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Abstract

Fault-tolerant control systems can be built by replicating
critical components. However, replication raises the issue
of inconsistency. Multiple protocols for ensuring consis-
tency have been described in the literature. PADRE (Proto-
col for Asymmetric Duplex Redundancy) is such a protocol,
and an interesting case study of a complex and sensitive
problem: the management of replicated traffic controllers
in a railway system [5]. However, the low level at which
the protocol has been developed embodies system details,
namely timeliness assumptions, that make it difficult to un-
derstand and may narrow its applicability. We argue that,
when designing a protocol, it is preferable to consider first
a general solution that does not include any timeliness as-
sumptions; then, by taking into account additional hypothe-
sis, one can easily design a time-based solution tailored to a
specific environment. This paper illustrates the benefit of a
top-down protocol design approach, and shows that PADRE
can be seen as an instance of a standard Primary-backup
replication protocol based on View Synchronous Communi-
cation (VSC).

1 Introduction

Fault-tolerant control systems can be built by replicat-
ing critical components. Replication masks faults thus in-
creasing availability. Nevertheless, replication raises the is-
sue of inconsistency. In fact, when trying to ensure avail-
ability, safe operation of the system might be compromised
due to inconsistency among the replicas. As a real world
scenario, Essame et al. [5] describe the replication of traf-
fic controllers in a railway system and show how inconsis-
tency can lead to a catastrophic failure. In [5], such sce-
nario is avoided using a replication protocol which has been

*Partialy funded by FCT ESCADA project (POSI/33792/CHS/2000).

José Pereira*
Universidade do Minho
Portugal
jop@di.uminho.pt

André Schiper
EPF Lausanne
Switzerland
andre.schiper@epfl.ch

called the Protocol for Asymmetric Duplex Redundancy
(PADRE).

PADRE has been conceived at a low level of abstraction
and embodies system details, namely timeliness assump-
tions, that make it difficult to understand and may narrow
its applicability. Indeed, from the presentation by Essame
et al. it may be difficult to see (1) how the problem com-
pares to other fault-tolerant problems studied and described
in the literature, and (2) how the proposed solution relates
to common replication techniques.

We argue that, when designing a protocol, it is preferable
to consider first a general solution that does not include any
timeliness assumptions, and only then to take into account
the additional hypothesis of a specific environment. Since
PADRE is an interesting case study due to the complexity
and sensitivity of its target system we propose to revisit the
problem at a higher level of abstraction and to follow a top-
down protocol design approach.

The goal and main contribution of this paper is to show
that Asymmetric Duplex Redundancy can actually be seen
as an instance of the more generic and widely studied
primary-backup replication technique, and that the PADRE
protocol can be seen as a particular implementation of a
generic solution of primary-backup replication [3]. Be-
sides the immediate clarification of the fault tolerance do-
main that this represents, it also strongly advocates the top-
down design approach [9]: a generic solution is developed
first, and then instantiated to a specific environment, thereby
eliminating the effort required in starting from scratch.

Furthermore, we show that reasoning about the proper-
ties of the generic solution do not require “synchronous”
assumptions, allowing us to delay the introduction of time
constraints to the implementation step. This has the advan-
tage of precisely showing how and where the correctness
of the system depends on timing assumptions. In short, by
establishing the mapping between the generic solution for
primary-backup replication and PADRE, we clarify the role
of each mechanism used in the implementation and provide
a better understanding of the protocol as a whole.



The rest of the paper is structured as follows. In Sec-
tion 2 we recall the train control system and the context for
Asymmetric Duplex Redundancy. In Section 3 we describe
the primary-backup replication technique and show how it
can be useful in managing redundant traffic controllers. In
Section 4 we succinctly describe the PADRE protocol, and
in Section 5 we present the mapping between the generic
solution and the PADRE protocol. Section 6 concludes the
paper arguing for a top-down approach of protocol design
and discusses the role of time in the PADRE protocol.

