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Abstract. The shallow water system is a fundamental work-piece for tsunami or flooding
simulations. One of the major difficulties is the correct location of the dry/wet interface
to evaluate accurate approximations of the velocity and kinetic energy. On the other
hand, the MOOD method has been recently proposed to provide more efficient schemes in
the framework of the Euler system. We propose to compare two second-order methods,
namely the MUSCL and the MOOD techniques, and draw comparisons on accuracy shock
capturing and dry/wet interface.
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1 INTRODUCTION

Shallow water equations with varying bathymetry is a challenging topic due to the wide
number of applications such that tsunami, flooding, coastal erosion [14]. A large number
of numerical schemes has been proposed and studied and, in particular, very high-order
finite volume methods (fifth- and sixth-order for instance) have received great attention in
order to provide very accurate numerical solutions [10, 11, 7]. Nevertheless, the design of
new second-order methods is still an important objective since most of the engineering or
environmental applications are developed with such a technique due to its simplicity and
computational efficiency [1, 9, 15]. Recently, a new limiting technology, named the Multi-
dimensional Optimal Order Detection (MOOD), has been proposed and tested for the
Euler system [5, 6, 8]. An extension version has been proposed for the non-conservative
shallow water equations where a sixth-order scheme was tested on two-dimensional un-
structured meshes [7]. We here tackle the question of comparing the efficiency of the
MOOD and MUSCL second-order methods. The two techniques are fundamentally dif-
ferent since the MUSCL is based on a priori criteria, whereas the MOOD uses a posteriori
detectors to prevent the solution from oscillating in the vicinity of discontinuities.
This work proposes a comparison study between the two methods for the simple one-
dimensional case in order to assess their accuracy and shock capturing capacity, as well
as dry/wet interfaces location. After developing the key ingredients of the discretization,
we introduce the MUSCL and MOOD methods and highlight their differences. Numerical
tests are then carried out to draw the comparisons using four relevant simulations: the
lake at rest to check the C-property, a regular case for the accuracy, a discontinuous case
for the shock capturing, and finally a set of two dry/wet tests to evaluate both methods
in this specific but important configuration (flooding, dam break or tsunami).

2 SECOND-ORDER FINITE VOLUME SCHEME

The classical shallow water system with varying bathymetry writes

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

�
hu2 +

g

2
h2
�
= −gh∂xb,

where h denotes the water height, u the velocity, b the bathymetry, g = 9.81 the grav-
ity acceleration, and η = h + b the free surface. Vector U = (h, hu, b) represents the
conservative quantities.

2.1 Discretization

Domain Ω = [0, L] is decomposed into non-overlapping cells ci = [xi−1/2, xi+1/2] with
centroid xi, i = 1, · · · , I. For a final time T , 0 = t0 < t1 < · · · < tn < · · · < tN = T is a
regular subdivision with time step Δt = T

N
. We denote by Δxi = |ci| the length of the

cell, while αn
i represents an approximation of the mean value over cell ci for function α
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(α = h, η, hu, b) at time tn. We recall that for regular functions (say C2) over the cell ci,
the point-wise value at xi is a second-order approximation of the mean value. In the same
way, αn

i+1/2,L and αn
i+1/2,R represent approximations on the left and right side of xi+1/2.

2.2 Hydrostatic reconstruction

We recall the hydrostatic reconstruction introduced by Audusse et al. [1]. We denote by
bni+1/2 = max(bni+1/2,L, b

n
i+1/2,R) and set

h∗,n
i+1/2,L = max(0, hn

i+1/2,L − bni+1/2 + bni+1/2,L), η∗,ni+1/2,L = h∗,n
i+1/2,L + bni+1/2,

h∗,n
i+1/2,R = max(0, hn

i+1/2,R − bni+1/2 + bni+1/2,R), η∗,ni+1/2,R = h∗,n
i+1/2,R + bni+1/2.

For the sake of consistency, we also set u∗,n
i+1/2,L = un

i+1/2,L and u∗,n
i+1/2,R = un

i+1/2,R.

