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a  b  s  t  r  a  c  t

This  paper  presents  a novel  approach  toward  the  production  of  hybrid  alginate–lignin  aerogels.  The
key  idea  of the  approach  is to employ  pressurized  carbon  dioxide  for gelation.  Exposure  of alginate  and
lignin  aqueous  alkali  solution  containing  calcium  carbonate  to CO2 at  4.5  MPa resulted  in  a  hydrogel
formation.  Various  lignin  and  CaCO3 concentrations  were  studied.  Stable  hydrogels  could  be  formed  up
to 2:1  (w/w)  alginate-to-lignin  ratio (1.5  wt%  overall  biopolymer  concentration).  Upon  substitution  of
water  with  ethanol,  gels  were  dried  in supercritical  CO2 to produce  aerogels.  Aerogels  with  bulk  den-
sity  in  the  range  0.03–0.07  g/cm3, surface  area  up to 564  m2/g  and  pore  volume  up to  7.2  cm3/g were
obtained.  To  introduce  macroporosity,  the CO2 induced  gelation  was  supplemented  with  rapid  depres-
ignin
upercritical
caffolds
issue engineering
iomaterials

surization  (foaming  process).  Macroporosity  up  to 31.3  ±  1.9%  with  interconnectivity  up  to  33.2  ± 8.3%
could  be  achieved  at depressurization  rate  of  3 MPa/min  as  assessed  by  micro-CT.  Young’s  modulus  of algi-
nate–lignin aerogels  was  measured  in  both  dry and  wet  states.  Cell  studies  revealed  that  alginate–lignin
aerogels  are  non-cytotoxic  and  feature  good  cell  adhesion  making  them  attractive  candidates  for  a wide
range  of applications  including  tissue  engineering  and  regenerative  medicine.

©  2015  Published  by  Elsevier  B.V.
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. Introduction

Since discovered in 1930s, aerogels, ultra-light open-porous
aterials, have been gaining a great deal of attention in the fore-

round of material science and emerging technology. Attempts
ave recently been made to address a variety of regenerative
Please cite this article in press as: S. Quraishi, et al., Novel non-cytotoxic
J. Supercrit. Fluids (2015), http://dx.doi.org/10.1016/j.supflu.2014.12.0

edicine problems using aerogels as scaffolds [1,2]. Several poly-
ers have been used as precursors to produce aerogel-based

issue engineering scaffolds: PLA [3], chitosan [4–6], and polyurea

Abbreviations: BET, Brunauer–Emmett–Teller model; BJH,
arrett–Joyner–Halenda model; q, crosslinking degree; DMEM,  Dulbecco’s
odified Eagle’s medium; G, guluronic acid; IC50, 50% inhibitory concen-

ration; M,  mannuronic; Micro-CT, micro-computed tomography; MTS,
-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-
H-tetrazolium; Na-Alg, sodium alginate; PBS, phosphate buffered saline; PEG,
olyethylene glycol; PLA, poly-(l-lactic acid); PMS, phenazine methosulphate; PVA,
olyvinyl alcohol; PVP, polyvinylpyrrolidone; TCP, tissue culture polystyrene; TRIS,
ris(hydroxymethyl)aminomethane.
∗ Corresponding author. Tel.: +49 40428784275; fax: +49 40428783642.

E-mail address: pavel.gurikov@tuhh.de (P. Gurikov).

ttp://dx.doi.org/10.1016/j.supflu.2014.12.026
896-8446/© 2015 Published by Elsevier B.V.
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crosslinked silica [7–9]. The latter material has been extensively
assessed in vivo.

Alginate is a well-known biomaterial and is widely used for
drug delivery [10] and in tissue engineering [11,12] due to its bio-
compatibility, low toxicity, relatively low cost and simple gelation
mechanism [13]. It is a polysaccharide comprising of mannuronic
(M)  acid and guluronic (G) acid residues obtained either from
brown algae or from bacterial sources [14]. Owing to its gelling,
thickening, stabilizing and viscosifying properties, alginate is a
prominent component for food [15], textile and paper industries
[16,17] as well as in pharmaceutical and medical fields [10,18,19].
However, due to the hydrophilic nature of the alginate chains,
the protein adsorption is discouraged leading to the hampered
the cell adhesion and thus limiting potential tissue engineering
applications [20,21]. Attempts have been presented in the litera-
ture to overcome this limitation including chemical grafting with
oligopeptides [20,22]; blending with other biopolymers [23,24] and
 alginate–lignin hybrid aerogels as scaffolds for tissue engineering,
26

addition of hydroxyapatite [25]. In this work it was attempted
to exploit a major constituent of lignocellulosic biomass, namely
lignin, to produce hybrid alginate–lignin aerogels with the prospect
of biomedical relevance. As pointed out by Smetana [26], the ratio
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etween hydrophilicity and hydrophobicity of the surface is an
mportant factor of cell adhesion. Lignin is expected to reduce
ydrophilicity of alginate and hence provide more suitable envi-
onment for cells to adhere, grow and differentiate. Bearing in mind
ltimate stability of lignin, it was also expected that the presence
f lignin may  abate the scaffold degradation rate and help to match
t with the rate of new bone tissue regeneration.

