  

Human Mesenchymal Stem Cells 
 

! 181 

SUPPLEMENTAL INFORMATION 

 
Supplemental Figure V.1. Physiochemical characterization of sNPs suspension at different 

concentrations in DI and PBS. These characteristics mainly govern nanoparticle interactions with 

other biomolecules present in in vitro and in vivo conditions. These interactions are determined by 

measuring aggregation, state of dispersion and effective surface charge (zeta potential) of sNPs in 

different biologically relevant solvents: DI, PBS and cell culture media. (A) The data for hydrodynamic 

diameter of the sNPs shows no aggregation at low concentrations in DI, whereas in PBS, a clustering 

effect is observed, probably due to the ionic interactions in the solution. The results indicated 

formation of aggregates (~200 nm) in solution containing 10µg/ml silicates (in PBS) and the size of 

aggregates increased to 4µm with an increase in sNPs concentration to 1 mg/mL. (B) Zeta potential 

measurements of sNPs suspensions in both DI and PBS show increase in the overall charge with 

increase in concentration, indicating a possible reorganization of the particles due to the interactions 

that occur at the nanoscale. (C) The increase of the hydrodynamic diameter when resuspended in 

PBS is evidenced by the turbidity of the solution as the sNPs concentration is increased. This is 

especially evident at higher concentration (10 and 20 mg/mL). Similar behavior was observed when 

sNPs were dissolved in different protein solutions (fibronectin, collagen, laminin and lysozyme) and 

cell culture media (containing FBS).  
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Supplemental Figure V.2. Effect of addition of sNPs on LDH release from hMSCs. We further 

investigated cytotoxicity of sNPs by quantifying plasma membrane damage using LDH assay. LDH is 

a stable enzyme present in all the cells and is released after the plasma membrane is damaged. Our 

results indicated that the addition of sNPs below the IC50 values did not significantly increase LDH 

levels after 24 and 48 hours compared to the control, providing evidence of cytocompatibility of sNPs  

in the given concentration range.   

 

Supplemental Figure V.3. Effect of addition of sNPs on metabolic activity of hMSCs in N, OC and OI 

media as determined by alamarBlue® assay. Addition of sNPs does not significantly alter the 

metabolic activity of hMSCs that shows a typical profile for osteogenic differentiation. At early time 
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points, cells proliferate and organize on the culture surface. When reaching confluency, due to area 

restriction and already up-regulated ALP, the cells switch their metabolism towards the matrix 

deposition. 

.  

Supplemental Figure V.4. Residual ALP activity of hMSCs in N medium monitored for 28 days. We 

did not observe any significant change in ALP activity with the addition of sNPs in N medium.   

 

Supplemental Figure V.5. Effect of sNPs on cellular organization after 7 days in different media.  In 

N and OC media, cells show random organization, whereas in OI medium, cells organize in colonies. 

This is typical behavior of hMSCs when they start differentiation. We also observed that there is 

significant decrease in cell number in OI medium compared to N and OC media. Addition of sNPs 

induces cellular organization in N, OC and OI media. (Scale bar = 200µm)  
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Supplemental Figure V.6. hMSCs incubated with sNPs does not stain for ARS staining. (A) Optical 

images showing cell adhered to well plate and stained for ARS. (B) Addition of sNPs does not have 

any effect on ARS staining as determined by image quantification. (Scale bar = 1 mm) 

 

Supplemental Figure V.7. Effect of sNPs on cellular organization after 21 days in different media.  In 

N mediim without sNPs, no change in cellular organization compared to day 7 is observed. In OC 

medium, we observed random cellular organization and cell reached confluences similar to day 7, 

whereas in OI medium, we observed very specific cellular organization that resulted in a deposition of 

ECM in concentrated circular regions. After ARS straining, we observed that these ECM deposits are 

rich in inorganic calcium. When cells were treated with sNPs, similar cellular organization was 

observed in N, OC and OI media. Although in N medium, dense cellular packing was not observed, 
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the circular regions were strained with ARS indicating deposition of mineralized ECM. (Scale bar = 

200µm)    

 

Supplemental Figure V.8. Evaluation of the mesenchymal stem cell marker profile by flow cytometry 

of hMSCs prior inducing the osteogenesis. Cells are mainly CD45-/CD34-/CD31-

/CD105+/CD90+/CD73+.  
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Chapter VI 

Silicate Nanoplatelets Enhance the  
Osteogenic Differentiation of SSEA-4 Positive Selection of  

Human Adipose Derived Stem Cells 
 

ABSTRACT 

How to surpass in vitro stem cell differentiation, reducing cell manipulation, and lead the in 

situ regeneration process after transplantation, remains to be unraveled in bone tissue 

engineering (bTE). Recently, we showed that the combination of human bone marrow 

stromal cells with bioactive silicate nanoplatelets (sNPs) promotes the osteogenic 

differentiation without the use of standard osteogenic inductors. Even more, using SSEA-4+ 

cell-subpopulations (SSEA-4+hASCs) residing within the adipose tissue, as a single-cellular 

source to obtain relevant cell types for bone regeneration, was also proposed. Herein, sNPs 

were used to promote the osteogenic differentiation of SSEA-4+hASCs. The interactions 

between SSEA-4+hASCs and sNPs, namely the internalization pathway and effect on cells 

osteogenic differentiation, were evaluated. SNPs below 100µg/mL showed high 

cytocompatibility and fast internalization via clathrin-mediated pathway. SNPs triggered an 

overexpression of osteogenic-related markers (RUNX2, osteopontin, osteocalcin) 

accompanied by increased alkaline phosphatase activity and deposition of a predominantly 

collagen-type I matrix. Consequently, a robust matrix mineralization was achieved, covering 

>90% of the culturing surface area. Overall, we demonstrated the high osteogenic 

differentiation potential of SSEA-4+hASCs, further enhanced by the addition of sNPs in a 

dose dependent manner. This strategy endorses the combination of an adipose-derived cell-

subpopulation with inorganic compounds to achieve bone matrix-analogs with clinical 

relevance. 

 

 
 

_________________________________________________________________________________ 

This chapter is based on the following publication:  

Mihaila SM, Gaharwar AK, Reis RL, Khademhosseini A, Marques AP, Gomes ME, “Silicate 

nanoplatelets enhance the osteogenic differentiation of SSEA-4 positive selection of human adipose 

derived stem cells”, Biomaterials 2014, 35(33): 9087-99, doi: 10.1016/j.biomaterials.2014.07.052  
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VI.1. INTRODUCTION 

Bone tissue engineering (TE) requires a readily available source of cells, combined with cell-

templates (scaffolds) providing bio-instructive agents (inductive and/or growth factors, 

cytokines) to trigger and control the osteogenic phenotype and consequently an adequate 

biological functionality. Osteoinductivity is the key process to induce the differentiation of 

osteoprogenitor cells into osteoblast cells to eventually form new bone. Thus, extensive 

research has been focused on determining the appropriate conditions to trigger 

osteoinductive events.  A range of inorganic bioactive materials such as bioactive glasses, 

calcium phosphates (CaPs)1, hydroxyapatite (HA), beta tri-calcium phosphates (β-TCP)2, 

and orthosilicic acid (Si(OH)4)3 are exploited as osteoinducers4. However, due to their limited 

processability and insufficient degradation, there is a need to develop a new generation of 

bioactive materials. 

Recent studies have focused on developing new bioactive materials such as synthetic 

silicates5,6 and graphene7, suggesting unexploited routes for biomaterials design and 

regenerative medicine.In particular, bioactive silicate nanoplatelets (sNPs) based on 

synthetic silicate (Laponite, Na+
0.7[(Mg5.5Li0.3)Si8O20(OH)4]-0.7) have shown to induce 

osteogenic differentiation of bone marrow human mesenchymal stem cells (hMSCs) in the 

absence of osteoinductive factors, such as BMP-2 or dexamethasone6. A single dose of 

these sNPs enhances the osteogenic differentiation of hMSCs, when compared to hMSCs 

cultured in standard osteogenic differentiation conditions (in the presence of 

dexamethasone). Moreover, these synthetic silicates have shown to physically interact with 

both synthetic and natural polymers and can be used as injectable matrices for cellular 

therapies8-11. Although these findings foster the development of new bioactive nanomaterials 

for bone TE8,12-14, limited availability of bone marrow hMSCs, invasive retrieval procedures 

and high donor-site morbidity compromise the clinical applicability of the sNPs combined 

with these cells.  

Recently, human adipose derived stem cells (hASCs) isolated from the stromal vascular 

fraction (SVF) of adipose tissue (AT) have emerged as one of the most promising stem cell 

populations identified thus far15,16. Moreover these cells have the ability to differentiate along 

multiple lineage pathways as reported in literature15,16. From a practical standpoint, human 

AT is abundant and easily obtained in large quantities with low donor-site morbidity or 

patient discomfort. The use of autologous hASCs as a research tool and as basis of cellular 

therapeutic strategies is feasible, making them preferential cells for TE, compared to bone 

marrow hMSCs. Furthermore, considering the limitations of hASCs in terms of differentiation 

potential (osteogenic17, chondrogenic17, adipogenic17, myogenic17 and neurogenic18), recent 

studies have shown that a selected and enriched cellular subset has significantly higher 
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differentiation potential. For instance, STRO-1+hASCs19, CD105-hASCs20, CD90+hASCs19,21 

and p75+hASCs19 were found to exhibit higher osteogenic potential when compared to 

hASCs. Nonetheless, considering that the majority of biological systems rely on the different 

cellular interactions, it is important to classify a cell source that can act as starting point for 

several differentiation pathways. Thus, the isolation of cells from AT is relevant for bone TE 

and more appealing for clinical translation.  

In our previous work22, we have shown that SVF of the human AT, contains a subpopulation 

defined by the their positive expression of the pluripotency-associated marker, SSEA-4 that 

is capable of differentiating into mature microvascular-like endothelial cells. Interestingly, this 

cell subpopulation also showed a superior potential to differentiate towards the osteogenic 

lineage, compared to hASCs. Therefore, AT can be used as a single cell source to obtain a 

sub-population of cells, SSEA-4+hASCs, that under specific conditions give rise to 

endothelial- and osteoblast-like cells, further reinforcing its relevance in designing bone-

mimicking constructs.    

Herein, we propose to use sNPs to promote and induce the osteogenic differentiation of 

SSEA-4+hASCs by intracellular interplay, as well as through direct cellular interactions. We 

hypothesize that the addition of sNPs to SSEA-4+hASCs induces osteogenic differentiation 

of SSEA-4+hASCs. The combination of cells with high potential towards osteogenic 

differentiation with inorganic compounds that are able to sustain and improve the extent of 

mineralization can be a potential avenue towards formation of functional bone tissue. This 

approach up-holds the promise of developing feasible solutions for the induction of higher 

levels of new bone formation.  

 

VI.2. MATERIALS AND METHODS 

VI.2.1. Hydrodynamic diameter and surface charge of sNPs  

Laponite silicate nanoplatelets (sNPs, Na+
0.7[(Mg5.5Li0.3)Si8O20(OH)4]-0.7, Rockwood, USA) 

were dissolved in ultrapure water at different concentrations (<10mg/mL). The hydrodynamic 

diameter and zeta potential of the sNPs were measured by photon correlation spectroscopy 

and laser Doppler anemometry, respectively, using a Malvern Zetasizer Nano ZS (Malvern 

Instruments, UK). Each analysis was performed at 25oC, with a detection angle of 90o and a 

refractive index of 1.5 (for inorganic particles). Each formulation was analyzed in triplicate. 

 

VI.2.2. SSEA-4+hASCs selection and culture 

Human abdominal subcutaneous AT samples were obtained from healthy female with an 

average age of 44 years, undergoing lipoaspiration procedure, after informed consent. The 

retrieval and transportation of the samples to the 3B’s Research Group laboratorial facilities 



Chapter VI. Silicate Nanoplatelets Enhance the Osteogenic  

Differentiation of SSEA-4 Positive Selection of Human Adipose Derived Stem Cells 

 

 191 

were performed under a protocol previously established with the Department of Plastic 

Surgery of Hospital da Prelada, Porto, Portugal and approved by the local Ethical 

Committee. All the samples were processed within 24 hours after the surgical procedure, as 

previously described22. Briefly, the AT was digested with 0.05% (wt/v) collagenase II A 

(Sigma, Germany) in phosphate buffer saline (PBS), for 45min, under agitation in a shaking 

bath at 37oC. The digested tissue was filtered through a 200µm mesh pore size strain, 

followed by centrifugation to remove the mature adipocytes and undigested connective 

tissue. After performing lysis to disrupt the red blood cells, the crude was centrifuged and 

resuspended in PBS to obtain the SVF.  

The immunomagnetic selection of the SSEA-4+hASCs was performed based on the coating 

of commercially available magnetic beads (Dynabeads® M-450 Epoxy beads, Invitrogen, 

USA) with SSEA-4 (clone MC813) antibody (Santa Cruz Biotechnology, USA) following the 

manufacturer’s instruction and as previously reported22. Briefly, 2x107 immunomagnetic 

beads resuspended with 10µL of the SSEA-4 antibody at a final concentration of 2µg/mL, 

and then incubated, overnight, at room temperature, under gentle stirring. Subsequently, the 

SSEA-4 coupled beads were separated with a magnet and mixed with freshly isolated SVF 

in order to select the SSEA-4+ cells residing within the cell crude (SSEA-4+hASCs). The cells 

bonded to the beads were separated from the rest of the cell suspension using the magnet.  

The SVF and the SSEA-4+hASCs were both cultured with basal medium (Minimum Essential 

Medium Eagle-alpha Modification, α-MEM, Gibco, USA), supplemented with sodium 

bicarbonate (Sigma, Germany), 10% fetal bovine serum (FBS, Gibco, USA) and 1% 

penicillin/streptomycin (Pen/Strep, 100U/100µg/mL, Gibco, USA). When reaching 80% 

confluence, cells were detached from the culture flasks using TrypLETM Express (Invitrogen, 

USA) and kept under the same conditions along the passages. Both cell subgroups were 

used at passage 2 for further experiments.  

 

VI.2.3.  SNPs cytotoxicity screening 

The effect of sNPs on cells metabolic activity was investigated by monitoring metabolic 

activity of adhered SSEA-4+hASCs (passage 2), cultured in basal medium, for a period of 7 

days. Cells were seeded in 48-well plates at a density of 2x103 cells/cm2 and sNPs were 

added to a final concentration ranging from 0 to 2mg/mL. At pre-selected time points, cells 

were washed thoroughly with PBS, and a mixture of serum- and phenol-red free culture 

medium and MTS reagent (Promega, USA) in a 5:1 ratio, was added to the cells. Samples 

were incubated for 3 hours, after which 100µL of each sample were transferred to 96-well 

plates and optical density (OD) at 490nm was measured on a microplate reader (Synergy 

HT microplate reader, Biotek, USA). The metabolic activity of the test groups was 



Chapter VI. Silicate Nanoplatelets Enhance the Osteogenic  

Differentiation of SSEA-4 Positive Selection of Human Adipose Derived Stem Cells 
 

 192 

normalized with the control group (cells without sNPs) to determine the dose response. 

Aiming at further assessing the effect of the sNPs over cells cytoskeleton organization, cells 

were fixed with formalin and stained with Phalloidin-TRITC (Sigma, USA) for visualization of 

the F-actin filaments.  

 

VI.2.4. Assessment of internalization efficiency of sNPs by SSEA-4+hASCs  

The sNPs were labeled with rhodamine B prior to assessing their internalization ability. For 

this purpose, 2g of sNPs were added to 100mL of 0.1% (wt/v) of rhodamine B isothiocyanate 

(Sigma, Germany) solution prepared in anhydrous DMSO, in dark conditions. The mixture 

was kept under continuous stirring, overnight, at 4oC. Several washing steps with absolute 

ethanol were performed in order to separate the sNPs from the organic phase and excess 

rhodamine B. Finally, sNPs were air-dried and kept at room temperature, protected from 

light, until further used.  

The SSEA-4+hASCs (passage 2) were seeded at a cell density of 2x103 cells/cm2 and 

allowed to adhere. After 24 hours, rhodamine-labeled sNPs (1, 10, 20, 50, 100 and 

200µg/mL) were added to the culture wells and cultures were maintained in basal medium, 

in the presence/absence of 10-6M colchicine, for additional 24 hours. SSEA-4+hASCs 

cultured in basal medium in the presence of colchicine, but without the sNPs, were used as 

negative control. Cells were then washed thoroughly with PBS, trypsinized and fixed with 

acquisition buffer (PBS containing 10% formalin and 0.1% sodium azide) and 10% formalin 

respectively for analysis in a FACS Calibur flow cytometer (BD Biosciences, USA). In the 

flow cytometry analysis cells of interest were gated in a forward versus side scatter dot plot 

with a linear scale. Acquired data were displayed as histogram plots created using the 

CellQuest software (BD Biosciences, USA). Apart from that, for rhodamine samples fixed on 

coverslips, cell nuclei were counterstained with 4,6-diamidino-2-phenyindole dilactate 

(DAPI). Samples were visualized and images were acquired using the Axioplan Imager Z1 

fluorescence microscope (Zeiss, Germany) and the AxioVision 4.8 software (Zeiss, 

Germany). 

 

VI.2.5. Osteogenic differentiation  

Confluent SSEA-4+hASCs (passage 1) were removed from the culture flasks using TrypLETM 

Express (Invitrogen, USA) and seeded at a density of 2x103 cells/cm2 in basal medium. Cells 

were allowed to adhere and after 24 hours, medium was replaced with either sNPs-

containing (1, 10 and 100µg/mL) basal medium or osteogenic medium (osteo) consisting in 

basal medium supplemented with 10mM beta-glycerophosphate (Sigma, Germany), 10-8M 

dexamethasone (Sigma, Germany), and 50mg/mL L-ascorbic acid 2-phosphate 
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sesquimagnesium salt hydrate (Sigma, Germany). Cells were incubated in a humidified 

environment at 37°C with 5% CO2 for 7, 14, 21, and 28 days, with culture media 

replenishment every 3–4 days. SSEA-4+hASCs and hASCs cultured in basal and osteo 

media in the absence of sNPs were used as controls. The experimental setup is depicted in 

Figure VI.1. 

 
Figure VI.1. Experimental setup depicting the temporal approach followed to induce the osteogenic 

differentiation of SSEA-4+hASCs. After selection from the freshly isolated SVF, SSEA-4+hASCs were 

cultured in basal medium up to passage 2, then seeded at a density of 2000 cells/cm2 and allowed to 

adhere for 24 hours until the sNPs were added. Cultures were maintained either in basal medium or 

under osteogenic differentiation conditions. At pre-selected time points (days 7, 14, 21 and 28) 

samples were retrieved to assess the extent of differentiation.  

 

VI.2.6. Cell number quantification  

The amount of double strained DNA (dsDNA), that is directly proportional with the cell 

number, was determined using a fluorometric dsDNA quantification kit (PicoGreen, 

Molecular Probes, Invitrogen, USA), according to the manufacturer’s instructions. Samples 

collected at days 7, 14, 21 and 28 of culture were subjected to thermal and osmotic shocks 

to lyse the cells. Cell lysates were then used for the dsDNA quantification. Fluorescence was 

measured using an excitation wavelength of 480nm and emission wavelength of 538nm in a 

microplate reader (Synergy HT, Biotek, USA). Standards were prepared at a concentration 

ranging between 0 and 2mg/mL. Triplicates were made for each sample and per condition. 

 

VI.2.7. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) 

VI.2.7.1. RNA extraction and cDNA production 

mRNA was extracted using TRI Reagent® (Sigma, Germany), following the manufacturer 

instructions. Proteins were extracted using chloroform and the RNA pellets were washed 

with isopropyl alcohol and 70% ethanol. The total mRNA was reconstituted in RNAse-free 

water (Gibco, USA). MRNA quantity and purity were assessed with a NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies, USA). First-stranded complementary DNA 
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(cDNA) synthesis was performed using qScript™ cDNA synthesis Kit (Quanta BIosciences, 

USA) on a Mastercycler ep realplex thermal cycler (Eppendorf, USA). An initial amount of 

1µg of mRNA was used in a total volume of 20µL.  

