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Thermodynamic stability of black holes, described by the Rényi formula as equilibrium compatible 
entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild 
black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that 
the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the 
black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. 
Furthermore, it is also shown that a Hawking–Page-like black hole phase transition occurs at a critical 
temperature which depends on the q-parameter of the Rényi formula.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The aim of this Letter is to investigate the thermodynamic sta-
bility problem of a Schwarzschild black hole based on a recent 
approach [1], where the equilibrium compatible entropy function 
of the black hole is considered to be the Rényi one [2].

The nonextensive nature of the Bekenstein–Hawking entropy 
of black hole event horizons has been noticed [3] very early on 
after the thermodynamic theory of black holes had been formu-
lated [4], and the corresponding thermodynamic stability problem 
has also been investigated many times with various approaches. 
The standard stability analysis of extensive systems however (with 
the criteria that the Hessian of the entropy function has no pos-
itive eigenvalues), is not applicable for black holes, as it strongly 
depends on the additive property of the entropy function, which 
condition clearly fails to hold in this case.

The standard thermodynamic functions of a Schwarzschild 
black hole are given by

SBH = 4π M2,
1

T H
= ∂ SBH(M)

∂M
= 8π M, (1)
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and

CBH = −S ′ 2
BH(M)

S ′′
BH(M)

= −8π M2, (2)

where SBH is the Bekenstein–Hawking entropy, T H is the Hawk-
ing temperature and CBH is the corresponding heat capacity of the 
black hole. In the classical approach (concluding from a Hessian
analysis), Schwarzschild black holes appear to be thermodynami-
cally unstable in the canonical treatment, since the heat capacity 
of the hole is always negative. On the other hand, this approach 
is clearly not reliable, as the Bekenstein–Hawking entropy is not 
additive, and the corresponding Hawking temperature is also not 
compatible with thermal equilibrium requirements [5]. For a better 
understanding on the problem, one needs to consider the conse-
quences of nonadditive thermodynamic effects as well.

To circumvent this issue, Kaburaki et al. [6] have used an al-
ternative approach, and investigated the thermodynamic stability 
of black holes by the Poincaré turning point method [7], which is 
a topological approach, and does not depend on the additivity of 
the entropy function. Later on, this method has been used to study 
critical phenomena of higher dimensional black holes and black 
rings as well [8].

In [9], we investigated the Bekenstein–Hawking entropy prob-
lem of a Schwarzschild black hole by considering the so-called for-
mal logarithm approach [5] (discussed below), and found that (if 
the classical picture can be taken seriously without any quantum 
corrections in the small energy limit), the equilibrium compatible 
entropy function of the black hole is linear in the hole’s mass, and 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the corresponding zeroth law compatible temperature is constant, 
i.e. it is independent of the hole’s energy. We also analyzed the 
thermodynamic stability of the problem, and showed that isolated 
Schwarzschild black holes are stable against spherically symmetric 
perturbations within this approach.

In the present Letter however, we are focusing on the direc-
tion that we proposed in [1], where we regarded the Bekenstein–
Hawking formula as a nonextensive Tsallis entropy [10]. This 
model was motivated by the requirement of the existence of an 
empirical temperature in thermal equilibrium, or in other words, 
by the satisfaction of the zeroth law of thermodynamics. By apply-
ing the formal logarithm method [5], we showed that the zeroth 
law compatible entropy function of black holes in this model is the 
Rényi one [2], and the corresponding temperature function has an 
interesting similarity to the one of an AdS black hole in standard 
thermodynamics [11].

In the general case, both the Tsallis and the Rényi entropies 
contain a constant free parameter, whose physical meaning may 
depend on the concrete physical situation. In particular, for the 
problem of black hole thermodynamics, it may arise e.g. from 
quantum corrections to micro black holes (a semi-classical ap-
proach has been obtained from the Bekenstein bound [12] in [1]), 
or from finite size reservoir corrections in the canonical ensemble 
[13,14]. Many other parametric situations are also possible.

The purpose of this Letter is to extend our study on the Tsallis–
Rényi problem by investigating the corresponding thermodynamic 
stability of black holes. In the stability analysis we consider both 
the Poincaré turning point and the Hessian methods because the 
Rényi entropy is additive for factorizing probabilities, and hence 
the standard approach is also applicable. In the obtained results 
we find perfect agreement from both directions. Throughout the 
paper we use units such as c = G = h̄ = kB = 1.