2 Train control system: specification

We recall in this section the specification of the train con-
trol system. A full description is given in [5].

A railway system is composed of tracks on which trains
move (Figure 1). In order to control the circulation of trains
and avoid collisions, tracks are divided into sections, num-
bered #1,...,#k,.... Each section is monitored by one
controller (i.e., section #% is monitored by controller #k).
The responsibility of controller #k is to prevent collisions
of trains in section #k. Each section is further decomposed
in blocks: in each section, the corresponding controller has
to ensure that some train 7" cannot proceed to a block al-
ready occupied by another train 7.
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Figure 1. Train control system

One key problem is the hand-over of trains from one
controller to the next one. For this purpose, two adjacent
sections share a block called inter-section lock (Figure 1).
Consider the inter-section lock shared by sections #k-1 and
#k. Train T' traveling from section #k-1 to section #k is
allowed to leave the inter-section lock only after being reg-
istered by the controller #k. If controller #k crashes, T'
will not be able to leave the inter-section lock.

To improve the availability of the system, i.e., to prevent
the blocking of a train due to the crash of a controller, con-
trollers can be duplicated (two replicas): a Primary and a
Secondary (Figure 2). If controller #k is duplicated, then
train 7" should be able to leave the inter-section lock in spite
of the crash of one of the two replicas. However, duplica-
tion introduces potential inconsistencies. Specifically, the

following inconsistency that can lead to a catastrophic fail-
ure must be avoided. Consider two trains 7" and 7" traveling
from section #k-1 to section #k& and the duplication of the
controller of section #k& (Figure 1):

e The Primary controller of section #k registers train T,
allows it to leave the inter-section lock, and crashes
immediately after.

e The Secondary controller of section ##k has not reg-
istered T (i.e., it is not aware of the existence of 7" in
section #k) and takes control of the section.

e The Secondary registers train 7" and allows it to leave
the inter-section lock. It is now possible for train 7" to
bump into train T'.
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Figure 2. Duplicated controller (controller k)

The above inconsistency can be prevented by a replication
protocol (Figure 2) ensuring the following safety condition:

e Primary/Secondary consistency: If the Primary con-
troller #k registers some train 7" entering section #k,
then the Secondary controller #k can never take con-
trol of section #k without having previously registered
train T'.

This condition, here stated with regards to the “registration”
of the trains, can be generalized to any message that changes
the state of the controller.

3 The generic primary-backup replication
technique

We consider in this section the well-know primary-
backup replication technique [3, 1, 6] as a generic and high-
level solution to handle the redundancy required by the train
control system.

3.1 Principle of primary-backup replication

The primary-backup replication technique consists in
having one primary and one or more backups ready to take



over if the primary controller fails. Registration requests
are handled by the primary. Once the primary has handled
some request req it makes sure that each backup is up-to-
date with respect to the new state, should it need to become
the primary.
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Figure 3. Overview of a primary-backup proto-
col (P is the primary; By, B, are the backups)

In the absence of controller failures and with reliable
FIFO channels, a simple protocol for primary-backup repli-
cation could be as follows (see Figure 3): Upon receiving a
request the primary P executes it, broadcasts a state update
message to the group of replicas, waits for an acknowledge-
ment (ack) from each backup, and then sends back the reply
to the client.

Making the replication protocol correct when the con-
trollers may crash and network messages may be lost is
more difficult. However, much of the difficulty can be over-
come by devising the replication protocol using the View
Synchronous Communication abstraction [1, 2, 10, 11].
Figure 4 shows the architecture of this approach: a straight-
forward primary-backup protocol (upper box) based on a
VSC protocol (lower box). The VSC layer providesa Group
Membership Service and VSC communication primitives
that we describe next.
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Figure 4. View Synchronous Communication
layer

