
Universidade do Minho

Escola de Engenharia

Nuno Miguel Rocha de Sousa
Bidirectional Distributed Data
Aggregation!

Braga, October 31, 2014

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Nuno Miguel Rocha de Sousa
Bidirectional Distributed Data
Aggregation!

Mestrado em Engenharia Informática

Trabalho realizado sob a orientação de
Professor Manuel Alcino Cunha!
Professor Paulo Sérgio Almeida

Braga, October 31, 2014

AC K N OW L E D G E M E N T S

I would like to express my gratitude to professor Alcino Cunha, my advisor in this master thesis, for
his availability and interest demonstrated during the last year, for giving me all the necessary condition
to complete my master degree, for his countless theoretical and technical contribution to this work,
and for giving me the opportunity to join the HASLab.

To professor Paulo Sérgio Almeida, my co-supervisor, who likewise helped me in the realization of
this work in sharing his knowledge and experience.

To Nuno Macedo, Tiago Jorge and Tiago Oliveira, my laboratory colleagues for the companionship,
friendship, and help they have given me throughout the last years.

To my long time friends who always gave me their support, in good times and bad, who always
encouraged me to press on and who always gave me amazing social moments needed to distract the
mind from work.

Finally, a very special thanks to my mother, stepfather and sister for their patience and understand-
ing during the writing of this thesis, for always support me and for always believe in me.

This work is funded by the ERDF through the programme COMPETE and by the Portuguese Gov-
ernment through FCT (Foundation for Science and Technology), project reference FCOMP-01-0124-
FEDER-020532.

A B S T R AC T

Transforming data between two different domains is a typical problem in software engineering. Ideally
such transformations should be bidirectional, so that changes in either domain can be propagated to the
other one. Many of the existing bidirectional transformation frameworks are instantiations of the so
called lenses, proposed as a solution to the well-known view-update problem: if we construct a view
that abstracts information in a source domain, how can changes in the view be propagated back to the
source? The goal of a distributed data aggregation algorithm is precisely to compute in one or more
network nodes a local view of a given global property of interest. As expected, such algorithms react
to updates in the distributed input values, but so far no mechanisms were proposed to bidirectionalize
them, so that updates in the computed view can be reflected back to the inputs. The goal of this thesis
is precisely to research the viability of such bidirectionalizon in a distributed setting.

a

R E S U M O

Transformação de dados entre dois domı́nios distintos é um problema tı́pico em engenharia de soft-
ware. Idealmente tais transformações deveriam ser bidireccionais, e assim essas modificações pode-
riam ser propagadas de qualquer domı́nio para o outro. Muitas das ferramentas existentes para
transformação bidireccional são variações das chamadas lentes, propostas como solução para o bem
conhecido problema view-update: se construı́mos uma vista que abstrai a informação de uma fonte
de informação, como podem as modificações na vista serem propagadas de volta para a fonte de
informação? O objectivo de um algoritmo distribuı́do de agregação é precisamente obter em um ou
mais nodos da rede uma vista local resultante de uma dada propriedade global de interesse. Como es-
perado, tais algoritmos reagem a modificações nos valores de entrada, mas até agora nenhum mecan-
ismo foi proposto para a sua bidireccionalização, ou seja, em para permitir modificações na vista
obtida possam ser refletidas nos valores de entrada nos nós da rede. O objectivo desta tese é precisa-
mente investigar qual a viabilidade dessa bidireccionalização em cenários distribuı́dos.

b

C O N T E N T S

Contents iii

i I N T RO D U C T O RY M AT E R I A L 3

1 I N T RO D U C T I O N 4
1.1 Organization of the thesis 6

2 B I D I R E C T I O N A L T R A N S F O R M AT I O N S 7
2.1 Frameworks 7

2.1.1 Maps 7
2.1.2 Lenses 8
2.1.3 Constraint maintainers 12

2.2 Deployment of bidirectional transformations 13
2.2.1 Ad hoc 14
2.2.2 Combinatorial 14
2.2.3 Syntactic 14
2.2.4 Semantic 15

3 D I S T R I B U T E D DATA AG G R E G AT I O N 16
3.1 Aggregation function 16

3.1.1 Decomposability 17
3.1.2 Duplicate sensitiveness and idempotence 18

3.2 Taxonomy 19
3.2.1 Communication perspective 19
3.2.2 Computation perspective 21

ii C O N T R I B U T I O N 23

4 B I D I R E C T I O N A L D I S T R I B U T E D DATA AG G R E G AT I O N 24
4.1 Application scenarios 24
4.2 System model 25
4.3 Bidirectional aggregations 27
4.4 Least-change metrics 28

4.4.1 Sum of squared differences 28
4.4.2 Sum of relative deviations 29
4.4.3 Sum of Changed nodes to Zero or Non-Zero 29
4.4.4 Sum of Changed Nodes 30

iii

4.4.5 Examples in using different metrics with the same primitive on disagregga-
tion 30

4.5 Concurrent operations 32
4.5.1 Counter system 34

4.6 Algorithm 35

5 S I M U L AT O R 41
5.1 Simulation 42
5.2 Verification 42

5.2.1 Correctness verification 42
5.2.2 Least-change verification 43

5.3 Design and implementation 44
5.3.1 Design 44
5.3.2 Implementation 46

5.4 Concurrent updates on Algorithm 2 46

6 C O N C L U S I O N 48

iii A P E N D I C E S 50

A O P T I M A L S O L U T I O N T O M I N I M I Z E T H E S U M O F R E L AT I V E D E V I AT I O N 51

iv

L I S T O F F I G U R E S

Figure 1 Smart grid application scenario 5
Figure 2 Map example 8
Figure 3 Lenses framework: a non-deterministic example 9
Figure 4 Maintainers framework 12
Figure 5 Decomposable and Self-decomposable examples 19
Figure 6 Node state and a representation of the state about the down level nodes 25
Figure 7 Representation of an update in the system triggered by an external input 26
Figure 8 Representation of disagreggation of the same primitive with different metrics

(aggregation) 31
Figure 9 Representation of disagreggation of the same primitive with different met-

rics 31
Figure 10 Output Change - cross information 32
Figure 11 Output Change with glitch 33
Figure 12 Output Change without glitch 33
Figure 13 Output Change - cross information 34
Figure 14 System overview 42
Figure 15 Correctness verification 43
Figure 16 Least-change verification 44
Figure 17 Composicional approach in implementation 45
Figure 18 Algorithm 2, concurrent updates 47
Figure 19 Distributed system 51

v

L I S T O F TA B L E S

Table 1 Algorithm 1 functions 40
Table 2 Algorithm 2 functions 40
Table 3 Test data 51

vi

Part I

I N T RO D U C T O RY M AT E R I A L

1
I N T RO D U C T I O N

Transformation and consistence maintenance between two different domains is a key issue in soft-
ware engineering. For example, in Model Driven Engineering, relational database schemas are often
derived from UML class diagrams, and it would be interesting that, when the user changes a schema,
such changes are reflected back in the corresponding class diagram. Another example is the view-
update problem in databases, where SQL queries can be defined to compute views of a database; it
would be useful to be able to update such views and propagate back modifications to the database.
One last example is when a platform-specific model (PSM) is generated from a platform-independent
model (PIM); Several times the PSM must be changed due to new requirements, and the only op-
tion is to change the PIM according to the specification and generate (again) the PSM; It would be
preferable to be able to change the PSM and have this update propagated to the PIM. All the above
scenarios illustrate the need for bidirectional transformations (BXs), that allow, not only to derive a
target artifact from a given source, but also to propagate changes in the target back to the source. Such
bidirectionally is essential to keep both artifacts consistent, and avoid the need to manually propagate
updates, a task that is both tedious and error prone.

This bidirectionality can be achieved in a naive way: writing two different transformations, which
fit together in some appropriate sense, e.g., being somehow the inverse of each other. This option can
be easily achieved but its maintenance is a difficult task because the two functions must embody the
structure that the input and output schemas have in common, so changes to the schema will require a
coordinated change in both. This approach is unsatisfactory for all but the simplest transformations.
A more effective alternative is creating a notation in which both transformations can be specified in a
single artifact, as advocated, for example, in the popular lens Foster et al. (2007) approach to bidirec-
tional transformation.

Distributed data aggregation Jesus et al. (2011) - the capability to summarize information sublinear
in the size of summarized data - is an important task in a distributed system, allowing the efficient
collection of general information about the system. Some common aggregation functions are: count,
sum and average, and some examples of application of this functions are: counting the number of
nodes in the system; sum the storage available in the system; or system load average.

4

(a) Sum aggregation of energy production. (b) Update sum value.