 

VI.2.7.2. Quantitative real time RT-PCR 

The quantification of the transcripts of the genes of interest was carried out by RT-PCR 

using 50ng of cDNA and PerfeCTA™ SYBR® Green FastMix kit (Quanta Biosciences, USA) 

following the procedure suggested by the manufacturer. The primers were previously 

designed using the Primer 3 online software (v0.4.0, Whitehead Institute, USA) and 

synthesized by MGW Biotech (Germany). For each sample, the transcripts expression data 

were normalized to glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as housekeeping 

gene. The primers sequences and annealing and annealing temperatures for bone-specific 

genes, Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and osteopontin 

(OPN), and for GAPDH are described in Table VI.1. A concentration of 100nM of primer was 

used in a final volume of 20µl of sample. Reactions were performed in a real-time 

Mastercycler ep realplex thermal cycler (Eppendorf, USA). The relative quantification of the 

targeted genes was performed using the 2-∆∆CT method23. The transcripts expression data 

were first normalized against endogeneous GAPDH values and then against the values of 

hASCs cultured in basal or osteo medium, respectively for basal and osteo conditions. 

 

VI.2.8. Alkaline phosphatase activity quantification and staining  

The alkaline phosphatase (ALP) activity was measured on the cell lysates obtained for 

dsDNA quantification, using an adapted end-point colorimetric procedure based on the p-

nitrophenol (pNP) assay. Briefly, 20µL of lysate were incubated with 80µL p-nitrophenol 

phosphate solution (pNPP, 0.2% wt/v in 1M diethanolamine, Fluka BioChemika, Austria). A 

calibration curve was prepared using the pNP standards (Sigma, Germany) with values 

ranging from 0 to 0.5µmol/mL. The OD of the samples and standards was read at 405nm, 

using a microplate reader (Synergy HT, Biotek, USA). Triplicates of each sample and 

Table VI.1. Primer pair sequences for the studies genes 

Gene 
Sequences 

NCBI reference 
Forward (5’!3’) Reverse (3’!5’) 

GAPDH ACAGTCAGCCGCATC GACAAGCTTCCCGTTCTCAG NM_002046.4 

RUNX2 TTCCAGACCAGCAGCACTC CAGCGTCAACACCATCATTC NM_001145920.1 

OPN GGGGACAACTGGAGTGAAAA CCC ACAGACCCTTCCAAGTA NM_001040058 

OCN CTGGAGAGGAGCAGAACTGG GGCAGCGAGGTAGTGAAGAG NM_099173 
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standard were made, and the ALP activity was read off from the standard curve. Results 

were normalized against dsDNA results obtained for the same samples. The qualitative 

detection of ALP was performed by staining the fixed samples with nitro-blue 

tetrazolium/indolylphosphate (NBT/BCIP, Thermo Scientific, USA). Samples were visualized 

and images were acquired as described above. 

 

VI.2.9. Collageneous and non-collageneous protein staining and quantification 

The presence and distribution of collagen and non-collagenous proteins within the 

extracellular matrix (ECM) were determined by differential staining with two dyes, Sirius Red 

and Fast Green. Sirius Red binds specifically to collagen, whereas Fast Green stains the 

non-collagen proteins. As so, the effect of sNPs over the ECM deposition was assessed 

using the micro-assay kit (Chondrex, USA). Briefly, a mixture of 0.1% Sirius Red and 0.1% 

Fast Green solution saturated with picric acid was added to the fixed samples. After 30min, 

the dye was removed and samples rinsed with distilled water. Stained samples were 

visualized and images were acquired as described above.   

For the quantification the dyes were extracted from the stained samples using 0.05M NaOH 

solution in methanol and the OD measured at 540nm (Sirius Red) and 605nm (Fast Green). 

The amount of collagenous and non-collageneous proteins was calculated according to the 

manufacturers indications and normalized against the dsDNA of the corresponding samples.  

 

VI.2.10. Immunocytochemistry for collagen I and II  

Samples were washed and fixed with 10% formalin for 20min, washed again with PBS and 

blocked with a 1.5% BSA/PBS solution. Cells were incubated for 1h at room temperature 

with the primary antibodies, mouse anti-human collagen I (abcam, ab90395, UK) and mouse 

anti-human collagen II (abcam, ab34712, UK). All antibody dilutions were performed in 1.5% 

BSA/PBS. Upon this incubation, cells were washed three times with PBS and incubated with 

the appropriate secondary antibody, either goat anti-mouse Alexa Fluor 488 (Invitrogen, 

USA), or donkey anti-mouse Alexa Fluor 594 (Invitrogen, USA) diluted 1:500 in 1.5% 

BSA/PBS. Cell nuclei were counterstained with DAPI, at a 1:10,000 dilution in PBS. 

Negative control samples were prepared by replacing the primary antibody incubation with 

PBS. Samples were visualized and images were acquired as described above. 

 

VI.2.11. Alizarin Red staining and quantification 

Staining with Alizarin Red was performed in order to assess calcium deposition. The cells 

were fixed with 10% formalin, for 20min, and washed prior staining with PBS and, again with 

distilled water to remove any contaminating salts. A 2% (wt/v) Alizarin Red solution (Sigma, 
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Germany) was added and 10min after, the cells were washed with distilled water and 

imaged as previously described. Subsequently, in order to obtain quantitative data, the 

extraction of the dye from the stained cell monolayer was performed by the addition of a 

10% (v/v) acetic acid (vWR, Portugal). The dissolved samples were transferred to 

microcentrifuge tubes, centrifuged and neutralized with 10% (v/v) ammonium hydroxide 

(Sigma, Germany). Finally, 100µL of each sample was transferred in 96-well plate and the 

absorbance was read at 405 nm. A calibration curve was obtained from different 

concentrations of Alizarin Red in distilled water at pH=4.2, adjusted with 10% (v/v) 

ammonium hydroxide.  

 

VI.2.12. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 5.00 software (San Diego, USA). 

Each experiment was carried out three times independently and performed with at least 

three replicates. First, a Shapiro-Wilk test was used to ascertain the data normality. The 

results indicated that non-parametric test should be employed for all comparisons. Statistical 

significances were determined using one-way analysis of variance (ANOVA), followed by 

post hoc Tukey test for all pair-wise mean comparisons, with the limit for statistical 

significance being defined as p<0.05. 

 

VI.3.RESULTS  

VI.3.1. SNPs characterization 

Silicate nanoplateletes (sNPs) are synthetic disc-shaped crystals, characterized by a high 

aspect ratio (25-30nm in diameter and 1nm in width) and with an empirical formula given by 

Na+
0.7[(Si8Mg5.4Li0.3)O20(OH)4]-0.7 (Figure VI.2A). The unit cell of the crystal is comprised of 

layers of [SiO4] tetrahedral sheets of Mg2+, which complement their octahedral coordination 

by bridging with OH- groups. The partial substitution of Mg2+ in the octahedral sheets by Li+, 

charges the faces of the sNPs negatively, so that Na+ ions are accommodated between the 

faces of the platelets for charge compensation, leading to a defined spatial distribution of 

charge on the sNPs24. When sNPs are dispersed in distilled water, the Na+ ions are released 

into the solution leading to the formation of a double layer that causes the particles to 

electrostatically repeal each other, hence stabilizing them in overall negative charge of 10-

15mV. However, with the increase of concentration (>100µg/mL), a significant increase in 

the overall size of the sNPs, accompanied by a slight decrease of the overall charge, was 

observed (Figure VI.2B-C). 
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Figure VI.2. Physical properties of the sNPs. (A) The sNPs, with the Na+

0.7[(Si8Mg5.4Li0.3)O20(OH)4]-0.7 

empirical formula, are characterized by a high aspect ratio (25:1 to 30:1) and charge distribution 

(negatively charged facets and positively charged sides).  Due to surface charge, upon dispersion in 

distilled water, sNPs electrostatically repel each other, avoiding aggregation. (B-C) Box plots 

depicting the sNPs hydrodynamic diameter and zeta potential. In dilute suspension, the sNPs are well 

dispersed and negatively charged. However, at increased concentrations, strong van der Waals 

forces make the sNPs to adhere to each other, such as in the mechanism of flocculation or 

aggregation (*p<0.05, **p<0.01, ***p<0.001).  

 

VI.3.2. Cells and sNPs interactions and potential internalization mechanism 

The potential cytotoxic effects of the sNPs were assessed after exposing the SSEA-

4+hASCs to different concentrations of sNPs over a period of 7 days. MTS test was 

performed to assess the metabolic activity of cells in the presence of sNPs. The addition of 

up to 100µg/mL sNPs to the cells did not cause changes in their metabolic activity, however 

at concentrations ranging from 250 to 10,000µg/mL) an abrupt decrease in the metabolic 

activity of cells was observed (Figure VI.3A). Moreover, SSEA-4+hASCs cultured in the 

presence of sNPs at concentrations lower than 100µg/mL displayed a homogeneous 

fibroblast-like morphology characteristic of mesenchymal cells (Figure VI.3B and 

Supplemental Figure VI.1). However, at high concentrations (>100µg/mL), small sNPs 

clusters were observed on the surface of the cells. At those concentrations, cells were 

covered with a gel-like aggregate that lead to an apparent shrinkage of the cells 

cytoskeleton (Supplemental Figure VI.1). Previous report also indicates that sNPs 
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concentration of <100µg/mL does not result in significant production of reactive oxygen 

species (ROS) and reactive nitrogen species (RNS), indicating the cytocompatible nature of 

sNPs13. Thus, for further experiments, it was decided not to consider sNPs concentrations 

higher than 100µg/mL, as these lead to a reduction of cells metabolic activity greater than 

20% and significant cellular morphological alterations.  

 
Figure VI.3. Dependence of cellular behavior with sNPs concentration. (A) Metabolic activity of cells 

in the presence of different concentrations of sNPs. Results are presented as percentage of metabolic 

activity of SSEA-4+hASCs in the presence of sNPs in relation to the metabolic activity of SSEA-

4+hASCs cultured without sNPs (control) at the considered time point (average±SD, n=3). The 

metabolic activity threshold for choosing the appropriate sNPs concentrations was set to 80% in 

relation to the control. The half maximal inhibitory activity (IC50) was found at a concentration of 

1mg/mL. (B) Cytoskeleton (F-actin fibers) organization (red) upon addition of sNPs. The addition of 

sNPs (<100µg/mL) does not alter the morphology of the cells. Small sNPs aggregates can be 

observed on the surface of the cells, for higher concentrations of the sNPs.  

 

Labeled sNPs were internalized and widely distributed in the cell cytoplasm, around the cells 

nuclei (Figure VI.4A), but also attached to the cell membranes (Supplemental Figure VI.1). 

In order to elucidate the internalization mechanism and deplete internalization from external 

contact of the cells with the sNPs, cells were cultured in the presence of rhodamine-labeled 
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sNPs and colchicine, an endocytotic restrictive drug, for a period of 24 hours. When cells 

were cultured in the absence of colchicine (green peak), a strong shift was observed, which 

is associated with cell-sNPs interaction derived from fluorescent sNPs externally attached to 

the cells, as well as internalized (Figure VI.4B). At high concentration of sNPs (100-

250µg/mL), more than 80% of cells interacted with the sNPs. However, in the presence of 

colchicine, there was a noticeable decrease (white peak). At high concentrations, only 30% 

of the cells were positive (interacting with the sNPs). Considering the difference between the 

results with and without colchicine as the internalization efficiency, with the premise that the 

internalization of the sNPs is solely endocytotic, the internalization efficiency ranges from 5% 

for 1µg/mL and can reach 40% for 100µg/mL of sNPs (Figure VI.4C).  

 
Figure VI.4. Internalization of sNPs by SSEA-4+hASCs. (A) Fluorescence microscopy images of cells 

cultured in the presence of rhodamine-labeled sNPs (red) for 24 h. Rhodamine-labeled sNPs were 

found distributed in the cell cytoplasm, around the cells nuclei (blue).  (B) Flow cytometry data of cells 

interacting with the in the presence (white) or absence (green) of colchicine. Cells without sNPs were 

used as negative control (purple). (C) Quantification of the internalization (yellow) by subtracting the 

sNPs-cell interaction in the presence of colchicine (white) from the total sNPs-cell interaction (without 

colchicine, green). The internalization efficiency ranges from 5% for 1µg/mL and can reach 40% for 

100µg/mL of sNPs. Abbreviation: w/ = with, w/o =  without. 
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VI.3.3. SNPs effect on the SSEA-4+hASCs osteogenic differentiation 

Prior differentiation SSEA-4+hASCs were characterized as previously described22 for the 

expression of surface markers such as CD105, CD90, CD73, CD45 and CD34. The cells 

showed mesenchymal-like phenotype, displaying the characteristic multiple-parametric 

pattern25: CD90+/CD105+/CD73+/CD45-/CD34- (Supplemental Figure VI.2). 

 

VI.3.3.1. The effect the expression of RUNX2, OPN and OCN transcripts in SSEA-4+hASCs 

cultures 

The acquisition of an osteogenic phenotype by SSEA-4+hASCs when the culturing with 

sNPs was evaluated by following the expression levels of RUNX2, OCN and OPN genes. In 

basal medium, no fold changes were observed concerning any of the studied genes for 

SSEA-4+hASCs, when compared to hASCs cultured in the same medium. However, with the 

addition of sNPs, a 2-fold increase for RUNX2 and OPN, and of 8- for OCN was noticed 

(***p<0.001, Figure VI.5A). For instance, a significant up-regulation of RUNX2 occurred at 

day 7 for the higher sNPs concentration. This effect was successively delayed to days 14 

and 21, when cells were cultured with 10 and 1µg/mL sNPs, respectively. Concomitantly, the 

OPN expression is significantly increased at day 14 for the 10 and 100µg/mL sNPs, followed 

by an immediate decrease to basal levels, while a significant up-regulation of OCN occurred 

at day 21 for all sNPs concentrations.  

In osteogenic medium, there was a clear difference in the osteogenic performance between 

hASCs (control) and SSEA-4+hASCs. A significant up-regulation of RUNX2, OPN and OCN 

gene transcripts was observed for SSEA-4+hASCs (**p<0.01). After reaching a maximum 

(day 7 for RUNX2, day 14 for OPN, day 21 for OCN), a down-regulation reaching baseline 

levels of hASCs control cultures was observed (Figure 5B). The addition of sNPs further 

increased the up-regulation of the genes of interest in such a manner that the 100µg/mL 

sNPs induced a 70-fold increase (*p<0.05) in the expression of RUNX2 at day 7, a 9-fold 

increase (*p<0.05) for OPN at day 14 and 45-fold increase (*p<0.05) for OCN at day 21 in 

relation to both the hASCs control cultures and SSEA-4+hASCs in the absence of the sNPs.  
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Figure VI.5. RT-PCR results for early (RUNX2), intermediate (OPN) and late (OCN) osteo-related 

markers in SSEA-4+hASCs cultures, in relation to hASCs cultures established in correspondent basal 

and osteogenic media. In basal medium (A) the expression of these transcripts is up-regulated in the 

presence of sNPs, in a dose-dependent manner, that also varies with the gene of interest. (B) Under 

osteogenic differentiation conditions, a significant increase in the expression of these markers was 

observed both in the absence and the presence of sNPs. A dependence with the sNPs concentration 

was observed for all the genes. ∇ depicts statistical difference (*p<0.05), when compared with hASCs 

group, ∅ corresponds to statistical differences when compared with SSEA-4+hASCs without sNPs, 

while ω shows the statistical differences when compared with SSEA-4+hASCs in the presence of 

1µg/mL sNPs.  

VI.3.3.2. The effect of sNPs over ALP activity  

The osteogenic differentiation of the SSEA-4+hASCs under the different culture conditions 

was confirmed, by qualitative and quantitative assessment of the levels of ALP activity, an 

early marker of differentiation, along the time of culture. ALP activity was confirmed in all 

groups, hASCs and SSEA-4+hASCs, with and without sNPs, cultured in osteo medium. A 

clear increase of the ALP activity was evident up to 14 days of culture and for increased 

sNPs concentrations as demonstrated by the dark purple color (Figure VI.6A). The 

quantitative analysis of ALP activity, normalized to the total dsDNA, confirmed the trend of 

these observations, with a 10-fold increase at day 14 (Figure VI.6C). A slight increase of 

ALP activity occurred during initial time points, up to day 10, followed by a burst at day 14 
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(*p<0.05) and a successive rapid decrease at day 21. Additionally, the significantly higher 

ALP activity in SSEA-4+hASCs (*p<0.05) when compared to hASCs cultured in the same 

conditions, and thus their enhanced predisposition to differentiate towards the osteogenic 

lineage, is noteworthy. 

Concerning the cultures in basal medium, the constitutive ALP activity did not noticeably 

vary along the time of culture in both SSEA-4+hASCs and hASCs. However, in the presence 

of sNPs the ALP activity in the SSEA-4+hASCs cultures increased as demonstrated by more 

intense staining at day 14, for the 10 and 100µg/mL sNPs formulations (Figure VI.6A). The 

quantitative analysis confirmed the observed trend. At day 14, a significant increase in ALP 

activity (*p<0.05) was observed for SSEA-4+hASCs cultured with increasing concentrations 

of sNPs (Figure VI.6B).  

 
Figure VI.6. Qualitative and quantitative analysis of alkaline phosphatase (ALP) activity during 21 

days of culture. (A) NBT/BCIP staining (dark purple) highlights an intense coloration with the addition 

of sNPs, suggesting that the sNPs enhance ALP activity. (B-C) The presence of sNPs lead to 

significantly enhanced ALP activity at day 14 of culture in SSEA-4+hASCs in basal and osteogenic 

media, when compared to hASCs cultured in the same conditions (*p<0.05, **p<0.01, ***p<0.001).  
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VI.3.3.3. The effect of sNPs over the deposition of collagenous proteins and matrix 

mineralization 

The deposition and distribution of the proteins that form the extracellular matrix was 

evaluated by Sirius Red/ Fast Green staining, aiming at discriminating the collagenous from 

the non-collagenous proteins. When cells (hASCs and SSEA-4+hASCs) were cultured in 

basal medium for 21 days, an uniformly distributed cyan coloration, corresponding to non-

collagenous proteins, was observed. However, in the presence of sNPs, small purple 

regions, corresponding to collagen deposition, were observed. In osteogenic medium 

cultures, both in the presence and absence of sNPs, the cyan/purple ratio switched, so that 

large fibrillar-like collagenous regions overtook the regions that correspond to non-

collagenous proteins. (Figure VI.7A) The qualitative results were confirmed by the 

quantification of the total amount of collagen deposited in the different conditions. While no 

significant differences were observed in the amount of collagen deposited by hASCs and 

SSEA-4+hASCs cultured in basal medium, the addition of sNPs led to significantly higher 

(*p<0.05) collagenous proteins deposition (Figure VI.7B). Successively higher amounts 

were detected with increasing sNPs concentration reaching a nearly 8-fold in the presence 

of 100µg/mL of sNPs. The SSEA-4+hASCs cultured in osteogenic medium revealed a similar 

behavior, with cells being able to deposit a significantly higher amount of collagenous 

proteins (*p<0.05). The addition of 100µg/mL sNPs to hASCs and SSEA-4+hASCs resulted 

in a 3.4-fold and 2.1-fold increase, respectively when compared to cells cultured without 

sNPs (Figure VI.7C). The quantification of non-collagenous proteins revealed constant 

levels of proteins both in basal and osteogenic media, except for the 100µg/mL sNPs 

formulation in osteogenic medium which showed significantly higher values than the hASCs 

and SSEA-4+hASCs cultured without sNPs (Supplemental Figure VI.3A-B). 
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Figure VI.7. Detection of proteins produced by hASCs and SSEA-4+hASCs when cultured in basal 

and osteogenic media for 21 days. (A) Fast Green and Sirius Red staining depicts the distribution of 

collagenous (purple) and non-collagenous (cyan) proteins within the matrix. (B-C) Quantification of 

collagenous proteins normalized against the amount of dsDNA. The osteogenic differentiation of 

SSEA-4+hASCs is characterized by a significantly enhanced collagen production in comparison to the 

hASCs. The addition of sNPs lead also to an increased production of collagenous proteins in both 

basal and osteogenic conditions (*p<0.05, **p<0.01, ***p<0.001).   