Due to its abundance and low price, it is of definite interest
o usher lignin into high-value products, i.e. biomaterials, adsor-
ents, thermal insulators. Several attempts have been reported

n the literature on lignin as a part of biomaterials exemplified
y composites with hydroxyapatite [27,28]; as a carrier in laxa-
ive formulations [29]; allergenicity reducer for latex rubber [30].
otential applications in food industry are also reported [31]. For
omprehensive overview on other application of lignin and lignin-
ased products readers are referred to recently published reviews
32–34].

One objection against lignin as a material for biomedical and
harmaceutical applications is its phenolic nature. Organosolv

ignin has been reported to be slightly cytotoxic for peripheral
lood mononuclear cells [28]. One lignin derivative, sulphonated

ignin, when blended with fish gelatin, showed cytotoxicity only
t very high concentrations (IC50 in the range 1500–1750 �g/ml)
31]. IC50 values in the range of 400–1200 �g/ml were found for
ignins from different sources by Ugartondo et al. [35]. Microal-
ae (Chlamydomonas reinhardtii)  and Backer’s yeast (Saccharomyces
erevisiae) show indistinguishable loss of viability after incubation
ith lignin nanoparticles compare with a control sample [36]. From

his data it can be surmised that generally lignin is not cytotoxic
p to moderate concentration. One aim of this work is to prove
hether Ca-crosslinked alginate–lignin aerogels are non-cytotoxic

nd to evaluate them as potential biomaterials.
Apart from lower hydrophilicity and higher stability another

otential advantage of lignin is its antimicrobial activity. Although
ntimicrobial properties of the phenolic units of lignin are well doc-
mented [32], there has been some controversy in the literature
hether lignin and lignin containing materials have antimicrobial

ctivity. Erakovic et al. [28] have found no significant antimicrobial
ctivity of films obtained by electrophoretic deposition from 1 wt%
uspension of organosolv lignin in the presence of hydroxyapatite.
ome antimicrobial activity was detected for sulphonated lignin
31]. However, no direct comparison of water insoluble lignin with
ulphonated lignin is possible. Antimicrobial action of the latter
ay  be ascribed to its surface active properties. Study of Dizhbite

t al. [37] revealed antibacterial effect of kraft lignin and related it
o the high activity as radical scavenger. Lignin-related compounds
rom pine cone are found to induce varieties of antiviral activity
38].

Composites and blends of lignin with cellulose [39], cellulose
cetate [40], xanthan gum [41], PEG [42], PVA [43], PLA [44], PVP
45,46] are known from the literature. Even though there may  be
nly weak interaction between lignin and principal constituent,
ddition of lignin may  offer advantages such as more control over
ater uptake [41] and improved mechanical properties [31,45].

mportance of conjugating lignin with polysaccharides for in vivo
xpression of various kinds of immunopotentiating activity is also
eported [38]. These features may  also have a beneficial effect with
espect to biomedical applications.

Gelation by a reaction with crosslinkers is a common technique
o obtain lignin aerogels. Gelation with resorcinol formaldehyde
47], phenol formaldehyde [48], tannin formaldehyde systems [49]
nd �,�-diglycidyl ethers [50] are reported. To the best of our
Please cite this article in press as: S. Quraishi, et al., Novel non-cytotoxic
J. Supercrit. Fluids (2015), http://dx.doi.org/10.1016/j.supflu.2014.12.0

nowledge, ionic crosslinking of pure lignin or polymer blends con-
aining lignin has not been reported. In this work a goal was set
o use alginate as a “glue” for lignin. Presence of alginate allows
he use of ionotropic gelation instead of chemical crosslinking.
 PRESS
l Fluids xxx (2015) xxx–xxx

Gelation of alginate induced by pressurized carbon dioxide was
recently developed [51] and is used in this work to gel algi-
nate–lignin mixtures. In processing of biomedical materials, CO2
induced gelation have certain advantages over internal and dif-
fusion gelation methods: (i) carbon dioxide, being volatile acid in
water media, can be recovered at post-processing stages; (ii) fast
depressurization leads to macroporous foam-like hydrogels; (iii)
bactericidal activity of pressurized CO2 simplifies preparation of
food and medical materials [52]; and (iv) the process potentially
allows to avoid ambient pressure solvent exchange and can be
directly combined with subsequent supercritical drying [51,53].

2. Materials and methods

2.1. Chemicals

Alginic acid sodium salt (suitable for immobilization of micro-
organisms grade, catalogue no. 71238) was obtained from Sigma
Life science, Germany. Lignin was produced as described below
(Section 2.2). Calcium carbonate (light, precipitated powder, parti-
cle size ca. 1 �m)  was  purchased from Magnesia GmbH, Germany.
Sodium hydroxide (>99%) and anhydrous ethanol (99.9%) for the
solvent exchange were purchased from Carl Roth GmbH and H.
Möller GmbH & Co. KG, respectively. Carbon dioxide used for drying
(99.9 mol% purity) was  procured from AGA Gas GmbH (Hamburg,
Germany). In case of in vitro cell culture studies, the chemicals used
were of analytical reagent or tissue culture grade. Deionized water
was used throughout the study.