Figure 1.: Smart grid application scenario

This work aims to achieve a bidirectional and decentralized control in a distributed system, by
combining the lenses approach with distributed data aggregation algorithms. This will allow, after
aggregating the values from the different nodes, to make an update to the aggregate and have this
change propagated back to one or more source nodes. To achieve this, a language will be proposed
to describe and perform such bidirectional aggregation. Figure 1 presents an example of a possible
application of such bidirectional data aggregation. Suppose we have a Smart Grid with a set of nodes,
and we want to compute (in a given control node) the sum of energy production. This can be achieved
with a simple distributed data aggregation algorithm, as depicted in Figure 1a. Our goal is to allow
the control node to update this value and somehow propagate back the update to the source nodes,
such that running the aggregation again yields the desired value, as shown in Figure 1b. Of course
there are many possible ways to perform such disaggregation: to deal with this issue we intend to use
the least change principle to control such non-determinism: this principle requires ways to select the
”best” among the possible options, to keep the selection as predictable as possible and therefore more
deterministic.

The proposed approach can be applied in real uses cases like Smart Grids for intelligent use of en-
ergy or to the management of a Distributed Database. In Smart Grids, the main goals of such system
are to manage the supply and energy production of network elements (houses, factories, and so on).
More concrete examples are managing the energy produced (by photovoltaic panels in the network
elements) and managing the energy consumption at a given time (hours where there is a greater energy
consumption in the network). In Distributed Databases the goals of such system could be managing

5

the number of replicas, storage available and number of nodes in the system. With the proposed ap-
proach all these examples could be more easily implemented.

1.1 O R G A N I Z AT I O N O F T H E T H E S I S

The remainder of the thesis is as follows. In the next two chapters we provide background informa-
tion about Bidirectional Transformations and Distributed Aggregation. In Chapter 4 we specify the
application scenario, and present the system model and a compositional theory of Bidirectional Ag-
gregation. Chapter 5 describes the created bidirectional distributed algorithm and Chapter 6 presents
the developed simulator, which provides experimental results from the practical implementation of
our theory about Bidirectional Aggregation. Finally in Chapter 7 we present our conclusions with
potential paths for future research.

6

2
B I D I R E C T I O NA L T R A N S F O R M AT I O N S

The burgeoning interest in bidirectional transformations (BX’s), concerning its enormous importance
and applicability in a vast domains, has led to numerous proposed approaches due to different visions
of the problems and class of problems where the need for BX arises. This section presents the main
approaches of the existing BX frameworks to understand precisely their advantages and limitations.

2.1 F R A M E W O R K S

The bidirectional transformations can be classified in three well-known and well-established frame-
works: Maps, Lenses and Maintainers. These frameworks, explained below, may be classified ac-
cording to its interface: Symmetric, ”The update propagation nature is the same in both directions.”
(Pacheco et al. (2013)), i.e., the definition of forward and backward transformations are similar which
means the two different domains are more balanced and contain roughly the same information, or that
each may contain information not presented in the other; Asymmetric, ”The update propagation nature
is different in both directions.” (Pacheco et al. (2013)), i.e., one of the domains contains more informa-
tion than the other (one domain is an abstraction/ summary of the other). The following presentation
assumes the BX is a pair of functions that implements a consistency relation between two different
domains (Source (A) and Target (B)), whose main purpose is to propagate Source updates into Target
updates, and vice-versa, to maintain the consistency between the two domains.

2.1.1 Maps

Maps are the simplest framework since they perform the translation of source updates into target up-
dates and vice-versa without additional information. There is a forward transformation (1) named to

that translates Source updates into Target updates, and the backward transformation (2) named from

that translates Target updates into Source updates. The types of the Map transformations are:

to : A ! B (1)

7

Figure 2.: Map example

from : B ! A (2)

The following laws are usually required for Maps to be well-behaved, but also entail that Maps are
only useful for bidirectional transformation between bijective domains.

from(to(a)) = a (3)

to(from(b)) = b (4)

An example of the Map framework is presented in Figure 2 where two domains (A and B) store the
names and surnames of persons: the domain A with the arrangement ”Name Surname” and the domain
B with the arrangement ”Surname, Name”. The consistency relationship between these two domains
is: the name and the surname are the same in the both domains but in domain A the arrangement
is ”Name Surname” and in the domain B the arrangement is ”Surname, Name”. When an update is
made (by user) in domain A, the from transformation will recover the consistency between the two
domains.

2.1.2 Lenses

Lenses are the popular asymmetric framework proposed by Foster et al. (2007) inspired in the view-
update problem from database theory. A lens l between A and B comprises two functions: a total
get

l

: A ! B, that given an a : A computes a view b : B; and a possibly partial put
l

: B ! A ! A,
that given an updated view b

0
: B and an a : A puts back b

0 into a, in order to obtain an updated a

0
: A

of which b

0 is a view.

Lenses, as was mentioned, are inspired on the well-known view-update problem, so likewise view-
update problem, the view (the result / output from get function) represents an abstract view from the

8

Figure 3.: Lenses framework: a non-deterministic example

Source with less information: this feature leads to non-determinism on the backward function as long
as several elements from Source can be abstracted to the same view.

A non-deterministic example is depicted in Figure 3 where the domain A contains the following
information: Name, monthly expenses for food and monthly expenses for rent (of certain person), and
the domain B, which represents an abstract view from A with less information, contains the following
information: Name and the sum of the monthly expenses. When an update is made on the sum of the
monthly expenses value in domain B, there are a myriad of (correct) options to propagate this update
to the domain A (e.g.: only update the expenses with food, only update the expenses with rent, update
both equally, and so on). In this example (Figure 3), the used option was: only update the expenses
with rent.

To deal with this non-determinism, the put function in addition to the updated element in Target
considers additional traceability information, the original Source element, and the least change prin-
ciple Meertens (2005) (detailed bellow).

In scenarios where an update is made in a view element and this new value has no counterparts in
the original Source, there are two main solutions to taming with this issue: 1. Disallow the update. 2.
The backward function invents a new Source element with a function create with the following type:

create : A ! B (5)

Due to the asymmetry of lenses, this framework only works well for surjective forward transforma-
tion, i.e., functions that only abstract away information.

9

Properties of lenses

A lens l between A and B is well-behaved, denoted by l : A D B, if it satisfies the following laws:

put

l

b

0
a = a

0) get

l

a

0 = b

0 (PutGet)

get

l

a = b) put

l

b a = a (GetPut)

Law PutGet ensures that the updates in b

0 are translated exactly, i.e. when put

l

returns an a

0
: A it is

indeed a source value of which b

0 is a view (the lens is acceptable). Law GetPut ensures that if the view
is not updated then put

l

is bound to return exactly the same source that originated it (the lens is stable).

The totality in lenses means that the get function should be defined for any element in Source and
the put function should be capable to translate and propagate to Source any update made in the Target.
A lens l is total if both get

l

and put

l

are total.
As an example of a total well-behaved lens, consider plus : R ⇥ R D R, a lens that adds two

numbers, with the following definition:

getplus (x, y) = x + y

putplus z (x, y) =

✓
x +

z� (x + y)
2

, y +
z� (x + y)

2

◆

In this case putplus divides the update on the view equally among both summands. However, this
is just one among all possible well-behaved definitions for putplus – when get

l

is not injective, if the
view is updated, put

l

may have several possible sources to choose from when translating an update.
For example, the following less sensible definition for putplus is also well-behaved:

putplus z (x, y) =

(
(x, y) if z = x + y

(z, 0) otherwise

The problem is that PutGet, which establishes an upper bound on the behavior of put
l

(i.e. which
results are admissible), is for most applications too weak. One possibility to strengthen this law is to
also require put

l

to obey the least change principle Meertens (2005).

Least change principle in Lenses

The least change principle Meertens (2005), states that put should return a source a

0 that is the closest
to the original source a, among all sources that share the same view b

0. The specific metric used
to evaluate closeness is of course type and application dependent, and should be left for the user to
specify.

10

Assuming the source type A is a metric space (A, D), where D : A⇥ A ! R is a distance function
satisfying the standard properties

D(a, a

0) = 0 , a = a

0 (6)

D(a, a

0) = D(a

0
, a) (7)

D(a, a

00)  D(a, a

0) + D(a

0
, a

00) (8)

the least change principle can be formalized as follows Macedo et al. (2013):

put

l

b

0
a = a

0 ^ get

l

a

00 = b

0) D(a, a

0)  D(a, a

00) (LeastChange)

When a lens is total, (LeastChange) subsumes (GetPut) since the source value a is the closest to itself,
as property (6) requires (this property is usually known as identity of indiscernibles). A well-behaved
lens l : A D B that also satisfies (LeastChange) for metric space (A, D) will be denoted as lD : A D B.