 

In order to determine the type of collagen composing the deposited collagenous matrix, the 

presence of collagen type I was evaluated at days 14, 21 and 28 by immunocytochemistry 
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(Figure VI.8). In basal media, only residual collagen type I was detected for both hASCs and 

SSEA-4+hASCs,. However, when sNPs were added to the SSEA-4+hASCs, increased 

evidence of collagen type I was noticed. By day 28, only small collagen type I depots were 

identified in all conditions, including sNPs in basal medium. On the other hand, in osteogenic 

medium, collagen type I was dominantly present in all conditions. Moreover, an increased 

and uniformly distributed deposition seemed to be detected for the SSEA-4+hASCs with the 

addition of sNPs. A similar trend was observed for collagen type II (Supplemental Figure 

VI.3C). When the ratio between collagen type I and type II was analyzed, the highest 

percentage of collagen type I was found for the SSEA-4+hASCs with 100µg/mL of sNPs in 

osteogenic medium. Interestingly the highest percentage of collagen type II was found for 

SSEA-4+hASCs treated with 100µg/mL of sNPs in basal medium (Supplemental Figure 

VI.3D). 

 
Figure VI.8. Representative immunofluorescence images of the detection of collagen type I (green) 

over time and for the different experimental conditions. The addition of sNPs triggers the deposition of 

collagen type I in both basal and osteogenic media. Cell nuclei were counterstained with DAPI (blue). 
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Alizarin Red staining confirmed that in basal medium, matrix mineralization depots were only 

detected in the presence of sNPs (Figure VI.9A). Moreover these significantly increased 

with increasing sNPs concentrations and longer timepoints (Figure VI.9B). At day 28, the 

amount of inorganic calcium in the SSEA-4+hASCs culture with sNPs was significantly 

higher (*p<0.05) than in the hASCs or SSEA-4+hASCs cultures without sNPs. In osteogenic 

medium, significant mineral deposition was observed in the hASCs cultures as evidenced by 

the intensity of the staining. Nonetheless, SSEA-4+hASCs cultures showed enhanced 

mineralization levels, with a more intense overall staining and higher number of mineralized 

regions in the presence of the sNPs (Figure VI.9A).  The extent of mineralization in 

osteogenic medium by day 28, 10-fold higher level than in basal medium, confirmed by 

significant differences (*p<0.05) between SSEA-4+hASCs and hASCs cultures, both in the 

presence and absence of sNPs (Figure VI.9C).  
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Figure VI.9. Alizarin Red staining and respective quantification of the gradual mineralization of the 

deposited matrix along the culture. (A) Alizarin Red staining showed an intense coloration for 

increased sNPs concentrations. (B-C) Quantification of Alizarin Red staining confirmed a significant 

higher matrix mineralization in the SSEA-4+hASCs cultures in the presence of sNPs, both in basal 

and osteogenic media (*p<0.05, **p<0.01, ***p<0.001).  
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VI.4. DISCUSSION 

One of the goals of bone TE is to design adequate supportive matrices for skeletal stem 

cells or progenitor cells to sustain the repair and regenerate damaged tissue. Focus has 

been given to AT as an alternative cell source to bone marrow MSCs26. At present, isolating 

homogenous stem cell subpopulations from the SVF of human AT that are more prone to 

differentiate into a certain lineage (osteogenic, chondrogenic, endothelial, etc) is being 

exploited as an approach to use this cell source more efficiently. So far CD49d+hASCs19, 

CD90+hASCs21 or CD105-hASCs20 were shown to possess an enhanced osteogenic 

differentiation potential when compared to unsorted cells (hASCs). However, as bone 

healing and regeneration relies on heterogeneous cellular interactions (eg. endothelial- and 

osteoblast-like cells), the use of a cell source/subpopulation with potential to differentiate 

towards these lineages relevant for bone tissue engineering might be advantageous. Our 

previous work22 showed that besides being able to differentiate towards osteogenic lineage, 

the SSEA-4+hASCs subpopulation residing within the SVF of the AT could differentiate into 

microvascular-like endothelial cells. This dual-differentiation potential features the possibility 

to obtain the relevant type of cells using a single-source and a single step-isolation 

procedure to engineer vascularized bone tissue.  

Recently, the potential of sNPs (Laponite, Na+
0.7[(Si8Mg5.4Li0.3)O20(OH)4]-0.7) to induce the 

osteogenic differentiation of bone marrow stromal cells in the absence of any external 

osteoinductive factors was demonstrated13. Thus, we herein propose the use of sNPs as 

instruments to promote and improve the osteogenic differentiation of SSEA-4+hASCs.  

Intrinsic and extrinsic properties of nanoparticles such as surface area, charge and 

functionalities, as well as size and shape, might impact cytotoxicity. Cytotoxicity tests were 

carried out considering the threshold of 20% reduction of SSEA-4+hASCs metabolic activity. 

Our data is in agreement with previously published studies13: nanoparticles with negative 

zeta potential were shown to be significantly less internalized by cells than nanoparticles 

with positive zeta potential27. The cationic surface of sNPs is responsible for their 

interactions with the anionic glycoproteins and phospholipids of the cell membrane, which 

possibly facilitates their internalization28. This suggests that the cellular uptake occurs when 

sNPs are oriented with their positive side towards the cell membrane, ensuring a low area29  

and their engulfment and the disguise of the negative facet. However, the use of positively 

charged systems remains problematic in vivo as their interaction with negatively charged 

serum proteins and red blood cells may form large clusters and interfere with normal 

metabolic processes30. In fact, our in vitro data reproduced this observation, as for sNPs 

concentrations higher than 100µg/mL, the formation of clusters that could hinder the 

internalization mechanism was observed. As a consequence, these clusters attached to the 



Chapter VI. Silicate Nanoplatelets Enhance the Osteogenic  

Differentiation of SSEA-4 Positive Selection of Human Adipose Derived Stem Cells 

 

 209 

cell membrane, impairing cell cytoskeletal organization and metabolism. At the same time, it 

is known that the optimal nanoparticle diameter for cellular uptake is in the order of 25–

30nm31, which is in good agreement with the radius reported for the sNPs13,32 at 

concentrations below 100µg/mL. In addition to being uptaken by cells, as suggested by the 

rhodamine-labeled sNPs homogeneously localized around the cellular nuclei, sNPs were 

also found attached to the cellular membrane, without affecting the cells fibroblastic-like 

morphology. Therefore, the cells-sNPs interaction comprise the sum of the external contact 

at the membrane level, and of the internal effect, due to the engulfed sNPs. In order to 

isolate these two types of interactions, complementary experiments were carried out by 

inhibiting the endocytotic internalization mechanism using colchicine, an endocytotic 

restrictive drug. Colchicine is known to bind tightly to microtubules causing microtubule 

depolymerization, further affecting the endocytosis mechanism28. Based on the narrow sNPs 

range size, our hypothesis was that the cellular uptake predominately occurred via clathrin-

mediated endocytosis pathway, as already reported elsewhere31,33 (Supplemental Figure 

VI.4). Our data suggests that the interactions that occur at the membrane level are equally 

important as the ones that occur internally. Particularly, it was possible to estimate that for 

the 100µg/mL sNPs, both the cytoplasmic effect and external interactions have an equal 

contribution (approx. 35% each).  

Independent of being entrapped within the endosome, attached to the cell membrane, or in 

suspension in the culture medium, particularly at low pH32,34, sNPs are subjected to constant 

acidic and/or enzymatic degradation, dissociating into silicic acid (Si(OH)4), Na+, Mg2+ and 

Li+. All of these were shown to improve the osteogenic differentiation by different 

mechanisms35-37. In vitro osteogenic differentiation is characterized by several temporal 

milestones that demonstrate the commitment of the cells towards the osteoblastic 

phenotype. At early stages of differentiation, the activation of the RUNX2 transcription factor 

occurs to facilitate the convergence of numerous osteogenic signaling pathways38,39. Our 

data features an intense up-regulation of RUNX2 for the SSEA-4+hASCs cultured in 

osteogenic medium, in comparison to hASCs. Moreover, in the presence of sNPs a 

significantly higher up-regulation, proportional to the sNPs concentration, was observed 

which indicates that the osteogenic differentiation was triggered due to a signal provided by 

the sNPs. Interestingly, RUNX2 expression up-regulation was also noted in basal medium at 

different timepoints for the different concentrations of sNPs. Earlier up-regulation was 

detected for higher sNPs concentration, which is in accordance to our previously published 

data that showed the osteogenic differentiation of bone marrow stromal cells in the absence 

of any external osteoinductive factors13. 

Considered to be the central control gene within the acquisition of osteoblast phenotype, 
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RUNX2 directly stimulates ALP activity40 and the up-regulation of osteogenic-related genes 

such as OPN or OCN39,41 , and genes responsible for encoding collagenous-like matrix, 

mainly constituted of type I collagen42, which is a prerequisite for mineralization43,44. The 

follow-up of the temporal cascade of events after confirming RUNX2 up-regulation, showed 

that the nature of the deposited matrix was dependent on the cell type and/or culture media 

and/or addition of sNPs. A maximum of ALP activity was detected, independent of the 

culture media, although at different levels, at day 14, as expected as an indication of the 

osteogenic phenotype acquisition40,45. As for RUNX2 expression, sNPs alone lead to 

increased ALP activity; however, a plateau was reached when 10µg/mL sNPs were used. In 

opposition to RUNX2, the dependence of the OPN and OCN expression with the sNPs 

concentration did not affect its temporal profile. As expected during osteogenic 

differentiation46, the maximum up-regulation of OPN transcripts was observed at day 14 

while for OCN a peak was detected between days 14 and 21.  

Among the dissociation products of sNPs, soluble silicate ions have been found to stimulate 

the expression of collagen type I in osteoblast-like cell cultures3, while magnesium36 and 

lithium37,47 were shown to facilitate mineralization44,48. Thus, upon triggering the cells 

differentiation towards the osteogenic lineage, it was expected that the sNPs would also 

affect the nature of the deposited extracellular matrix (ECM). The deposition of collagenous-

proteins, in detriment of non-collagenous proteins, gradually took over when SSEA-4+hASCs 

were cultured together with sNPs, in basal medium, although the levels observed in 

osteogenic medium were not reached.  As a general remark, collagen stained by Sirius Red 

displayed a fibrillar pattern, whereas non-collagen proteins stained with Fast Green showed 

a more diffused pattern. In fact, the deposited matrix under osteogenic conditions was 

mainly composed of collagen type I, known to be produced by developing osteoblast-like 

cells and an early indicator of the osteogenic differentiation44, a prevalence of collagen II 

was detected when cells were cultured in basal medium.  

Different works have shown that the enzymatic activity of ALP has a direct role in initiating 

the calcification process40,49,50. Taken together, the ALP enriched cuboid-shaped clusters, 

the pattern of collagen deposition and the Alizarin Red staining, confirmed the conclusion of 

the differentiation process. This was achieved with greater efficiency for the SSEA-4+hASCs 

cultures in the presence of sNPs under osteogenic conditions, as demonstrated by more 

than 90% of the culture area depicting the formation of new mineralized nodules. 

Nonetheless, the SSEA-4+hASCs cultures in basal medium with presence of sNPs also 

generated calcium depots, indicating successful differentiation of SSEA-4+hASCs into 

osteoblast-like cells, although at lower rates than in osteogenic conditions. Therefore, by 

applying a single dose of sNPs to cells with high osteogenic differentiation potential 
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promotes up-regulation of bone-related markers, which lead to production of enhanced 

mineralized matrix. 

 

VI.5. CONCLUSIONS 

By means of immunomagnetic selection targeting the SSEA-4 surface marker, it is possible 

to select a subpopulation with high differentiation potential (SSEA-4+hASCs). Our data 

suggest that the SSEA-4+hASCs bear higher osteogenic differentiation potential than 

hASCs, which can be further enhanced by the addition of sNPs in a dose dependent 

manner.  Thus, envisioning bone tissue regeneration, the association of SSEA-4+hASCs 

with sNPs harbors great potential in a TE approach towards the development of highly 

mineralized templates using an independent differentiation process.  Even more, this unique 

combination can be further exploited in association with endothelial derived SSEA-4+hASCs 

and 3D-templates to design improved bone analogs. 
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SUPPLEMENTAL INFORMATION 
 

 

Supplemental Figure VI.1. Optical micrographs depicting the modification of cell morphology with the 

addition of sNPs. For concentrations <100µg/mL, cells maintain their fibroblast-like morphology. 

However, at concentrations >100µg/mL, cells begin to shrink and ultimately are covered by a dense 

sNPs “cloud”.  

 
Supplemental Figure VI.2. SSEA-4+hASCs characterization prior differentiation by flow cytometry. 

The cells were shown to possess a mesenchymal-like phenotype, exhibiting the characteristic panel 

of markers: CD90+/CD105+/CD73+/CD45-/CD34-. 
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Supplemental Figure VI.3. Matrix characterization. Quantification of non-collagenous proteins 

normalized against the amount of dsDNA in basal (A) and osteogenic (B) media after 21 days of 

culture. In basal medium, the levels on non-collagenous proteins are kept at a constant level for all 

the conditions, while in osteogenic medium, only the SSEA-4+hASCs with 100µg/mL sNPs exhibit a 

significant increase in the deposition of those proteins (*p<0.05). (C) Representative 

immunofluorescence images of the detection of collagen type II (red) over time for the different 

experimental conditions. Cell nuclei were counterstained with DAPI (blue).  The addition of sNPs 

triggers the deposition of collagen type II in both basal and osteogenic media. (D) Collagen type I and 

Collagen type II ratio based on quantification of the staining area of immunocytochemistry images. 
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Supplemental Figure VI.4. Potential internalization mechanism of sNPs by SSEA-4+hASCs. Based 

on the narrow sNPs range size, our hypothesis was that the cellular uptake predominately occured via 

clathrin-mediated endocytosis pathway. To confirm, an endocytotic restrictive drug (colchicine) was 

used to block the internalization of sNPs.  
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Chapter VII 
Fabrication of Endothelial Cell-Laden Carrageenan Microfibers for 

Microvascularized Bone Tissue Engineering Applications 
 

ABSTRACT  

Angiogenesis, a critical process in bone tissue formation, remodeling and healing, is 

regulated by a number of biochemical factors produced by different cellular players. Among 

these, endothelial and osteoblastic cells sustain a finely orchestrated signaling network that 

determines the formation and organization of the new vasculature. This work proposes a 

system based on micro-sized hydrogel fibers that might be used as building blocks for the 

establishment of 3D hydrogel constructs for bone tissue engineering. For this purpose, 

chitosan (CHT) coated kappa-carrageenan (κ-CA) microfibers were developed using a two-

step procedure involving ionotropic gelation (for the fiber formation) and polyelectrolyte 

complexation with CHT (for the enhancement of fiber stability). The performance of the 

obtained fibers was assessed regarding their swelling and stability profiles as well as their 

ability to carry and subsequently promote the outward release microvascular-like endothelial 

cells, without compromising their viability, phenotype and in vitro functionality. Finally the 

possibility of assembling and integrating these cell-laden fibers within a 3D hydrogel matrix 

containing osteoblast-like cells was evaluated.  

Overall, the obtained results demonstrated the suitability of the proposed fibers for delivering 

microvascular-like endothelial cells and/or support the possibility of assembling these cell-

laden micro-sized fibers into 3D hydrogels heterotypic constructs that may be used in bone 

tissue engineering approaches with improved vascularization. 
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VII.1. INTRODUCTION 

In the last decade, tissue engineering (TE) has emerged as a multidisciplinary field at the 

interface of medicine, biology and engineering, aiming to fabricate tissue-like biological 

constructs1. However, the lack of a vasculature that can sustain the nutrient and oxygen 

demands within the tissue-engineered construct is a major limiting factor in creating thick 

artificial tissues2. Thus, developing vessel-like networks, as integrated templates within TE 

constructs3, will be essential for creating real-size replicas of primary tissues or organs4,5.  

Hydrogels have been proven to be ideal cellular matrices, due to their hydrated state 

resembling native extracellular matrix (ECM)6 and their high permeability to oxygen, 

nutrients and metabolites diffusion7. Additionally, natural-origin derived hydrogels showed 

high potential in the TE field, due to their macromolecular components and properties, 

similar to tissues ECM8. Several hydrogels-based processing methods (such as 

prototyping/printing9, microfluidics10 and photolitography11) are available to encapsulate 

endothelial cells (ECs) and develop vessel-like architectures using fiber structures with 

microsize features (~50µm11 to 1mm9) as building units. However, they usually involve 

extent manipulation procedures, elaborated experimental settings and complex 

optimizations, thus limiting their applicability.  

Alternatively to, wet spinning of hydrogels is a very simple and straightforward method, 

requiring minimal laboratorial utensils and short processing times. The wet spinning of 

hydrogels fibers involves the extrusion of polymer solution into a physiological solution that 

triggers the crosslinking of the polymer into a fiber-like shape. By applying this principle, 

hydrogel fibers of natural-origin biopolymers, such as alginate12, collagen13, gellan gum14 

and CHT15, have been already developed.  

Amongst natural-origin polymers, the carrageenans (CA) family stands out as potential 

candidate for TE applications, due to their mild gelation properties and resemblance with 

glycosaminoglycans (GAGs), highly present within the ECM of natural biological systems. 

Carrageenans occur as matrix material in several species of marine red algae (class of 

Rhodophyceae) acting structurally. Due to these half-ester sulphate moieties present on 

their backbone, carrageenans are strongly anionic polymers. As a consequence, their 

gelation occurs in the presence of appropriate counterions (K+, Na+ or Ca2+), by ionic 

interactions. These hydrophilic polysaccharides are widely used as emulsifiers, gelling, 

thickening or stabilizing agents in food or pharmaceutical industry16. However, the 

noteworthy intrinsic thixotropic behavior of one type of carrageenans, kappa-carrageenan (κ-

CA) has justified its exploitation as injectable matrix for the delivery of living cells17,18,19 and 
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biomacromolecules20,21. Encouraging results have shown the potential of using κ-CA in the 

TE field17-22, despite the high swelling ratios and mechanically instability in physiological 

conditions that have been attributed to the ionically crosslinked κ-CA hydrogels23. To 

increase the stability of hydrogels, several approaches such as chemical modifications with 

photocrosslinkable moieties24, blending with other biopolymers19, 25, addition of 

nanocomposites to the polymer solution21, formation of interpenetrating networks26 or 

polyelectrolyte complexation with polycations, such as CHT27, have been exploited. 

Numerous studies have reported CHT polyelectrolyte complexation-based system with 

positive outcomes, both in the terms of stability, as well as cellular behavior28. Likewise, the 

electrostatic interactions between κ-CA and CHT lead to the development of nanoparticles29, 

beads30, layer-by-layer systems31.  

Herein, we report the production of CHT-coated κ-CA microfibers using a two-step-

procedure aiming at being used as building blocks within 3D hydrogel constructs for bone 

tissue engineering. Firstly, κ-CA fibers of various diameters within the micron range were 

obtained by a wet spinning technique. Secondly, κ-CA fibers were coated with CHT, by 

means of electrostatic interaction between the polymers, in order to reinforce the fibers and 

enhance their stability under a physiological microenvironment. The produced fibers were 

then loaded with microvascular-like ECs obtained from the SSEA-4+ sub-population of 

adipose tissue. Thus, we took advantage of our knowledge to obtain ECs in relevant cell 

numbers32 to developed cell-laden κ-CA-based hydrogel fibers to be used as vascularization 

promoters with tri-dimensional (3D) TE constructs. The phenotype and functionality of the 

ECs were evaluated prior and after entrapment within the fibers. Ultimately, envisioning the 

vascularization of bone-like constructs, we proposed an innovative 3D build-up of fibers 

loaded with ECs, entrapped within a hydrogel disc containing osteoblast-like cells.  