3.2 The Group Membership Service

The group membership service manages the composition
of the group of controllers. For primary-backup replication
the group consists of the primary and the backups. The suc-
cessive membership of a group is given by a sequence of
views, and the event by which a new view is provided to
a controller is called the InstallView event (Figure 4). A
controller may leave the group as a result of an explicit
leave request, because it failed or because it is expelled by
other members of the current view. Similarly, a controller
may join the group, for example to replace a controller that
has left the group. Upon joining, a controller initiates its
state through a state transfer. One distinguishes two types
of group membership services [11]: primary-partition and
partitionable. In this paper we consider only the primary-
partition membership service. Let v denote the i*" view
installed by controller p. The primary-partition membership
service is defined by an agreement property on the view his-
tory:

e Agreement on the view history: If p installs v¥ and
if ¢ installs v}, then we have v = v].

The agreement property allows us to denote a view simply
by v; without mentioning the controller superscript. The
specification of a group membership service includes addi-
tional properties that we intentionally omit here.

In the context of primary-backup replication, if the pri-
mary of view wv; crashes, another replica must be elected
as primary. With the above agreement condition, electing a
new primary is very simple. After the crash of the primary,
anew view v; 41 is installed: the new primary can be simply
the replica in v;41 with the smallest identification. Notice
that if failure detection is unreliable, replicas can mistak-
enly be considered faulty, and excluded from the view.

Replicas that have been excluded from the membership
(because of a crash or because they were mistakenly consid-
ered faulty) can join again (re-initiating their state through
a state transfer). This might lead to two or more views with
the same membership. Consider for example the following
sequence of views: v; = {p,q,r}, vit1 = {p,r} (g is mis-
takenly excluded or has crashed), v;y2 = {p,q,7} (¢ has
recovered). Views v; and v;4o are identical, which might
pose problems. To ensure that we never have two different
views with the same membership, a replica that is excluded
from a view comes back with a new identity. This can be
implemented using incarnation numbers. We use the no-
tation ¢, to denote the z** incarnation of ¢ (initially go).
Using incarnation numbers, the above sequence becomes:
v; = {Po,90,70}, Vit1 = {Po,T0}, Viy2 = {Po,q1,70}.
Incarnation numbers will be omitted when there is no am-
biguity.
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Figure 5. The need for view synchrony (v; =
{R1,R2, R3}; viy1 = {R2,R3})

3.3 View Synchronous Communication (VVSCast)

View synchronous communication is used by the pri-
mary, through primitives VSCast and VSDeliver (Figure 4),
to broadcast update messages to the backups and ensures
1) that update messages are ordered with respect to view
changes, and 2) that updates are delivered to either all or
none of the replicas.

The need for (1) is illustrated in Figure 5, where R; is
the primary — denoted by P — in view v;, and R is the pri-
mary in view v; 1. Safety is compromised here because the
new primary R» receives the request of client Cy before
the update message from the previous primary R;. The
resulting update message issued by R» would be inconsis-
tent with the state of R3. The execution of Figure 5 can be
avoided by the view synchrony property [10, 11]:

e View Synchrony: If replica p belongs to two con-
secutive views v; and v; 1, and V.S Delivers m be-
fore installing v;11, then every replica g in v; N v;41
V SDelivers m before installing v;41.

View synchrony prevents the run depicted in Figure 5: as
replica R3 belongs to two consecutive views v; and v;41,
and VSDelivers the update messages in view v;, Ry can-
not install v;11 without having previously VSDelivered the
update message.

View synchrony is however not sufficient to ensure the
safety of the protocol. This is shown in Figure 6, where the
update message of Ry issued in view v; is VSDelivered by
Ry and R3 in view v;41. View synchrony is not violated
here. Nevertheless the run of Figure 6 might also lead to
inconsistencies between R» and R3, e.g., to the same incon-
sistency as in the run of Figure 5. The following property
prevents the run depicted in Figure 6.

e Sending View Delivery: A message VSCast in view
v; is VSDelivered in view v;.
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Figure 6. The need for sending view delivery
(i = {R1, Rz, R3}; vip1 = {R2, R3})

3.4 Primary-backup replication protocol based
on VSC

We detail now the primary-backup replication protocol
based on VSC (Figure 4). First consider the registration re-
quest (Section 2). It is sent using a reliable broadcast, which
ensures that if one correct replica receives the request, all
correct replicas receive it [8].> The implementation of the
reliable broadcast of message m leads each process receiv-
ing m to re-send m to all destination processes [8].