2.3 Generic second-order scheme

We use the Audusse et al. methodology [1, 9], where the following scheme has been
proposed

Un+1
i = Un

i − Δt

Δxi

�
Fn

i+1/2 + εni+1/2,L − F n
i−1/2 − εni−1/2,R

�
+ΔtSn

i ,

with Fn
i−1/2 = F(U∗,n

i−1/2,L, U
∗,n
i−1/2,R) the numerical flux for the conservative contribution

(Rusanov or HLL for example [12]) with

U∗,n
i−1/2,L =




h∗,n
i−1/2,L

h∗,n
i−1/2,Lu

∗,n
i−1/2,L

bni−1/2


 , U∗,n

i−1/2,R =




h∗,n
i−1/2,R

h∗,n
i−1/2,Ru

∗,n
i−1/2,R

bni−1/2


 .

We introduce the non-conservative numerical flux to deal with the discontinuous part of
the non-conservative source term

εni+1/2,L =
g

2

�
(h∗,n

i+1/2,L)
2 − (hn

i+1/2,L)
2
�
, εni−1/2,R =

g

2

�
(h∗,n

i−1/2,R)
2 − (hn

i−1/2,R)
2
�
,

while the discretization of the regular part of the non-conservative source term writes

Sn
i = −g

hn
i+1/2,L + hn

i−1/2,R

2
×

bni+1/2,L − bni−1/2,R

Δxi

.

3 MUSCL versus MOOD

To provide a second-order scheme, local linear reconstructions are required, and therefore
we compute slopes to provide an approximation of the first derivatives (see [4] for an
overview of the MUSCL method). For any function α = h, η, hu, b, we define the slopes

pni−1/2(α) = 2
αn
i − αn

i−1

Δxi−1 +Δxi

, pni+1/2(α) = 2
αn
i+1 − αn

i

Δxi +Δxi+1

,

pni (α) = 2
αn
i+1 − αn

i−1

Δxi−1 + 2Δxi +Δxi+1

.
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The first-order scheme corresponds to take αn
i+1/2,L = αn

i−1/2,R = αn
i , that is pn(α) = 0.

Notice that for that case, we have Sn
i = 0 and the contribution of bathymetry variations

is concentrated on the interfaces. It is well-known that a non-limited linear reconstruction
will give rise to oscillations in the vicinity of a discontinuity due to the Gibbs phenomenon
and non-linear limiting procedures have to be implemented to locally reduce the accuracy
and preserve the monotonicity. Based on linear reconstructions, the traditional MUSCL
approach consists in reducing the slopes such that some stability criterion is achieved.
Thus, such a method is a priori since the corrections are made before updating the
solution. On the contrary, the MOOD method assumes that the solution is smooth
enough. A candidate solution is computed without altering the slopes and then, based
on the candidate solution, corrections of the slopes are provided to satisfy some stability
criterion. The a posteriori method has the advantage to perform corrections only for
problematic cells and therefore this technique is less intrusive and provides better accuracy.

3.1 MUSCL method

The MUSCL second-order scheme corresponds to define the reconstructed values on the
left and right side of the interfaces by

αn
i+1/2,L = αn

i + qni (α)
Δxi

2
, αn

i−1/2,R = αn
i − qni (α)

Δxi

2
,

where the limited slope
qni (α) = φ

�
pni−1/2(α), p

n
i+1/2(α)

�

is computed using a limiter function φ such as the min-mod, the van-Alabada or the van-
Leer limiters. An important point is that the reconstruction cannot be performed with
h, η and b at the same time for compatibility reasons. It has been proved that the good
choice is to carry out the MUSCL procedure on h and η, and then deduce the values for
b on the interfaces (this is the reason why b depends on time) setting

bni+1/2,L = ηni+1/2,L − hn
i+1/2,L, bni−1/2,R = ηni−1/2,R − hn

i−1/2,R.

Notice that a second-order method in space also requires a second-order method in time
to be effective. The usual TVD-RK2 (Heun method) is employed to guarantee a global
second-order method for smooth solutions.

3.2 MOOD method

We give here a short introduction to the MOOD method, but a detailed description
is given in [5, 6, 8, 7, 2]. The Cell Polynomial Degree (CPD) map corresponds to a
vector associated to the cells which indicates the degree of the polynomial reconstruction,
while the Edge Polynomial Degree (EPD) is a vector associated to the edges indicating
the degree of the polynomial used to evaluate the reconstruction on both sides of the
edges for the flux and source term computation. In practice, we take EPD(i + 1/2) =

194



J. Figueiredo and S. Clain

min(CPD(i), CPD(i + 1)). In our specific case, a cell ci may have a CPD(i) = 1 if we
use the slope (second-order approximation) or CPD(i) = 0 if the slope is null (first-order
approximation).
The MOOD method is based on the following loop. Assume that we known an approxi-
mation Un

h = (Un
i )i=1,··· ,I at time tn and initialise the CPD to 1, i.e. we use a second-order

approximation for each cell.