 

VII.2. MATERIALS AND METHODS 

VII.2.1. Materials 

κappa-carrageenan (κ-CA), potassium chloride (KCl) and beta-glycerophosphate disodium 

salt hydrate (βGP) were purchased from Sigma, Germany. Reagent grade medium 

molecular weight chitosan (CHT) (Sigma, Germany) with a 90% degree of acetylation was 

used. Prior use, CHT was purified using a precipitation method33. All other reagents were 

used as received.  

 

VII.2.2. Development of CHT coated κ-CA fibers  

VII.2.2.1. Production of κ-CA fibers through ionotropic gelation 

The κ-CA hydrogel fibers were obtained by a wet spinning technique, which consists of the 
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extrusion of the polymer solution through a needle immersed in a coagulation bath, as 

previously described elsewhere19. Briefly, a 1.5% (wt/v) κ-CA solution was prepared by 

dissolving the polymer into distilled water under temperature (up to 50°C) and constant 

stirring until complete dissolution was achieved. Subsequently, the κ-CA solution was loaded 

into 5 mL syringes headed and κ-CA fibers with different diameters were obtained by 

extruding the polymeric solution through needles of different gauges directly into the 

coagulation bath, a 5% (wt/v) KCl solution prepared in distilled water. The presence of K+ 

ions initiates the ionotropic gelation, by counterbalancing the negative charges of κ-CA. The 

fibers were allowed to harden in the coagulation bath for about 10 min, sufficient time for the 

fibers to retain their shape. Finally, the fibers were washed with phosphate buffered saline 

(PBS) in order to remove the excess of salt. Fibers obtained with needles of 25 and 27G 

with a diameter below 1mm, were selected for all the subsequent assays.  

VII.2.2.2. Optimization of the pH of the CHT working solution 

CHT, a natural-origin polycation, dissolves in acid solution, which limits its use in the 

presence of living cells. Based on previous studies34, βGP, a weak base, was shown to 

increase the pH of the CHT solution, without jeopardizing its solubility. In this context, a 

curve of variation of pH with the addition of βGP to the CHT solution was determined in 

order to establish the conditions that may enable the incorporation of cells, while allowing 

the formation of polyelectrolyte complexes. The CHT solution was prepared by dissolving 

the polymer into a 1% (v/v) acetic acid solution to a final concentration of 0.5% (wt/v). In 

order to determine the degree to which the addition of βGP affects the overall charge of the 

CHT solution, zeta potential measurements were performed using a Malvern Zeta Sizer 

Nano ZS (Malvern Instruments, UK). Each sample was diluted in water at a concentration of 

0.1% (wt/v) and analyzed at 25°C for 60 seconds.  

VII.2.2.3. Coating of κ-CA fibers through polyelectrolyte complexation with CHT 

The κ-CA fibers, previously obtained by ionotropic gelation, were immersed in the optimized 

CHT solution (0.5% (wt/v) and pH=5.5) for 20 min, followed by several washing steps with 

PBS in order to remove the excess of CHT. The presence of the CHT coating was evaluated 

by staining the fibers with Eosin Y (Sigma, Germany), an anionic dye. Fibers without coating 

were used as negative control.  

 

VII.2.3. Physico-chemical characterization of the developed fibers 

VII.2.3.1. Swelling kinetics 

The influence of the CHT coating on the swelling and stability of the developed κ-CA fibers 

was determined by evaluating the water absorption kinetics and fibers diameter variation 
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upon immersion of the coated and uncoated fibers in standard culture medium for up to 21 

days. Standard medium, Dulbecco’s Modified Eagle Medium (DMEM, Gibco, USA) 

supplemented with 10% (v/v) HiFBS (Gibco, USA) and 1% (v/v) antibiotic/antimycotic 

(penicillin/streptomycin, 100U/100 µg/mL, Gibco, UK) was used, envisioning fibers use for 

cell encapsulation/culturing. For the same reason, the experimental parameters were set at 

physiological temperature (37°C) and under humidified atmosphere with 5% of CO2. Medium 

was replenished every 3-4 days. Fibers were allowed to reach equilibrium in the culture 

medium and at days 7, 14 and 21, samples (n=3) were retrieved and blotted with KimWipe 

paper to remove the excess of liquid. The wet weight (MW) was determined by weighting the 

samples, and their final dry weight (MDF) was determined upon lyophilization. The swelling 

kinetics was defined as the ratio between the liquid uptake (MW-MDF) and the final dry mass 

of polymer (MDF), according to equation VII.1.  

 

Mass swelling ratio =  (MW - MDF) / MDF *100      (equation VII.1) 

The final diameter of the hydrogel fibers was also measured applying software-measuring 

tools (ImageJ software, http://rsbweb.nih.gov/ij/) to at least three micrographs of each 

sample. 

VII.2.3.2. Morphological and chemical characterization  

Concomitant with the swelling behavior analysis at the pre-selected time points, samples 

were retrieved for surface morphological evaluation by scanning electron microscopy (SEM) 

and elemental analysis using energy-dispersive X-ray spectroscopy (EDX/EDS).  Briefly, 

fibers were snap frozen in liquid nitrogen, transferred to eppendorfs and freeze dried 

overnight. The dried samples were carefully mounted on samples holders using double-side 

carbon tape. Before being analyzed by SEM (Nano-SEM FEI Nova 200), the samples were 

gold sputter coated (Fisons Instruments, sputter coater SC502, UK). Elemental analysis was 

carried out with an energy dispersive spectrometer (EDAX-Pegasus X4M). All 

observations/image acquisitions and measurements were made at an acceleration voltage 

of 15 kV.  

VII.2.4. Isolation and endothelial differentiation of SSEA-4+hASCs  

Lipoaspirate samples from healthy donors were kindly provided by Hospital de Prelada 

(Porto, Portugal), under previously established protocols and with informed consent of the 

patients. The selection of SSEA-4 positive cells (SSEA-4+hASCs) residing within the stromal 

vascular fraction of the adipose tissue and differentiation towards the endothelial lineage 

were performed according to our previously published32. Briefly, the SSEA-4+hASCs were 
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selected using immunomagnetic beads (Dynal M-450 Epoxy beads from Dynal Biotech, 

Carlsbad, CA, USA) coated with SSEA-4 antibody (Abcam, Cambridge, UK). Then, the 

selected SSEA-4+hASCs cells were differentiated towards endothelial lineage by culturing 

them for 2 weeks in endothelial cell growth medium, EGM-2 MV bullet kit (Lonza, 

Switzerland), containing 5% FBS and supplemental growth factors: hydrocortisone, hFGF-B, 

ascorbic acid, gentamicin/amphotericin, VEGF, Long R3-IGF-1, hEGF and 0.5 mL, at 

concentrations established by the manufacturer.  

 

VII.2.5. SSEA-4+hASCs-derived ECs encapsulation within κ-CA fibers 

The κ-CA, CHT and KCl solutions for producing cell-loaded fibers were sterilized at 120°C 

for 30 mins. Endothelial differentiated SSEA-4+hASCs at passage 3, were trypsinized and 

centrifuged, and further suspended in EGM-2 MV at a final cell density of 2x106 cells per mL 

of polymeric suspension. Fibers containing cells and with and without CHT coating were 

produced as described above. The cell-loaded fibers were then transferred to 24-well plates 

and maintained in culture for 21 days, at 37°C in a humidified atmosphere with 5% of CO2. 

Cell culture medium was replenished every 3-4 days.  

In order to assess the maintenance of the phenotype of the SSEA-4+hASCs cells upon 21 

days of culture, fibers containing cells were transferred to sterile eppendorfs and digested 

with 0.1% proteinase K (vWR, Portugal) in 1mM EDTA (Sigma, Germany), 50 mM TrisHCl 

(Sigma, Germany) and 1mM iodoacetamide buffer (Sigma, Germany), for one hour at 37°C, 

under constant agitation. The cellular pellet recovered after centrifugation (10 min, 400xg) 

was resuspended in EGM-2 MV medium and plated into tissue culture flasks until reaching 

confluence and for further analysis. 

 

VII.2.6. Characterization of the constructs 

VII.2.6.1. Microscopic analysis 

Variations of the shape and diameter of the developed cell-loaded fibers, with or without 

CHT coating, as well as the potential migration of the cells from the fibers to the culture well, 

were examined using a stereomicroscope (Stemi 1000, Zeiss, Germany) along the time of 

culture. 

 

VII.2.6.2. Calcein-AM assay 

At selected time culturing points (1, 7, 14 and 21 days), cell-loaded fibers were washed with 

PBS and incubated with 4µM calcein-AM (Invitrogen, USA) for 40 minutes followed by 10 

min incubation with 1µM propidium iodide (Invitrogen, USA). Samples were then washed 

and fixed for 40 mins in 10% formalin. After fixation, samples were washed with PBS and 
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cell nuclei were counterstained with DAPI. Representative fluorescent micrographs were 

acquired using the Axioplan Imager Z1 fluorescence microscope (Zeiss, Germany) and the 

AxioVision 4.8 software (Zeiss, Germany). 

 

VII.2.6.3. Flow cytometry  

Endothelial differentiated SSEA-4+hASCs expanded to passage 4 and the ones recovered 

from the fibers and further expanded were retrieved from cell culture flasks using TrypLE 

Express (Invitrogen, USA). 5x105 cells were incubated for 30 min, at 4°C with the following 

markers: CD45-FITC, CD34-PE, CD73-PE, CD31-APC (all from BD Pharmingen, USA) and 

CD105-FITC and CD90-APC (eBiosciences, USA) at a concentration of 6µg/mL, as 

recommended by the manufacturer. After washing with PBS, the cells were resuspended in 

the acquisition buffer (PBS containing 1% formaldehyde and 0.1% sodium azide) and 

analyzed in a BD FACS-Calibur flow cytometer (BD Biosciences, USA). A minimum of 

20,000 events was acquired and gated in a forward versus side-scatter dot plot with a linear 

scale. Results were displayed in histogram plots created using the CellQuest software (BD 

Biosciences, USA). The number of positive events for each cell-specific marker was 

expressed as the percentage of the total cell number.  

VII.2.6.4. Matrigel assay  

Endothelial differentiated SSEA-4+hASCsat passage 2 were trypsinized and plated at a 

density of 3x104 cells/well in triplicate in 48-well plates coated with 64µL of Matrigel (BD 

Biosciences, USA). Cells were incubated for 4h at 37°C before fixation with 10% formalin. 

One hour prior fixation, calcein-AM (Invitrogen, USA) was added to the wells at a final 

concentration of 4µM. Upon fixation, cell nuclei were counterstained with 4,6-diamidino-2-

phenyindole dilactate (DAPI, Sigma, Germany), at a 1:10,000 dilution in PBS, for 10 min, 

and then washed three times with PBS. Three representative images were acquired under 

an Axioplan Imager Z1 fluorescence microscope (Zeiss, Germany) using the Axio Cam 

MRm camera (Zeiss, Germany) and the AxioVision 4.8 software (Zeiss, Germany). 

 

VII.2.7. Assembling of κ-CA fibers into 3D hydrogel discs 

Cell-laden fibers containing endothelial differentiated SSEA-4+hASCs labeled with a green 

fluorescent protein (GFP) tag were transferred to a petri dish and allowed to settle randomly. 

A freshly prepared solution of κ-CA containing osteogenic differentiated SSEA-4+hASCs 

obtained according to a method described elsewhere32, and labeled with a rhodamine tag, 

was poured onto of the fibers until full coverage. The crosslinking of the κ-CA solution 

forming stable 3D hydrogel discs was achieved with a 5% (wt/v) KCl solution. After 

crosslinking, the cells nuclei were stained with DAPI. The hydrogels discs containing the 
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fibers were then washed with PBS and observed under a confocal laser scanning 

microscopy (CLSM, Olympus, Fluoview 1000). YZ and XY projections were performed in 

order to evaluate the cellular distribution throughout the structures. 

 

VII.2.8. Statistical analysis 

Statistical analysis was performed using GraphPad Prism 5.00 software (San Diego, USA). 

Statistical differences (p<0.05) were determined using one-way ANOVA, followed by a 

Tukey post test.  

 

VII.3. RESULTS AND DISCUSSION 

3D cell-culture models have recently received great attention because they often promote 

tissue organization which does not occur in conventional 2D culture systems35. Since the 

architecture and chemical composition of hydrogels can be easily engineered, hydrogels 

have been utilized as tools and platforms to design selective capture and release of cells 

in/from 3D cell culture systems36. For instance, microfabrication methods have been 

engineered to replicate the spatial complexity of vasculature within tissue by creating vessel-

like hydrogel fibers with controlled spatial distribution of cells9-11. In the perspective of 

generating vascular templates within bone-mimicking matrices, co-culture systems that 

enclose both ECs and osteoblasts, in an organized manned37, have been proposed as ideal 

to recreate the major heterotypic cellular interactions within bone. However, these methods 

require sophisticated equipment and elaborated experimental setups that are not available in 

all research laboratories. 

Thus, we aimed to develop hydrogel microfibers that can accommodate ECs without 

jeopardizing their functionality, envisioning their use for microvascularization in bone TE. 

The method of choice was wet spinning as it implies simple experimental minimal 

laboratorial reagents and consumables.  

 

VII.3.1. Different diameter κ-CA fibers formation through ionotropic gelation 

Carrageenans are highly sulphated galactans and have the common feature of being linear 

polysaccharides with a repeating structure of alternating 3,6-anhydro-D-galactose and β-D-

galactose-4-sulphate38. In the particular case of κ-CA, gels can be formed by ionotropic 

gelation.  Due to the highly negative charged sulphate group present on its backbone, κ-CA 

is a strong anionic polymer. As a consequence, its gelation can occur in the presence of in 

the presence of cations (K+ ions), κ-CA chains undergo a conformational transition from 

random coil to coaxial double helices, and consequently, to an organization of the helices 

into a strong and rigid 3D gel-like network39,40. 
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Moreover, κ-CA has been exploited as injectable matrix, due to its intrinsic sheer thinning 

behavior, particularly thixotropic. This means that upon applied stress, the organization of 

the κ-CA chains is disrupted, but it will reset once the deformation is removed24. This 

property renders the use of κ-CA solutions as injectable matrixes, as they can be easily 

extruded through narrow needles without affecting the entrapped biomolecules or cells22,41. 

Taken together, the temperature-induced and ionotropic gelation enable the formation of 

gels into different shapes, including fibers, highlighting therefore the versatility of κ-CA 

processability8.  

In the present study, κ-CA hydrogel fibers were formed by extruding the κ-CA solution 

through needles of different gauges (Figure VII.1A), into a coagulation bath containing K+ 

salts, as described elsewhere19. Using a needle gauge range from 18 to 27G (0.838 - 0.210 

mm internal diameter), it was possible to obtain fibers with different diameters, directly 

proportional with the internal diameter of the needles. The fibers produced within these 

settings have a diameter ranging from 0.5 to 1.25 mm (Figure VII.1B), making them more 

appealing for further applications12,42,43 

Taking into consideration that the microvasculature relies on the interconnectivity of micro-

sized vessel, we decided to explore the potential to sustain ECs viability of κ-CA fibers with 

the smallest diameters, obtained by the extrusion of κ-CA solutions through the 25G and 

27G.  

 
Figure VII.1. κ-CA fibers formed by ionotropic gelation and stained with methylene blue for contrast 

purposes. (A) Needles with different gauges, from 18G to 27G, were used to form the hydrogel fibers. 

(B) Depending on the needle gauge used to extrude the κ-CA solution, the fibers display various 

diameters ranging from 1.25 cm down to 0.5 cm.  

 

VII.3.2. CHT coated κ-CA fibers through polyelectrolyte complexation depict improved 

stability  

Although encouraging results have shown the potential of using κ-CA in tissue engineering 

applications, the ionically crosslinked κ-CA hydrogels exhibit high swelling ratios, as a result 
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of uncontrollable and permanent exchange of K+ ions with other positive ions present in 

different physiological relevant settings23.! Furthermore, this behavior leads to loosening of 

the inner chain network strength and weakening of the structures mechanical stability24, 44. !
In order to reinforce the structure of κ-CA hydrogels, several methodologies have been 

employed19,24,26, including the formation of a polyelectrolyte complex (PEC). PECs are 

formed by the ionic interaction between oppositely charged polyelectrolytes. We 

hypothesized that by coating the κ-CA hydrogels fibers with CHT we would be able to 

stabilize the fibers structure. CHT, composed of β-1,4-linked glucosamine and N-acetyl-D-

glucosamine and one of the few positively charged natural-origin polysaccharides, is one of 

the most used polycations for the formation of PECs. Furthermore, it has been extensively 

used within TE strategies due to its appealing properties such as biocompatibility, 

biodegradability, low toxicity and relatively low production costs from abundant sources45. 

Since CHT is positively charged at low pH values (below its pKa value), the cationic amino 

groups of CHT can spontaneously associate with negatively charged groups (carboxylic 

acid, hydroxyl or sulphate groups) of other polymers, to form PECs. In an acidic solution, the 

negatively charged sulfate groups of κ-CA bind to the positively charged amino groups of 

CHT and form an acid-base type PECs. 

As the formation and stability of these polyelectrolyte complexes depends on the degree of 

ionization of each one of polyelectrolytes, which is dictated by the pH at which the PECs are 

being formed and because CHT only dissolves at pH~1, extremely harsh conditions for 

cells, βGP, a weak base, was used34. By adding βGP, the pH slowly increased, until it 

reached the CHT pKa, from 6.5 to 6.846, at which precipitation occurred (Figure VII.2A). 

Moreover, upon increasing pH, the amino groups of CHT are de-ionized and the binding 

affinity to a polyelectrolyte molecule (like κ-CA) becomes weaker, which would lead to less 

stable PECs. With the addition of βGP, and consecutively with the increase of pH, the 

electrical charge of the CHT solution also varied as evaluated by zeta potential 

measurements (Figure VII.2B). As expected, with the increase of the pH of CHT solution, 

the overall charge of the solution decreased, though still in the positive range (> +10eV). 

This finding indicates that albeit the pH modification, up to pH 5.5 the protonation of the 

amino groups occurs, and consequently CHT continues to act as a polycation, being suitable 

for association with polyanions, i.e. κ-CA, to form PECs. In the perspective of encapsulating 

cells in the presence of a CHT solution in combination with the negatively charged κ-CA, the 

pH 5.5 was considered both for allowing the complete CHT dissolution and the maintenance 

of mild conditions that do not compromise cell viability.  

Therefore, the formation of CHT coated κ-CA fibers was achieved in a two-steps procedure 

that combined the ionotropic gelation of κ-CA into microfibers, followed by the reinforcement 
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of the fibers by polyelectrolyte complexation between κ-CA and CHT (Figure VII.2C). As the 

gelation time was relatively short (10 minutes), compared to standard gelation times (15 to 

30 minutes)19,22. κ-CA was only partially crosslinked. This allowed maintaining some 

available negative sulphate groups, prone for binding to the protonated amino groups of 

CHT. Consequently, the immersion of the κ-CA fibers within the CHT solution at pH 5.5, 

allowed the formation of PECs between CHT and the un-crosslinked chains of κ-CA present 

at the surface of the fibers, leading to the formation of a localized CHT nano-sized layer, as 

already shown in previous studies28-31. The presence of the CHT coating was confirmed by 

the intense, specific pink coloration observed only on the coated fibers after staining with 

Eosin Y (Figure VII.2C-C1insert).  

 
Figure VII.2. Production of CHT coated κ-CA hydrogel fibers. (A) Variation of the pH relative to the 

beta glycerophosphate (βGP)/Chitosan (CHT) ratio. With the addition of βGP, CHT solutions can be 

obtained at physiologically relevant conditions (pH 5.5-6). Above this point the precipitation of CHT 

occurs (dark grey areas). (B) With the addition of βGP the zeta potential of the CHT solution is 

dramatically affected. The zeta potential of k-CA solution was used as reference (~-40 mV). Values 

reported correspond to n=10 (C) Schematics of the production of CHT coated κ-CA hydrogel fibers. 