As for the rest of the protocol of the replicas, the behav-
ior of the primary is the following (see Figure 3):

1. Each time a request is received it is processed by the
primary. The processing computes an update message
that represents the state change induced by the process-
ing of request. The update message is VSCast to the
current view v;.

2. The primary waits for an acknowledgement (ack) from
all backups in v;, or the installation of a new view v; ;1 :

() If all acknowledgements are received, the pri-
mary returns the reply to the request and is ready
to handle the next request (e.g., the next registra-
tion request in the train control system).

(b) Ifanew view is installed and the primary remains
the same, if not all acknowledgements have been

1Actually, in the standard primary-backup protocol, the request is sent
only to the primary. We consider herethat the request issent to all the repli-
cas in order to be closer to PADRE (Section 4), in which input messages
are sent to all replicas.



received in view v;, the primary continues wait-
ing for an acknowledgement from all backups in
v; N w41, Or the installation of a new view.

The protocol for the backups is as follows:

3. Each backup waits for an update message from the pri-
mary or the installation of a new view:

(a) If an update is VVSDelivered, the backup updates
its state accordingly, and sends back an acknow!-
edgement to the primary.

(b) Ifa new view v; 4 is installed (update messages
from view v; will no longer be received) then
the backup assumes the role of primary in v; 41
when: i) v;41 does not contain the previous pri-
mary, and ii) the backup is the replica with the
smallest identification in v;y1.

It should be noted that the protocol remains correct if a
primary is mistakenly suspected and expelled from the view.
Moreover, the protocol can tolerate the existence of two dif-
ferent primaries at the same global time ¢, e.g., one primary
pinview v; and a different primary p’ in view v;;1. This is
because the primary p, even though it can still receive regis-
tration requests and process them, will no longer be able to
get acknowledgements from all its backups (at least one of
them is in view v;41), and so to send replies. This guarantee
is provided by the “sending view delivery” property: even
though the primary p can VSCast update messages in view
v;, hone of these messages will ever be delivered in view
vi+1. SO p will wait for acknowledgements until it learns
that it has been excluded from the view.

4 The PADRE protocol

We recall in this section the Protocol for Asymmetric
Duplex Redundancy (PADRE) of [5], starting by highlight-
ing some of its system assumptions.

4.1 Timeliness assumptions

PADRE has been conceived assuming a system that
satisfies several timeliness properties. These properties
are those of the Timed Asynchronous model [4]: (1) the
drift between process clocks is bounded and the bound
known, (2) messages sent over the network have perfor-
mance/omission failure semantics, (3) there is a known
bound for message handling by processes: processes either
handle received messages within this interval or halt.

Based on these synchrony assumptions, communication
delays can be evaluated and a datagram service with timeli-
ness properties is assumed: every message received is clas-
sified as “slow” or “fast”. The datagram service ensures va-
lidity and non-duplication of messages and establishes the

guarantees of message timeliness (slow messages are dis-
carded).

Additionally, PADRE assume the existence of a hard-
ware bi-stable relay that in each moment points to one (and
only one) of the processes (its use is explained in the next
section).