2.2. Starting solutions

Lignin was obtained from wheat straw as described elsewhere
[50,54]. This process was  carried out by the biorefinery research
group at the Institute of Thermal Separation Processes, Hamburg
University of Technology (Germany). Briefly, wheat straw was  frac-
tioned by a hydrothermal pretreatment with liquid hot water at
473 K and 5 MPa  followed by an enzymatic hydrolysis step (50 ◦C,
pH 5, Novozymes CTec2, 72 h). Water insoluble lignin was  collected
after the enzymatic cleavage. Lignin was washed with water and
dried at 70 ◦C for 50 h. 3 wt% solution of lignin was prepared by mix-
ing a certain amount of dried lignin with 1 M NaOH and overnight
stirring.

3 wt%  sodium alginate solution was prepared by gentle
overnight stirring of Na-Alg powder with water. After the prepa-
ration both solutions were bottled and stored at 5 ◦C.

Calcium carbonate powder was  dispersed in Na-Alg solu-
tion with a high speed homogenizer Ultra-turrax (IKA, Staufen,
Germany). Then lignin solution was added to obtain desired
alginate-to-lignin ratio: 2:1, 3:1, 4:1 or 5:1 (w/w). Mixture was
diluted with water to keep 1.5 wt% overall biopolymer concentra-
tion (alginate + lignin) and once again homogenized (Ultra-turrax)
for 1 min. Two  crosslinking degrees (q) were used: alginate-to-
CaCO3 of 1:0.1825 (w/w) is referred as q = 1. q = 2 corresponds to
the doubled amount of CaCO3. Resulting suspension was filled into
a standard 48 multiwell plate (BD Biosciences, USA) and subjected
to CO2 induced gelation.

2.3. CO2 induced gelation and hydrogel foaming

Multiwell plates with Na-Alg/lignin/CaCO3 mixture were placed
into an autoclave and exposed to gaseous carbon dioxide at
4.5 ± 0.5 MPa  and room temperature for 24 h. The autoclave
 alginate–lignin hybrid aerogels as scaffolds for tissue engineering,
26

described elsewhere [55] was used for both gelation and super-
critical drying. To study effect of the depressurization rate on
macroporosity of the gels, pressure release was employed at
0.8 MPa/min and 3 MPa/min. The gels were left in the air till
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ormation of bubbles ceased, then washed with water and
nally transferred into ethanol–water mixture to perform solvent
xchange as described below.

.4. Solvent exchange and supercritical drying

Hydrogels were immersed in grades of aqueous ethanol (30, 60,
0 and 99.9 vol.%) for 3 h at each ethanol concentration. The final
olvent exchange was done twice or thrice before the hydrogels
ere supercritically dried. A density meter DMA  4500 (Anton Paar
ompany, Austria) was used to control completeness of the solvent
xchange. Gels were wrapped in filter paper and placed into pre-
eated autoclave (318 K). Supercritical drying was performed using
he same autoclave as for gelation. The autoclave was  sealed and
O2 was filled in by a compressor. Once 12 ± 1 MPa  was reached,
utlet was opened and constant flow (0.2 kg/h) was  set for 5 h such
hat 6–7 residence volumes of CO2 were used. Then system was
epressurized in 30 min  followed by cooling down to room tem-
erature.

.5. Textural and morphological properties

Bulk density of the samples was calculated as ratio of mass to
olume. The length and diameter of the aerogels were measured
ith Vernier calipers. SEM pictures were taken by a Leo 1530 micro-

cope (Carl Zeiss, Germany). Samples were sputtered with gold
7 nm). Pictures were taken at an accelerating voltage of 5 kV and
orking distances in the range of 4.0–6.0 mm.  Surface area, pore

olume and pore diameter were analyzed by nitrogen adsorption
esorption techniques using Nova 3000e (Quantachrome Instru-
ents, USA). Surface area was obtained from multipoint BET. Pore

ize distribution and volume of mesopores were calculated from
esorption branch using BJH method. Porosity, interconnectivity
nd mean pore size in the macroporous range were evaluated by
icro-CT using Scanco 20 equipment (Skyscan 1702, Belgium) with

enetrative X-rays of 30 kV and 167 �A, in high resolution mode
ith a pixel size of 14.71 �m and 1.5 s of exposure time. A CT ana-

yzer (v1.5.1.5, SkyScan) was used to visualize the samples and
alculate the parameters from 2D aerogel structures. The analy-
is was done thrice within different regions of interest. Results are
iven as mean ± standard deviation.

.6. Mechanical properties

Compressive properties of the aerogels were measured using
n INSTRON 5540 universal testing machine (Instron Int. Ltd, High
ycombe, UK) with a load cell of 1 kN. Compression tests were

arried out at a crosshead of 2 mm/min, until a maximum defor-
ation of 60%. Young’s modulus was calculated as the initial linear
odulus on the stress–strain curves. The results are presented as

he average of three experiments ± standard deviation. In wet  state,
he samples were immersed for 10 min  in PBS solution before com-
ression tests.