2. The Tsallis–Rényi approach

Nonextensive approaches to black hole thermodynamics have 
been investigated several times with various methods (see e.g. [15]
and references therein), on the other hand, a zeroth law compat-
ible formulation of nonextensive thermodynamics is a long stand-
ing problem, and a possible solution has been proposed only very 
recently. Based only on the concept of composability, Abe showed 
[16] that the most general nonadditive entropy composition rule 
which is compatible with homogeneous equilibrium has the form

Hλ(S12) = Hλ(S1) + Hλ(S2) + λHλ(S1)Hλ(S2), (3)

where Hλ is a differentiable function of S , λ ∈ R is a constant pa-
rameter, and S1, S2 and S12 are the entropies of the subsystems 
and the total system, respectively. By extending this result, Biró 
and Ván investigated non-homogeneous systems as well [5], and 
developed a formulation to determine the most general functional 
form of those nonadditive entropy composition rules that are com-
patible with the zeroth law of thermodynamics. They found that 
the general form is additive for the formal logarithms of the orig-
inal quantities, which in turn, also satisfy the familiar relations 
of standard thermodynamics. They also showed, that for homo-
geneous systems the most general, zeroth law compatible entropy 
function has the form

L(S) = 1

λ
ln[1 + λHλ(S)], (4)

which is additive for composition, i.e.

L(S12) = L(S1) + L(S2), (5)
and the corresponding zeroth law compatible temperature function 
can be obtained as

1

T
= ∂L(S(E))

∂ E
, (6)

if one assumes additivity in the energy composition.
For the classical black hole case, it is easy to show from the 

area law of the entropy function, that the Bekenstein–Hawking for-
mula satisfies the equilibrium compatibility condition of (3), as it 
follows the nonadditive composition rule

S12 = S1 + S2 + 2
√

S1

√
S2 , (7)

which is equivalent with the choices of Hλ(S) = √
S and the λ → 0

limit in the Abe formula [16]. The corresponding thermodynamic 
and stability problem for the case of a Schwarzschild black hole 
(applying also the formal logarithm method) has been studied in 
[9]. In the more general case however, when the parameter λ �= 0, 
(originating e.g. from finite size reservoir corrections in the canon-
ical approach [13,14], or from quantum corrections to micro black 
holes (see e.g. [17] and references therein)), the Rényi entropy 
formula may arise quite generally, when the conditions L(0) = 0
and L′(0) = 1 are also imposed, due to the consequence of some 
natural physical requirements (e.g. triviality, and leading order ad-
ditivity for small energies) [5].

The Rényi entropy [2], defined as S R = 1
1−q ln

∑
i pq

i , is equiv-
alent with the choices of Hλ(S) = S and λ = 1 − q in (4), if the 
original entropy functions follow the nonadditive composition rule

S12 = S1 + S2 + λS1 S2, (8)

which is known as the Tsallis composition rule, and q ∈ R is the 
so-called nonextensivity parameter. The Tsallis entropy is defined 
as ST = 1

1−q

∑
i(pq

i − pi) [10], and it is easy to show that the for-
mal logarithm of the Tsallis formula provides the Rényi entropy

S R ≡ L(ST ) = 1

1 − q
ln [1 + (1 − q)ST ] . (9)

In the limit of q → 1 (λ → 0), both the Tsallis and the Rényi 
formulas reproduce the standard Boltzmann–Gibbs entropy, SBG =
− 

∑
pi ln pi .

3. Schwarzschild black holes

Based on the parametric Tsallis–Rényi model, we investigated 
the thermodynamic properties of a Schwarzschild black hole in [1]. 
We found that the temperature-horizon radius relation is identical 
to the one obtained from a black hole in AdS space by using the 
original entropy formula, in both cases the temperature has a min-
imum. According to (9) the Rényi entropy function of black holes 
can be obtained by taking the formal logarithm of the Bekenstein–
Hawking entropy, which – in the leading order of the λ parameter 
– follows the nonadditive Tsallis composition rule (8). Therefore, 
the Rényi entropy of a black hole can be computed as

S R = 1

λ
ln [1 + λSBH] , (10)

and for the Schwarzschild solution it results

S R = 1

λ
ln

(
1 + 4πλM2

)
, (11)

T R = 1

8π M
+ λ

2
M, C R = 8π M2

4πλM2 − 1
. (12)

For comparison (not presented in [1]), on Fig. 1 we plot 
the temperature functions versus the black hole mass for the 
Schwarzschild–Rényi, the AdS–Boltzmann and the standard
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Fig. 1. The figure shows the temperature of a Schwarzschild black hole as a func-
tion of its mass-energy parameter in the asymptotically flat case with Boltzmann 
(blue, dotted) and Rényi (red, continuous) entropies, and also in AdS space with 
Boltzmann entropy (green, dashed).