4.2 Protocol overview

Consider the architecture of Figure 7. Input messages
arrive from the network to both units, the Primary and the
Secondary. If some train 7" in the inter-section lock needs
to register to the controller of the new section, a register
message is sent (to the Primary and the Secondary). This
message is first received by the PADRE layer, and then de-
livered to the application (see Figure 7). The train 7" is only
“registered” at the Primary (respt. at the Secondary) upon
delivery of the register message. A hardware bi-stable relay
ensures that only one unit can be the Primary at any time. If
the current Primary fails, the relay automatically switches,
leading the other unit to become the Primary (if its state
permits, see Section 4.2.1).
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application application
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Figure 7. PADRE architecture

PADRE distinguishes four modes of operations for each
controller unit: (1) primary, (2) standby, (3) quarantine,
and (4) failed. A unit in the primary mode acts as the Pri-
mary. A unit in the standby mode acts as the Secondary
and has its state consistent with the Primary. A Secondary
whose state is not consistent with the Primary is in the quar-
antine mode. So, in order to satisfy the Primary/Secondary
consistency condition of Section 2, the protocol must ensure
that a Secondary switches to the quarantine mode if its state
cannot be made consistent with the state of the Primary.

Based on these four modes, PADRE distinguishes two
configurations: (1) the nominal configuration, in which one
unit is in the primary mode and the other unit in the standby
mode, and (2) the safe configuration, in which one unit is in
the primary mode and the other is either in the quarantine
or in the failed mode.



4.2.1 The protocol in the nominal and safe configura-
tions

Consider the system in the nominal configuration. We
describe the different behaviors of the Primary and the
Secondary. The protocol of the Primary is the following
(adapted from [5]):

1. The Primary periodically sends a message “Don’t
switch to quarantine” to the Secondary, and sets a
quarantine timeout delay Q.

2. Each time an input message is received from the net-
work (or from the Secondary), the Primary forwards
the message to the Secondary, sets a wait timeout de-
lay A, and waits for an acknowledgement:

() If the acknowledgement is received before the
timeout A expires, then the Primary delivers the
input message to the application.

(b) If no acknowledgement is received and the time-
out A expires, then the Primary (1) stops sending
“Don’t switch to quarantine’ messages, (2) stops
forwarding input messages to the Secondary, and
(3) delivers the input message to the application
after expiration of the quarantine timeout ). At
this point the system is expected to be in the safe
configuration with the Secondary either in quar-
antine or failed mode.

3. If the Primary fails, the relay will switch the Sec-
ondary, if in standby mode, to the primary mode.

The protocol for the Secondary is the following:

4. The Secondary waits for the periodic “Don’t switch to
quarantine” message from the Primary. Upon recep-
tion of such a message, it sets a stay alive timeout de-
lay denoted by I. If no “Don’t switch to quarantine”
message is received before the timer expires, then the
Secondary switches to the quarantine mode.

5. Each time an input message is received directly from
the network, the Secondary forwards it to the Primary.

6. Each time an input message is received from the Pri-
mary, the Secondary sends an acknowledgement to the
Primary, and delivers the message to the application.

No (automatic) action is taken upon the failure of the Sec-
ondary.
4.2.2 Switching from a safe to a nominal configuration

In a safe configuration the Secondary is unable to take con-
trol should the Primary fail. To increase the availability, it is

worth returning to a nominal configuration as soon as pos-
sible. This is possible immediately if the safe configuration
is due to quarantine of the Secondary.

Switching from a safe to a nominal configuration re-
quires the Primary to transfer its state to the Secondary.
As soon as the state transfer is terminated, the Primary (1)
resumes forwarding input messages to the Secondary and
waits for acknowledgement from the Secondary before de-
livering them, and (2) resumes sending ““Don’t switch to
quarantine”” messages. The Secondary simply waits for the
state transfer to terminate, and then switches to the standby
mode.

4.3 Observation

When comparing the protocol in Section 3.4 with the
above PADRE protocol, it is clear that PADRE is more com-
plex. This is because much of the complexity of the proto-
col in Section 3.4 is hidden in the VSC layer (Figure 4). We
didn’t discuss the implementation of the VVSC layer [7].