The process involves the formation of fibers by ionotropic gelation in a KCl coagulation bath, followed 
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by immersion in a CHT solution. (C1) Identification of the CHT (pink) after staining with Eosin Y only 

in the coated fibers. 

Upon coating, our concern was to confirm that the stability of the developed fibers was 

improved. In fact, fibers were easy to separate and stable during manipulation, despite their 

small diameters. Swelling studies performed by immersion of the coated and uncoated κ-CA 

fibers in culture medium revealed that the swelling ratio of ionically crosslinked κ-CA fibers 

increased along time, which is in agreement with previous studies performed on κ-CA 

hydrogels discs22, but the CHT coated fibers exhibits a stable swelling ratio over time 

(Figure VII.3A). In the uncoated fibers, the destabilization of the ionically crosslinked κ-CA 

network due to the continuous exchange of K+ ions entrapped within the network with other 

ions present in the culture medium is likely to be occurring. Similar results have been 

reported for ionically crosslinked alginate23 and gellan gum44, where prolonged immersion in 

culture medium led to the destabilization and weakening of the hydrogels network. Along the 

time, the uncoated fibers became soft and easy to break, limiting their manipulation. 

However, with the CHT coating, the fibers remained stable over the 21 days of exposure to 

culture medium and maintained their initial swelling, being easy to handle and to manipulate. 

This behavior can be due to the strong electrostatic interactions between the amino groups 

of CHT and sulphate moieties of κ-CA that lead to the formation of a robust, protective PEC 

layer that coats the fibers and prevents them from collapsing. A similar behavior was 

described in other studies, concerning the use of CHT in combination with alginate to form a 

PEC layer wrapping alginate beads for the controlled release of drugs28.  

 
Figure VII.3. Swelling behavior of κ-CA fibers, without (w/o) and with (w/) CHT coating, in culture 

medium (DMEM). (A) Swelling ratio increases along time for the fibers without CHT coating. On the 

other side, the CHT coating stabilizes the hydrogels fibers, hampering their swelling. Values 

correspond to averages (n=3) ± standard deviation. “^” corresponds to statistical difference when 

compared with day 0 and day 7 values. (B) The diameter of the developed fibers is a direct 
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consequence of the swelling behavior. The behavior is independent of the needle gauge tested (25 

and 27G). Values correspond to n=10. The symbols ”#” and “&” represents a statistical difference 

between the w/o and w/ CHT within the same day (one-way ANOVA, Tukey post test). 

Increased swelling ratios can affect some features of the hydrogels characteristics such as 

shape, size, mechanical properties and consequently, its stability. In accordance, the 

diameter of the κ-CA fibers increased over time, as a consequence of their increasing 

swelling ratio (Figure VII.3B), and independently of their size. On the other hand, as the 

CHT coating protects the fibers from swelling, it also leads to the maintenance of the initial 

diameter of the fibers up to 21 days.  SEM analysis of the morphology of the fibers upon 

immersion in culture medium for different time periods revealed that the uncoated κ-CA 

fibers started to lose their integrity around day 14 (Figure VII.4A1,3,5), as predicted by the 

swelling ratio results (Figure VII.3A). Oppositely, the fibers with the CHT coating, exhibited a 

rougher surface that wrapped the open-pore-like structure of the κ-CA core. These fibers 

maintained their shape, size and integrity until day 21, when small cracks become visible on 

the surface of the fibers (Figure VII.4A2,4,6).  

 
Figure VII.4. Physico-chemical characterization of the freeze-dried fibers. (A) SEM micrographs 

depicting the alterations of fibers morphology in culture media along time. The structure of the 

uncoated fibers is not stable and disintegrates after 21 days (A1-A3-A5), while the CHT coating 

exhibits a protective role that hinders the disintegration of the fibers and therefore, enhances their 
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stability when immersed in culture media (A2-A4-A6). (B) The integrity of the CHT coating along the 

time was followed by tracing by EDX/EDS the amount of nitrogen (from the –NH2 groups present on 

the CHT backbone) present on the surface of the fibers. The element was detected until day 21, 

suggesting that the CHT is still present on the fibers. The defined squares in the SEM micrographs 

represent the area where the magnification and elemental analysis were performed. 

The integrity of the CHT coating along the time was further demonstrated by tracing the N 

content on the surface of the CHT-coated κ-CA fibers by EDS/EDX (Figures VII.4B) along 

the time. Its detection up to day 21, suggests that the CHT-κ-CA electrostatic interactions 

are strong enough to withstand the presence of other ions and proteins that constitute the 

culture medium, leading to a robust and stable structure.  

 

VII.3.3. CHT coating of the cell-loaded κ-CA fibers does not affect the endothelial 

differentiated SSEA-4+hASCs phenotype in the long-term 

The success of creating a functional engineered tissue relies on the development of a proper 

microvascular network that can provide the venue for nutrients and oxygen delivery within 

the constructs47. A major hurdle is encountered when engineering thick tissues and large 

organs, where the lack of such network leads to immediate failure48,49. Pre-vascularization of 

engineered constructs taking advantage of progenitor/ECs has been considered the most 

promising strategy to tackle this issue50. However, the use of human progenitor/ECs has 

been hampered by the limited sources and the reduced yields51. Our earlier work32 has 

shown that the SSEA-4+ sub-population, selected amongst the heterogeneous stromal 

vascular fraction, can be differentiated towards both the endothelial and the osteogenic 

lineages. Moreover, the endothelial differentiated SSEA-4+hASCs hold features of 

microvascular ECs, worth to explore to trigger the formation of 3D vascular networks within 

engineered constructs. Therefore, we took advantage of our knowledge to obtain ECs from 

the SSEA-4+ sub-population (Supplemental Figure VII.1) in relevant cell numbers to 

develop cell-laden κ-CA-based hydrogel fibers to be used as vascularization promoters 

within 3D TE constructs. Endothelial differentiated SSEA-4+hASCs were encapsulated within 

the κ-CA and CHT coated κ-CA fibers with 2 different diameters and cultured for a period of 

21 days (Figure VII.5A). As the encapsulation procedure requires several steps, many times 

associated to reduced cellular performance52,53, the direct effect of the experimental 

conditions over the viability of the encapsulated cells was assessed 24 hours upon 

encapsulation. Independently of the size and coating of the fibers the majority (>80%) of the 

cells was viable and homogeneously distributed within the fibers (Figure VII.5B) confirming 

that the processing conditions were not harsh for cells. Additionally, viable cells were 

predominantly observed within the fibers along the time in culture and independently of the 
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conditions (Figure VII.6).  

 

 
Figure VII.5. Encapsulation of endothelial differentiated SSEA-4+hASCs into κ-CA fibers. (A) 

Schematics of the encapsulation procedure and experimental setup. (B) The assessment of cell 

viability (live/dead) 24 hours after encapsulation, shows that the cells were not affected by the 

processing method or by the size and CHT coating of the fibers. Cell nuclei were counterstained with 

DAPI (blue). 

 

The optical microscopy analysis of the cell-loaded κ-CA fibers showed an increased 

diameter along the time in culture and subsequent disintegration of the fibers, in agreement 

with the results obtained with acellular fibers. Concisely, at day 7, fibers were intact, with a 

well-delimited smooth surface but at day 14, uncoated fibers presented signs of 

disintegration. This allowed the entrapped cells to “escape” from the fiber, and to adhere to 

and proliferate on the well (Figure VII.6A1-C1). In opposition, the CHT coating delayed the 

disintegration of fibers, as they maintained their initial diameter and their surface was 

smooth without disruptions up to day 14 (Figure VII.6A2-B2). Only at the last timepoint the 

CHT coated κ-CA fibers started to exhibit cracks along their surface, and consequently, ECs 

colonies were observed on the bottom of the well (Figure VII.6C2).  
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Figure VII.6.  Evaluation of the cell-laden κ-CA hydrogel fibers, along 21 days of culture. The viability 

of encapsulated cells (live/dead) was maintained during the culture time frame in all conditions. (A) At 

day 7, independently of the conditions fibers were intact, without displaying signs of disintegration. 

(B1) At day 14, small endothelial-like colonies could be observed at bottom of the culture well for both 

fiber diameters (25 and 27G) and without coating (w/o CHT), due to disintegration so that by day 21 

(C1) fibers lose their integrity (arrows), allowing further release of cells into the well plate. (B2 and C2) 

The chitosan coating (w/ CHT) delays the disintegration of the fibers, hence the release of the cells. 

At day 21, the coated fibers diameter did not alter, however, small cracks (arrows) can be observed 

along the fibers allowing the release of cells. Cell nuclei were counterstained with DAPI (blue). 

 

In addition to cell viability issues due to limited diffusion7,48, cell encapsulation within 

hydrogels might also compromise cells functionality by affecting their phenotype17,54. In order 

to address this question, cells were retrieved from the cell-laden fibers upon culturing for 21 
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days and seeded into tissue culture flasks. Cells were able to adhere and organize into small 

endothelial-like colonies (Figure VII.7A) and more importantly, they maintained their ability 

to form tubular-like structures, when seeded on Matrigel (Figure VII.7B). Moreover, when 

screened for the initial cell surface marker panel, cells were shown to be 

CD105+/CD73+/CD31+/CD45-/CD34-/CD90-, a phenotype that matches the one registered 

prior encapsulation. Taken together, these results show that the encapsulation process, 

followed by a prolonged culture of cell-laden fibers and their enzymatic degradation, did not 

affect the phenotype and in vitro functionality of endothelial differentiated SSEA-4+hASCs.  

 
Figure VII.7. Endothelial phenotype of cells retrieved from the fibers after 21 days of culture. (A) After 

retrieval of cells through an enzymatic digestion of the fibers, and the subsequent seeding, cells 

adhere and form small colonies, characterized by a closed contact between cells 

(live/cytoskeleton/nuclei). (B) Cells maintained their ability to form tubular-like structures (green) when 

seeded on Matrigel and (C) the expression of the characteristic markers of the endothelial phenotype 

(CD105+/CD73+/CD31+/CD45-/CD34-/CD90-). Cell nuclei were counterstained with DAPI (blue). 

 

Overall, as κ-CA fibers exhibit high swelling ratio, the weakening of the network occurs and, 

consequently cells are able to escape from the fibers. CHT coating maintained the fibers 

diameter, delaying their disintegration and the consequent release of cells into the 

surrounding environment. Nonetheless, the CHT layer is still permissive to culture medium, 

allowing the diffusion of its components, as suggested by the subsequent remarkable results 

concerning the viability and functionality of encapsulated cells. These findings further 

demonstrate the potential of using these fibers as ECs carriers within different TE 

constructs.  
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VII.3.4. Cell-loaded κ-CA-based fibers can act as building blocks within 3D κ-CA 

hydrogel constructs 

The integration and assembly of cell-laden templates as building blocks within 3D constructs 

may allow the development of replicas of complex primary tissues. Herein, we propose a 

straightforward method to integrate the κ-CA-based fibers enclosing ECs, within a 3D 

hydrogel containing osteoblast-like cells. As κ-CA is a polymer that can be easily molded 

into different shapes by ionotropic gelation, the κ-CA fibers, used as building blocks, were 

randomly assembled within a κ-CA hydrogel disc (Figure VII.8), thus combining cells 

obtained from a common source, but which were independently organized. The proposed 

system is entirely formed by a κ-CA matrix, with a controlled spatial distribution of two cell 

types. Fibers loaded with endothelial differentiated SSEA-4+hASCs can be singled out or 

stacked in a random or organized manner (Figure VII.8A). When the cell-laden fibers were 

integrated in a hydrogel disc containing other type of cells (e.g. osteoblast-like cells) the 

formation of a 3D co-culture platform with a defined cellular topography suitable for bone-

vascularization strategies was achieved (Figure VII.8B-C). The fibers are expected to act as 

cell delivery-vehicles for the release of cells within the surrounding matrix. In addition, the 3D 

hydrogels structures containing the microfibers can be easily manipulated and cultured 

within well plates. Further experiments are aimed to deeply assess the nature and kinetics of 

the cellular interactions within the 3D structure and the consequent outcome both 

concerning ECs rearrangement and organization in 3D vessel-like structures, as well as 

osteogenic matrix deposition and mineralization. 
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Figure VII.8. Proof of concept of the use of cell-loaded κ-CA-based fibers as building blocks within 3D 

κ-CA hydrogel constructs. Confocal laser scanning micrographs of (A1-2) encapsulated ECs (ENDO, 

rhodamine tag) within κ-CA fibers. Fibers can be (A1) singled out or (A2) randomly stacked. (B-C) 

Heterotypic 3D κ-CA-based structure. (B) The encapsulation of ECs (ENDO) precedes the integration 

of the fibers within the κ-CA containing the osteoblast-like cells (OSTEO, GFP tag) localization 

outside the fiber. All cells (blue) are evenly distributed within the hydrogel. (C) 3D build-up of fiber 

stacks within a hydrogel disc consists of a controlled spatial localization of two cell types within a 

single hydrogel matrix. (C1) The co-localization of ECs (ENDO) and osteoblast like-cells (OSTEO) is 

relevant for developing spatial controlled heterotypic systems aimed for bone vascularization 

approaches. Cell nuclei were counterstained with DAPI (blue). (C2) A macroscopic view of the 3D 

construct. The discs can be manually manipulated without damage. κ-CA fibers were stained with 

methylene blue (dark blue). 

 

VII.4. CONCLUSIONS 

Herein, we report the development of CHT reinforced κ-CA fibers using a two-step 

procedure, under cell-friendly experimental settings, aiming at homogeneous immobilization 

of microvascular-like ECs. The diameter of the fibers can be easily tuned by selecting the 

appropriate needle gauge during processing. The presence of the CHT coating enhanced 
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the stability and the diameter of κ-CA fibers, restraining their swelling. Moreover, these fibers 

support the maintenance of the viability and the phenotype of encapsulated cells during 

long-term culturing, enabling their use as cell-delivery systems within 3D TE constructs. 

Furthermore, using a bottom-up approach, these fibers can be used as building blocks for 

the development of suitable 3D platforms of independently organized heterotypic cell-

containing hydrogels, relevant for bone vascularization approaches based on adipose-

derived stem cells.  
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SUPPLEMENTAL INFORMATION 

!
Supplemental Figure VII.1. SSEA-4+hASCs endothelial-like cells phenotype prior encapsulation. (A) 

Matrigel assay confirmed the capacity of the endothelial differentiated SSEA-4+hASCs to form tubular-

like structures (green). (B) The endothelial phenotype was also demonstrated by flow cytometry 

analysis. Cell nuclei were counterstained with DAPI (blue). 
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Photocrosslinkable Kappa-Carrageenan Hydrogels 
for Tissue Engineering Applications 

 

ABSTRACT 
Kappa carrageenan (κ-CA) is a natural-origin polymer that closely mimics the 

glycosaminoglycan structure, one of the most important constituents of native tissues 

extracellular matrix. Previously, it has been shown that κ-CA can crosslink via ionic 

interactions rendering strong, but brittle hydrogels. In this study, we introduce 

photocrosslinkable methacrylate moieties on the κ-CA backbone to create physically and 

chemically crosslinked hydrogels highlighting their use in the context of tissue engineering. 

By varying the degree of methacrylation (DM), the effect on hydrogel crosslinking was 

investigated in terms of hydration degree, dissolution profiles, morphological, mechanical, 

and rheological properties. Furthermore, the viability of fibroblast cells cultured inside the 

photocrosslinked hydrogels was investigated. The combination of chemical and physical 

crosslinking procedures enables the formation of hydrogels with highly versatile physical and 

chemical properties, while maintaining the viability of encapsulated cells. To our best 

knowledge, this is the first study reporting the synthesis of photocrosslinkable κ-CA with 

controllable compressive moduli, swelling ratios and pore size distributions. 

Moreover, by micromolding approaches, spatially controlled geometries and cell distribution 

patterns could be obtained, thus enabling the development of cell-material platforms that can 

be applied and tailored to a broad range of tissue engineering strategies. 
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VIII.1. INTRODUCTION 

Hydrogels are insoluble three-dimensional (3D) crosslinked networks of hydrophilic 

polymers, widely used as platforms in bio- medical applications such as tissue engineered 

constructs1, drug delivery systems2, cell-based therapies3, wound dressings4 and anti-

adhesion materials5. As the physical properties of hydrogels resemble the hydrated state of 

the native extracellular matrix (ECM)6, they exhibit high permeability towards oxygen, 

nutrients and other soluble factors7 essential for sustaining cellular metabolism1a, 8. The 

hydrogel networks can be fabricated by using physical or chemical crosslinking methods9. 

Physical crosslinking is achieved through the formation of physical bonds between the 

different polymer chains. For example, ionically crosslinked gels are formed by the 

interactions between charged polymer chains and counterions9a. However, the 

uncontrollable exchange of ions in physical conditions reduces their applicability in the tissue 

engineering (TE) field. 

On the other hand, through chemical crosslinking, stable covalent bonds between polymer 

chains are created1a, 1c. Suitable crosslinking agents mediate the formation of these 

permanent bonds. Particularly, photocrosslinking, a type of chemical crosslinking, is 

performed in the presence of an ultraviolet (UV) light and a chemical photoinitiator (PI). 

Many photocrosslinkable materials are currently being investigated for TE applications, due 

to their processability and micromolding potential10. Furthermore, it is possible to achieve a 

homogeneous distribution of cells and bioactive factors (e.g. proteins, growth factors) 

throughout the hydrogel matrix that can be easily delivered in situ. 

Recently, natural origin polymers have attracted much interest due to their resemblance to 

the ECM, high chemical versatility, controlled degradability and interaction with biological 

systems11. Amongst natural polymers gellan gum12, alginate13, gelatin14, hyaluronic acid15, 

chitosan16, chondroitin sulphate17 were modified in order to form hydrogels via 

photocrosslinking processes, while maintaining the viability of encapsulated cells. These 

natural polymers are also blended with other synthetic polymers to obtain unique property 

combinations for biomedical and biotechnological applications. 

Carrageenans are a class of natural origin polymers, widely used as gelling, emulsifier, 

thickening, or stabilizing agents in pharmaceutical and food industry18. Carrageenans are 

extracted from red seaweeds of the class Rhodophyceae and classified according to the 

presence and number of the sulphated groups on the repeating disaccharide units. Briefly, 

kappa (κ-) possesses one sulphated group, while iota (γ-) and lambda (λ-) possess two and 

three sulphate groups, respectively, per disaccharide unit18,19. Their gelation occurs upon 

cooling under appropriate salt conditions by hydrogen bonds and ionic interactions, as both 

κ- and γ- undergo coil-helix conformational transitions, rendering ionotropic and thermotropic 

gels20. The gelation of κ-carrageenan (κ-CA) is enhanced mainly by potassium ions, forming 
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firm, but brittle gels that dissolve when heated21, while λ-carrageenan gelation is dependent 

on the presence of calcium ions, forming soft and elastic gels9a. 

κ-CA  has been proposed as a potential candidate for TE applications, due to its gelation 

properties, mechanical strength and its resemblance to natural glycosaminoglycans 

(GAGs)22. Furthermore, due to its inherent thixotropic behavior, κ-CA  has been used as an 

injectable matrix to deliver macromolecules and cells for minimally invasive therapies23. 

Although previous studies have shown encouraging results24 there is still inadequate control 

over the swelling properties, degradation characteristic and mechanical properties of 

ionically crosslinked κ-CA hydrogels. This is mainly attributed to the uncontrollable exchange 

of monovalent ions with other positive ions from the surrounding physiological 

environment11. Therefore, a modification of κ-CA  that would enable the formation of stable 

crosslinked gels for cell encapsulation in which cell viability is preserved is a new challenge 

to be addressed. Previously, our work has shown successful chemical modification of 

natural polymers, leading towards the development of cell-laden platforms, based on 

photolithography and micromolding12,14,25,26. 

