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Abstract

In-vitro degradation of soy-derived protein materials, non-crosslinked (Sly,), crosslinked with glyoxal (X-SI;;) or submitted to
heat treatment (24TT-SI,;,), was studied with either an isotonic saline solution without enzymatic activity or containing bacterial
collagenase. The changes in weight of the samples during the in-vitro degradation were studied and compared with the variations of
the mechanical properties. The weight loss of SI;;,, X-SI;;, and 24TT-SI;, were more pronounced when using collagenase. After 24 h
of immersion, Sy, lost 10.6% of its initial weight whereas 0.6X-SI, and 24TT-SI, lost 1.7 and 5.7%, respectively. In every case, the
weight loss was found to be directly proportional to the respective crosslinking degree: 2.4% for SIy,, 44% for 0.6X-SI, and 27.8%
for 24TT-SI,. Consequently, the susceptibility of the soy materials towards enzymatic degradation could be controlled by varying
the degree of crosslinking of the samples. The mechanical properties proved to be more sensitive to the loss of plasticiser (glycerol)
during immersion than to the degradation of the polymeric matrices. After 24 h of immersion all the materials presented an increase
in stiffness and brittleness due to the complete leaching of glycerol from the matrices. SI,, X-SIy, and 24TT-SI;;, proved to be
suitable materials for either load-bearing applications or temporary applications such as tissue engineering scaffolds or drug deliv-

ery systems.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Several degradable polymers have been successfully
used in biomedical applications. However, continuing
research in the search for alternatives is suggested by
some weaknesses of these materials, namely: 1) the low
level of degradability of some of these polymers, due to
restrictions in their chemical nature [1-3]; and ii) even-
tual problems associated with the respective degrada-
tion products [4]. Furthermore, the demands for
biomaterials with controlled and predictable degrada-
tion kinetics are numerous and have led to research on a
variety of synthetic and natural polymers engineered for
use in a wide range of medical applications.
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During the last decades, aliphatic polyesters have
been one of the most widely used classes of degradable
polymers in the medical field [5-7]. Despite their wide
applicability, many researchers are exploring new
directions to address some of their current limitations,
namely those related to their degradation mechanisms
[4]. A variety of natural polymers, such as hyaluronic
acids, alginates, starch and animal-origin proteins
(namely, collagen, gelatine and albumin), are being
extensively explored as potential biomaterials, particu-
larly to be used in tissue regeneration scaffolds [8—10]
and controlled release systems [11-15]. Among these
naturally derived polymers, non-animal origin proteins,
such as soy, may constitute a viable source of degrad-
able materials for biomedical uses. In fact, they are
expected to combine the main characteristics of col-
lagen, gelatine and albumin with: i) a reduced suscept-
ibility to thermal degradation (allowing for its easy
processing by melt based technologies into complex 3D
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implants); and ii) an adequate degradation for the
envisaged applications. Like the above described pro-
teins, soy also proved to be non-cytotoxic, slightly
immunogenic and bioactive when reinforced with bone
like ceramics [16—18]. It has also been reported [19-22]
that soy presents good processability, both in aqueous
media and in the melt, and a reduced susceptibility to
thermal degradation [23]. Soy is also expected to pre-
sent an adequate degradation profile. In this case, it
may be regarded as an eventual ideal template suitable
for being used in biomedical applications. Temporary
replacement implants, tissue engineering scaffolding or
drug delivery systems are the most promising target
applications.

However, due to the high enzymatic turnover rate of
proteins in the human body, the stabilisation of protein-
based materials, by crosslinking methods, is required to
assure the respective integrity and the desired mechan-
ical properties during an implantation period [24,25].
Crosslinks in proteins can be created by a number of
ways, namely by physical or chemical routes [26]. The
most used agents for chemical crosslinking are alde-
hydes, namely formaldehyde and glutaraldehyde. How-
ever, concerns related with the use of these two agents
arose from an exacerbating effect on the calcification of
prosthesis materials [27], cytotoxicity due to post-
implantation depolymerization and monomer release
from the crosslinked materials [28,29]. A promising
solution for biomedical purposes is glyoxal, a dialde-
hyde with lower toxicity [30], when compared with
similar agents. Other alternative which requires no
crosslinking agents is based on the use of a physical
method: thermal treatments.