1. We build a candidate solution U�
h based on the CPD map. In practice, we use the re-

construction indicated by the corresponding EPD map to compute the reconstructed
values used to evaluate the numerical fluxes and the source term.

2. We look at each value U�
i of the candidate solution to check if it satisfies a set of

conditions (or detectors).

3. If all the cells are valid, then the candidate solution turns out to be the approxima-
tion at time tn+1, i.e. Un+1

h = U�
h . Otherwise, we modify the CPD map reducing

the polynomial degree from 1 to 0 for the problematic cells and go back to step 1.

The MOOD method assumes that the first-order scheme (the CPD map is zero every-
where) fulfils the set of conditions. Hence, in the worst case, the scheme becomes a
first-order one.

3.2.1 Basic detectors

Several detectors may be defined to determine whether a cell is eligible or not as proposed
in [7]. The main point is to detect if the candidate solution is physically admissible and
to prevent the appearance of oscillations characterised by creation of local extrema.

Physical Admissible Detector (PAD) The candidate solution satisfies the PAD
condition on cell ci if h

�
i ≥ 0. Such a condition is crucial since negative water height

values are non-physical.

Maximum Principle Detector (MPD) The candidate solution satisfies the MPD
condition on cell ci if

min(hn
i−1, h

n
i , h

n
i+1) ≤ h�

i ≤ max(hn
i−1, h

n
i , h

n
i+1),

which implies that the candidate value remains between the local minimum and local
maximum at time tn. Such condition enables to detect potential oscillation since the
Gibbs phenomenon induces the creation of local extrema.
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Extrema Detector (ED) In the case where the solution does not depend on time,
the MPD condition does not make sense and therefore it is useful to consider the new
following criterion

min(h�
i−1, h

�
i+1) ≤ h�

i ≤ max(h�
i−1, h

�
i+1),

which allows to detect the extrema of the discrete candidate solution.

3.2.2 Relaxation detectors

Extrema may derive from local oscillations associated to the Gibbs phenomenon, but may
also be smooth extrema corresponding to real ones. Hence, we have to distinguish these
two situations in order to set the CPD = 0 for the oscillation case, whereas in the other
case we preserve the CPD = 1 to provide a second-order of approximation. To this end,
we introduce a new tool. For any function α = h, η, hu, we set

Ci(α) =
αi+1 + αi−1 − 2αi

(Δx)2
, i = 2, . . . , I − 1, and C1(α) = C2(α), CI(α) = CI−1(α),

where for the sake of simplicity we assume Δxi = Δx, and compute the following local
curvature indicators

χm,i = min(Ci−1, Ci, Ci+1), χM,i = max(Ci−1, Ci, Ci+1),

for i = 2, . . . , I − 1, where we omit the function α for the sake of simplicity. Notice that
one can have |χm,i| > |χM,i|. We then define the following relaxation limiters.

Small Curvature Detector (SCD) or Plateau Detector Let εC be a given tolerance
parameter. Then, CPD(i) = 1 if

max(|χm,i|, |χM,i|) ≤ εC .

Such condition means that the curvature is so small that the numerical solution is locally
linear and therefore the reconstruction should not be limited.

Local Oscillation Detector (LOD) We must enforce CPD(i) = 0 if one has

χm,iχM,i ≤ 0.

This condition detects a local oscillation due to the variation of the curvatures sign.

Smoothness Detector(SD) Let εS be a given tolerance parameter. The numerical
solution is considered locally smooth if

1 ≥ min(|χm,i|, |χM,i|)
max(|χm,i|, |χM,i|)

≥ 1− εS.

If that is the case we set CPD(i) = 1. This detector determines if the minimum and the
maximum curvatures are close enough with respect to the threshold parameter and the
numerical solution is considered locally smooth.
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3.2.3 Condition for solution eligibility

Since the MOOD procedure can involve up to six detectors, we now detail how the de-
tectors are linked one to each to other and are used to determine if the CPD is 0 (non-
admissible candidate solution) or 1 (admissible). The detector chain is given in Figure 1
where for each cell, the algorithm detection provides the new value of the CPD.

candidate
solution PAD

No

CPD=0

Yes
ED

No

CPD=1

SCD LOD SD
Yes

YesYes

Yes

No

NoNo

CPD=1 CPD=0 CPD=0

CPD=1

Figure 1: The chain detectors algorithm for the MOOD method.