The primary aim of the current study is to design and develop a highly versatile 

micropatterned κ-CA hydrogel platform through dual-crosslinking mechanisms. We 

hypothesize that the crosslinking mechanism will influence the mechanical and viscoelastic 

performance of the developed system. Furthermore, cellular viability within modified κ-

CA hydrogels, as well as the production of reactive oxygen species, will be evaluated as an 

assessment of their biocompatibility, potentiating their use in TE applications. 

 

VIII.2. MATERIALS AND METHODS 

VIII.2.1.Synthesis of methacrylated-κ-carrageenan (MA-κ-CA) 

Methacrylated κ-CA (MA-κ-CA) was synthesized by reacting κ-CA with methacrylic 

anhydride (MA). Briefly, κ-CA was mixed at 1% (wt/v) into deionized water (diH2O) at 50°C 

until the polymer was fully dissolved. To this solution, MA was added and allowed to react 

for 6 hours at 50°C. The pH (8.0) of the reaction was periodically adjusted with 5.0 M NaOH 

(Sigma, Germany) solution in diH2O. The modified κ-CA was dialyzed against diH2O using 

12-14 kDa cutoff dialysis tubing (Fisher Scientific, Cambridge, MA, USA) for 3 days at 4°C to 

remove excess of unreacted MA. Purified MA-κ-CA solutions were frozen at −80°C and then 

lyophilized. The obtained powder was stored at −20°C, protected from light until further use. 

To modify the degree of methacrylation (DM), the volumes of MA added in the 

methacrylation reaction (i.e., 4% (v/v) - Low, 8% (v/v) - Medium and 12% (v/v) - High (v/v)) 

were varied. 
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VIII.2.2. Characterization of MA-κ-CA 

The chemical modification of κ-CA was quantified by proton nuclear magnetic resonance (1H 

NMR) spectroscopy. The 1H NMR spectra of κ-CA and MA-κ-CA were collected in 

deuterated water (D2O) at 50°C, at a frequency of 500 MHz on a Varian INOVA NMR 

spectrometer with a single axis gradient inverse probe. All spectra were analyzed using 1D 

NMR Processor software (ACD/Labs 12.0). Phase correction was applied to obtain accurate 

absorptive peaks, followed by a baseline correction to obtain the integrals of the peaks of 

interest. The obtained chemical shifts were normalized against the protons of the methylene 

group of the D-galactose units (G) as an internal standard, which is present at δ = 3.89 

ppm27. The DM was calculated referring to the peaks at δ = 1.9–2 ppm (methyl) and δ = 5.5–

6 ppm (double bond region) as percentage (%) of the free hydroxyl groups (-OH) substituted 

with methacrylate groups. Fourier transform infrared spectroscopy with attenuated total 

reflection (FTIR-ATR) analysis was performed on a Bruker Alpha FTIR spectrometer (Bruker 

Optics, MA, USA). The spectra were recorded at a resolution of 4 cm−1 and the results are 

shown as an average of 24 scans. The zeta potential of the modified κ-CA was measured by 

laser Doppler anemometry using a Malvern Zeta Sizer 300HS (Malvern Instruments, UK). 

Each sample was diluted in water at a concentration of 0.1% (wt/v). Each analysis was 

performed at 25°C, and lasted 60sec. 

 

VIII.2.3. Preparation of dual crosslinked MA-κ-CA hydrogels 

Freeze dried MA-κ-CA macromer with different DM, as well as non-modified κ-CA were 

added to a PI solution consisting of 0.25% (wt/v) 2-hydroxy-1-(4- (hydroxyethoxy)phenyl)-2-

methyl-1-propanone (Irgacure 2959, CIBA Chemicals), in diH2O, at 80°C until complete 

dissolution. Physically crosslinked MA-κ-CA hydrogels were obtained by pouring the polymer 

solution into polydimethylsiloxane (PDMS) circular molds (8cm diameter) followed by gently 

adding a solution of 5% (wt/v) of potassium chloride (KCl, Sigma, Germany) to initiate the 

crosslinking. After 10 min of gentle shacking, samples were removed from the molds and 

washed Dulbecco’s phosphate buffered saline (DPBS, Gibco, USA) in order to remove the 

salt residues. The chemically crosslinked hydrogels were obtained by pipetting 100µL of 

polymer solution between a Teflon substrate and a glass coverslip separated by a 1mm 

spacer followed by UV light exposure at 6.9 mW/cm2 (320–480 nm, EXFO OmniCure S2000, 

Ontario, Canada) for 40sec. To obtain dual crosslinked hydrogels, the chemically 

crosslinked samples were immersed in a 5% (wt/v) KCl coagulation bath for 10 min and 

rinsed with DPBS. 

 

VIII.2.4. Swelling behavior and in vitro dissolution properties 

The effect of the DM and crosslinking mechanisms on the swelling behavior and stability of 
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the hydrogels was determined by evaluation of the hydration kinetics and dissolution 

behavior. Briefly, MA-κ-CA hydrogels obtained with different crosslinking procedures were 

lyophilized and weighted (initial dry weight, WDI) before being transferred to 1.5 mL 

microtubes and soaked in 1 mL of DPBS and Dulbecco ́s Modified Eagle Medium (DMEM, 

Gibco, USA) at physiological temperature (37°C), under constant shaking (60 rpm). 

To assess the swelling properties, hydrogels (n=3) were allowed to reach equilibrium in the 

swelling solution and weighted to determine the wet weight (MW) after being blotted off with a 

KimWipe paper to remove the excess liquid from the samples surface. Then the samples 

were lyophilized to determine their final dry weight (WDF). The mass swelling ratio was 

defined as the weight ratio of the liquid (DPBS or DMEM) uptake (MW) to the weight of the 

dried hydrogel (MDF), according to equation VIII.1. 

 

Mass swelling ratio = (MW-MDF) /MDF*100           (equation VIII.1) 

The dissolution degree was calculated by measuring the mass loss of the sample (equation 

VIII.2). 

Dissolution degree = MDF/MDI*100      (equation VIII.2) 

 

VIII.2.5. Scanning electron microscopy (SEM) of dried dual crosslinked MA-κ-CA 

hydrogels  

The microstructure of hydrogels was evaluated using scanning electron microscopy (SEM, 

JSM 5600LV, JEOL USA Inc., Peabody, MA, USA) at an acceleration Voltage of 5 kV and a 

working distance of 5–10 mm. First, hydrogel samples were plunged in liquid nitrogen slush, 

transferred to 1.5 mL microtubes and freeze-dried for 24 hours. The dry samples were 

fractured and then mounted on samples holders using double-sided carbon tape. The 

coating of the samples was performed with gold and palladium using a Hummer 6.2 sputter 

coated (Ladd Research, Williston, VT, USA). The quantification of the pore size distribution 

was performed using NIH ImageJ software, based on the SEM pictures. 

 

VIII.2.6. Viscoelastic properties of MA-κ-CA hydrogels 

The effect of DM on the viscoelastic behavior of MA-κ-CA was determined using an AR2000 

stress controlled rheometer (TA instruments, New Castle, DE, USA). Flow experiments were 

performed to evaluate the viscosity of polymer solution at 37°C (shear rate varying from 0.01 

to 100 s−1). For dual crosslinked hydrogels, oscillatory stress sweep was applied between 

0.1 to 1000 Pa at 37°C and at a frequency of 0.1 Hz. The G′, as well as the G′′ of the swollen 

samples, was measured using a gap of 500µm and a 20 mm parallel plate geometry. A 

solvent (DPBS) trap was used in order to minimize the drying of the swollen hydrogels 

undergoing analysis. 
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VIII.2.7. Uniaxial compression testing 

To assess the effect of the DM, crosslinking mechanism and polymer concentration over the 

mechanical behavior of the MA-κ-CA crosslinked hydrogels, cyclic compressive tests were 

performed using an Instron 5542 mechanical machine (Instron, Norwood, MA, USA). κ-CA 

and MA-κ-CA hydrogel discs (1 mm thick, 8 mm in diameter, n = 6) were tested at a rate of 

10% strain/min (0.1 mm/min) until 50% of strain, for 5 complete compression-recovery 

cycles. Samples obtained immediately after crosslinking (as prepared samples) and samples 

that were allowed to swell in DPBS for 24 hours before testing (hydrated samples) were 

analyzed. The compressive modulus was defined as the slope of the linear region of the 

strain/stress curve, corresponding to 5–15% strain. 

 

VIII.2.8. Reactive species production 

Intracellular production of superoxide (SOx) and nitric oxide (NOx) species was evaluated 

respectively using dihydroethidium (DHE, Molecular Probes, Eugene, OR, USA) and 4,5-

diaminofluorescein diacetate (DAF-2DA, Calbiochem, San Diego, CA, USA) oxidation 

assays. NIH-3T3 mouse fibroblasts were cultured in basal DMEM, containing with 10% of 

heat-inactivated fetal bovine serum (HiFBS, Gibco, USA) and 1% Pen/Strep 

(penicillin/streptomycin, 100U/100µg/mL, Gibco, USA), at 37°C, in a humidified atmosphere 

with 5% of CO2. When reached 70% confluency, cells were trypsinized (0.05% 

Trypsin/EDTA, Gibco, USA) and further centrifuged at 1200 rpm for 5 min. Cells (2×105 

cells) were preincubated with DHE (25µM) for 10 min and DAF-2DA (5µM) for 30 min, at 

37°C, respectively for SOx and NOx detection. Cells were then washed with DPBS, 

centrifuged at 1200rpm for 5min, and resuspended in 5% (wt/v) MA-κ-CA solution with 

different DM (Medium, Low, High) in 0.25% PI (wt/v) and 1.5% κ-CA (wt/v). The 

methacrylated polymers containing cells were UV crosslinked for 40sec and the obtained 

hydrogels were immersed in a 5% KCl bath for 10min for further crosslinking. The obtained 

hydrogels were washed with DPBS and incubated at 37°C in phenol-red free DMEM (Gibco, 

USA) for 2 and 1h, respectively, for SOx and NOx detection. Preincubated cells, mounted on 

glass slides using Fluoromount mounting media (Sigma, Germany), were used as controls. 

All samples were examined under an inverted fluorescence microscope (Nikon, Eclipse TE 

2000U, Japan). The quantification of the intensity of fluorescence was analyzed using NIH 

ImageJ software, considering the intensity of fluorescence per single cell for each of the 

evaluated conditions. 

 

VIII.2.9. 3D Cell encapsulation in MA-κ-CA microfabricated patterns 

The effect of DM, as well as the photocrosslinking conditions, on the cells viability was 

evaluated by encapsulating NIH-3T3 mouse fibroblasts within gels prepared by applying 
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both physical and chemical crosslinking. Cells were resuspended in 5% (wt/v) MA-κ-CA 

polymer containing 0.25% (wt/v) PI at a density of 2×106 cells/mL polymer solution. The cells 

suspension was poured onto Teflon sheet and using coverslip spacers, cell-laden hydrogels 

of 450µm were formed after UV light exposure and further crosslink in a coagulation bath, as 

described previously. Afterwards, hydrogels were rinsed with DPBS and placed into 6-well 

cell culture plates. To form circular patterns, PDMS molds were used while crosslinking 

(100µm diameter × 300µm depth × 450µm height). The viability of the encapsulated cells 

within the hydrogels was evaluated at 3 and 72h of culture with a Live/ Dead (Invitrogen, 

Carlsbad, CA, USA) assay. Briefly, cells were incubated with calcein AM/ethidium 

homodimer-1 in phenol-red free DMEM for 40min. Fluorescence images were taken as 

previously mentioned. 

 

VIII.2.10. Statistical analysis  

All data values are presented as mean ± standard deviation (SD). Statistical analysis was 

performed using GraphPad Prism 5.00 software (San Diego, USA). Statistical significances 

(p<0.05) were determined using one-way analysis of variance (ANOVA) for an average of 

three to six replicates, followed by post hoc Tukey’s test for all pair-wise mean comparisons. 

 

VIII.3. RESULTS AND DISCUSSION 

VIII.3.1. Synthesis of MA-κ-CA 

κ-CA is a linear, sulfated polysaccharide, composed of alternating 3,6 anhydro-D-galactose 

(AG) and β-D-galactose (G)-4-sulphate repetitive units. It has recently been proposed for 

drug delivery applications27,28 and was shown to induce specific cellular responses, such as 

chondrogenesis of mesenchymal stem cells24b, or regeneration of an articular defect24a. κ-CA 

hydrogels can be formed via ionic crosslinking methods29, however, these hydrogels present 

low stability in physiological settings, mainly due to the exchange of monovalent ions with 

the ones present in the surrounding environment. To overcome this drawback, we proposed 

the chemical functionalization of κ-CA with methacrylate pendant groups, yielding 

photocrosslinkable hydrogels. The covalent bonds formed during crosslinking render high 

stability to the polymer network. Moreover, we hypothesized that the chemical modification 

along with the already present ionic character of κ-CA, will allow the formation of dual 

crosslinked hydrogels by combining chemical and physical crosslinking methods. 

MA-κ-CA with various DM was synthesized by substituting the hydroxyl groups on κ-CA with 

methacrylate groups. The extent of substitution of hydroxyl groups was considered 

equivalent with the DM (Figure VIII.1A), and was dependent on the volumes of MA that 

were added to the reaction. 1H NMR spectroscopy of the modified polymer, confirmed the 

methacrylation of κ-CA by the presence of double peaks (vinyl) in the double bond region (δ 
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= 5.5-6ppm) and one peak corresponding to the methyl (-CH3) of the methacrylate group at 

δ = 1.9–2ppm (Figure VIII.1B). To quantify the DM, the degree of substitution of free 

hydroxyl groups present on the κ-CA backbone was evaluated by comparing the average 

integrated intensity of the methyl protons peak of the methacrylate group with the methylene 

groups present in the β-D-galactose (G6) of κ-CA. By adding 4%, 8% and 12% (v/v) MA to κ-

CA during the synthesis, it was possible to create three different MA-κ-CA polymers with 

Low (14.72 ± 5.14%), Medium (28.91 ± 7.32%) and High (37.11 ± 7.41%) DM, respectively. 

Furthermore, FTIR-ATR spectra revealed the appearance of the carbon-carbon double bond 

(C=C) at 1550 cm−1, accompanied by the occurrence of the characteristic ester peak (C=O) 

at around 1680-1750 cm−1, not present in κ-CA, thus confirming the methacrylation of κ-CA 

(Figure VIII.1C). Moreover, all spectra showed an absorbance band at 1250 cm−1, 

corresponding to the sulphate content characteristic of κ-CA. This indicates that the intrinsic 

sulphate group of κ-CA is also present in the modified formulations, thus it was not affected 

by the methacrylation reaction conditions. Furthermore, the zeta potential measurements 

confirmed the anionic potential of modified κ-CA and no significant difference in the overall 

charge was observed between non methacrylated and the MA-κ-CA (zeta potential = −62.6 

± 1.3mV and electrophoretic mobility = −5.54 ± 1.1µm·cm/V·s). 

 

VIII.3.2. Viscoelastic behavior of MA-κ-CA solutions 

κ-CA exhibits a reversible, temperature-sensitive gelation in salt-free conditions, through 

physical crosslinking. As a consequence, κ-CA chains undergo a sol-gel transition from 

random coil to coaxial double helix (soluble domains) configuration30, as the temperature 

decreases. The conformational organization into double helices renders the formation of a 

3D network maintained by the interaction of the polymeric chains with water through 

hydrogen bridges31. The stability of this interaction allows the 3D network to undertake 

desired patterns, additionally conferring versatility to the κ-CA32. Nevertheless, at room 

temperature, the κ-CA solutions are highly viscous and are difficult to manipulate resulting in 

poor processability33. By increasing the temperature, the viscosity of κ-CA solutions 

dramatically decreased mainly due to the thermodynamic instability of the polymer chains. 

However, the range of temperature that must be employed (50–70°C) is higher than the 

physiological temperature, which can compromise the viability of encapsulated cells or the 

activity of other incorporated bioactive components. Within this context, the viscosity of the 

precursor solutions of MA-κ-CA was evaluated. At physiological temperature, the modified κ-

CA solution showed lower viscosities when compared with the non-modified κ-CA (Figure 

VIII.1D). This change in viscosity can be attributed to the reduced interactions between side 

chains, ultimately leading to less double helix configurations. 

Viscoelastic properties of κ-CA pre-polymer solutions show shear thinning behavior. At low 
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shear rate (0.1 s−1) the viscosity of κ-CA was around 500Pa·s, while at higher shear rate 

(100s−1) the viscosity decreased to 1Pa·s. After modifying κ-CA with methacrylation 

moieties, the shear thinning behavior was suppressed. It was observed that MA-κ-CA 

requires lower applied shear rates to achieve the same viscosity values of κ-CA. This can be 

mainly attributed to the disruption of the ordered arrangement of double helix conformations 

by the presence of the methacrylate side chains. 

 
Figure VIII.1. Characterization of MA-κ-CA. (A) Schematic representation of the chemical 

modification of k-CA. (B) 1H NMR spectra (T=500C) of k-CA, Low, Medium and High MA-κ-CA 

recorded in deuterated water (D2O). The methylene protons of the β-galactose subunit of κ-CA (G6) 

were located at δ=3.89ppm and vinyl groups of the methacrylate (=CH2) were found around δ=5.5-6 

ppm, while the methyl group (-CH3) was located at δ=1.9-2ppm. The D2O peak at δ=4.7ppm was 

used as internal reference. The degree of methacrylation (DM) was calculated as percentage (%) of 

the hydroxyl groups substitution with the methacrylate groups per each repeating unit. (C) FTIR-ATR 

spectra of modified κ-CA confirmed the grafting of methacrylate groups onto the polymer backbone. 

The peak appearing around 1550cm-1 corresponds to the C=C bond of MA and is present in Low (L), 

Medium (M) and High (H) MA-k-CA, while is absent in the non-modified counterpart. The C=O 

absorption band of the ester present around 1680-1750cm-1 appears in all modified formulations. (D) 

The viscoelastic behavior of the polymer solutions shows that the methacrylation degree reduces the 

viscosity of the solutions highlighting the shear thinning behavior of the materials, suitable for 

injectable approaches. The data acquisition was performed at physiological temperature (37ºC).  

 

VIII.3.3. MA-κ-CA hydrogel fabrication via different crosslinking mechanisms 

κ-CA is capable of forming hydrogels through ionic interactions. Potassium salts are 
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essential for κ-CA hydrogel formation, due to the interactions with the sulphate groups 

present on the backbone of κ-CA. These ionic interactions promote the condensation of the 

double helices into strong 3D networks. Moreover, the gelation, as well as the density of the 

ionic bonds in hydrogels, is strongly dependent on the presence, type and concentration of 

electrolytes. The introduction of methacrylate groups into the κ-CA backbone enables the 

formation of chemically crosslinked gels via UV exposure. Furthermore, as the anionic 

character of MA-κ-CA was not affected, it was still possible to form gels in the presence of 

K+ salts. The presence of two functional groups (sulphate and methacrylate) can be 

independently used to tune physical properties as well as to encapsulate cells. As a 

consequence, the combination of two distinct crosslinking mechanisms enhances the 

versatility of the system, hence the range of potential applications within the TE field. Also, it 

was noticed that the modified κ-CA showed a weaker response to temperature changes, 

which might be attributed to the additional methacrylate moieties that can hinder the 

complete packing of the double helix domains. The weak association between a polymer 

chains in double helix configuration due to functional groups grafted on the polymeric 

backbone was already reported for other natural origin polymers (e.g., gellan gum12). 

The schematic of the crosslinking of MA-κ-CA is depicted in Figure VIII.2, and highlights the 

proposed crosslinking mechanisms employed in this study. Briefly, we developed physically 

(P) crosslinked hydrogels by crosslinking MA-κ-CA in the presence of K+ ions; chemically (C) 

crosslinked hydrogels by photocrosslinking procedure, and a combination of the physical 

and chemical crosslinking mechanism, denominated as dual (D) crosslinked hydrogels. 