Fig. 2. The figure shows the entropy of a Schwarzschild black hole as a function of 
its mass-energy parameter in the asymptotically flat, Boltzmann (blue, dotted) and 
Rényi (red, continuous) cases, and also the Boltzmann case in AdS space (green, 
dashed).

Schwarzschild–Boltzmann cases. On Fig. 2 the corresponding en-
tropy functions are also plotted. On all plots in this paper we use 
the parameter value λ = 0.2, and the corresponding curvature pa-
rameter of the AdS space is chosen such as to obtain the same M0.

In the following section we discuss the thermodynamic stabil-
ity of this problem first by considering pure, isolated black holes in 
the microcanonical treatment, and then by focusing on the canon-
ical ensemble, where the black holes are surrounded by a bath of 
thermal radiation. For the purpose of generality, our analysis will 
be based on the Poincaré turning point method [7] following the 
works of Kaburaki et al. [6], however the canonical approach is 
also considered from the Hessian point of view.

4. Stability analysis

To separate stable and unstable configurations for cases of a 
one-parameter series of equilibria, Poincaré developed a powerful 
analytic approach [7]. It has been applied several times to prob-
lems in astrophysical and gravitating systems, in particular for the 
study of the thermodynamic stability of black holes in standard 
four [6] and also in higher dimensions [8]. Let us only quote here 
the main results of this method and omit all the details and proofs 
which can be found in the original references.

Suppose Z(xi, y) is a distribution function whose extrema 
∂ Z/∂xi = 0 define stable equilibrium configurations if the extremal 
value of Z is a maximum. Consider now the equilibrium value 
Z(y) = Z [Xi(y), y], where Xi(y) is a solution of ∂ Z/∂xi = 0. If 
the derivative function dZ/dy, plotted versus y has the topol-
Fig. 3. The figure shows the Poincaré stability curves of a Schwarzschild black hole 
within the Boltzmann (blue, dashed) and the Rényi (red, continuous) approaches in 
the microcanonical treatment. No vertical tangent occurs in either case.

ogy of a continuous and differentiable curve, it can be shown that 
changes of stability will occur only at points where the tangents 
are vertical. The Z distribution function is called Massieu function, 
the points with vertical tangents are called turning points, and the 
points with negative tangents near the turning points are a branch 
of unstable configurations, while the points with positive slopes 
near the turning points are a branch of more stable configurations.

Pure, isolated black holes are described by Kaburaki et al. [6]
when a perfectly reflecting, spherical mirror covers the hole just 
above its event horizon. In this idealistic case, the black hole can 
be described without radiation in the microcanonical treatment 
with Z = Z(xi, M) being the Bekenstein–Hawking entropy. A ther-
modynamic variable, y, is the total mass-energy, M , and the con-
jugate variable of M with respect to the entropy is the derivative 
β = ∂ S

∂M , which is the inverse temperature.
In the standard picture of black hole thermodynamics, β is 

the inverse Hawking temperature, and the stability curve of a 
Schwarzschild black hole is the linear function β(M) = 8π M . This 
straight line represents all the equilibrium configurations without 
any turning point, and hence the isolated Schwarzschild solution 
in vacuum is stable against spherically symmetric perturbations in 
the classical (microcanonical) treatment [6].

For the parametric Rényi case, the equilibrium compatible en-
tropy function is given in (11), and β is the inverse Rényi temper-
ature

β ≡ 1

T R
= 8π M

1 + 4πλM2
. (13)

The corresponding stability curve β(M) is plotted on Fig. 3 to-
gether with the classical Schwarzschild curve for comparison. As 
it can be seen, similarly to the standard result, the Rényi curve has 
no vertical tangent, and since this curve represents all the equilib-
rium configurations, we can conclude that isolated Schwarzschild 
black holes are thermodynamically stable against spherically sym-
metric perturbations (in the microcanonical treatment) in the 
Rényi approach as well.