Some examples of metric spaces on real numbers are

D (x

1

, x

2

) = |x
1

� x

2

|
D�(x

1

, x

2

) = sgn |x
1

� x

2

|

where sgn is the standard signum function

sgn x =

8
><

>:

�1 if x < 0

0 if x = 0

1 if x > 0

Note that D� is the discrete metric overR, that returns 1 if the two values are different and 0 otherwise.
A standard way to lift a metric space (A, D) to work on pairs (or any vector space) is to take the p-
norm of the point-wise distance between coordinates. For example, the metric space (A ⇥ A, D

p

)

thus obtained is defined as

D
p

((x

1

, y

1

), (x

2

, y

2

)) = p

q
D(x

1

, x

2

)p + D(y
1

, y

2

)p

Note that
D•((x

1

, y

1

), (x

2

, y

2

)) = max(D(x

1

, x

2

), D(y
1

, y

2

))

Back to our example lens plus, for example, if the desired distance metric is D
2

then the first
definition of putplus satisfies (LeastChange), but the second doesn’t. However, if the desired metric is
D�

1

, for putplus to be well-behaved and satisfy (LeastChange) it would need to minimize the number
of elements in the source pair that are changed. None of the above definitions satisfies that, but the
following definition would:

putplus z (x, y) = (z� y, y)

11

Figure 4.: Maintainers framework

Law PutPut

There is a (optional) third law that may be considered, called PutPut. This law states that the effect of
two consecutive put applications is just the effect of the second put, i.e., the translation of a composite
view does not depends on the intermediate source (is history ignorant).

put(b0, put(b, a)) = put(b0, a) (9)

A well-behaved lens that also satisfies this law, is called very well-behaved.

2.1.3 Constraint maintainers

Constraint maintainers are a symmetric framework that is represented by a pair of two functions that
processes the necessary updates for constraint maintenance (Meertens (2005)), and its arguments are
the original value at one end and the updated value at the other end. In opposition to Maps and Lenses,
the consistence relationship is not implicitly in transformations, so the two functions know which
parts are related between Source and Target and restore them after an update, up to a consistence
relationship explicitly defined.

The types of the consistency relation R (10) between a source A and a target B and its maintainers
(11 and 12) are represented below.

R ✓ A⇥ B (10)

/ : A⇥ B ! A (11)

. : A⇥ B ! B (12)

12

In figure Figure 4, the consistence relation states that in both domains the name must be the same.
When the name is changed in one domain (domain B), the constraint maintainers function takes the
original value at one end (Marco Botton) and the updated value at the other end (John Botton) and
change the name on the other domain (domain A) to restore the consistence relationship between
them.

Properties of constraint maintainers

The main requirement on constraint maintainers is that after an update at one end, the consistence can
be restored after the assignment done from . or / (depending on what end the update is made). This
property is named as Correctness, and can be formalized as follows.

(x / y, y) 2 R (13)

(x, x . y) 2 R (14)

Constraints maintainers must also ensure the minimal changes after an update (later, a more specific
notion of minimal changes is presented). In a general way, a weaker version of minimal changes
is that no unnecessary changes are made, i.e., if after an update to B if the consistence relation R

remains valid, the effect of x / y should be nil. This property is named as Hippocraticness, and can be
formalized as follows.

(x, y) 2 R) x / y = x (15)

(x, y) 2 R) x . y = y (16)

The principle of Least Change

The principle of Least Change, as previously presented in Lenses section 2.1.2, requires that the trans-
formation . or /, which establish the consistency between the two different domains (Source and
Target), return minimal changes, up to some measure, when performing an update propagation. This
principle requires ways to select the ”best” among the possible options, to keep the selection as pre-
dictable as possible and therefore more deterministic.

2.2 D E P L OY M E N T O F B I D I R E C T I O N A L T R A N S F O R M AT I O N S

The bidirectionality can be achived with the following distinct techniques:

13

2.2.1 Ad hoc

The Ad-hoc approach consists in writing two functions (forward and backward), independently from
each other, which must be proved correct by the developer: if there is a modification of the data types
which the functions receive as input, its necessary to redefine both transformations - which is error-
prone, and a new correctness prof is needed.

2.2.2 Combinatorial

In contrast to the Ad-hoc approach, the language used to express bidirectional transformations in
a combinatorial framework has a native bidirectional semantics, i.e., each available primitive and
combinator is bidirectional (has a forward and backward execution semantics). With this approach
it is guaranteed that each expression is correct-by-construction. Lenses are the most well known
example of a combinatorial bidirectional framework. An example of a well-behaved bidirectional
lens primitive is the projection function fst : A⇥ B ! A, defined as follows:

get

f st

: A⇥ B ! A (17)

get

f st

(x, y) = x (18)

put

f st

: A ! (A⇥ B)! (A⇥ B) (19)

put

f st

x

0(x, y) = (x

0
, y) (20)

The fundamental lens combinator is sequential composition, that given two well-behaved lenses
l : A D B e m : B D C produces a well-behaved lens (l; m) : A D C, defined as follows:

get(l;m) a = get

m

(get
l

a) (21)

put(l;m) c

0
a = put

l

(put
m

c

0(get
l

a))a (22)

2.2.3 Syntactic

In this approach, the backwards transformation is computed in compile-time, i.e., taking into account
the syntax of a forward transformation, usually expressed in a general purpose programming language.

14

This approach is applicable when ”a deeper whole-program analysis is necessary or for the bidirection-
alization of a (syntactically restricted) general-purpose language according to program transformation
techniques” (Pacheco et al. (2013)).

2.2.4 Semantic

In this approach, the backwards transformation is computed in run-time, i.e., the decisions to trans-
late and propagate the updates are made on-the-fly - ”programs are bidirectionalized on-the-fly, by
encoding the unidirectional transformations as algorithms that observe the inputs/outputs for specific
run-time executions.” (Pacheco et al. (2013)).

15

3
D I S T R I B U T E D DATA AG G R E G AT I O N

Data aggregation, ”the ability to summarize information” quoting Robbert Van Renesse (Van Renesse
(2003)), is an essential task in distributed systems that allows the determination of meaningful global
properties in a decentralized manner. For instance, this task is the essential basis for many large
networking services (e.g., address aggregation allows Internet routing to scale), the standard service
in database (e.g., using SQL queries, users can explicitly aggregate data in one or more tables) and
is used by many distributed paradigms and consistence mechanisms (e.g., synchronization based on
voting requires votes counting).

The present section provides a more specific definition of Distributed data aggregation - considering
that the process consists in the computation of an Aggregation function (Section 3.1), and provides a
taxonomy of the existing distributed aggregation algorithms (Section 3.2).

3.1 AG G R E G AT I O N F U N C T I O N

As aggregation function takes a multiset NA of values of type A and computes an output of type B.
Since it aims at summarizing information, a value of type B should take less space then the input
multiset, and it is often the case it takes much less space (for example, B being the same as A). In
distributed data aggregation the input multiset abstracts a particular state of the network, where each
node contains a value of type A. As such, it is convenient to refine the input multiset as a function
from (unique) node identifiers to values of type A. The set of node identifiers of a network will be
denoted as I, and thus the input to an aggregation function will have the type A

I. Node identifiers will
be denoted by i, j, i

0
, . . ., and network states (i.e. multisets) by s, s

0
, To simplify the presentation

we will usually denote the value of s at node i by s

i

instead of s(i).
In this thesis we will only consider aggregation functions where the input is a multiset of reals

(A = R). Typical aggregations that fall in this category include Sum : RI ! R, Min : RI ! R,
Max : RI ! R, Average : RI ! R, Mode : RI ! R, or Count : RI ! N.

We can define a generic higher-order function that, likewise to foldr on lists, embodies a typical
pattern of defining aggregations recursively over multisets:

16

L·, ·M : (A ! B)! (B⇥ B ! B)! A

I ! B

L f ,�M {a} = f a

L f ,�M (s
1

] s

2

) = �(L f ,�M s

1

, L f ,�M s

2

)

The first parameter f is used to compute the output value from the input at each node (notice that
it cannot take the node identity into account), and � is a merge operator that combines the results of
aggregating the values recursively at two disjoint partitions of the input multiset: note that] denotes
the standard multiset sum, and since each input multiset can be decomposed in many different ways,
for this function to be well-defined the operator � must be commutative and associative.

3.1.1 Decomposability

An aggregation function can be performed in a single computation (centralized), but in some cases
it may need to be performed in a distributed way (e.g., due to efficiency issues). To perform a dis-
tributed aggregation, it is relevant to know the degree of decomposability in function, i.e., whether the
function can be decomposed in several computations, with each computation receiving a sub-multiset
as input. In order to clarify the notion of decomposable aggregation function, and its sub-set called
self-decomposable aggregation function, the follow paragraph provides a more precise definition.

Decomposable and Self-decomposable

The main difference between decomposable functions and its subset self-decomposable functions is:
in self-decomposable functions, the intermediate results can be calculated in the output domain, in
opposition, decomposable functions, that are not self-decomposable, need an intermediate domain to
hold the intermediate results.

An aggregation function is self-decomposable Jesus et al. (2011) if it can be defined with the above
folding pattern. For example, Sum, Min, Max, and Count are self-decomposable:

Sum = Lid, plusM
Min = Lid,minM
Max = Lid,maxM

Count = L1, plusM

Here, id is the identity function and k a = k is a function that always returns a given constant.

17

The computation of two self-decomposable aggregations can always be fused in a single self-
decomposable aggregation, since

L f ,�M M Lg,⌦M = L f M g,�M
where � ((x

1

, y

1

), (x

2

, y

2

)) = (x

1

� x

2

, y

1

⌦ y

2

))

Here, (g M h) x = (g x, h x) is the split combinator that packs the output of two functions in a
pair. This law is the equivalent for multisets of the well known loop fusion or banana split law for
folds over lists Meijer et al. (1991).