 
Figure VIII.2. Proposed crosslinking mechanisms of MA-κ-CA. The thermo-responsive character 

allows the gelation of MA-κ-CA under salt-free conditions through the formation of physical bonds 

between the chains at low temperature. Due to the ionic nature of MA-κ-CA, the physical crosslinking 

(P) can occur in the presence of monovalent ions (K+) forming stable gels. The pendant methacrylate 
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groups can render the chemical crosslinking (C) by UV exposure. The association of the chemical and 

physical crosslinking approach allows the formation of dual crosslinked (D) hydrogels that are stable 

at physical conditions, as prepared or after reaching the swelling equilibrium. 

 
VIII.3.4. Effect of DM on swelling properties of the hydrogels 

In the context of TE, it is important to expose the polymeric networks to conditions that 

mimic in vivo environment. A proper evaluation of their behavior within this setup will allow 

predicting the in vivo performance of the developed hydrogels. The swelling properties are a 

trademark of hydrogels properties, as these polymeric networks are able to retain water in 

various percentages dependent on their chemistry1d. Moreover, the swelling properties of 

polymeric networks are significantly influenced by water-material interactions. These affect 

the mass transport characteristics (nutrient and oxygen diffusion, waste disposal) and, 

consequently, their mechanical properties34,35. 

κ-CA is a hydrophilic polysaccharide that has shown significant properties changes when 

dissolved in aqueous solutions with different concentrations in ions36. As mass swelling ratio 

can affect the overall features (shape and size) of a given patterned hydrogel the effect of 

DM and crosslinking mechanism on the mass swelling ratio of the polymers hydrogels was 

evaluated under physiological conditions in DPBS and DMEM, at 37°C. For this purpose, 

Low, Medium or High DM MA-κ-CA hydrogels were allowed to reach equilibrium over 24h in 

DPBS or DMEM at 37°C, under dynamic conditions, to measure the mass swelling ratio 

(Figure VIII.3A-B). 

Holding the DM constant, a significant decrease in the mass swelling ratio (***p<0.001) was 

observed, dependent on the crosslinking mechanism (Figure VIII.3A). The chemical 

crosslinking mechanism allows the hydrogels to retain large volumes of solvent, due to the 

presence of covalent bonds/ interactions. The chemically crosslinked network is highly 

flexible and allows the extension of the polymeric network without disrupting it. On the other 

hand, the short exposure to the KCl treatment (physically crosslinking) of the MA-κ-CA 

hydrogels allows the diffusion of monovalent cations within the inner polymeric network and 

the formation of strong ionic bonds between the chains. These bonds are less flexible; 

hence the ability of the polymer to retain the solvent is reduced by the physically 

crosslinking. By combining both crosslinking mechanisms (P+C=D) it is possible to obtain 

hydrogels that significantly reduce their mass swelling ratio in DPBS. 

Conversely, by maintaining the crosslinking mechanism constant, the mass swelling ratio is 

strongly dependent on the DM. The high MA-κ-CA exhibited significantly lower swelling 

ratios (*p<0.05 when compared with the Medium MA-κ-CA and ***p<0.001 when compared 

with Low MA-κ-CA), due to high crosslinking density. A similar behavior was observed for 

methacrylated alginate hydrogels where the decrease of dissociation degree occurred with 
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the increase of the DM13, as entanglement of covalent bonds reduces the degree of freedom 

of the network, hence reducing the ability to retain the solvent and enlarge its volume. 

When immersed in cell culture media (DMEM) containing monovalent ions, divalent ions and 

proteins, hydrogels exhibit a similar swelling to DPBS (Figure VIII.3B). However, the extent 

of the swelling is increased in DMEM when compared with DPBS. It is possible that the 

medium destabilizes the physically crosslinked network, by the substitution of the 

monovalent ions already present in the inner network of the hydrogel with the divalent ions 

or proteins present in the media. This allows the hydrogel to expand more and have higher 

swelling ratios. 

Overall, these data suggest that efficient pattern fidelity can be achieved by increasing the 

DM and applying both chemically and physically crosslinking procedures. Within these 

conditions the swelling ratios of the hydrogels are the lowest. Concluding, it is possible to 

produce hydrogels with adjustable swelling ratios. 

 

VIII.3.5. Degradation/dissolution characteristic of the MA-κ-CA hydrogels 

The purpose of the dissolution studies was to evaluate the integrity and stability of the 

crosslinked MA-κ-CA hydrogels in physiological conditions. The dissolution of dual 

crosslinked hydrogels in DPBS (ions content) and DMEM (ions and protein content) was 

evaluated over a period of 21 days. During the dissolution period, κ-CA (physically 

crosslinked) showed to be less stable when compared with the dual crosslinked MA-κ-CA, in 

both dissolution media (Figure VIII.3C,D). At day 21, 15% of the initial weight of physical 

crosslinked κ-CA was lost in DPBS, while in DMEM more than 25% of the initial weight was 

dissolved in the media. Contrary, it was observed that in the first 7 days of the experiment, 

all methacrylated formulations present a high stability and no evidence of 

disintegration/dissolution. At specific incubation time, it was noticed that the High DM 

samples were less affected by the experimental conditions. This suggests that the increase 

in the DM renders hydrogels with strong bonding, upon chemical crosslinking, that cannot be 

disrupted by ionic exchange and interaction with proteins present in the culture media. 

Tuning the dissolution parameters is an interesting tool to use in order to address specific 

requirements of the TE objective. Therefore, MA-κ-CA presents a versatile behavior in 

physiological conditions dependent on the DM. Envisioning TE applications, matching the 

extent to which the hydrogel loses its integrity with the rate at which native ECM is produced 

is a requirement24b,37. MA-κ-CA-based hydrogels possess different degrees of degradation, 

dependent on their DM. 
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Figure VIII.3. Swelling and stability of MA-κ-CA hydrogels in DPBS and DMEM. (A-B) The mass 

swelling ratios of 5% (wt/v) MA-κ-CA hydrogels in DPBS and culture medium, DMEM, show 

statistically significant differences. The D crosslinking approach leads to the formation of hydrogels 

with low swelling properties. Representation of weight loss percentage vs time of dual crosslinked 5% 

MA-κ-CA hydrogels with different DM, immersed in DPBS (C) and (D) DMEM at 37°C. All values are 

reported as corresponding to averages (n=3) ± SD. 
 

VIII.3.6. Effect of DM on hydrogels microstructure 

The effect of DM on the dry microstructure of polymeric networks was evaluated using SEM. 

We used freeze-drying method to obtain dried polymeric structures. In this method, dual 

crosslinked hydrogels made from κ-CA with different DM were subjected to a rapid 

snapshop cooling using liquid nitrogen and then the solvent (water) was removed by 

sublimation. Although this method cannot be used to visualize the original wet-polymeric 

network, can be used as a predictive tool of the effect of DM on the dried microstructure of 

MA-κ-CA, by evaluation of the pore size formed upon drying. The results indicated that κ-CA 

with High MA-κ-CA possess a compact pore structure, with pore size of 18.5±5.3µm, while 

the Medium and Low methacrylated hydrogel showed interconnected structure with pore 

size of 33.2±8.2µm and 48.8±10.4µm, respectively (***p<0.001, Figure VIII.4A-G). The 

decrease in pore size with an increase in DM of dried structure can be attributed to high 

degree of crosslinking between polymeric chains. These observations in dried conditions are 

in agreement with the reported swelling behavior and rheological evaluation of the dual 

crosslinked hydrogels in fully hydrated conditions. In summary, hydrogels with low DM have 

larger pores compared with hydrogels with High DM. 
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Figure VIII.4. Microstructure of MA-κ-CA dual crosslinked dried hydrogels. (A) Representative SEM 

images of MA-κ-CA Low, Medium and High. (B) A significant decrease in pore size diameter with the 

increase in the DM can be observed. All values are significantly different from each other (n=20, one-

way ANOVA, ***p<0.001 Tukey post-hoc test). 

 

VIII.3.7. Effect of the DM on 3D network stability and mechanical strength 

VIII.3.7.1. Viscoelastic behavior 

The oscillatory shear experiments were performed to analyze the viscoelastic properties of 

the dual crosslinked hydrogels networks. The effect of the DM on the viscoelastic properties 

was evaluated by monitoring the storage (G′) and loss (G′′) moduli. These parameters 

provide valuable information about the viscoelastic properties of hydrogels and have been 

taken into consideration in order to predict the stability of polymeric networks under shear 

forces. The ratio between the loss and storage moduli is defined as the loss tangent (tanδ = 

G′′/G′), where δ is the loss angle. A stress sweep from 0.1 to 1000 Pa was performed at a 

constant frequency in order to evaluate the viscoelastic behavior of the dual crosslinked 

hydrogels. 

Figure VIII.5A shows the evolution of storage moduli with the increase of oscillatory stress. 

The non-modified κ-CA hydrogels formed only by physical crosslinking exhibits a shorter 

linear viscoelastic region, indicating a weak network that can be deformed at higher stress. 

However, the increase in the DM enlarges the viscoelastic region of the polymer network, 

suggesting that the chemical crosslinking via photocrosslinkable moieties renders highly 

stable networks. On the other hand, Figure VIII.5B indicates the evolution of the viscous 

moduli with the increase of oscillatory stress. The low values of G′′ show a trend similar to 

the G′, mainly dependent on the DM. At low stresses the G′ values were higher than the 

ones corresponding to G′′, for all the samples. The loss angle (δ) of the crosslinked polymers 

also showed a dependence on the DM. 

Figure VIII.5C presents the crossover point where the value of tan δ is 1 (G′′=G′). This 
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critical point corresponds to the change of viscoelastic behavior from solid-like (G′>G′′) to 

liquid-like (G′<G′′) behavior. This transition is correlated to the collapse of polymeric network 

and consequently of the crosslinking bridges that bear the 3D network. The shift of the 

crossover point towards higher stresses indicates that hydrogel networks are more stable for 

increased DM. This behavior was found to be similar to that showed by alginate containing 

both ionic and covalent links38 and polyethylene glycol nanocomposite hydrogels9b,39.  

 
Figure VIII.5. Viscoelastic properties, storage modulus (G´) (A) and loss modulus (G´´) (B) of swollen 

dual crosslinked hydrogels are strongly affected by DM. (C) The increase of the DM increases the 

photocrosslinkable units and the yielding of the internal network upon deformation, confirmed by the 

shifting to the right of the crossover point (tan δ=1) between G’ and G’’. 

 

VIII.3.7.2. Compressive properties 

Considering hydrogels as cell carrier, modulator and delivery systems, it is important to 

address the stability of the polymeric network under stress-relaxation cycles, reproducing the 

repetitive force loads that native tissue are being exposed. The ionic crosslinking of κ-CA 

enables the formation of strong, but brittle network, not compatible with sustained loadings. 

In gels with ionic crosslinks, stress relaxes mainly through breakage and consecutive 

readjustment of the crosslinked bonds. In contrast, in gels with covalent crosslinks, like the 

methacrylate moieties, stress relaxes through the migration of water within the network38, 

rendering a higher degree of stability within the network. 

The mechanical properties of MA-κ-CA hydrogels were characterized by applying repetitive 

compression cycles on crosslinked hydrogels obtained from MA-κ-CA with different DM 
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(Low, Medium and High). The influence of the applied crosslinking mechanisms and MA-κ-

CA concentration on the mechanical performance of the developed hydrogels were also 

considered. Hydrated vs as prepared samples highlight the influence of the hydrated state 

on the mechanical properties of the hydrogels (Figure VIII.6A-D). The increase in the 

density of photocrosslinkable units and thus, in the DM, lead to the formation of hydrogels 

with higher compressive moduli (Figure VIII.6A-B). We observed that due to swelling, 

compressive moduli of all formulations decreased dramatically, however maintaining a 

certain trend dependent on DM and crosslinking mechanism. Dual crosslinked hydrogels 

depicted significantly higher compressive moduli when compared with the chemical 

crosslinking (***p<0.001), and physical crosslinking (**p<0.01), respectively. 

Keeping DM constant, chemical crosslinking enabled the formation of hydrogels with 

relatively lower compressive modulus (**p<0.01) values, comparative to those fabricated 

only with the physical method (Figure VIII.6C). However, the combination of both physical 

and chemical crosslinking mechanisms, led to the development of hydrogels with 

significantly increased mechanical properties for all modified formulations (**p<0.01). Even if 

the polymeric chain is occupied with methacrylate groups, the ionic interactions between 

chains are possible due to solvent transport throughout the network allowing the entrapment 

of monovalent ions between the chains and therefore an increase in elastic modulus values. 

Even more, with increased concentrations of Medium MA-κ-CA (2.5, 5, 7.5, and 10% w/v), 

the compressive modulus significantly (*p<0.05) increased, due to the increased number of 

tight interaction formed upon crosslinking. 

Nevertheless, when samples were hydrated, a significant decrease in the mechanical 

performance was observed, for all the formulations. (Figure VIII.6D). As mentioned above, it 

was also found a dramatic decrease of the compression modulus in hydrated samples, as 

compared to that registered for the samples tested as prepared. As explained previously, the 

affinity for water molecules allows the loss of monovalent ions and loosens the interactions 

between chains, thus, the increased mass swelling ratios play an important role in the 

mechanical performance of hydrogels, as the solvent molecules can easily penetrate the 

network loosening the chain-chain interactions. On the other hand, due to the presence of 

photocrosslinkable groups in MA-κ-CA polymer, the double helix conformation is 

compromised. However, the chemical crosslinking and the combination with physical 

procedure, lead to the formation of hydrogels with broad range of mechanical properties. On 

the contrary, κ-CA hydrogels presented higher compressive modulus, due to the formation of 

double helix configurations that allow the chains aggregation. 

Furthermore, the toughness of chemical physical and dual crosslinked hydrogels with 

different DM was measured as an indication of network resistance to disruptive forces. As 

expected, the increase in DM rendered the formation of tougher hydrogels (Figure VIII.6E), 
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regardless of the crosslinking mechanism. This might be explained by the increase in the 

number of covalent bonds, due to the increase in the photocrosslinkable units. This is in 

agreement with studies that sustain that hydrogels resistance to network disruption is usually 

correlated with the density of the covalent bonds40. Even more, the photocrosslinkable units 

hinder the formation of tight ionic bonds between. Chains, when physical corsslinking 

mechanism is applied. Thus, even though, the network becomes loser than the  one of non 

modified κ-CA, it allows a better dissipation of stress and arrangement of chains without 

breaking the bonds.  

 
Figure VIII.6. Mechanical properties of MA-κ-CA hydrogels obtained by different crosslinking 

mechanisms. The effect of DM, crosslinking mechanism and hydration state over the compressive 

moduli of crosslinked hydrogels (containing 5 wt/v % polymer) was evaluated in (A) as prepared and 

(B) hydrated states. The effect of polymer concentration (Medium DM) over the values of 

compressive moduli for hydrogels in (C) as prepared and (D) hydrated state. (E) The increase of DM, 

as well as the crosslinking mechanism applied, significantly increases the toughness of the hydrogels.  

 
Interestingly, with the increase of DM the hydrogels acquired the ability to reversibly deform, 

without loss of energy. This behavior was not noticed for physical crosslinked κ-CA (Figure 

VIII.7A). The energy loss during deformation is proportional to the hysteresis of the loading 
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curves for the two first cycles (Figure VIII.7B). Using 50% strain level, the recovery of the 

gels after applying a loading cycle is ranging from 84.2±6.5% for Low DM to 96.5±4.1% for 

the High DM. Contrary, the κ-CA hydrogels, even possessing higher compressive moduli are 

not able to recover after the initial loading cycle. This behavior is supported by high-energy 

loss (166.7±17.23 kJ/m3 for the first cycle and 87.23±10.34 kJ/m3 for the second cycle) and 

significantly (***p<0.001) lower recovery percentage (47.5±5.4%) when compared with the 

modified formulations (Figure VIII.7C). 

The elastic behavior of the dual crosslinked MA-κ-CA can represent an important asset if we 

consider the dynamic in vivo conditions. This data is in agreement with the rheology results 

that demonstrate the stability of the covalent network when applying increased stress rates. 

For a hydrogel with ionic crosslinks, the stress relaxes as the crosslinks dissociate and 

reform elsewhere, so that the network undergoes plastic deformation, hence, the hydrogel 

cannot recover to its initial shape. On the contrary, introducing covalent crosslinks into the 

hydrogels network, by the photopolymerization process, the stress relaxes as water migrates 

out of the gel. Therefore, the network undergoes elastic deformation and can recover to the 

shape prior deformation38. 

Overall, the combination of physical and chemical crosslinking mechanisms resulted in the 

development of MA-κ-CA hydrogels with tunable mechanical properties, ranging from 

3.0±1.7kPa to 107.0±11.6kPa. Hydrogels with biologically relevant mechanics can be 

obtained by means of physiologically compatible procedures, addressing a broad range of 

applications within the TE framework. Other methacrylate based hydrogels, e.g. gellan gum, 

displayed similar tunable mechanical properties features, by changing the DM, concentration 

of polymer and/or crosslinking mechanism12.  
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Figure VIII.7. Compressive properties of MA-κ-CA hydrogels determined using unconfined cyclic 

compression. (A) Qualitative image showing the recovery of hydrogels undergoing deformation. This 

elastic behavior is not present for the non-modified κ-CA. (B) The effect of DM on the loading and 

unloading cycle during the compression test is shown in hydrogels containing 5 wt. % polymer. The 

increase in the DM increases the density of covalent bonds. As the hydrogels undergoes deformation, 

these bonds are flexible enough to allow the reorganization of the inner network, and therefore the 

recovery after deformation. Contrarily the κ-CA exhibits an irreversible plastic deformation as the 

polymer chain collapse after deformation. (C) The energy lost during the cycle can be calculated by 

determining the area between the curves. Polymer hydrogels are highly elastic and have negligible 

hysteresis. Increase in the DM results in a decrease of energy lost during the cycle. For High DM the 

recovery was about 95% compared with the Low DM, which possessed a 72% potential for recovery.  

 

VIII.3.8. 3D cell encapsulation in MA-κ-CA hydrogels  

VIII.3.8.1. Reactive species production (SOx/NOx) 

Reactive oxygen species (ROS), such as superoxide anion (SOx), and reactive nitrogen 

species (RNS), such as the nitric oxide (NOx), are generated as natural products of the cell 

respiratory metabolism and are produced in response to stress. It has been reported that 
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apoptotic events are associated with direct or indirect activation of ROS40. Therefore, the 

evaluation of the production of these species is of utmost importance to assess to which 

extent cells are exposed to stress conditions within the developed hydrogels.  

The production of SOx and NOx, as indicators of oxidative and nitrosative stress in cells, 

was evaluated to determine to which extent the chemistry and formulation of hydrogels 

affected the encapsulated cells (Figure VIII.8A). The initial SOx and NOx levels were 

attributed to stress exercised on cells as these were removed from cell culture flasks by 

trypsinization and consecutive centrifugation and resuspension. However all of these 

procedures can perturb the levels of the oxides production, as cells react and adjust to the 

external stress. The encapsulation of cells in hydrogel networks increased the levels of SOx 

and NOx. As mentioned before, external stress generates a cascade of cellular events that 

can lead to increased levels of oxidative and nitrosative stress that can cause DNA damage, 

morphological transformations and cell membrane disruptions41. 

However, the encapsulation in physical crosslinked κ-CA hydrogels does not significantly 

change the levels of SOx/NOx, when compared with cells alone, except for the High DM 

MA-κ-CA hydrogels.  

On the other hand, the use of PI, UV exposure and presence of methacrylate groups can 

seriously affect the cells integrity and viability, leading to poor functional response42. We 

evaluated the production of SOx/NOx production levels in NIH-3T3 fibroblast cells as a 

function of crosslinking mechanism and DM. The PI and UV light did not show any 

significant influence on both residual production of SOx and NOx. However, High DM 

caused a significant increase on the local levels of reactive species. 