4 NUMERICAL SIMULATIONS

Numerical tests are carried out to assess the performance of the two schemes. The time
step Δt is controlled by the CFL condition reduced by a factor 0.4 with respect to the
maximum admissible time step of the first-order scheme. All meshes are constituted by
cells having equal length Δx = L/I. The HLL flux scheme is used in all numerical
simulations since it is less diffusive than the Rusanov one. For the MUSCL method
the limiter procedure is applied to h, η, and q = hu, whereas for the MOOD method
only the water height h is considered in the detector procedures. In the MOOD case
the relaxation parameters used within the detector scheme are εC = δ3 and εS = 0.5,
where δ = Δx/L = 1/I (see [7]). Finally, when dry/wet interfaces are present, after
each integration step we perform a clipping where we set the water height equal to zero
if h < 10−6.
To assess the convergence, we introduce the L1- and L∞-errors as

L1-error:
I�

i=1

|αN
i − αex

i |/I and L∞-error: max
i

|αN
i − αex

i |,

where (αex
i ) and (αN

i ) are respectively the exact and the approximated mean values on
cell ci at the final time tN = T .

4.1 Lake at rest

Lake at rest simulation is the first sanity check experience to test the C-property, i.e.
the preservation of the steady-state situation with null velocity [3]. On domain [0, 1], we
assume that the fluid is initially at rest, i.e. q = u = 0, while the bathymetry b and its
first derivative present some discontinuities and the total height η = max(2, b) has various
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dry/wet interfaces (see Figure 2). We consider successive meshes with 50, 100, and 200
cells, and compute the solution until the final time T = 1 corresponding to 554, 1108 and
2215 time steps, respectively. In the simulations, reflection conditions are prescribed at
the boundary.

Figure 2: Bathymetry function and total height for the lake at rest.

After performing all the numerical tests, we report that the L1- and L∞-errors for η, h,
q and u stand below 10−15 and 10−14, respectively. Since the calculations are performed
in double precision, we conclude that both MUSCL and MOOD implementations satisfy
the C-property.

4.2 Smooth solution

We now turn to the regular case where we assess the schemes accuracy. We want to
evaluate the impact of the limiting/detecting procedures when an optimal second-order
approximation should be achieved. We intend to draw some comparisons between the
MUSCL and MOOD schemes and determine which scheme provides the best performance.
For this purpose, we consider a steady-state supercritical flow and evaluate the approx-
imation which intends to preserve the stationary regime. The flow considered has the
upstream boundary located at x = 0 and the downstream one at x = L (we consider a
channel with length L = 10). The stationary solution is given by

q(x) = q0,
q20

2gh2(x)
+ h(x) + b(x) =

q20
2gh2(0)

+ h(0) + b(0).

where we take q0 = 13.29, and h(0) = η(0) − b(0) with η(0) = 2 (see e.g. [13]). The
bathymetry function is the exponential bump b(x) = 0.2 exp(−5(x − 4)2)) plotted in
Figure 3 together with the free surface.
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Figure 3: Bathymetry function and free surface for the supercritical stationary flow.

Given the nature of the flow - supercritical with a Froude number larger than 1.25 -
Dirichlet boundary conditions are prescribed at x = 0, whereas transmission conditions
hold at the downstream boundary. The initial condition is the steady-state solution and
the numerical simulations are carried out until t = 10 for meshes with 100, 200, 400, 800
and 1600 cells, involving up to 44298 time steps.
We test the MOOD method with two different detectors chains: the first one omits the
Small Curvature Detector (SCD or plateau detector), whereas the second one uses the full
set of detectors as presented in Figure 1. The goal to skip the SCD is to draw a comparison
with the MUSCL scheme in similar conditions, since the latter method cannot distinguish
between very small variations deriving from the real number truncation and the non-
physical oscillations. Notice that the proposed simulation involves a solution which is
essentially flat far away from the bump, hence the SCD deactivation could be decisive.
In that particular simulation, the MUSCL limiter only involves the conservative variable
h since it provides the best results.

Table 1: Total height and velocity L1- and L∞-errors and convergence order for the supercritical case:
MUSCL scheme.