This paper reports on the in vitro degradation beha-
viour of soy plastics using an isotonic saline solution
with or without bacterial collagenase (degrading enzyme
present in the human body and active during an
implantation process). Soy plastics were previously
crosslinked using glyoxal and a thermal treatment. The
susceptibility of the resulting materials towards degra-
dation is analysed in terms of the following aspects of
the tested samples: i) weight; ii) crosslinking density;
and iii) mechanical properties.

2. Materials and methods
2.1. Materials

Loders Crocklaan BV (Wormerveer, The Nether-
lands) supplied the non-GMO soy protein isolate (SI,
83.4% protein, w/w on dry weight base). Glycerol,
glyoxal (40% v/v) and o-phthaldialdehyde (OPA) were
used as received from the manufacturer, Sigma-Aldrich
Chemie BV (Zwijndrecht, The Netherlands). NaCl,
NaOH and HCI were all of analytical grades.

2.2. Production of soy specimens

Native soy protein was converted into a thermoplastic
material (SIi,) in a co-rotating twin-screw extruder as
described previously in [22]. During the extrusion pro-
cedure, the soy protein was also crosslinked with differ-
ent amounts of glyoxal, namely 0, 0.3 and 0.6% w/w
based on the protein content (SI,, 0.3X-SI;;, and 0.6X-
Sl;p, respectively). The extruded thermoplastic materials
(in the form of pellets) were moulded into ASTM tensile
test bars (2x4 mm? of cross section), as described in
[22]. A batch of the injection-moulded specimens (SI)
was submitted to a thermal treatment performed at
80 °C during 24 h (24TT-SI,,).

2.3. Degradation tests

2.3.1. Non-enzymatic degradation

Non-crosslinked and crosslinked samples were sub-
mitted to in vitro degradation tests. Pre-weighed dry
specimens were immersed for 0, 1, 3, 5, 7 and 14 days, at
37 °C, in an isotonic saline solution [ISS—NaCl, 9 g/
1+1%  sodium azide (NaN3)] buffered at
pH=7.40£0.02 with a 0.2 M tris(hydroxymethyl) ami-
nomethane/0.2 M hydrochloric acid (HCI) buffer (0.2 M
Tris—HCI buffer).

2.3.2. Enzymatic degradation with collagenase

The degradation of the non-crosslinked and the
crosslinked soy samples was also evaluated using bac-
terial collagenase from Clostridium histolyticum (EC
3.4.24.3, Sigma-Aldrich Chemie BV, Zwijndrecht, The
Netherlands) with an activity of 283 U/mg (one unit
releases peptides from native collagen equivalent in
ninhydrin color to 1 pmol of L-leucine in 5 h at pH 7.4
at 37 °C in the presence of calcium ions). In a typical
experiment, samples of the different soy materials were
immersed for 0, 3, 6, 24 and 72 h, at 37 °C, in an iso-
tonic saline solution (as described in Section 2.3.1) with
collagenase (100 U/ml). The degradation was stopped at
the desired time interval by addition of 0.2 ml of 0.25 M
EDTA (Merck, Darmstadt, Germany) solution. The
mixtures were cooled in ice. The remained soy speci-
mens were washed with the Tris—HCI buffer and deio-
nized water before determination of the respective
weight loss.

2.4. Degradation products

2.4.1. Protein content

After ageing, samples were ground using liquid N,
and subsequently sieved with a mesh size of 1 mm. 50
mg of protein samples was dispersed in a mixture of
deionized water and concentrated H,SO,4. After ade-
quate digestion of the protein samples, carried out at
420 °C during 50 min, the total protein content (N.y) of
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the resulting solution was determined by Kjeldahl ana-
lysis and calculated as:

Niot(%) = [V(HCI) % 0.1 % 14 % 6.25]/ W4] % 100 ()

where, V(HCI) is the volume of HCI 0.1 M used during
the Kjeldahl titration, 14 is the atomic mass of nitrogen
(N) and 6.25 the Kjeldahl factor of soy. Wy is the dry
weight of the protein powder sample tested.