.7. Water uptake

Aerogel were placed into test tubes, filled with adequate amount
f Tris–HCl buffer solution (pH 7.4) and placed in a water bath
37 ◦C, 60 rpm). Weight of the swollen sample ws was measured
fter removing excess of the buffer with filter paper after 1, 3, 7
nd 14 days. For each time point three parallel samples were mea-
Please cite this article in press as: S. Quraishi, et al., Novel non-cytotoxic
J. Supercrit. Fluids (2015), http://dx.doi.org/10.1016/j.supflu.2014.12.0

ured and the water uptake WU was calculated relative to the initial
eight wi as follows:

U% = ws − wi

wi
× 100.
 PRESS
l Fluids xxx (2015) xxx–xxx 3

2.8. In vitro biological performance

2.8.1. Cell culture
A mouse fibroblast-like cell line (L929 cell line, European Collec-

tion of Cell Cultures, UK) was  maintained in DMEM (Sigma–Aldrich,
Germany) supplemented with 10% heat-inactivated fetal bovine
serum (Biochrom AG, Germany) and 1% antibiotic–antimycotic
solution (Gibco, UK). Cells were cultured in a humidified incubator
at 37 ◦C in a 5% CO2 atmosphere.

2.8.2. Indirect contact assay
Aerogels extracts were prepared according ISO/EN 10993

in DMEM culture medium. L929 cells at a concentration
1.5 × 104 cell/mL were cultured in a 48-well plate for 24 h at 37 ◦C.
At this time, medium was replaced by aerogels extracts. Cell
viability was  evaluated by the MTS  assay after 72 h of culture
time.

2.8.3. Direct contact assay
Confluent L929 cells were harvested and seeded in the aerogel

samples as follows. Samples were distributed in a 48-well cell cul-
ture plate. Samples were initially immersed in sterile PBS to swell
the matrix. Later, PBS was removed and a drop (20 �l) of a cell
suspension with a concentration of 1.5 × 104 cells/ml was  added
to each aerogel. These constructs were statically cultured for 1, 3
and 7 days under the culture conditions of 37 ◦C at 5% CO2 in an
incubator. Triplicates were used for each time point.

2.8.4. MTS assay
Cell viability of the aerogels was  determined after the pre-

determined culture times by the MTS  assay using the Cell Titer
96 AQueous One Solution Cell Proliferation Assay (Promega, USA)
according to the manufacturer instructions. This assay is based
on bioreduction of tetrazolium compound into water-soluble
formazan derivative. The formazan absorbance which is directly
proportional to the number of living cells was measured at 490 nm
in a microplate reader (Synergie HT, Bio-Tek, USA).

In case of indirect contact, effect of the leachable released from
the aerogels on cellular metabolism was evaluated by culturing
L929 cells in the extracts obtained from aerogels. Latex was  used as
a negative control and TCP (tissue culture polystyrene) was used as
a positive control. In direct contact assays the cell-scaffolds were
transferred to a new culture plate in order to evaluate the pres-
ence of viable cells only on the surface of the aerogel. In this case,
TCP was  used as a positive control. All cytotoxicity screening tests
were performed in three replicates and the results are presented
as mean ± standard deviation.

2.9. Statistical analysis

Statistical analysis of the data was conducted using IBM SPSS
Statistics version 20 software. Shapiro–Wilk test was employed to
evaluate the normality of the data sets. Once the results obtained
did not follow a normal distribution, non-parametric tests, in par-
ticular, Kruskal–Wallis test was used to infer statistical significant
differences. Differences between the groups with p < 0.05 were con-
sidered to be statistically significant.

3. Results and discussion

Reports on alginate-based aerogels for biomedical application
 alginate–lignin hybrid aerogels as scaffolds for tissue engineering,
26

are limited. To the best of our knowledge, alginate aerogels were
evaluated to date as drug delivery systems by Mehling et al. [56],
García-González et al. [57]; Veronovski et al. [58,59]; Ulker and
Erkey [60] and as bio-superadsorbents by Mallepally et al. [61].
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ig. 1. SEM structure of alginate–lignin aerogel (alginate/lignin ratio 4:1 (w/w),
 = 2).

Production of aerogels with controlled pore size and dual pore
ize distribution still remains a challenge and restrains aerogels
rom filling a niche in regenerative medicine where macroporos-
ty of the scaffold is of concern. As pointed out by Reverchon et
l. [3], it is very difficult to obtain the coexistence of the macro
nd microstructural characteristics within one scaffold. Various
echniques have been proposed to address this issue: addition of
olid/liquid porogen with subsequent leaching [3]; emulsion tem-
lating [62,63] including supercritical carbon dioxide as a dispersed
hase [64,65]; in situ generation of gas bubbles confined in the gel
63] or rapid expansion of a gas dissolved in the gel (see below). In
his report gelation induced by pressurized CO2 with subsequent
oaming was performed to create macroporous aerogels.

.1. CO2 induced gelation

Solubility of carbon dioxide in water increases with rising pres-
ure along with lowering of pH down to 3 [66]. The drop in pH
auses in turn an increase in solubility of calcium carbonate along
ith the release of calcium ions. At conditions used in this study

or gelation (298 K and 4.5 MPa), CaCO3 solubility is much larger
ca. 2.8 g/L, [67]) than at ambient conditions (0.006–0.01 g/L, [68])
o considerable amount of Ca2+ ions is available for the reaction
ith alginate. To support that Ca2+ ions act as crosslinker a blank

xperiment was performed. It showed that alginate does not form
 gel in the absence of CaCO3. Experiments in a tilting viewing
ell showed no noticeable increase in viscosity neither for Na-Alg
olution alone nor for Na-Alg/lignin mixture. These findings can be
ttributed to moderate pH change: in pure CO2/water system at
5 ◦C pH approaches value of around 3 and remains constant above