An aggregation function g is decomposable Jesus et al. (2011) if it can be defined as the composition
of a function h after a self-decomposable aggregation, i.e. g = h � Li,�M. For example, Average is a
decomposable aggregation, since:

Average = div � (Sum M Count)

where div(s, n) = s/n

Some aggregations are not decomposable, e.g. Mode.

A practical example is: given a multiset N = {1, 2, 3, 4, 5} and the submultisets N

0
= {1, 2, 3}

and N

00
= {4, 5} from N, a self-decomposable function (Sum) may calculate the result directly in the

output, as shown in Figure 5a. A decomposable function (Average), which is not self-decomposable,
may not calculate the result in the output domain, as in Figure 5b, i.e., it needs an intermediate domain
with more information, as illustrated in Figure 5c - in this case, the number of elements that the average
value corresponds.

3.1.2 Duplicate sensitiveness and idempotence

For some aggregation functions it may be relevant whether a given value occurs several times in a
multiset. For aggregation functions such as min and max the occurrence of a given value several times
is not a problem because it does not influence the final result, which only depends on its support set
(the set obtained when all the duplicate values are removed from the original multiset), as exemplified
in Equation (23) for Max.

Max({1, 1, 2, 2, 3, 3}) = Max({1, 2, 3}) = 3 (23)

12 = Sum({1, 1, 2, 2, 3, 3}) 6= Sum({1, 2, 3}) = 6 (24)

Duplicate sensitiveness is relevant in a distributed context because many duplicate insensitive func-
tions can be implemented using an idempotent binary operator on the elements of the multiset, that

18

(a) Self-decomposable function

(b) Decomposable function which is not self-decomposable

(c) Decomposable function which is not self-decomposable

Figure 5.: Decomposable and Self-decomposable examples

helps obtaining fault tolerance and decentralized processing, allowing redundancy by retransmission
or sending values across multiple paths without affecting the final result of the aggregation function.

3.2 TA X O N O M Y

In this section, we present a general taxonomy for existing distributed data aggregation algorithms.
The following taxonomy will classify the algorithms according to two perspectives: Communication
and Computation (Jesus et al. (2011)). The communication viewpoint refers to issues such as routing
protocols and network topologies, and the computation viewpoint refers to the aggregation functions
performed by the algorithms.

3.2.1 Communication perspective

This viewpoint, which categorizes algorithms according to its routing protocols and network topolo-
gies, may be divided in three main categories: Structured, Unstructured and Hybrid.

19

Structured

These algorithms are ”structure-dependent”, i.e., depend on a specific network topology and routing
topology to perform correctly. The main cons of these algorithms are: the adaptability to dynamic
scenarios and become directly affected by problems from the used routing topology (on tree-based
communication structures, nodes are a point of failure). The first con, can be overcome with an
additional preprocessing phase that ”creates” a routing topology before executing - but this solution
may be ”heavy” to achieve.

H I E R A R C H Y- B A S E D A P P RO AC H E S

The main feature of these algorithms is the routing strategy which is hierarchically organized (e.g.,tree),
i.e., there is a node where all the operations in system are triggered from - called sink.

Commonly these algorithms spread the information level to level, up to an established hierarchy,
and this process is made in two phases: Request and Response. Request refers to the aggregation
request, which was triggered from sink, through all the network; Response refers to the answer from
all nodes in the system to the request previously performed. The strategy used in this approach is
simple and therefore provides an accurate execution of aggregates (if there isn’t node failures during
the aggregation process).

R I N G - B A S E D A P P RO AC H

In general, in ring-based approaches, the data is propagated in a ”circular manner”, due to the topology.
A failure in a ring can compromise the communication in all system (single point of failure). Typically
this approach is surpassed by the hierarchy-based approach.

Unstructured

In opposition to structured algorithms, unstructured algorithms are not ”structure-dependent” and can
operate independently from the network topology. This category, usually gossip-based, is important
to solve problems in large scale systems such as node failure and message loss.

F L O O D I N G / B RO A D C A S T B A S E D A P P RO AC H E S

In this approach all the nodes in the system participate in the data aggregation process, i.e., the node
which performs the request sends messages to all neighbors and, in turn, neighbors do the same.
Typically this approach brings a high network load during the aggregation process.

R A N D O M WA L K B A S E D A P P RO AC H

This approach only promotes the participation of some nodes and relies on probabilistic methods,
i.e., only process data samplings to estimate an aggregation value. In general, the messages are sent
sequentially from one node to another (to a neighbor) and this neighbor is randomly selected (called
one-to-one). Due to the partial participation of the nodes in the system, this approach introduces a

20

lower network load during the aggregation process, nonetheless, the result will always contain an
estimation error.

G O S S I P - B A S E D A P P RO AC H

Gossip-based algorithms, in general is a midpoint of the two previous approaches, i.e., send a request
to a subset that is randomly chosen. A start node sends to some neighbors the request message and, in
turn, the neighbors do the same process (called one-to-many). The main features of this approach are:
simplicity, robustness in terms of fault tolerance and scalable information propagation.

Hybrid

This category of algorithms mixes the two previous categories to achieve solutions that combines their
pros and minimize their cons, in order to obtain better solutions.

H Y B R I D A P P RO AC H E S

In general, this hybrid approach is the combination of hierarchy based schemes (which are more
affected by the occurrence of faults) and gossip based algorithms (which introduce a higher overhead
during the aggregation process) in a solution that is a trade-off between this two approaches.

3.2.2 Computation perspective

This viewpoint, which categorizes algorithms according its aggregation functions, may be sub-divided
in the next categories: Hierarchical, Averaging, Skecthes, Digests, and Sampling. We will now de-
scribe the main characteristics of these different categories.

Hierarchical

In hierarchical approaches, inputs are divided into separated groups and the calculation is performed
distributively and hierarchically (hierarchy previously calculated), taking advantage of decomposable
property in some aggregation functions. This approach performs correctly if no faults occur during the
aggregation process (no fault tolerance) and the global processing and memory required are identical
to the ones required from a centralized application that performs an aggregation function.

Averaging

Averaging approaches, in general, perform the calculation over partial aggregates, and continuously
average and exchange data among all the nodes that participates in the aggregation process. This
approach tends to achieve high accuracy (with all nodes converging to the correct result) but only if
algorithms respect an important principle - mass conservation (the sum of the values of all nodes in
the system is the same along time). Usually this method can be found in gossip based approaches.

21

Skecthes

The main feature in this approach is the use of an auxiliary structure (with a fixed size) that holds
a sketch off all node values. Being the operations in sketches order and duplicate insensitive, the
aggregation process can be performed through multiple paths and therefore independent from the
routing topology. This approach is based on probabilistic methods and the accuracy depends on the
sketch size, i.e., there is a trade-off between accuracy and sketch.

Digests

The main feature in this approach is the ability to perform complex aggregation functions (e.g., me-
dian) besides the common ones (Sum, Count). In general, these algorithms calculate a digest that
abstracts the system and holds an approximation of the probabilistic distribution of the input values in
all nodes. The accuracy depends on the quality of digest calculated.

Sampling

Sampling approach refers to a set of distributed algorithms that was designed uniquely for one aggre-
gation function - Count. This kind of approach exists due to the importance of the Count function
(e.g., determination the number of nodes in the system). These algorithms are based on probabilistic
methods and only a portion of nodes in the network participates in the aggregation process, therefore,
it is lightweight in terms of messages exchanged.

22

Part II

C O N T R I B U T I O N

4
B I D I R E C T I O NA L D I S T R I B U T E D DATA AG G R E G AT I O N

In a distributed setting it could be interesting to bidirectionalize some aggregation algorithms to
achieve a novel mechanism to control the overall state of the network. This would allow changes
in the aggregate value to be propagated back to the source nodes, ensuring convergence to a new desir-
able state. In this chapter, we first present some potential application scenarios for such bidirectional
distributed aggregations followed by the specifications of the used system model and the description
of some least-change metrics which establish the different behaviors in the disagregation process.
Finally, we motivate the need to control the causality of messages in the system, and propose an al-
gorithm to perform bidirectional distributed data aggregation that takes into account that and other
issues identified in the previous sections.

4.1 A P P L I C AT I O N S C E N A R I O S

Suppose there is a Smart Grid where its nodes are energy production sources, more specifically hy-
droelectric dams. The determination of a meaningful property in the system at some moment, for
instance the produced energy, is very important to take some decisions about the system, such as:
”Should we increase the production of energy?” or ”Should we decrease the production of energy in
a particular damn?”. This can be achieved with a simple data aggregation algorithm. However, how
can we update the system state after obtaining such information? A simple option is to calculate an
optimal solution to the system in a centralized manner, and send the optimal solution to all nodes in
the system. This solution is not practicable for large systems because the central processing of the
optimal solution may be heavy and the amount of information (information with all the system state
at some moment) that is passed on the network may overload the network. The approach proposed in
this thesis, bidirectional distributed data aggregation, intends to enforce updates on the system state
in a decentralized manner (the updates are calculated in each node with a local perspective) and with
the minimal amount of information passing on the network.