5 PADRE as an instantiation of the generic
primary-backup protocol

We show now that the VSC primary-backup replication
protocol given in the previous section can actually be in-
stantiated into the PADRE protocol. We can split PADRE
in two parts: one part that corresponds to the upper box
of Figure 4 (Primary-backup replication layer) and one part
that corresponds to the lower box of the same figure (VSC
layer). Concerning the VSC layer, we show that 1) the bi-
stable relay (Figure 7) and the timing properties of messages
allow us to ensure the property of the membership service
(agreement on the view history), 2) the view synchronous
property of VSC is obtained for free (only one backup), and
3) the fail-aware datagrams ensure the same view delivery
property of VSC.

5.1 Primary-backup replication layer

5.1.1 Mapping of the messages

In the VSC primary-backup protocol (Figure 3), the primary
(1) processes a client request, and (2) broadcasts an update
message (to the members of the current view). If the pro-
cessing is deterministic, steps (1) and (2) can be done in
the reverse order. In this case, the client request is broad-
cast, and all the replicas process the request. This is done in
PADRE. Taking this permutation into account, the mapping
of the messages is as simple as this (refer to the primary-
backup protocol overview in Figure 3):

e PADRE “input” messages correspond to client re-
quests in the primary-backup protocol.
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e PADRE’s forwarding of an “input” message from the
primary to the secondary (Section 4.2.1, item 2) cor-
responds to the update VVSCast done by the primary in
the primary-backup protocol (Section 3.4, item 1).

e PADRE’s acknowledgement messages (Section 4.2.1,
item 6) correspond to the acknowledgement messages
in the primary-backup protocol (Section 3.4, item 3).

5.1.2 PADRE ensures the reliable broadcast of “input”
messages

PADRE ensures the reliable broadcast of input messages
by having the Primary as well as the Secondary forward to
the other unit each input message received (Section 4.2.1,
items 2 and 5). This is similar to the standard implementa-
tion of reliable broadcast (Section 3.4, first paragraph).

5.2 VSC layer

5.2.1 PADRE ensures agreement of the view history

We show now that PADRE ensures the agreement on the
view history. To do so, we must map the PADRE con-
trollers’ units modes onto membership views. Then we
show that this mapping ensures the view history agreement
property of Section 3.2. Let’s denote by A and B the two
controller units. The mapping between PADRE modes and
views is as follows (the primary is the first unit in a view):

mode(A)  mode(B) | View
P S {4, B}
S P {B, A}
P F/Q {A}
FIQ P (B)

P = Primary; S = Standby; F/Q = Failed or Quarantine.

Moreover, we denote by L a state in which the system is
blocked (i.e., no new view can be installed). The mapping
of PADRE mode changes into view changes follows imme-
diately (see Figure 8). Transition (1) occurs when the Sec-



ondary switches to the quarantine mode or crashes. Tran-
sition (2) corresponds to a switch from a safe to a nominal
configuration. Transition (3) results from the switch of the
relay due to the crash of A. Transition (4) takes place when
A crashes in a safe configuration. Transition (5) is the sym-
metric of transition (1), (6) the symmetric of (2), (7) the
symmetric of (3), and (8) the symmetric of (4).

Figure 8 does not distinguish the various incarnations of
the controller units. Using the notation introduced in Sec-
tion 3.2, we denote by A; (respt. B;) the it" incarnation of
A (respt. B), and assume that initial incarnation number is
0 for both units. So the view vg on which both units ini-
tially agree is { Ao, Bo}. Figure 9 shows the possible view
histories starting from vyg.

The agreement on the view history property of Sec-
tion 3.2 is equivalent to having the two controller units agree
on one path of the possible view history paths depicted in
Figure 9. To show that PADRE ensures this agreement, it is
sufficient to show that PADRE ensures agreement between
two nominal configurations, i.e., from vo t0 vogt2 (Fig-
ure 10). The agreement on the view history follows directly.