Nb of η u
Cells err1 err∞ err1 err∞
100 2.44e-03 — 4.76e-02 — 5.40e-03 — 7.91e-02 —

200 5.20e-04 2.2 2.05e-02 1.2 1.12e-03 2.3 3.38e-02 1.2

400 1.12e-04 2.2 5.77e-03 1.8 2.38e-04 2.2 9.52e-03 1.8

800 2.30e-05 2.3 1.47e-03 2.0 4.89e-05 2.3 2.43e-03 2.0

1600 5.43e-06 2.1 3.73e-04 2.0 1.16e-05 2.1 6.15e-04 2.0

Tables 1, 2 and 3 provide the L1- and L∞-errors and convergence order for the MUSCL
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Table 2: Total height and velocity L1- and L∞-errors and convergence order for the supercritical case:
MOOD scheme without SCD. The percentage of cells having maximum CPD at t = T is also shown.

Nb of η u Cells with

Cells err1 err∞ err1 err∞ CPD = 1

100 1.81e-03 — 2.93e-02 — 5.30e-03 — 8.33e-02 — 73%

200 7.02e-05 4.7 1.22e-03 4.6 1.74e-04 4.9 4.23e-03 4.3 91%

400 8.43e-06 3.1 1.29e-04 3.2 2.10e-05 3.1 2.73e-04 4.0 88%

800 1.45e-06 2.5 2.21e-05 2.5 3.81e-06 2.5 5.12e-05 2.4 100%

1600 2.86e-07 2.3 4.26e-06 2.4 7.84e-07 2.3 1.07e-05 2.3 100%

Table 3: Total height and velocity L1- and L∞-errors and convergence order for the supercritical case:
full detectors chain. The percentage of cells having maximum CPD at t = T is also shown.

Nb of η u Cells with

Cells err1 err∞ err1 err∞ CPD = 1

100 1.91e-03 — 3.15e-02 — 5.06e-03 — 6.88e-02 — 91%

200 5.23e-05 5.2 8.19e-04 5.3 1.24e-04 5.4 1.61e-03 5.4 100%

400 8.49e-06 2.6 1.29e-04 2.7 2.13e-05 2.5 2.73e-04 2.6 100%

800 1.45e-06 2.5 2.21e-05 2.5 3.81e-06 2.5 5.12e-05 2.4 100%

1600 2.86e-07 2.3 4.26e-06 2.4 7.84e-07 2.3 1.07e-05 2.3 100%

scheme, the MOOD scheme without the SCD detector, the MOOD scheme with the full
detectors chain, respectively, while we report in the two last tables the percentage of cells
that have CPD = 1 at t = T for the MOOD method.
Clearly the MOOD method provides smaller errors and the better convergence order of
accuracy. We note that the deactivation of the SCD does not affect the global error since
we are dealing with a plateau, i.e. the first-order and the second-order schemes provide
the same results in that zone. The top of the bump is relaxed by the MOOD Smooth
Detector providing the optimal CPD, i.e. the approximation is a second-order one in
the vicinity of the extremum, whereas the MUSCL strongly cuts the slope leading to
significant negative impact on the accuracy.

4.3 Dam break on a wet bed

Having tackled the smooth solution case, we now consider the dam break problem since
it involves a shock and therefore comparisons between the two methods can be performed
following two criteria: the presence (or not) of oscillations and the number of interme-
diate cells in the shock. For that, we consider the domain [0, 50] and assume the initial
configuration: η(x) = 5 for 0 ≤ x ≤ 25, η(x) = 1 for 25 < x ≤ 50, u(x) = 0 on the whole
domain and the bathymetry is flat with b(x) = 0. The simulations are carried out for a
100 cells mesh using reflection boundary conditions, and we evaluate the approximation
at the final simulation time T = 3.
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Figure 4: Exact and approximated total height for the dam break case for the MOOD (left) and MUSCL
(right) methods with 100 cells.

Figures 4 and 5 present the free surface and the velocity for the MOOD (left) and the
MUSCL (right) methods. In both cases, no oscillations are reported and we observe
that there are 3 cells in the η-shock for the MUSCL case, whereas the MOOD technique
manages to capture the shock within only 2 cells. In the MOOD case, we notice a small
numerical artefact at the end of the rarefaction (x = 22) since the transition presents a
discontinuity of the derivative whereas the CPD map remains equal to one in the vicinity
of the transition. The CPD map should be zeroed at that point and the detector fails
to see such discontinuity. A new detector should be provided to correctly perform the
treatment of such a transition.