2.4.2. Free amino groups measurement

The free amino group content was determined using
the OPA method [31] for all the samples aged for 0 and
24 h. An OPA solution was made by mixing 25 ml of 0.1
M sodium borate (pH 9.2), 2.5 ml of 20% (w/w) SDS
and 40 mg of OPA (dissolved in 1 ml methanol) and 100
ul of B-mercaptoethanol. The final volume was adjusted
to 50 ml with deionized water. To determine the degree
of alkylation, an aliquot (50 ul containing 2 g/l protein
in sodium tetraborate buffer 0.0125 M +2% SDS) was
added directly to 1.0 ml of OPA reagent in a cuvette.
The solution was mixed rapidly and incubated for 2 min
at room temperature before the absorbency was read at
340 nm against water. A calibration curve was pre-
viously established by using L-leucine as a standard.

2.4.3. Carboxylic groups measurement

An adapted titration was used for measuring the
amount of terminal carboxylic groups in the soy mate-
rials [32].

0.33 g of noncrosslinked and crosslinked soy materi-
als was dispersed in 50 ml of deionized water. An auto-
matic titrator (Titronic 97/20) was used to adjust, under
magnetic stirring, the pH of the solutions to 7 using 0.1
M HCI or 0.1 M NaOH in order to have the zwitter-
ionic form of the protein in solution: *3HN-RH-
COO. It is assumed that the amounts of HCl needed to
go from pH 6 to pH 3 (" 3HN-RH-COOH) correspond
to the amount of carboxyl groups.

2.4.4. Buffer diffusion coefficients

To determine the buffer diffusion coefficients of the
specimens, swelling tests were performed. The speci-
mens were immersed up to 24 h in both degrading
solutions described in Sections 2.3.1. and 2.3.2.

The wet weight of the specimens was determined by
first blotting the specimen with filter paper to remove
adsorbed buffer on the surface, and then weighed
immediately on an electronic balance [33]. The follow-
ing Eq. (2) was used to determine the buffer diffusion
coefficient, D [34]:

Wi We =45 [D/ (% 1)]" 503 @)

where, W, and W, denote, respectively, the weight
increase due to the buffer absorption at time ¢ and at

equilibrium time. D is the diffusion coefficient and,
considering that absorption occurs from both sides of
the sample, % is the overall thickness of the sample.

2.4.5. Weight loss

After each ageing period, the samples were removed
from the degradation solution, washed with distilled
water and dried in a vacuum oven (40 °C/24 h) [33]. The
percentage weight loss of the soy materials was then
calculated from Eq. (3):

WL, = [(Wy % No — W, % N,;)/(Wy % Ny)] * 100 3)

where WL, is the weight loss of after a certain time ¢ of
immersion. W, denotes the weight of the specimen at
ageing time ¢ and N, the respective protein content at
that ageing time, W) is the initial dry weight of the spe-
cimen and N, the correspondent protein content. Each
experiment was repeated three times and the average
value was taken as the weight loss.

2.4.6. Dimensional variation

Before tensile testing, all the aged specimens were
accurately measured for its thickness (/). This allowed
for the evaluation of the surface erosion of the speci-
mens as a function of immersion time.

2.4.7. Mechanical properties

Crosslinked and non-crosslinked samples aged for 0,
3, 6,24 and 72 h in the isotonic saline solutions with and
without enzymatic activity where conditioned for 1
week in a chamber at 25 °C and 90% relative humidity
before testing for its mechanical properties. The mea-
surements were assessed in tensile mode. The experi-
ments were performed in a Zwick Z010 universal
mechanical testing machine, in a controlled chamber
(20 °C and 55% RH). A 5 kN load cell, a pre-load of
0.IN and a loading speed of 1 mm/min were used. E-
modulus at 0.05-0.25% strain (Ey ¢5_0-50), yield stress
(0y) and strain at break (e,) were computed from the
respective data.