U2k {A;, B;} nominal
V2k+1 {A;} {B;} safe
V2k+2 {A;, Bj+1} {Bj,Ait1} nominal

Figure 10. Nominal to nominal configuration

We start by considering the path {4;,B;} — {B;} —
{Bj, Ai11} (the easy case), and then the path {A4;, B;} —
{A;} — {A;, Bj1} (the tricky case).

i) PADRE ensures agreement on the path {4;, B;} —
{Bj} = {Bj, Ait1}

Let units A and B be both in view vo, = {A;, B;}. If unit
B installs view vay1 = {B;}, it is because it has detected
the crash of unit A, thanks to the relay. Because the relay is
reliable, A indeed has crashed and does not install any view
Vg

If unit B installs view vog42 = {Bj, A1}, itis because
it has detected the recovery of A. Upon recovery, A will
necessarily adopt the view v 2 Obtained from B, i.e., both
units agree on View vag2.

ii) PADRE ensures agreement on the path {4;, B;} —
{4i} = {4, Bjs1}

This case is more tricky. Figure 11 illustrates divergence
that must be prevented. This can happen as follows. Ini-
tially both units agree on the view vo, = {A4;, B;}. Then
unit A suspects unit B to have crashed and installs view
vop+1 = {A}. However unit B is not aware that it has been
suspected: B is still in view vy Later A crashes, the re-
lay leads B do detect it, and to install view vog11 = {B}:
agreement is violated on view vagy1.

History of A History of B
+ v ={A4;,B;}  wvar = {4, B;}
A suspects Bl
B detects the
T V2k+1 = {A’t} crash of A
L vart1 = {B;}

time

Figure 11. View divergence to avoid

PADRE ensures agreement on the path {4;, B;} —
{A;} — {A4;, Bj;1} by preventing the run of Figure 11
from occurring. This is done, thanks to the “Don’t switch
to quarantine” messages, to the timeouts @, I, and to the
parameters A, p of the Timed Asynchronous model (Sec-
tion 4.1). If we have Q@ > A(1 + p) + (I + 2p), then
when the timeout @) expires on the Primary, the Secondary
is in the quarantine mode, or has crashed (see [5] for de-
tails). In terms of views this means that when unit A installs
view var1 = {A4;}, it knows that B will never install view
vart1 = {Bj} (see Figure 12).

5.2.2 PADRE ensures the “view synchrony’ and “same
view delivery” properties

Finally, we show that PADRE ensures “view synchrony”
and “same view delivery”. The view synchrony property
is trivially ensured by PADRE since for all configuration
changes we have |v; N v;41| = 1. Indeed, in this case
we have only one process in v; N v;41: Vviolation of view
synchrony can only occur with a least two processes in
v; N Vit1-

The “same view delivery” property is ensured in PADRE
by fail-aware datagrams [4]. PADRE computes an upper
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Figure 12. Unit A delays the installation of
vgk41 to avoid view divergence

bound on the real transmission delay of each message, and
classifies messages as fast and slow. A fast message is a
message that has experienced a “real” transmission delay of
at most A time units.? The same view delivery property is
ensured in PADRE by discarding “slow” messages.

6 Discussion

The VSC primary-backup protocol and PADRE can be
compared from two perspectives: (i) from the perspective
of the system models, and (ii) from the perspective of com-
plexity. From the perspective of the system models, we have
on one side a time-free protocol (the VSC primary-backup
protocol) and on the other a time-based protocol (PADRE).
From the point of view of complexity, because of its mul-
tiple timing parameters A, R, I, w, @, PADRE is clearly
the more complex of the two protocols. Nevertheless, we
have shown that PADRE can be seen as an instance of the
VSC primary-backup protocol. This might look surprising,
but there is no contradiction here. PADRE is complex be-
cause it is built on low-level abstractions and handles time
explicitly. By comparison, the VSC primary-backup proto-
col is built on the high-level time-free VSC abstraction. So,
much of the complexity is hidden in the implementation of
the VSC abstraction. Even though time has to be taken into
account in a protocol, it is better to keep it as deep as possi-
ble in the architecture. We believe that this is an important
design principle that reduces the risk of errors, and allows
for a better understanding of the role of time in a protocol.