Figure 5: Exact and approximated velocity for the dam break case for the MOOD (left) and MUSCL
(right) methods with 100 cells.

When dealing with rough solutions, the convergence order of the errors is not relevant
(almost equal to one in our case), but the multiplicative constant is of crucial importance.
Indeed, if one assumes a convergence order of the form err = C(Δx)β, for rough solutions
one has β = 1, but the choice of the scheme may affect the value of C. In Figure 6
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we display the L1-norm convergence curves for the total height and the velocity and
observe that the corresponding multiplicative constants are lower for the MOOD method
(Cη = 10−1.43, Cu = 10−1.14) with respect to the MUSCL one (Cη = 10−1.26, Cu = 10−0.97).

Figure 6: Comparison of the total height (left) and velocity (right) L1-errors for the dam break case for
the MOOD and MUSCL methods.

4.4 Dry/wet simulation

Dry/wet interface approximation is a fundamental issue to be addressed when dealing with
coastal problems or flooding. The capacity to provide good approximations of the velocity
close to the interface is crucial for the applications since the impact of waves or flooding
is deeply linked to the kinetic energy or the friction force associated to the flow velocity.
We propose here two representative test cases, namely a smooth bathymetry situation
which corresponds to a coastal problem and a discontinuous bathymetry representing a
wave impact on a wall.

4.4.1 Smooth bathymetry

In this simulation we consider the domain [0, 50] and choose a smooth bathymetry function
given by b(x) = 0 for 0 ≤ x ≤ 20, b(x) = 0.15(x − 20) for 20 < x ≤ 50. The initial
configuration concerning the total height is η(x) = 5 for 0 ≤ x ≤ 25, η(x) = b(x) for
25 < x ≤ 50. The initial velocity, the boundary conditions and the number of cells are
the same considered in the previous test. The final simulation time is T = 1.5.
We plot in Figures 7 and 8, respectively, the free surface and the velocity, for the first-
order scheme with 10 000 cells as a reference solution, as well as for the approximations
with the MOOD and MUSCL methods. We report that the MOOD method has a small
over-estimated water height close to the dry/wet interface, but the velocity is very well
approximated. On the contrary, the MUSCL method provides smoother water height
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close to the interface but the velocity is over-estimated. The figures show that the MOOD
technique manages to correctly handle the interface.

Figure 7: Total height with the first-order (left with 10 000 cells), the MOOD (middle) and MUSCL
(right) method for the dry/wet case with smooth bathymetry (100 cells).

Figure 8: Velocity with the first-order (left with 10 000 cells), the MOOD (middle) and MUSCL (right)
method for the dry/wet case with smooth bathymetry (100 cells).

4.4.2 Discontinuous bathymetry

In this simulation we consider the domain [0, 50] and choose a discontinuous bathymetry
function given by b(x) = 0 for 0 ≤ x ≤ 35, b(x) = 3 + 0.125(x − 35) for 35 < x ≤ 50.
The initial configuration concerning the total height and velocity, as well as the boundary
conditions and the number of cells are the same considered in dam break test. The
final simulation time is T = 2.75. Numerical simulations are carried out where the first-
order case is calculated with 10 000 cells to provide a reference solution. Figures 9 and
10 present, respectively, the free surface and the velocity for the first-order scheme and
the approximations with the MOOD and MUSCL methods. We report that the MOOD
method provides a slightly sharper shock in the transition with respect to the MUSCL
method. Moreover, the velocity is well approximated with the MOOD case and over-
estimated with the MUSCL technique. As in the smooth case, a small over-estimation of
the water height occurs with the MOOD method.

5 CONCLUSIONS

We propose in the present work a comparison between the MOOD and the MUSCL
methods to achieve second-order approximation of the shallow water equations. We report
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Figure 9: Total height with the first-order (left with 10 000 cells), the MOOD (middle) and MUSCL
(right) method for the dry/wet case with discontinuous bathymetry (100 cells).

Figure 10: Velocity with the first-order (left with 10 000 cells), the MOOD (middle) and MUSCL (right)
method for the dry/wet case with discontinuous bathymetry (100 cells).

that the MOODmethod is less diffusive regarding to the MUSCL one and manages to treat
very well the non-conservative term. Critical situations such as dry/wet interface with
smooth or discontinuous bathymetry are also well treated by the MOOD methodology.
Nevertheless, new detectors have to be proposed to overcome the small over-estimation
of the water height in the case of smooth ramps.
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