 MPa  [69]. Apparently, this pH is not low enough to form a sta-
le acid alginate gel (pKa of M and G units in the range of 3.4–3.7,
70]). Moreover, sodium hydroxide introduced with lignin solution
eacts with CO2 yielding bicarbonate, which possesses buffer prop-
rties: bicarbonate buffer at 5 MPa  CO2 pressure is able to maintain
H around 6–7 (only drop 0.5–1.0 pH units compare to ambient
onditions, [71]). In this regard, this gelation method can be clas-
ified as the internal setting method exploiting acidic properties of
O2–water mixture.
Please cite this article in press as: S. Quraishi, et al., Novel non-cytotoxic
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In this study the CO2 induced gelation method was extended
ver polymer compositions. SEM analysis of aerogels showed the
et-like structure, which is typical to alginate aerogels (Fig. 1).
isual inspection of hydrogels and SEM revealed no sign of lignin
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inclusions. Some authors have found that lignin has limited com-
patibility with other biopolymers, e.g. with cellulose [39] and
xanthan gum [41]. These findings support rather interpenetrating
than co-crosslinking structure of the hybrid network. Rudaz [40]
have prepared hybrid cellulose–lignin hydrogels and noticed that
lignin can be washed out from the hydrogels during the solvent
exchange due to weak cellulose–lignin interaction. This in turn
led to the increase in porosity of cellulose aerogels since lignin
acted as a porogen. In this study an opposite trend was found. As
lignin concentration increases the BJH pore volume decreases (see
Fig. 3). However, it was not possible to obtain stable hydrogels with
lower alginate-to-lignin ratio than 2:1 (w/w). Additional experi-
ments with pure lignin with and without Ca2+ resulted in lignin
precipitation demonstrating that lignin of itself is unable to form a
gel at this condition. Taking into account the high affinity of Ca2+ to
lignin [72], we  suppose that OH-groups of lignin may participate in
the formation of egg-box junctions, but only to certain extent. Par-
tial substitution of alginate COO− groups with phenolic OH-groups
of lignin in the egg-box junctions may  explain the absence of lignin
inclusions in the aerogels.

3.2. Foaming of hydrogels

Foaming of hydrogels is a well-known process exemplified by
cellulose [73], chitin [74] and gelatin [75]. However, to the best of
our knowledge, combination of both gelation and foaming into a
one-pot approach has not been reported. Moreover, such a combi-
nation opens up an inviting prospect to realize all steps of aerogel
processing (gelation, foaming, solvent exchange and supercritical
drying and loading) under carbon dioxide pressure as an integrated
process [51,53].

For the purposes of tissue engineering scaffolds the important
conclusion is that CO2 induced gelation should be coupled with fast
pressure release to obtain macroporosity. Indeed, our results indi-
cate great impact of the depressurization rate: 3 MPa/min favors
formation of numerous pores of approximately 200 �m in size,
whereas slow pressure release (0.8 MPa/min) led to significantly
low porosity with two-fold larger pores (Fig. 2). Very slow depres-
surization at 0.02 MPa/min gave no detectable macroporosity (data
not shown).

Table 1 summarizes results of micro-CT assessment for the
aerogels produced through preceding foaming. Foaming allowed
to introduce macropores in the range of 200–450 �m.  Aerogels
foamed at higher depressurization rate demonstrate two-fold
increase in overall macroporosity along with almost two-fold
decrease in mean pore size. This decrease in pore size is however
well above a minimal size (38–63 �m),  which allows cell to grow
and proliferate [76]. These results indicate that CO2 induced gela-
tion followed by hydrogel foaming seems to be an efficient method
to introduce macroporosity into hydrogels and aerogels, which are
intrinsically micro- and mesoporous.

In the context of this study it is interesting to adduce results
from Floren et al. [77] for silk protein hydrogels prepared under
high pressure CO2 (0.5–15 MPa). In this work acidification of silk
fibroin aqueous solution by pressurized CO2 led to the forma-
tion of stable hydrogel through the development of extensive
�-sheet structures. The results of Floren et al. indicate that protein
hydrogels prepared under CO2 pressure followed by slow depres-
surization (0.02–0.5 MPa/min) display distinctly more homogeneous
pore structure compare to fibroin hydrogels acidified by citric acid
at ambient conditions [77]. This clearly shows that carbon diox-
ide induced gelation, not followed by fast depressurization, leads
 alginate–lignin hybrid aerogels as scaffolds for tissue engineering,
26

to more compact hydrogels compare to ambient conditions. This
conclusion is in agreement with observations made by Annabi et
al. [78]. Elastin-based hydrogels produced in pressurized CO2 were
found to be stiffer (in terms of compression modulus) than those

395

396

397

398

dx.doi.org/10.1016/j.supflu.2014.12.026


ARTICLE IN PRESSG Model
SUPFLU 3198 1–8

S. Quraishi et al. / J. of Supercritical Fluids xxx (2015) xxx–xxx 5

Fig. 2. Micro-CT image of alginate–lignin aerogels produced depressurization rate of 0.8 MPa/min (a) and 3 MPa/min (b).

Table 1
Results of micro-CT analysis for aerogels foamed at different depressurization rates.