To illustrate this point, we now show the clarification and
improvements that we can get from a careful comparison of

2A isaparameter of the Timed Asynchronous model [4].

PADRE and the VSC primary-backup protocol. We show
(1) a place in PADRE where the timing analysis guarantees
safety, (2) a place in PADRE where the timing analysis is
not related to safety, (3) a place where time could be sup-
pressed, and (4) an omission in PADRE that can lead to a
catastrophic failure.

Timeliness to guarantee safety: The timing analysis re-
lated to the computation of the timeouts ) (Section 4.2.1,
item 1) and I (Section 4.2.1, item 4) is essential to guar-
antee safety. An inadequate value for these two parameters
can lead to a catastrophic failure. The dimensioning of @)
and I ensure the agreement on the view history property of
group membership (see Figures 11 and 12).

Timeliness not related to safety: While the parameters
@ and I are related to safety, this is not the case of the
timeout parameter A (Section 4.2.1, item 2), which is of
a different nature. Its role is to implement failure suspi-
cions. This is because “input” messages play two roles
in PADRE: (1) application messages (subject to the “view
synchrony” property in the VSC protocol), and (2) failure
detection (“are you alive”) messages. The failure detec-
tion role can be seen in Section 4.2.1, item 2b, where the
non reception of the acknowledgement leads to the suspi-
cion of the Secondary. With this explanation, and because
PADRE and the VSC primary-backup protocol tolerate in-
correct failure suspicions, it becomes clear that the timeout
A is not safety critical. A better description of the protocol
would lead us to replace item 2 in Section 4.2.1 by:

2. Each time an input message is received from the net-
work (or from the Secondary), the Primary forwards
the message to the Secondary and waits for an ac-
knowledgement:

(a) If the acknowledgement is received, then the Pri-
mary delivers the input message to the applica-
tion.

(b) If the Secondary is suspected, then the Primary
(1) stops sending “Don’t switch to quarantine”
messages, (2) stops forwarding input messages to
the Secondary, and (3) delivers the input message
to the application after expiration of the timeout

delay Q.

Actually, it makes sense from an implementation point of
view to have “input” messages play two roles, but this is an
optimization.

Where time can be removed: PADRE assumes the fail-
aware datagram service to transmit the “Don’t switch to



quarantine” messages (denoted DSQ@ hereafter) and dis-
cards slow messages in order to guarantee that the Sec-
ondary cannot use an old message to refresh its stay-alive
timeout delay ([5], Section 5.3). There is a simpler solu-
tion, inspired by the VSC protocol, which does not use time.
The solution consists of tagging the DSQ messages with the
current view number: while in view #i, the Primary sends
(i, DSQ) to the other unit. If the other unit is in standby
mode (also in view #4), it simply ignores all messages not
tagged with the current view number. If the other unit is
in quarantine mode, it ignores the DSQ messages. Once
the other unit returns to the standby mode, the view number
becomes i + 1, and all old DSQ messages are ignored.

Omission in PADRE: One critical case has been over-
looked in [5]. Consider the beginning of a nominal config-
uration. The Secondary has not yet switched on its I timer
(Section 4.2.1, item 4) and it is awaiting the first DSQ mes-
sage before doing so. If the first DSQ message arrives late
at the Secondary, it can be shown that the situation of Fig-
ure 11 can happen, which may lead to a catastrophic failure.
To prevent this case, the Secondary must start its A timer
without waiting for the first DSQ message.

To conclude, we believe that VSC is a powerful abstrac-
tion in which the primary-backup protocol can be expressed
in a simple way. Whenever a primary-backup replication
protocol has to be designed for a specific environment, a
good principle is to consider the implementation of the
VSC properties in the specific environment. Optimizations
should be considered only afterwards.
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