When the black hole is surrounded by an infinite bath of ther-
mal radiation, the appropriate thermodynamic approach to con-
sider is the canonical one. In the traditional picture, the radiation 
is treated as an ideal reservoir with infinite size and an infinitely 
large heat capacity, so it can emit or absorb all the heat that is 
needed by any change of the black hole without modifying its 
temperature. Recently, more realistic approaches have also been 
developed by considering large but finite size reservoirs instead 
of the infinite approximation. In particular, Biró showed that finite 
size reservoir corrections can provide modifications to the standard 
canonical theory in the form of nonadditive thermodynamics [13]. 
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Fig. 4. The figure shows the Poincaré stability curves of a Schwarzschild black hole 
within the Boltzmann (blue, dashed) and the Rényi (red, continuous) approaches in 
the canonical treatment. For the Rényi curve, a vertical tangent occurs at M0, which 
is the sign of a stability change.

These effects are usually neglected in the classical thermodynamic 
limit (when an infinite number of degrees of freedom is present), 
however they can provide relevant modifications to the behavior 
of finite size systems. In [13,14], it has been shown, that in the 
case of a finite heat bath with a large but finite and constant 
heat capacity, the inverse heat capacity of the bath may serve 
as the λ parameter in the equilibrium compatible entropy com-
position rule (3), and provide the corresponding Tsallis and Rényi 
entropy formulas in the leading order. These results provide addi-
tional motivation to investigate the Rényi approach for black hole 
thermodynamics in the canonical treatment.

Let us now consider the black hole in the canonical approach. 
The black hole entropy is no longer the appropriate Massieu func-
tion, Z , which takes its maximum at a stable equilibrium, rather it 
is

Z = S − βM ≡ −β F , (14)

where F is the Helmholtz free energy [6]. The parameter y now is 
β , and the conjugate variable, dZ/dy, is
d(S − βM)

dβ
= −M. (15)

The corresponding stability curve is then −M(β), which we plotted 
on Fig. 4.

The canonical stability curves are simply the π/2 clockwise 
rotated versions of the microcanonical ones, and it is immediate 
to see that a vertical tangent appears at M = M0, which belongs 
to the minimum temperature T0 = 1

2

√
λ
π . Black holes with mass 

parameter smaller than M0 are unstable against spherically sym-
metric perturbations within this approach, however larger black 
holes with M > M0 are stable, as opposed to the standard result 
where all solutions appear to be unstable.

The stability change at M0 can also be confirmed by the Hes-
sian analysis, i.e. in this case simply by checking the signature of 
the heat capacity of the Schwarzschild black hole in the bath. The 
corresponding curves are plotted on Fig. 5.

It can be seen (as shown in [1]), that the heat capacity has a 
pole at M0, analogous to the AdS–Boltzmann case, and black holes 
with larger mass parameter have positive heat capacities (i.e. neg-
ative Hessian) and hence these solutions are thermodynamically 
stable. Black holes with smaller masses however are unstable so-
lutions.
Fig. 5. The figure shows the heat capacity of a Schwarzschild black hole as a func-
tion of its mass-energy parameter in the standard (blue, dotted), Rényi (red, contin-
uous) and AdS (green, dashed) cases.

Fig. 6. The figure shows the free energy of a Schwarzschild black hole in the Rényi 
model as a function of the temperature in the canonical treatment.

5. Phase transition

In their classic paper [11], Hawking and Page investigated the 
thermodynamic properties of black holes in asymptotically AdS 
spacetimes. They showed that due to the presence of the gravi-
tational potential of the AdS space, the stability properties of black 
holes are different from their corresponding ones in asymptotically 
flat spacetimes. In particular, the canonical ensemble exists for 
Schwarzschild black holes, and they can be in stable equilibrium 
with thermal radiation at a fixed temperature. In addition, it has 
been found that a thermodynamic phase transition occurs between 
the radiation and the black hole phases at a critical temperature 
which depends on the AdS curvature parameter only. Based on the 
similarity of our findings to the AdS problem, it is motivated to 
discuss the question of a possible phase transition in the Tsallis–
Rényi approach as well.

By plotting the free energy of the black hole versus the tem-
perature (for asymptotically flat black holes, i.e. at zero pressure, 
the Gibbs free energy is equivalent with the Helmholtz one), 
a Hawking–Page-like transition can be revealed. On Fig. 6, the blue, 
dotted curve represents the branch of black holes with M < M0, 
which are unstable at any temperature. Black holes with M0 < M
(red, continuous curve) are stable above the minimum tempera-
ture, but they posses positive free energy in the T0 ≤ T < THP
region, and therefore the pure radiation phase (purple, dashed 
line) is the thermodynamically preferred state with its approxi-
mately zero free energy. On the other hand, for THP < T , the large 
(and stable) black hole configuration becomes the thermodynam-
ically preferred state because its free energy is smaller than zero, 
and hence, a phase transition occurs at THP from the radiation to 
the black hole phase. From the F ≡ M − T S = 0 condition we get 
THP ≈ 0.62

√
λ , which depends on the λ parameter only.
π
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This picture is completely analogous to the Hawking–Page tran-
sition of Schwarzschild black holes in AdS space, where the curva-
ture parameter plays a similar role that is played by the λ (≡ 1 −q) 
parameter in the Rényi model. A relevant difference however, com-
pared to the AdS case, is that in our model the Rényi entropy is 
additive, and hence the corresponding stability results are reliable.