Depressurization rate, MPa/min Porosity, % Mean pore size, �m Interconnectivity, %
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0.8 14.28 ± 0.96 

3  31.3 ± 1.9 

roduced at atmospheric conditions. In addition, another study
evealed that gelation at high pressure reduces the pore size of the
ydrogels [79]. One possible explanation for these findings is that
igh pressure CO2 facilitates coacervation of the polymer leading
o densification of the polymer junctions. We  can speculate that a
imilar phenomenon allowed us to prepare pure alginate hydro-
els from Na-Alg with concentration as low as 0.25 wt%, whereas
onventional methods led to unsatisfactory results [51].

.3. Textural properties

To study the effect of lignin concentration on the textural prop-
rties of the aerogels, alginate-to-lignin ratios of 2:1, 3:1, 4:1 or
:1 (w/w) were studied keeping overall biopolymer concentra-
ion at 1.5 wt%. The effect of the crosslinking degree, q, on textural
roperties was also studied at two different levels (Fig. 3a and
Please cite this article in press as: S. Quraishi, et al., Novel non-cytotoxic
J. Supercrit. Fluids (2015), http://dx.doi.org/10.1016/j.supflu.2014.12.0

). All alginate–lignin aerogels showed bulk densities in the range
.03–0.07 g/cm3. No clear trend was observed with the crosslink-

ng degree or the lignin concentration. Conversion of hydrogels
nto aerogels implies shrinkage of certain extent [57]. Overall

ig. 3. BET surface area (a) and BJH pore volume (b) of alginate–lignin aerogels with two c
s  0.8 MPa/min.
423 ± 7 27.6 ± 4.6
220 ± 18 33.2 ± 8.3

linear shrinkage caused by solvent exchange and supercritical dry-
ing was  in the range of 20–35% across all samples. Despite the
pronounced shrinkage all aerogels remained cylindrical shape and
showed quite high surface area compare to the state of the art
(150–600 m2/g and up to 450 m2/g for alginate and lignin aerogels,
respectively, [49,57]). Doubled crosslinker amount (q = 2) leads to
moderate reduction in surface area (Fig. 3a), whereas reduction
in pore volume is more pronounced (Fig. 3b). At q = 2, lignin con-
centration does not exert much influence on the surface area. In
other words, higher crosslinking degree results in more compact
aerogel structures, whereas q = 1 and lower crosslinking degree
led to soft and difficult-to-handle hydrogels. Moreover, foam-
ing of a less crosslinked gel often resulted in its disruption. In
search of a compromise between possibly high lignin concentra-
tion, good textural properties (high surface area, pore volume)
and ability to perform foaming the crosslinking degree was  kept
 alginate–lignin hybrid aerogels as scaffolds for tissue engineering,
26

constant at 2 and alginate-to-lignin ratio at 4:1 (w/w). All fur-
ther in vitro studies were performed with this formulation, which
exhibited the density of 0.07 ± 0.01 g/cm3 and surface area of
382 m2/g.

rosslinking degree: q = 1 (white bars) and q = 2 (shaded bars). Depressurization rate
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Table 2
Young modulus of alginate–lignin aerogels in the dry and wet states.

Sample; rate of
depressurization, MPa/min

Young’s modulus,
MPa

Alginate–lignin dry; 0.8 1.36 ± 0.24
Alginate–lignin dry; 3 0.38 ± 0.05
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Fig. 4. Fluid uptake kinetics in Tris–HCl buffer (pH 7.4) at 37 ◦C and 60 rpm.

.4. Water uptake

Water uptake study was done with alginate–lignin aerogels in
ris–HCl buffer. The latter was chosen instead of commonly used
BS due to its lower affinity to calcium ions. Phosphate ions pre-
ented in PBS leads to fast dissolution of the alginate materials [80]
o that water uptake may  be distorted due to fast calcium leak-
ge [81]. The water uptake gradually increased from day 1 to day
4 and reached a plateau after about 1 week (Fig. 4). Compared
o pure alginate aerogels and starch–alginate hybrids [82] it was
ound that lignin slows down the water uptake kinetics, consistent
ith its hydrophobic nature. Equilibrium water uptake of alginate-

ased materials presented in the literature varies in the wide range
rom 30 to 35,000% [83–85]. On account of vast variety of produc-
ion methods a direct comparison is difficult. Kulkarni et al. [84]
ave found similar water uptake for chemically crosslinked algi-
ate, but with much faster kinetics (equilibrium reached in 2–4 h).

t was noticed [81,85] that almost no swelling happened upon con-
act with Tris–HCl buffer due to the lack of specific interaction
etween buffer and Ca-crosslinked alginate. Our results however
how that alginate–lignin aerogels are able to uptake up to 1613%
Please cite this article in press as: S. Quraishi, et al., Novel non-cytotoxic
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f Tris–HCl buffer. Swelling of the material was also noticed during
he study. Although detailed mechanism of water uptake needs to
e elucidated it is clear that not only pore filling contributes into
he equilibrium uptake but also the swelling of the matrix.

ig. 5. In vitro biological studies: indirect cytotoxicity MTS  assay after 72 h (a); and direc
ays  (b).
Alginate–lignin wet; 0.8 0.05 ± 0.02
Alginate–lignin wet; 3 0.02 ± 0.01

3.5. Mechanical properties

In the context of tissue engineering applications, mechani-
cal properties are an important characteristic. The mechanical
response of the alginate–lignin aerogels prepared at two  different
depressurization rates were evaluated in the compression mode.
Table 2 compares Young’s modulus of dry and wet aerogels. As can
be seen from this data alginate–lignin aerogels can be classified as
materials with low stiffness both in dry and wet states. Their Young
moduli are in the range of granulation and fibrous tissues [86]. It
was also found that Young’s modulus is affected by the depressur-
ization rate: the value was  three times lower for the aerogel foamed
at 3 MPa/min than at 0.8 MPa/min, whereas wetting makes aerogels
almost insensitive to the rate of depressurization.