Another example is on distributed databases where replication plays an important role - due to
backup and high-availability issues. Suppose that in a certain distributed database are stored videos
(e.g., Youtube), and due to the success of a particular video it would be convenient to increase the

24

Figure 6.: Node state and a representation of the state about the down level nodes

number of replicas of this video - to achieve a better high-availability and performance configuration.
A classic solution to achieve this goal would be to run an aggregation algorithm for the determination
of the number of replicas of that video, somehow determine which servers don’t have a replica and
send instructions for these servers to store a new replica of that video. With the approach proposed
in this thesis, bidirectional distributed data aggregation, after computing the number of replicas of the
video in the system (through aggregation), only needs to define the new desired number of replicas
and the system would converge to the desired state - in a transparent manner.

4.2 S Y S T E M M O D E L

In this project it is assumed that the system model has the follow specification: tree topology, asyn-
chronous communication, no faults occur and all nodes are reactive, in other words, they react to
external inputs. Tree topology was chosen due to its hierarchy structure that simplifies the communi-
cation with all the nodes in the system - at the routing level, i.e., when it is necessary to communicate
with some node in the system, there is only one path to reach such node. The asynchronous commu-
nication is assumed, and so the communication is not accomplished according to some clock - giving
more flexibility to the system at the communication level. In a first stage we do not consider fault-
tolerance and the system is static (system does not supports the addition and removal of nodes) so that
the focus of this project is centered on the bidirectionalization of distributed aggregation primitives
rather then system faults and system management issues. All the nodes in the system keep their state
and a representation of the state about the down level nodes (Figure 6), and they react to external
inputs (Figure 7a) by updating themselves and the down level nodes (Figure 7b), and also forwarding
this new state to upper level nodes (till reaching the root node) (Figure 7c). From a more abstract
standpoint, the system is a Map from identifiers I to values (usually R) and thus resembling a multiset
of values where each node is represented by a pair (i, value).

25

(a) External input: ”Sum=9”

(b) Update node and the down level nodes

(c) Communication of the new state to upper level nodes

Figure 7.: Representation of an update in the system triggered by an external input

26

The aggregation primitives that are considered to be bidirectionalized are: Count, Sum, Max and
Min, and the used aggregation algorithm is Structured - Hierarchy-based in a computational view-
point and Hierarchal in a communication viewpoint due to the chosen topology - tree topology. The
BX framework used are Lenses because, as was previously referred, each node represents an abstract
view with less information from the down level nodes and itself, and the use of the principle of least
change Meertens (2005) in this context may be applied in the following scenario: when there is an up-
date in the system, the changes in the system must be minimal according to some metric, for instance,
if the user wants to increase the energy production of the system (on the hydroelectric dams example)
with the minimal number of changed nodes (due to cost issues), here the used metric to evaluate the
closeness to the desired result is the number of changed nodes.

4.3 B I D I R E C T I O N A L AG G R E G AT I O N S

Not taking into account the least-change principle, aggregations can be seen as lenses if their parame-
ter functions are also lenses, as the following proposition shows.

Proposition 1. If g and � are well-behaved lenses, then Lg,�M is also a well-behaved lens.

g : A D B � : B⇥ B D B

Lg,�M : A

I D B

The proof is simple assuming the following definitions for get and put.

getLg,�M{a} = get

g

a

getLg,�M(s1

] s

2

) = get�(getLg,�M s

1

, getLg,�M s

2

)

putLg,�M b {a} = {put
g

b a}
putLg,�M b (s

1

] s

2

) = putLg,�M b

1

s

1

] putLg,�M b

2

s

2

where (b
1

, b

2

) = put� b (getLg,�M s

1

, getLg,�M s

2

)

Given two network states A

I and metric space (A, D) we can compute a |I|-vector with the point-
wise distance between them. Likewise for pairs, (A, D) induces a standard family of metric spaces
(A

I

, D
p

) by taking the p-norm of such vectors:

D
p

(s, s

0) =
p

r
Â
i2I

D(s
i

, s

0
i

)p

27

This proposition is not correct if we want the resulting lens to be a least-change lens, thus it is not
possible obtain a generic and trivial disaggregation algorithm which merely performs the put (from
the function which computes the new local view, i.e., put�) in the intermediate nodes to distribute the
new update among the children (and for itself) and the put (from the function which computes the
view from the input change, i.e., putg) to know which value to assign to the node.

Nonetheless, if the � takes into account extra information about the system, in particular, the size
of the subnet that the node is root of, is it possible to implement the disaggregation of some primitives
and some least-change criteria.

4.4 L E A S T- C H A N G E M E T R I C S

An algorithm which provides bidirectionalization to a distributed system should be designed in a
modular way, to support evolution and maintenance, e.g. addition of new features to the algorithm
like primitives or metrics. In this section we present the chosen metrics to evaluate the closeness of the
produced results in disagregation (and the limitation that some of them have in its implementation).

As mentioned previously, the aggregation (get
l

) may be not injective and thus the disaggregation
(put

l

) can produces a myriad of correct results. In order to achieve a more predictive disagreggation,
put

l

will be required to obey the least change principle, and we will specify several metrics to evaluate
the closeness of the produced results.

4.4.1 Sum of squared differences

In order to change all the elements in the system equally, this metric evaluates the sum of squared
differences in the new system state (assuming p = 2).

Dssd(s, s

0) = |s0 � s| (25)

Dssd

p

(s, s

0) =
p

r
Â
i2I
(|s0

i

� s

i

|)p (26)

H Y D RO E L E C T R I C DA M S In the hydroelectric dams example, this metric can be applied when
at some moment there is the need of increase the amount of energy to be produced by the network and
the user wants this increase be distributed evenly among the dams.

D I S T R I B U T E D DATA B A S E S Y S T E M S In a distributed database systems, this metric can be
applied when there is a need to increase the number of replicas of n different records and the user
wants this new replicas be distributed evenly across the servers.

28

4.4.2 Sum of relative deviations

This metric evaluates the changes in disagreggation concerning to the relative deviations.

Dsrd(s, s

0) =
|s0 � s|

s

(27)

Dsrd

p

(s, s

0) = p

s

Â
i2I

✓ |s0
i

� s

i

|
s

i

◆
p

(28)

Although this metric does not obey the symmetry rule of metrics, and thus considered quasi-metric,
this fact seems to have no impact in our goal.

Application scenario

H Y D RO E L E C T R I C DA M S In the hydroelectric dams example, this metric can be applied when
at some moment there is the need to increase the amount of energy to be produced by the network and
the user wants this increase to be equally distributed in a relative way. In scenarios where the amount
of energy produced in each dam is related with the capacity of the dam to produce energy, this metric
may be useful (e.g. if at a given time each dam in the system is producing 30% of its capacity and the
user wants to increase the overall production and keep this relation).

D I S T R I B U T E D DATA B A S E S Y S T E M S In database systems, when there is the need to increase
the number of replicas of n different records and the user wants this new replicas be equally distributed,
in a relative way, due to the storage capacity of each server (compared to the example given in the
hydroelectric dams).

4.4.3 Sum of Changed nodes to Zero or Non-Zero

To “turn on or off” nodes in the system can have much higher cost then changing the values at the
nodes, e.g. the cost in turn on or off dams, so this metric gives more weight to the changes from zero
to non-zero though continues to weight the difference of values.

Dcnz(s, s

0) =
|s0 � s|
s

02 + s

2

(29)

Dcnz

p

(s, s

0) = p

vuuutÂ
i2I

0

@ |s0 � s|q
(s
0
i

)2 + (s
i

)2

1

A
p

(30)

29

H Y D RO E L E C T R I C DA M S In the hydroelectric dams example, turn on a damn may mean an
increase in the maintenance costs due to the startup of the engines of dams. This metric can be
applied to prevent the updates in the network to turn off dams and thus avoid future extras costs in
turning them back on again.

4.4.4 Sum of Changed Nodes

Sum of changed nodes evaluates the number of elements that were changed in disagreggation.

Dcn(s, s

0) = sgn

�
|s0 � s|

�
(31)

Dcn

p

(s, s

0) =
p

r
Â
i2I

sgn

�
|s0

i

� s

i

|
�

p (32)

H Y D RO E L E C T R I C DA M S In the hydroelectric dams example, update the amount of energy pro-
duced by certain dam may represent extra costs due to the energy used to do this increase. This metric
performs the disaggregation, changing the least number of dams as possible.

D I S T R I B U T E D DATA B A S E S Y S T E M S In a distributed database systems, the addition of new
records in a certain server may represent a momentary unavailability of the services of that server,
and thus, postpone the answers to the current requests. This metric is useful in this case because it
performs the disagregation of adding the new records using the least number of servers as possible.

In these examples, as the metric is only to evaluate if the nodes where changed (or nor), we are only
interested in the case p = 1.

4.4.5 Examples in using different metrics with the same primitive on disagreggation

Here, we present an application scenario, where, after the aggregation with a given primitive, the
disaggregation is performed with different metrics, allowing us to compare the impact of the metric
in the final result.