6. Summary and discussion

In this Letter we studied the thermodynamic stability problem 
of Schwarzschild black holes described by the Rényi formula as 
equilibrium and zeroth law compatible entropy function. First we 
considered the question of a pure, isolated black hole in the mi-
crocanonical approach, and showed that these configurations are 
stable against spherically symmetric perturbations, just like in the 
classical picture. We also considered the problem when the black 
hole is surrounded by a bath of thermal radiation in the canon-
ical treatment, and found that, as opposed to the standard pic-
ture, asymptotically flat, Schwarzschild black holes can be in stable 
equilibrium with thermal radiation at a fixed temperature, and 
a stability change occurs at a certain value of the mass-energy 
parameter which belongs to the minimum temperature solution. 
Black holes with smaller masses are unstable in this model, how-
ever larger black holes become stable. These results are very simi-
lar to the ones obtained by Hawking and Page in AdS space within 
the standard Boltzmann entropy approach [11]. Based on this sim-
ilarity, we also analysed the question of a possible phase transition 
in the canonical picture, and showed that a Hawking–Page-like 
black hole phase transition occurs in a very similar fashion as 
in AdS space, and the corresponding critical temperature depends 
only on the q-parameter of the Rényi formula.

Our findings are relevant in many aspects. Parametric correc-
tions to the Bekenstein–Hawking entropy formula may arise in var-
ious kind of physical situations, most importantly from quantum 
considerations (stemming either from string theory, loop quantum 
gravity, or other semi-classical theories). In these corrections, the 
perturbation parameters are small, and by connecting them to the 
λ parameter in Abe’s formula (3), it can be expected that the Tsal-
lis composition rule (7) is obtained quite generally in the leading 
order. In addition, from the requirement of the existence of an 
empirical temperature in thermal equilibrium, the Rényi entropy 
arises very naturally via the formal logarithmic method [5]. Based 
on these lines, our obtained results seem to be quite generic for 
parametric corrections to the Bekenstein–Hawking model in the 
small parameter and small energy limit.

As a different direction, we also mentioned that finite size 
reservoir corrections can result the same Tsallis–Rényi model in 
the canonical picture [13,14], and we expect that many other para-
metric situations are also possible. One of the motivations of this 
approach has been to satisfy the zeroth law of thermodynamics, 
and it is an important question whether the model is also in accor-
dance with the remaining laws. In particular, Bekenstein’s general-
ized second law [18] states that the sum of the black hole entropy 
and the common (ordinary) entropy in the black hole exterior 
never decreases on a statistical average. In obtaining this result, 
Bekenstein considered the Boltzmann–Gibbs formula for estimat-
ing the entropy of the system. Within our approach, Bekenstein’s 
computations may be repeated by using the Rényi formula instead 
(see Sec. 2 for the definition), and due to the properties of the 
Rényi entropy measure [2], we expect that the generalized second 
law remains valid in this approach as well. We postpone this study 
for a future work.
As for the third law, the question is even more open. Recent 
results suggest (see e.g. [19] and references therein), that the gen-
eralized entropy formulas, in particular the Rényi entropy, violate 
the third law of thermodynamics even when the q-parameter is 
close to 1. The validity and applicability of the generalized en-
tropies is therefore clearly an unsettled problem, and it is in the 
focus of active investigations today. There are many open ques-
tions in this field and also many research directions to consider. In 
this Letter, we studied the simplest problem of a standard 3 +1 di-
mensional, Schwarzschild black hole, and our plan is to extend our 
work to more general settings, e.g. rotating, Kerr black holes, or 
dynamic black holes formed by collapsing shells. Due to its sim-
ilarity to the AdS problem, our present results might have some 
relevance from the AdS/CFT correspondence [20,21] point of view 
as well. Further studies to address these questions are in progress 
and we hope to report on them in a forthcoming publication.
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