Due to various compression conditions reported in the literature
(compression rate, range of strain for Young’s modulus) and varia-
tion in aerogel densities a comprehensive comparison is infeasible.
Native silica aerogels are brittle and break at small tensile strains
[2]. Viggiano and Schiraldi [87] have reported the compressive
modulus of 1.78 MPa  for a cryogel composed of alginate and lignin
(1:1, w/w,  ratio with 5% overall solid content). This result is close
to our results for dry aerogels. Alginate–lignin aerogels reported
here demonstrate compressibility and become flexible when com-
pressed, similar to pure alginate aerogels produced by CO2 induced
gelation [51]. This behavior is rather unusual for biopolymer aero-
gels and has mainly been observed for polymer crosslinked silica
aerogels, e.g. isocyanate-coated silica aerogels [2].

3.6. In vitro biological performance
 alginate–lignin hybrid aerogels as scaffolds for tissue engineering,
26

In a first approach the cytotoxicity of the samples prepared was
evaluated. Indirect studies were conducted to check the effect of
the leachables of the matrices on cells cultured in a tissue plate.

t contact MTS  assay with cells cultured on the surface of lignin aerogels for 3 and 7
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s negative control we used latex rubber and as positive control
ells cultured in DMEM culture media. Cytotoxicity screening by
ndirect contact assay studies revealed that alginate–lignin aero-
els did not show any evidence of toxic effects of the leachables
ver the fibroblast like L929 cells (Fig. 5a). Cell viability after 72 h
or alginate–lignin was comparable to TCP, whereas latex showed
lear cytotoxic effect. These results demonstrate that despite the
henolic nature of lignin, it can be used as a material for biomed-

cal and pharmaceutical applications, at least in the concentration
ange used for aerogel preparation.

The main result of this indirect study is that alginate–lignin
erogel does not hinder cell growth and thus can be recognized
s non-cytotoxic material. Cell adhesion tests revealed that cells
re able to adhere on the surface of the materials and the metabolic
ctivity has increased from day 3 to day 7, comparable to TCP results
Fig. 5b).

These results give an account that the alginate–lignin aerogel
emonstrate no cytotoxicity and good cell adhesion properties, at

east in the range of lignin concentration studied. This clearly indi-
ates that lignin-containing aerogels can be viewed as candidates
or further in vitro and in vivo testing.

. Conclusions

The present work deals with the production of alginate–lignin
erogels using CO2 induced gelation followed by solvent exchange
nd supercritical drying. Pressurized carbon dioxide acts as an acid-
fier to liberate Ca2+ ions for the crosslinking of alginate–lignin

ixture. Foaming by rapid expansion of carbon dioxide can be
eadily implemented to introduce macroporosity in the aerogels.
oaming procedure is free of templating agents and shown to be
n effective way to introduce macropores of few hundred microns
nto hydrogels and subsequently aerogels. Despite the pronounced
hrinkage, aerogels produced by CO2 induced gelation followed
y foaming demonstrate low density and good textural proper-
ies both at meso and macroscale. Apart from readily available
oaming there are several additional advantages in using pressur-
zed CO2 to induce gelation. First, carbon dioxide strengthened the
ydrogel, whereas hydrogels formed from the same formulation
t ambient conditions are more soft and often do not preserve the
hape. Second, wide range of polymers can be mixed with algi-
ate leading to hybrid hydrogels with modified properties. Third,
he use of carbon dioxide as a volatile acidifier, allows for efficient
ecovery of CO2 at post-processing stages. Finally, the process can
e directly combined with subsequent supercritical drying into a
ne-pot approach. In this work we have proven the feasibility of
lginate–lignin aerogels to be used in a tissue engineering perspec-
ive.

The alginate–lignin aerogels present textural and morphological
roperties suitable for tissue engineering applications. Further-
ore they have high equilibrium water uptake. In terms of Young’s
odulus studied aerogels can be classified as material with low

tiffness both in dry and wet states. In vitro cytotoxicity screening
as demonstrated that lignin does not compromise cell viability
nd it has been shown that alginate–lignin aerogels possess good
ell adhesion properties prompting possible further in vitro and
n vivo assessment.
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36] C. Frangville, M.  Rutkevičius, A.P. Richter, O.D. Velev, S.D. Stoyanov, V.N.
Paunov, Fabrication of environmentally biodegradable lignin nanoparticles,
ChemPhysChem 13 (2012) 4235–4243.

37] T. Dizhbite, G. Telysheva, V. Jurkjane, U. Viesturs, Characterization of the radical
scavenging activity of lignins–natural antioxidants, Bioresource Technology 95
(2004) 309–317.