The example illustrates a hydroelectric dam network where after an aggregation with Sum (Figure
8), to compute the amount of produced energy (Figure 9)), this amount is updated and disaggregated
with the Sum of Changed of squared differences (Figure 9a) and Sum of relative deviations (Figure 9b)
metrics.

30

Figure 8.: Representation of disagreggation of the same primitive with different metrics (aggregation)

(a) Disagregation of Sum with Sum of squared differences metric

(b) Disagregation of Sum with Sum of relative deviations metric

Figure 9.: Representation of disagreggation of the same primitive with different metrics

31

4.5 C O N C U R R E N T O P E R AT I O N S

(a) Two output changes, at the same time, in different
nodes from the same sub-tree

(b) The updates and information propagation through the
sub-tree (stage 1)

(c) The updates and information propagation through the
sub-tree (stage 2) — Here, with no version control,
there is a glitch in the root node (sum = 5)

(d) The final (correct) state

Figure 10.: Output Change - cross information

The requests in the system can be made in any node, and when an Output Change is requested
in some node and at the same time there is another Output Change in another node (with the same
primitive), the request made in the topmost node, i.e. the node which contains the other node in its
sub-tree, should win, and so the system state reflect the changes performed by request in the topmost
node.

However, in a naive distributed disaggregation algorithm, which does not consider the causality of
the exchanged messages, when there is an Output Change in some node and if before this operation
is finished there is another Output Change in another node bellow the node of the first request, it is
verified a glitch which is a transient fault in the system that eventually corrects itself (i.e. eventually
the system converge to a correct state, figure 10). As can be seen in Figure 10c the Sum in root node
is incorrect which is eventually corrected in the future due to the exchanged messages in the system

32

(a) Output change requested to the root node (with glitch
Sum = 5)

(b) Final state of the system after process the request

Figure 11.: Output Change with glitch

(a) Output change requested to the root node (without
glitch))

(b) Final state of the system after process the request

Figure 12.: Output Change without glitch

(Figure 10d).

During the time of the glitch, if there is an external request in the node where is the glitch (in
our example of Figure 10c, in the root node), the final state of the system will be correct but the
distance (amount of changes in the system concerning to some metric) from the current state to the
end state is greater or equal than if there is no glitch. Using the example in Figure 10, in Figure 11
an Output Change is requested in the root node where there is a glitch and in the Figure 12 the same
Output Change is requested in the root node but without a glitch. As can be seen both final states are
correct but different and the distance from the initial state to the end state in Figure 11 is greater than
the example in Figure 12 (in this example we assume the Sum of squared differences metric), as the
following calculation shows.

33

dist

glitch

= (4� 2)2 + (3� 3)2 + (2� 2)2 + (4� 4)2

= 4

dist

noglitch

= (2. 5� 2)2 + (3. 5� 3)2 + (2. 5� 2)2 + (4. 5� 4)2

= 1

4.5.1 Counter system

(a) Two output changes, at the same time, in different
nodes from the same sub-tree

(b) The updates and information propagation through the
sub-tree (stage 1)

(c) The updates and information propagation through the
sub-tree (stage 2).

(d) The final (correct) state

Figure 13.: Output Change - cross information

To tame the causality of the messages a Counter system was implemented to assign to messages a
value, called version, and thus when another node receives a message it knows its causality/ order and
can take the correct decision concerning it: process the message or discard it (Figure 13).

34

Thus, each node has a counter to generate the version number for its messages and saves the version
number of the parent (if any) and when it sends a message to its parent, this message contains the
version number of the last message received from the parent, and when it sends a message to its
child(ren) this counter is increased and sent with the message. Hence, when the parent receives
the message, it compares the message version number with its counter value and if they are equal,
processes the message (i.e., the child saw the last message of the parent), otherwise, discard it. When
a child receives a message from its parent, it processes the message and updates the version number of
the parent (i.e., the received message is always newer than the last message received from the parent
because it is assumed no message loss in the system).

4.6 A L G O R I T H M

The developed algorithms have as main feature a compositional approach leading to better under-
standing and organization. The main functions are detailed and described bellow and the auxiliary
functions have a suitable name for the better understanding of their role.

The first algorithm is for Sum of Changed Nodes, Sum of Changed nodes to Zero or Non-Zero and
Sum of squared differences metrics because in this metrics the extra values, used to calculate the new
view for the node, is known and static (the Count property, because as was assumed, the system does
not supports the addition and removal of nodes), and thus, do not need to wait for the system to con-
verge to the new state to calculate the new extra values - which is verified in the second algorithm.
In this algorithm we assume that when the algorithm initializes, the Count property is known and is
available from the beginning, the aggregation occurs when there is input changes in nodes and, the
output change only can be executed at some node after this node has a view of the sub-system bellow
it - the aggregated values.

As constants, this algorithm has in each node:

• p

i

which represents the parent of the node (if the node has parent, e.g., the root node has no
parent);

• N

i

is the set that contains the children’s id of the node;

• E

i

is the extra values to support the calculation of the new local views in the disagregation
process. As already mentioned, this value is known from the beginning due to the system being
static;

As state in each node we have:

• a

i

, contains the value stored in the node;

35

• V

i

, is a vector which contains the view of the node (of its own stored value) and the local views
of its children.

• C

i

, is a vector which contains the counter value of the node and of its parent (if it has a parent).

The lenses that are parameters of the algorithm, and are instantiated in the table 1, are:

• The lens
f

, where the get function computes the view from the value stored in the node (e.g., if
the value stored in the node is two geographical points and we want the view to be the distance
between them) and the put function takes a view and the current stored value and computes a
new value, to be stored in the node;

• The � lens, where the get function takes V

i

and computes the local view of the node, and the
put function that takes a new local view, the current V

i

and the extra value E

i

and computes a
new V

i

for a certain node. The E

i

supports the put function in obtaining a new state which takes
into account a least-change criteria.

The second algorithm, for the Sum of relative deviations metric, has a different way to process the
disagreggation because each node needs as extra values the sum of the squared values aggregated
from the nodes bellow it. This extra values can not be calculated at the same time as the new state of
the node is calculated in disagregation, because it can not be derived from the new updated value and
the old sum of the squared values, likewise to Algorithm 1. Due to this particularity, the distributed
algorithm that supports this metric has an the extra feature that when the disagregation process reaches
the leafs of the system (nodes with no nodes below it), it calculates the extra value and starts an aggre-
gation process to update the system concerning to the extra value for the Sum of relative deviations.
During this process, the algorithm does not allow any update in the system.

This algorithm, has as constant in each node:

• p

i

which represents the parent of the node (if the node has parent, e.g., the root node has no
parent);

• N

i

which is a set that contains the children’s id of the node;

As state in each node we have:

• a

i

, contains the value stored in the node;

• E

i

which contains the squared value of the node value and the sum of the squared values aggre-
gated from the nodes bellow it.

• V

i

, is a vector which contains the view of the node (of the value stored in the node) and the local
views of its children.

• C

i

, is a vector which contains the counter value of the node and of it parent (if it has a parent).

36

The lenses and functions that are parameters of the algorithm, and instantiated in the table 2, are:

• The lens
f

, where the get function computes the view from the input change value and the put

function takes the current local view, the new local view, the current value stored in the node
and, as extra argument, the ⌦(E) which computes the extra value of the node, to computes a
new input change value concerning to the view;

• Lg,⌦M is an aggregation that computes the news extra values after the disagregation. The ⌦
function takes E

i

as argument and computes the an aggregated extra value, and g, takes the
value stored in the node as argument and calculates the new extra value of the node.
To not allow output changes before the conclusion of the disagregation and aggregation process,
the disaggregation process set the extra values (E

i

) to null and thus the ⌦ function returns ? if
the node does not contain all the extra values. In the aggregation process, the g function assign
the new values to E

i

, and when the aggregation finishes the system is ready to receive output
changes.

37

Algorithm 1: Bidirectional distributed data aggregation algorithm
1 constants:

2 p

i

, parent of node
3 N

i

, set of children
4 E

i

, extra values to support in calculating the new local view
5

f

, is a lens that computes the view from the input value of each node.
6 �, is a lens between ~

V and v to aggregate the local view. The put receives as extra argument
E

i

7 state:

8 a

i

, input value of the node
9 V

i

, local view of the node
10 C

i

, versions of each connection: initially, C

i

= {i 7! 0, p

i

7! 0}
11 on inputChange

i

(value)
12 a

i

:= value

13 V

i

(i) := getf(a

i

)
14 if p

i

then

15 send

i,p

i

(get�(Vi

), C

i

(p

i

))

16 on outputChange

i

(value)
17 update(value)
18 if p

i

then

19 send

i,p

i

(get�(Vi

), C

i

(p

i

))
20 on receive

j,i

(value, version)
21 if j = p

i

then

22 C

i

(p

i

) := version

23 update(value)
24 else

25 if C

i

(i) = version then

26 V

i

(j) := value

27 if p

i

then

28 send

i,p

i

(get�(Vi

), C

i

(p

i

))
29 procedure update(value)
30 V

i

:= put�(Vi

, E

i

, value)
31 a

i

= put

f

(V
i

(i), a

i

)

32 C

i

(i) := C

i

(i) + 1

33 foreach j 2 N

i

do

34 send

i,j

(V
i

(j), C

i

(i))

38

Algorithm 2: Bidirectional distributed data aggregation algorithm
1 constants:

2 p

i

, parent of node
3 N

i

, set of children
4

f

, is a lens that computes the view from the input value of each node and the put receives as
extra argument computes the new input value

5 � :

~
V ! v, computes a value which represents the view of the node.