 

VIII.3.8.2. 3D cell-laden hydrogels 

Previous studies have showed that κ-CA hydrogels sustain the viability and enable 

proliferation of different cell types24b,37. Herein, we evaluated the NIH-3T3 fibroblast cells 

viability encapsulated within photocrosslinked MA-κ-CA hydrogels by using a standard 

Live/Dead assay (Figure VIII.8B). Cell viability was evaluated 3h after encapsulation, in 

order to assess the immediate effect of the applied crosslinking mechanism. The UV 

exposure time, PI concentration and methacrylate groups density of the MA-κ-CA 

formulations, showed no significant effect over the encapsulated cells viability. A long-term 

effect of the mentioned factors was assessed after 3 days of culture. Again, the viability of 

the encapsulated cells was not significantly affected. 

The feasibility of the modified κ-CA to be used as materials for micromolding approaches 

was evaluated by creating MA-κ-CA patterns using PDMS templates. Cell-laden hydrogels 

of different shapes and sizes and easily manipulated were obtained (Figure VIII.8C). It was 

noticed that the most reliable and consistent patterns were achieved using High MA-κ-CA, 
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mainly due to their low swelling behavior. Overall, the consecutive crosslinking procedures 

(UV and KCl) and the presence of PI showed no significant effect on the viability of the cells. 

These results strengthen the potential of MA-κ-CA hydrogels to be used as cell carriers 

within a spatially controlled distribution. 

Apart from NIH-3T3 fibroblast cells, we also encapsulated MC3T3 E1-4 preosteoblast cell 

line, as well as human mesenchymal stem cells (hMSCs), within the MA-κ-CA hydrogels 

(data not shown). Preliminary results indicated that cells encapsulated for long time periods 

(up to 21 days), possess high viability (∼75%) within hydrogels. This indicates that dual 

crosslinked MA-κ-CA systems can exhibit a high potential for a range of biomedical 

applications. 

 
Figure VIII.8. Cell encapsulation in MA-κ-CA hydrogels. (A) Production of intracellular superoxide 

(SOx) and nitric oxide (NOx) by NIH-3T3 cells after encapsulation in MA-κ-CA (5%, wt/v), 0.25% PI 

(w/v), under UV exposure (40sec) and 10min KCl (5%, wt/v) treatment. Trypsinized and encapsulated 

cells in κ-CA with KCl treatment were used as controls. The assay was carried out using DHE and 

DAF-2DA oxidation assay, respectively for SOx and NOx identification. The quantification of the 
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fluorescence intensity was assessed using NIH ImageJ software. Values are represented as average 

± SD, n=3. Statistical differences (*p<0.05, **p<0.01) using one way-ANOVA followed by a Tukey 

post-test). (B) Representative fluorescence images of live (green) and dead (red) encapsulated NIH-

3T3 cells in Medium MA-κ-CA 5% obtained with different crosslinking mechanism, 3h and 72 hours 

after encapsulation. (C) Patterns of different shapes and sizes can be obtained with the developed 

materials by micromolding. Cells can be encapsulated or seeded on a predefined pattern. Scale bar 

represent 100µm. 

 

VIII.4. CONCLUSIONS 

MA-κ-CA was synthesized by reacting κ-CA with various amounts of MA, rendering the 

development of MA-κ-CA with different DM. To our best knowledge, this is the first study 

introducing a photocrosslinked κ-CA with controllable elastic moduli, swelling ratios and pore 

size distributions. These physical properties can be easily tailored by varying the DM. 

Moreover, the combination of physical and chemical crosslinking procedure led to the 

formation of hydrogels with versatile mechanical and physical performance, while permitting 

maintenance of viable encapsulated cells. By micromolding approaches, spatially controlled 

geometries and cell distribution patterns can be obtained thus enabling the development of 

cell-material platforms that can be applied and tailored to specific functionalities in tissue 

engineering applications. 
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CHAPTER IX 

GENERAL CONCLUSIONS AND  
FINAL REMARKS 

 
In the last decade, the implementation of tissue engineering (TE) concepts has emerged as 

a highly appealing strategy for addressing the regeneration of damaged tissues. The core 

essence of TE is the use of the native biological environment as a source of inspiration in 

designing its hypothesis and strategies. Thus, TE approaches aim at folding over the 

specific requirements of a tissue, while providing the adequate settings to achieve 

regeneration. Bearing this in mind, researchers borrowed concepts from a wide range of 

disciplines to provide a multi-faceted view of a strategy to be applied. Taking advantage of 

the arising of new and elaborated nano- and micro-materials, as well as the refinement of 

the understanding of the biological mechanisms and functions, new and sophisticated routes 

are nourished to provide further insight on complex biological systems. The simultaneous 

incorporation of cells, and biochemical, mechanical and topographical cues into a tri-

dimensional (3D) scaffolding material has been the most explored and the most promising 

approach to promote the regeneration of functional tissues. However, the current TE 

strategies lack the ability to merge the various technological and know-how advances, 

typically obtained independently, into a single construct in order to generate more powerful 

platforms. Moreover, from a practical standpoint, there is a need to achieve the equilibrium 

between functionality and complexity, as a highly complex system might be too difficult to 

translate into clinical practice. Thus, generating simple, but yet highly efficient strategies 

seems to be the necessary mind-set for addressing the hurdles of TE. 

With this in mind, the major objective of this thesis was to tackle this hurdles by generating a 

cohesive approach for directing stromal/stem cell differentiation, fabricating bone-relevant 

setups and providing the cues for the establishment of vascular-like structures. To do so, we 

explored the use of adipose derived stem cells (hASCs) as a single cell source to obtain 

bone forming (OBs) and endothelial cells (ECs), relevant in the context of bone 

vascularization TE, towards establishing hydrogel-3D based systems that would be able to 

host and maintain the cells’ intrinsic features, while controlling their arrangement. The use of 

silicate nanoplatelets (sNPs) as intracellular osteoinductive triggers brought into spotlight the 

possibility to sustain an in situ osteogenic differentiation upon implantation by a pre-

treatment with sNPs.    
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Hence, the major outcomes of this thesis pave the way towards more clinical relevant 

experimental designs in vitro as well as in vivo, as it is described under the topics presented 

bellow: 

  

1) SSEA-4+hASCs from a single cell source generate both endothelial and osteoblast-

like cells (chapter III) 

The stromal vascular fraction (SVF) of the human adipose tissue (AT) was proven to contain 

a cellular sub-set defined by the expression of a marker associated with pluripotency, SSEA-

4. SSEA-4+ human adipose derived stem cells (SSEA-4+hASCs) were successfully isolated 

from the SVF by means of immunomagnetic selection. By culturing SSEA-4+hASCs in 

endothelial growth medium (EGM-2 MV), cells with a mature endothelial signature were 

generated, in opposition to what was attained with non-selected hASCs cultured under the 

same conditions. Additionally, the culture of SSEA-4+hASCs in osteogenic standard 

conditions triggered their differentiation into osteoblast-like cells (OBs), at superior levels 

than those achieved with hASCs. Thus, we demonstrated that from a single cell source, 

human AT, and by selecting the appropriate sub-population and culturing conditions, it is 

possible to obtain cells with relevance for bone TE. Other attempts of obtaining ECs-like 

cells from bone marrow MSCs and hASCs involve the use of high concentrations of VEGF 

which was proven to considerable impair the therapeutic applications of these cells. On the 

contrary, our approach involves the use of significantly lower concentrations of VEGF to 

successfully generate microvascular-like ECs, known to be directly involved in the 

establishment of capillary-like structures and, consequently, of an enriched vascular network 

within tissues. The use of SSEA-4+hASCs-derived microvascular-like ECs could overcome 

the shortfalls of primary ECs usage, mainly related to the harvesting site, isolation procedure 

and cellular yield. Nonetheless, the differentiation potential of SSEA-4+hASCs is not limited 

to the endothelial lineage, thus broadening the opportunity window to tackle not only the 

vascularization aspect of tissue-engineered constructs, but also other differentiation 

pathways. 

2) SSEA-4+hASCs-derived pre-osteoblasts and ECs potential maximized under 

optimal co-culture conditions (chapter IV) 

Beside a reliable and high versatile cell source, bone TE requires a thorough understanding 

of the mechanism of cellular interaction between the most important cell-players within the 

context of vascularization: OBs and ECs. This type of studies aims at reproducing within in 

vitro settings and thus, in a more accurate manner, part of the highly complex signaling 

cascade found within bone natural biological environment. Thus, the outcome of these works 

allows a faster acquisition of knowledge and provides a framework to design more complex 
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scenarios that resemble even more the in vivo natural environment. By culturing SSEA-

4+hASCs-derived ECs and pre-OBs, at several ratios and in several media compositions, it 

was found that an above 50:50 in a mixture of standard endothelial maintenance and 

osteogenic differentiation media, cells synergistically communicate to support the full 

differentiation of the pre-OBs and the maintenance of the ECs phenotype, through the 

activation of a VEGF-mediated signaling loop.. These findings demonstrate that the use of 

SSEA-4+hASCs as a single cell source is a promising endeavor to attain 3D tissue-like 

models that require intricate settings and design to promote the regeneration of vascularized 

bone tissue.  

The combination of pre-committed cells into the osteogenic lineage and fully differentiated 

ECs, derived from the SSEA-4+hASCs, endorses the development of 3D bone-like 

constructs, defined by a controlled/designed spatial distribution of ECs within a pre-OBs-

loaded 3D matrix to maximize the continuous crosstalk between ECs and pre-OBs. Besides 

improving the osteogenic outcome of pre-OBs, the pre-organization of ECs within hydrogel 

microfibers is expected to favor the sprout and the formation of an ECs-driven capillary-like 

network. The anastomosis of these capillary structures with the host vasculature upon 

implantation will be determinant to guarantee the survival of the bone-like tissue but will 

certainly contribute to an improved regeneration process.    

 

3) Silicate nanoparticles as intracellular osteoinductive agents (chapter V and VI) 

Osteoinductivity is the key process that masters the differentiation of osteoprogenitor cells 

(i.e. pre-OBs) into osteoblasts, eventually leading to the formation of new bone. Several 

inorganic materials were found to be osteoinductive however, several limitations such as 

poor processability and insufficient degradation, are associated, harboring the need for a 

new generation of bioactive materials.  

In this thesis, Laponite silicate nanoparticles (sNPs) were brought into the spotlight of bone 

TE, intrigued by their chemistry (Na+
0.7[(Mg5.5Li0.3)Si8O20(OH)4]-0.7), shape (25-30nm disc with 

a 1nm thickness) and charge distribution (positive charged facets, negative charged sides).  

To our best knowledge, sNPs are introduced for the first time for bone TE applications. 

SNPs alone induced the osteogenic differentiation of human mesenchymal stem cells 

(hMSCs) without the addition of other osteoinductive factors, such as dexamethasone. Even 

more, when hMSCs were cultured in standard osteogenic conditions, but in the presence of 

sNPs, a significant increase in matrix deposition and mineralization was noticed. This 

observation was further expanded to the SSEA-4+hASCs sub-population cultured in the 

same conditions. A strong up-regulation of osteo-related transcripts (RUNX-2, OPN, OCN), 

high levels of collagen type I deposition and increased mineralization was observed. The 

mechanism of cell-sNPs interaction was found to be correlated with their uptake and 
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interaction with the cytoplasmatic membrane. In fact, this mechanism of action represents a 

major advantage of using sNPS as osteoinductive agents. The osteogenic differentiation 

progresses due to the intracellular signaling which avoids a repeated in vitro administration 

of other agents such as dexamethasone and BMP-2, and endorse an in situ osteogenic 

differentiation in vivo. Considering that SSEA-4+hASCs per se bear a higher differentiation 

potential towards the osteogenic lineage, their association with sNPs harbors great potential 

in TE approaches towards the development of highly mineralized templates using an 

independent differentiation process. Taking advantage of the outcomes achieved under this 

thesis described above, namely on the optimization of SSEA-4+hASCs-based co-culture 

conditions (chapter IV), the association of the SSEA-4+hASCs-sNPs system with SSEA-

4+hASCs-derived ECs might be proven worthwhile. The driven-sNPs osteogenic 

differentiation is expected to produce a boost in the intercellular crosstalk based on an 

enhancement of VEGF secretion by SSEA-4+hASCs-sNPs, which would be translated in a 

better integration of ECs within the culture and, consequently, into a highly improved 

osteogenic outcome, compatible with that of bone tissue. 

 

4) Bottom-up approaches for designing 3D micro geometries for cells encapsulation  

(chapter VII and VIIII) 

In addition to cell phenotype, the delivery of cells in controlled spatial distribution within a 3D 

setup seems to be a concern of the field of TE. For that, micro and nanofabrication 

technologies coupled with advances in materials chemistry have allowed for progresses in 

the development of biomaterials with spatially controlled microenvironments.  

In this thesis, several techniques were developed to engineer this aspect of tissue 

microenvironments. Kappa-carrageenan (κ-CA), a natural origin polymer, was used to 

develop robust 3D hydrogel structures that could accommodate cells in well-defined 

geometries. Using a two-step procedure, chitosan (CHT) coated κ-CA micro fibers were 

obtained, with diameters ranging from 0.5 to 1.25µm. The presence of the CHT coating 

enhanced the stability and the diameter of κ-CA fibers, restraining their swelling. Moreover, 

these fibers supported the viability and phenotype of encapsulated ECs, enabling their use 

as cell-delivery systems within 3D TE constructs. Furthermore, using a bottom-up approach, 

these fibers were used as building blocks for the development of suitable 3D platforms of 

independently organized heterotypic cell-containing hydrogels, relevant for bone 

vascularization approaches.  

However, in the majority of existing strategies in TE, once implanted, hydrogels can have an 

inconsistent behavior. This observation is valid for κ-CA hydrogels, which due to ionotropic 

character are not stable in physiological-like environments. Thus, when implanted, the 

strong bonds previously established for their formation are disrupted leading to the hydrogel 
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disintegration. To overtake this obstacle, κ-CA was chemically modified to incorporate C=C 

bonds to allow its crosslinking by ultraviolet light (UV) and thus its microfabrication into pre-

established patterns. The modification was accomplished by using methacrylic anhydride 

(MA), yielding a methacrylated κ-CA (MA-κ-CA) hydrogel crosslinkable not only through 

physical, but also through chemical mechanisms. As a result, by selecting the appropriate 

crosslinking mechanisms, hydrogels with versatile mechanical, swelling and degradability 

properties were produced. Moreover, the obtained hydrogels possessed high recovery rates, 

a property that is highly attractive for those TE applications where repetitive mechanical 

loads are involved.  

In conclusion, this thesis proposes the use of SSEA-4+hASCs as a single cell sub-set to 

obtain both ECs and OBs, of sNPs as osteoinductive agents and of κ-CA-based hydrogels 

as 3D matrices, towards the development of 3D architectures that would resemble that of 

native bone. Envisioning engineering vascularized bone tissue, the κ-CA hydrogels (fibers 

and discs) act as highly structured 3D template matrix where ECs are distributed in a 

microfibers-like structures surrounded by SSEA-4+hASCs-sNPs.  

 
FINAL REMARKS AND FUTURE WORK 

Despite the overwhelming number of studies that deal with the development of new 

biomaterials in TE, and in particular in bone-related applications, few of them take into 

consideration the anatomical and functional complexity of bone, by addressing the 

synergistic relation that exists between the three components of bone anatomy, cells, 

inorganic and organic extracellular matrix, and a functional vasculature. The current thesis 

recognizes the importance of concomitantly addressing these viewpoints by establishing a 

know-how platform that will enable the development of advanced bone tissue engineered 

constructs aimed at recreating the native tissue. 

Thus, we were able to successfully identify a cell sub-set, SSEA-4+hASCs, that allows 

overcoming the current shortage in cell types relevant for vascularization purposes in bone 

TE. Herein, we proposed a straightforward endothelial differentiation of SSEA-4+hASCs, 

which prevails over the complex protocols applied for the differentiation of other 

stem/stromal cells, and by-passes the reduced availability of primary microvascular 

endothelial cells. Moreover, by questioning about the interactions between SSEA-4+hASCs-

derived ECs and pre-OBs, we established a one-source co-culture system, which would 

provide the clues to reproduce, in a more accurate manner, the complex situations found in 

vivo and ultimately would enable the creation of an improved vascularized bone tissue-like 

construct. This strategy provides a significant leverage over the traditional co-culture settings 

that, for example, rely on cells harvested from separate sources, or are set with primary 

macrovascular endothelial cells.  
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Having proven the dual-differentiation potential of SSEA-4+hASCs, two parallel strategies 

were exploited, each covering either the SSEA-4+hASCs-derived OBs or SSEA-4+hASCs-

derived ECs, to inquire over their use in combination with inorganic agents and ECM-like 

matrices, respectively. The original combination of SSEA-4+hASCs with inorganic sNPs 

resulted in a boost of their privileged osteogenic differentiation capacity. The intracellular 

signaling of sNPs brings into discussion the possibility to pre-trigger SSEA-4+hASCs into 

osteogenic lineage by exposing the cells to a short treatment with sNPs. By doing so, a 

series of options in achieving the full differentiation commitment are foreseen.  Probably the 

most appealing is the pursual of complete osteogenic differentiation upon implantation, 

which would enable in situ deposition of ECM and its subsequent mineralization, but also the 

embedding of ECs within the newly formed matrix. This strategy would minimize the in vitro 

culturing steps, while replicating the in vivo bone regeneration context.   

Though the scientific and technological knowledge obtained in this thesis is very promising, 

future research has to be focused on merging the proposed strategies into a single 3D 

construct, to foster the synergistic contribution of its parts.  

Even more, the properties of the MA-κ-CA hydrogel matrices must be properly designed to 

foster the sprouting of SSEA-4+hASCs-derived ECs and the formation of a vascular-like 

network. In this direction, we have performed several preliminary experiments to improve the 

adhesion of cells on the surface of MA-κ-CA hydrogels. First, a standard RGD modification 

was applied, however, the chemistry of MA-κ-CA was proved not to be suitable for the 

covalent grafting of RGD on its backbone. Since it was proven that besides being efficient 

osteoinductive agents, sNPs improve cellular adhesion, we mixed them with MA-κ-CA 

solutions to form nanocomposite hydrogels. When SSEA-4+hASCs were seeded on the 

surface of these hydrogels, cells were able to adhere and spread.  

However, taking in consideration the combination of ECs with pre-OBs, it is still unknown 

whether the OBs-derived ECM could be both mechanically and biochemically sufficient to 

sustain the sprout of ECs and their organization of a 3D microvasculature-like network within 

the matrix. If this is the case, the mutual regulation of pre-OBs and ECs becomes evident.  

Therefore, we expect that the pre-triggering of SSEA-4+hASCs with sNPs and the 

consequent encapsulation in ECs-containing hydrogel matrices, would trigger a highly 

enriched ECM-hydrogel that would allow the deposition of a highly enriched ECM within the 

hydrogels, that would sustain the ECs sprouting .  

This is a step forward towards developing 3D functional structures, such as injectable 

matrixes, bioactive fillers or hierarchical platforms aimed at triggering specific cellular 

responses towards bone TE-related approaches, while enabling cell adhesion, proliferation 

and organization. Thus, this unique combination could be further exploited in association 

with SSEA-4+hASCs-derived ECs and pre-OBs to address the most appropriate 3D template 
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that could accommodate both cells types, either in a random or spatially organized design, 

and concomitantly meet the mechanical and functional demands of bone.  

Complementarily, a thorough study to unravel the specific mechanisms that govern the 

osteoinductive behavior of sNPs, namely addressing the aging phenomenon of sNPs and 

the evaluation of effect of the dissolution products on the osteogenic differentiation of SSEA-

4+hASCs, should be carried out. Moreover, since sNPs triggered the deposition of a collagen 

type II-enriched matrix, experiments focused on addressing the chondrogenic differentiation 

of SSEA-4+hASCs in the presence of sNPs could also be a route to pursuit. 

In an ultimate instance, the translation of the know-how acquired within this thesis into in 

vivo experiments would provide further insight over the possibility of developing fully 

autologous and vascularized bone-like 3D constructs. The challenge lies on combining the 

focus of engineering, biology and tissue functionality within the same approach to encounter 

the most suitable template to generate the vascularization of a bone tissue engineered 

construct. 
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