38] H. Sakagami, Y. Kawazoe, N. Komatsu, A. Simpson, M.  Nonoyama, K. Konno,
et  al., Antitumor, antiviral and immunopotentiating activities of pine cone
extracts: potential medicinal efficacy of natural and synthetic lignin-related
materials (review), Anticancer Research 11 (1991) 881–888.

39] R. Sescousse, A. Smacchia, T. Budtova, Influence of lignin on cellu-
lose–NaOH–water mixtures properties and on aerocellulose morphology,
Cellulose 17 (2010) 1137–1146.

40] C. Rudaz, Cellulose and Pectin Aerogels Towards Their Nano-structuration,
MINES ParisTech, 2013.

41] I.E. Raschip, C. Vasile, D. Ciolacu, G. Cazacu, Semi-interpenetrating polymer
networks containing polysaccharides. I. Xanthan/lignin networks, High Perfor-
mance Polymers 19 (2007) 603–620.

42] J.F. Kadla, S. Kubo, Miscibility and hydrogen bonding in blends of poly(ethylene
oxide) and kraft lignin, Macromolecules 36 (2003) 7803–7811.

43] S. Kubo, J.F. Kadla, The formation of strong intermolecular interactions in
immiscible blends of poly(vinyl alcohol) (PVA) and lignin, Biomacromolecules
4 (2003) 561–567.

44] J. Li, Y. He, Y. Inoue, Thermal and mechanical properties of biodegradable blends
of  poly(l-lactic acid) and lignin, Polymer International 52 (2003) 949–955.

45] C. Liu, C. Xiao, H. Liang, Properties and structure of PVP–lignin blend films, J.
Applied Polymer Science 95 (2005) 1405–1411.

46] G. Cunxiu, C. Donghua, T. Wanjun, L. Changhua, Properties and thermal degra-
dation study of blend films with poly(4-vinylpyridine) and lignin, J. Applied
Polymer Science 97 (2005) 1875–1879.

47] F. Chen, M. Xu, L. Wang, J. Li, Preparation and characterization of organic aero-
gels by the lignin–resorcinol–formaldehyde copolymer, Bioresources 6 (2011)
1262–1272.

48] L.I. Grishechko, G. Amaral-Labat, A. Szczurek, V. Fierro, B.N. Kuznetsov, A.
Celzard, Lignin–phenol–formaldehyde aerogels and cryogels, Microporous and
Mesoporous Materials 168 (2013) 19–29.

49] L.I. Grishechko, G. Amaral-Labat, A. Szczurek, V. Fierro, B.N. Kuznetsov, A. Pizzi,
et  al., New tannin–lignin aerogels, Industrial Crops and Products 41 (2013)
347–355.

50] L. Perez-Cantu, F. Liebner, I. Smirnova, Preparation of aerogels from wheat
straw lignin by cross-linking with oligo(alkylene glycol)-�,�-diglycidyl ethers,
Microporous and Mesoporous Materials 195 (2014) 303–310.

51] P. Gurikov, S. Raman, D. Weinrich, M.  Fricke, I. Smirnova, A novel approach
to  alginate aerogels: carbon dioxide induced gelation, RSC Advances (2014),
http://dx.doi.org/10.1039/C4RA14653K (accepted for publication).

52] L. Garcia-Gonzalez, A.H. Geeraerd, S. Spilimbergo, K. Elst, L. Van Ginneken, J.
Debevere, et al., High pressure carbon dioxide inactivation of microorganisms
in  foods: the past, the present and the future, International J. Food Microbiology
117 (2007) 1–28.

53] S.P. Raman, P. Gurikov, I. Smirnova, An integrated approach towards biopoly-
mer  aerogels using high pressure solvent exchange, in: Proceeding of the 14th
Please cite this article in press as: S. Quraishi, et al., Novel non-cytotoxic
J. Supercrit. Fluids (2015), http://dx.doi.org/10.1016/j.supflu.2014.12.0

European Meeting on Supercritical Fluids, Marseille, 2014.
54] T. Ingram, K. Wörmeyer, J.C.I. Lima, V. Bockemühl, G. Antranikian, G. Brunner,

et  al., Comparison of different pretreatment methods for lignocellulosic materi-
als. Part I: Conversion of rye straw to valuable products, Bioresource Technology
102 (2011) 5221–5228.

[

[

 PRESS
l Fluids xxx (2015) xxx–xxx

55] I. Smirnova, J. Mamic, W.  Arlt, Adsorption of drugs on silica aerogels, Langmuir
19 (2003) 8521–8525.

56] T. Mehling, I. Smirnova, U. Guenther, R.H.H. Neubert, Polysaccharide-based
aerogels as drug carriers, J. Non-Crystalline Solids 355 (2009) 2472–2479.

57] C.A. García-González, M.  Alnaief, I. Smirnova, Polysaccharide-based
aerogels—promising biodegradable carriers for drug delivery systems,
Carbohydrate Polymers 86 (2011) 1425–1438.

58] A. Veronovski, Z. Novak, Z. Knez, Synthesis and use of organic biodegradable
aerogels as drug carriers, J. Biomaterials Science. Polymer Edition 23 (2012)
873–886.
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