6 Lg,⌦M is an aggregation that computes the extra values.
7 state:

8 a

i

, input value of the node
9 E

i

, extra values to support in calculating the new local view
10 V

i

, local view of the node
11 C

i

, versions of each connection: initially, C

i

= {i 7! 0, p

i

7! 0}
12 on inputChange

i

(value)
13 a

i

:= value

14 E

i

(i) := getg(a

i

)
15 V

i

(i) := getf(a

i

)
16 if p

i

^⌦(E

i

) 6= ? then

17 send

i,p

i

(�(V
i

),⌦(E

i

), C

i

(p

i

))

18 on outputChange

i

(value)where ⌦ (E

i

) 6= ?
19 update(�(V

i

), value,⌦(E

i

))
20 on receive

j,i

(v, value, e, version)
21 C

i

(p

i

) := version

22 update(v, value, e)
23 on receive

j,i

(v, e, version)
24 if C

i

(i) = version then

25 V

i

(i) := getf(a

i

)
26 E

i

(i) := getg(a

i

)
27 V

i

(j) := v

28 E

i

(j) := e

29 if p

i

^⌦(E

i

) 6= ? then

30 send

i,p

i

(�(V
i

),⌦(E

i

), C

i

(p

i

))
31 procedure update(v, value, e)
32 a

i

:= putf(v, value, e, a

i

)
33 C

i

(i) := C

i

(i) + 1

34 E

i

:= {k 7! ? | (k,) 2 E

i

}
35 if N

i

= ∆ then

36 V

i

(i) := getf(a

i

)
37 E

i

(i) := getg(a

i

)
38 if p

i

then

39 send

i,p

i

(�(V
i

),⌦(E

i

), C

i

(p

i

))
40 else

41 foreach j 2 N

i

do

42 send

i,j

(v, value, e, C

i

(i))

39

Sum Min

Dssd

getf(a) := b

putf(b, a) := a

get�(V) := Â V

put�(V, E, v) :=

V + (v�Â V)⇥ E(i)
Â E

getf(a) := b

putf(b, a) := a

get�(V, E, v) := MinV

put�(V, E, v) :=
if v < MinV then

V{k 7! v}, where (k,MinV) 2 V

else

{k 7! Max(v, V(k)) | (k, v) 2 V}

Dcn

getf(a) := b

putf(b, a) := a

get�(V) := Â V

put�(V, E, v) :=
V{i 7! V(i) + v�Â V}

getf(a) := b

putf(b, a) := a

get�(V, E, v) := MinV

put�(V, E, v) :=
if v < MinV then

V{i 7! v}, where (k,MinV) 2 V

else

{k 7! Max(v, V(k)) | (k, v) 2 V}

Table 1.: Algorithm 1 functions

Sum

Dsrd

getf(a) := b

putf(v, v

0
, e, a) := a + a

2

e

⇥ (v0 � v)
g(a) := a

2

�(V) := Â V

⌦(E) := Â E

Table 2.: Algorithm 2 functions

40

5
S I M U L AT O R

This tool simulates in a distributed environment the bi-direccionalization of some aggregation primi-
tives (SUM and MIN) using the “Discrete Event Simulation” model of simulation. It is assumed that
the system has tree topology, no message loss, asynchronous communication, bidirectional paths to
connect nodes, each node has a value that will be aggregated in the root, and updates can be performed
in any node (but it only affects the values of the children).

Being the aggregation primitives bidirectional, after aggregating the existing values in the system
there is the possibility to assign a new state to the system (e.g.: the SUM of the system is 70) -
through the disaggregation. Thus, on disaggregation, the new state is assigned to the system through
a distributed process in which the decisions are taken node-to-node, based on the node’s local vision
about the system.

This simulator recreates the two algorithm represented in Section 4.6 but due to its specification and
needs concerning to the extra values (E

i

), each algorithm is simulated at a time. For each aggregation
primitive and least-change criteria an instantiation of the simulator is also defined.

Besides the simulation of aggregation and disaggregation of primitives, the simulator has two types
of verification: on the first one the system is assumed to be a multiset with all existing nodes and
after the disaggregation we verify if the system has one of the correct possible states (relative to the
node’s value), i.e. we check the correctness of the lens; the second verification is to check, after the
simulation if the system converged to a least-change solution.

The main decisions about the design of the simulator and how this decisions were implemented,
will now be described.

41

Figure 14.: System overview

5.1 S I M U L AT I O N

When the simulator is initiated, it will generate the system with a given branching factor of the tree
and the height factor of the tree, randomly generates the node’s value between a given interval and the
message delay for each edge, and an inputChange is performed to each leaf node in the system - so
that all nodes have a local vision of the system.

The simulator has the option to visualize the system state - topology, node’s values and edge’s de-
lays (Figure 14), to simulate crossed requests, unit requests and a set of randomly generated requests,
and finally, the option to verify if the system is correct concerning to the performed requests.

5.2 V E R I F I C AT I O N

The verification feature has as main purpose to check the system state after the disaggregation. Thus,
the user can perform two types of verification: Correctness verification and Least-change verification.

5.2.1 Correctness verification

On correctness verifications, the system is assumed as a multiset with all nodes of the system and each
node is represented by a pair (id-value) and the request to change the system state will affect all nodes.
In practical terms the requests will always be performed in the node that represents the root of the
system - since the purpose is to evaluate the algorithm’s behavior and it is not necessary to consider

42

Figure 15.: Correctness verification

the topology.

Before the simulation (disaggregation) the system state is logged and the root node of the system
is updated (where the request will be performed). After the simulation the updated system state is
logged and verified if it is correct concerning to the initial system state and to the performed request
(Figure 15).

5.2.2 Least-change verification

The least-change verification has as main goal to verify if the system after the disaggregation con-
verges to a correct state (the aggregated values in each node are correct) and if the requested was
performed successfully (e.g.: if the request is ”change sum to N in node M”, after the disaggregation
the sum logged in the node M should be N).

Before the simulation (disaggregation) only the node values are logged, and after the disaggregation
it is verified in each node if its value is correct concerning to the value requested (Figure 16).

43

Figure 16.: Least-change verification

5.3 D E S I G N A N D I M P L E M E N TAT I O N

5.3.1 Design

Being this tool designed for extensibility, the main design decisions take into account the division
of the main subjects (distributed algorithm, primitives, least changes) for a better maintenance and
evolution of the simulator.

Compositional approach

The simulator has as main goal to simulate a distributed algorithm that processes the aggregation and
the disaggregation of primitives, and in disaggregation there are measures (least changes) associated
to the primitives (e.g.: perform SUM primitive with ”Sum of Squared Differences” least change, or
perform MAX primitive with ”Sum of Squared Differences” least change), which are common to all
primitives. Therefore, the simulator was designed with a compositional approach to separate the part
of the algorithm that represents the distributed logic form the part that represents the instantiation of
the primitives and least change criteria.

The structure of the simulator is presented in Figure 17.

44

Figure 17.: Composicional approach in implementation

Error deviation

Due to rounding of values, there is a tolerance when the simulator compares values - in simulation
or in verification. To obtain a reliable comparison concerning to the compared values, the relative
difference between the values is computed and we verify if this difference is less or equal to a given
value (tolerance). The defined value to tolerance is 0.001, and if the relative difference is greater than
this value, the compared values are considered different.

If both compared values have an absolute difference from zero less or equal than 0.0001, they are
considered equal.

Node information

In the disaggregation process the algorithm goes through the nodes making changes, taking decisions
concerning to the local view of the node. To achieve this, each node has to contain information to
support the algorithm to make the best decisions concerning to the primitive and the least change. To
accomplish this, each node should have the following information:

• Node parent (p

i

)

• Node value (a
i

)

• Set with the children’s ID (N

i

)

• Collection with its aggregated value and the children’s aggregated value (V
i

)

• Collection with extra values (its extra value and children’s extra value) to support the calculation
of the new views (E

i

)

• Collection with its and parent counter value C

i

45

5.3.2 Implementation

This simulator was implemented in Python 2.7. It was based on the ScyPy, an ecosystem of open-
source software for mathematics, science, and engineering - to support the representation of the sys-
tem in a structural and graphic level.

The different features of the simulator were divided through the following classes - following the
structure presented before in the Design.

• dis event sim.py class coordinates ”Discrete Event Simulation”.

• event.py class represents the object which is handled by the dis event sim. py and contains
information about the event (e.g., if is an outputChange or an inputChange, the counter value,
...)

• node.py class represents each node in the system and keeps the local vision of the system.

• functions.py class is responsible to perform the existing primitives and least-change met-
rics (

f

, g, �, ⌦).

• tests.py class verifies the system after the disaggregation (Correctness test and least-change
verification)

• utils.py class has auxiliary functions to support the simulation (e.g., is equal function
which implements the Error deviation 5.3.1).

5.4 C O N C U R R E N T U P DAT E S O N A L G O R I T H M 2

The second algorithm has the limitation of not supporting concurrent updates (when a second update
is performed in a node above the node where the first update was performed), as Figure 18 illustrates.
This limitation occurs because in the disaggregation process the algorithm calculates a new input
change (a

i

) for the nodes (figure 18b), and this new value is calculated taking into account the current
input change value of the node and the local view of the node where the output change was performed
(algorithm 2, line 32). Having concurrent updates, the disaggregation process that corresponds to the
second update will calculates the new input change values based on values which do not correspond
to the local view of the node where the second update was requested (figure 18c and 18d), thus the
final state of the system will not be the requested by the second update (the update which should win),
as shown in Figure 18e.

This limitation was identified with the help of the developed simulator when the second algorithm
was tested in scenarios with concurrent updates.

46

(a) Two output changes, at the same time, in
different nodes from the same sub-tree

(b) The updates and information propagation
through the sub-tree

(c) Incorrect update in node 1 by the second
output change. The first output change is
stopped due to the versions.

(d) The second output change continues cal-
culating wrong values through the sys-
tem.

(e) The final (incorrect) state

Figure 18.: Algorithm 2, concurrent updates

47

6
C O N C L U S I O N

Bidirectional transformations has a enormous interest and importance due to its enormous applicabil-
ity in various domains, and its application in a distributed settings, subject poorly addressed, could
bring useful solutions for realistic and important scenarios.

In this master thesis we present an introduction to the combination of bidirectionality with dis-
tributed aggregation, by combining existing theory in these two fields to achieve an unique approach.
First we choose realistic scenarios and tried to understand how this approach would be useful. This
lead us to the introduction of least change metrics in the disaggregation process, i.e., criteria to control
how the bidirectionalization is achieved in a distributed system.

With the experimental results, obtained by using the developed simulator, was identified the major
obstacles when combining these two subjects, namely how to choose which distributed algorithm is
better suited for each aggregation primitive and leas-change criteria, the importance of the metric be
self-decomposable, and how causality plays an important role in this approach.

There is a lot of future work to do in this new approach, such as the construction of a more practical
solution to apply when in a disaggregation the new local view of the node can not be derived from the
updated, or the implementation of invariants. Although these ambitious challenges are left for future
work, we believe we already have a solid first step towards an effective bidirectional distributed data
aggregation algorithm.

48

B I B L I O G R A P H Y

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the view-
update problem. ACM Trans. Program. Lang. Syst., 29(3), May 2007. ISSN 0164-0925. doi:
10.1145/1232420.1232424. URL http://doi.acm.org/10.1145/1232420.1232424.

Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida. A survey of distributed data aggregation
algorithms. CoRR, abs/1110.0725, 2011.

Nuno Macedo, Hugo Pacheco, Alcino Cunha, and José Nuno Oliveira. Composing least-change
lenses. ECEASST, 57, 2013.

Lambert Meertens. Designing constraint maintainers for user interaction. In Third Workshop on
Programmable Structured Documents. Tokyo University, 2005.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. In Proceedings of the 5th ACM Conference on Functional Program-
ming Languages and Computer Architecture, pages 124–144, New York, NY, USA, 1991. Springer-
Verlag New York, Inc. ISBN 0-387-54396-1. URL http://dl.acm.org/citation.cfm?

id=127960.128035.

Hugo Pacheco, Nuno Macedo, Alcino Cunha, and Janis Voigtländer. A generic scheme and properties
of bidirectional transformations. arXiv preprint arXiv:1306.4473, 2013.

Robbert Van Renesse. The importance of aggregation. pages 87–92, 2003.

49

http://doi.acm.org/10.1145/1232420.1232424
http://dl.acm.org/citation.cfm?id=127960.128035
http://dl.acm.org/citation.cfm?id=127960.128035

Part III

A P E N D I C E S

A

O P T I M A L S O L U T I O N T O M I N I M I Z E T H E S U M O F R E L AT I V E
D E V I AT I O N

A proof of how to get the best solution to change the sum, in the root node, from 10 to 15 with the
minimum sum of relative deviations.

Figure 19.: Distributed system

Info Value

Sum (root node) 10

Update to 15

Difference 15� 10 = 5

Table 3.: Test data

We want to minimize the followimg function:

f (m) = Â
id

✓
m

0
i

�m

i

m

i

◆
2

(33)

51

f (m) = Â
id

✓
m

0
i

�m

i

m

i

◆
2

, f (d, m) = Â
id

✓
d

i

m

i

◆
2

(34)

f (d, m) =

✓
d

a

1

◆
2

+

✓
d

b

2

◆
2

+

✓
d

c

3

◆
2

+

✓
d

d

1

◆
2

+

✓
d

e

3

◆
2

(35)

Subject to the following constraint (the sum of the differences in each node is equal to 5):

g(d) = c , Â
id

d

i

= 5 (36)

Lagrange multipliers

The proof is presented by using the Lagrange Multpliers technique:

L(d, l) = f (d) + l (g(d)� c) (37)

the partial derivatives

∂

∂d

a

L(d, l) = 2d

0

+ l

∂

∂d

1

L(d, l) =
1

2

d

1

+ l

∂

∂d

2

L(d, l) =
2

9

d

2

+ l

∂

∂d

3

L(d, l) = 2d

3

+ l

∂

∂d

4

L(d, l) =
2

9

d

4

+ l

∂

∂l
L(d, l) = d

a

+ d

b

+ d

c

+ d

d

+ d

e

� 5 = 0

Solving the system

52

l(d, l) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

2d

a

+ l = 0 d

a

= � 1

2

l
1

2

d

b

+ l = 0 d

b

= �2l
2

9

d

c

+ l = 0 d

c

= � 9

2

l

2d

d

+ l = 0 , d

d

= � 1

2

l
2

9

d

e

+ l = 0 d

e

= � 9

2

l

d

a

+ d

b

+ d

c

+ d

d

+ d

e

� 5 = 0 d

a

+ d

b

+ d

c

+ d

d

+ d

e

� 5 = 0

substitute d

a

, d

b

, d

c

, d

d

and d

e

in the sixth equation

l(d, l) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

d

a

= � 1

2

l d

a

= � 1

2

l

d

b

= �2l d

b

= �2l

d

c

= � 9

2

l d

c

= � 9

2

l

d

d

= � 1

2

l , d

d

= � 1

2

l

d

e

= � 9

2

l d

e

= � 9

2

l

� 1

2

l� 2l� 9

2

l� 1

2

l� 9

2

l� 5 = 0 l = � 10

24

substitute l in the first, second, third, fourth and fifth equation and obtain the solution

l(d, l) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

d

a

= � 1

2

⇤
�
� 10

24

�
d

a

= 10

48

d

b

= �2 ⇤
�
� 10

24

�
d

b

= 20

24

d

c

= � 9

2

⇤
�
� 10

24

�
d

c

= 90

48

d

d

= � 1

2

⇤
�
� 10

24

�
, d

d

= 10

48

d

e

= � 9

2

⇤
�
� 10

24

�
d

e

= 90

48

l = � 10

24

l = � 10

24

Function to distribute the changes

d

i

=
m

2

i

Â
id

m

2

i

⇤ di f

53

	Contents
	Introductory material
	1 Introduction
	1.1 Organization of the thesis

	2 Bidirectional transformations
	2.1 Frameworks
	2.1.1 Maps
	2.1.2 Lenses
	2.1.3 Constraint maintainers

	2.2 Deployment of bidirectional transformations
	2.2.1 Ad hoc
	2.2.2 Combinatorial
	2.2.3 Syntactic
	2.2.4 Semantic

	3 Distributed data aggregation
	3.1 Aggregation function
	3.1.1 Decomposability
	3.1.2 Duplicate sensitiveness and idempotence

	3.2 Taxonomy
	3.2.1 Communication perspective
	3.2.2 Computation perspective

	Contribution
	4 Bidirectional Distributed Data Aggregation
	4.1 Application scenarios
	4.2 System model
	4.3 Bidirectional aggregations
	4.4 Least-change metrics
	4.4.1 Sum of squared differences
	4.4.2 Sum of relative deviations
	4.4.3 Sum of Changed nodes to Zero or Non-Zero
	4.4.4 Sum of Changed Nodes
	4.4.5 Examples in using different metrics with the same primitive on disagreggation

	4.5 Concurrent operations
	4.5.1 Counter system

	4.6 Algorithm

	5 Simulator
	5.1 Simulation
	5.2 Verification
	5.2.1 Correctness verification
	5.2.2 Least-change verification

	5.3 Design and implementation
	5.3.1 Design
	5.3.2 Implementation

	5.4 Concurrent updates on Algorithm 2

	6 Conclusion

	Apendices
	A Optimal solution to minimize the sum of relative deviation