2.4.8. Moisture content

After tensile testing, specimens were milled using
liquid N, and weighed into aluminium dishes for sub-
sequent drying for 24 h in a vacuum oven at 40 °C [33].
Moisture content (MC) was determined in triplicate for
each type of material as percentage of initial weight
(Wy) lost during drying (Wyq):

MC = [(Wo — Woa)/ Wo] % 100 )

2.4.9. Molecular weight distributions

To a SDS-PAGE sample (containing at least 50 mg of
the specimen degraded for 0, 3 and 14 days), 6 ml of
electrophoresis buffer (50 mM Tris—HCI pH 6.8, 12%
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glycerol w/v, 4% SDS w/v, 2% B-mercaptoethanol w/v
and bromophenyl blue) was added and left standing at
room temperature for 2 h with vortexing every 15 min.
Subsequently, the mixture was centrifuged at 8000xg
for 10 min. The supernatant was kept at —20°C for later
electrophoresis.

Before electrophoresis, the supernatant was boiled for
5 min to break the S-S bonds. Subsequently, it was
cooled down and applied to a gel prepared from 15%
acrylamide. High molecular standards (phosphorylase
b: 94,000 D; BSA: 67,000 D; ovalbumin: 43,000 D; car-
bonic anhydrase: 30,000 D; soybean trypsin inhibitor:
20,100 D; a-lactalbumin: 14,437 D) from Pharmacia
(Uppsala, Sweden) were used as protein references. The
electrophoresis was conducted using a II Dual Slab Cell
system (Bio-Rad, Veenendal, The Netherlands) at a
voltage of 150 V which was increased to 200 V when the
protein reached the dividing line between the stacking
and the separating gels. The gels were stained using
Serva Blue R for 45 min and destained by immersion in
a solution of methanol:acetic acid:dionized water (4:1:5)
for at least 3 h. After decolouration, the gels were dried
in a coating dryer (Bio-Rad Laboratories) for 1 h at
60 °C.

3. Results
3.1. Weight loss

3.1.1. Glyoxal crosslinking

The crosslinking of the soy samples with glyoxal was
related to the correspondent in-vitro degradation beha-
viour. First, the number of free carboxyl and free amine
groups of the developed compounds were determined to
quantify the crosslinking density (Table 1).

The results confirmed that glyoxal crosslinking
occurred via the free amine groups of the lysine (or
hydroxylysine) residues, which decrement is observed
for higher amounts of the crosslinking agent

The weight loss of the materials with different degrees
of crosslinking, as a function of degradation time, is
presented in Figs. 1 and 2.

Table 1
The content of amine and carboxyl groups of soy crosslinked with
glyoxal and heat treated soy

Materials Free amine group Carboxyl group content
content (%) (mmol/100 g protein)

Sy, 97.6+0.5 108.3+£0.002

0.3X-SI, 66.3+1.1 110.5+0.009

0.6X-SI, 55.9+1.0 111.3£0.003

24TT-SIy, 72.2+1.1 112.1£0.007

Slip: soy protein thermoplastic; #X-SI,: soy protein thermoplastic
crosslinked with #% glyoxal (% based on the protein content); 24TT-
Slip: heat treated soy protein thermoplastics.
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materials as a function of degradation time during exposure to an
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Two different immersion media were used: i) without
enzymes; and ii) with bacterial collagenase, respectively.
The material having the highest degree of crosslinking
showed the highest resistance against hydrolysis and the
lowest coefficients of diffusion (Table 2).

An almost linear decrease in the material weight loss
was observed for different degrees of crosslinking
(Fig. 3).

Although the diffusion coefficients of the enzymatic
solution were always lower than those of the non-enzy-
matic one (Table 2), all the materials showed a slightly
higher susceptibility towards degradation by col-
lagenase. The weight loss rates, determined from the
slopes of the initial linear part of the curves displayed in

Table 2
Diffusion coefficients of the tested degradation solutions into the
(non)-crosslinked and heat treated soy samples

Materials Dx1078 (cm?/s)
ISS ISS + collagenase
ST, 62.5 59.1
0.6X-SI;, 46.0 42.1
24TT-SIy, 52.6 48.4

SIi,: soy protein thermoplastic; #X-SIi,: soy protein thermoplastic
crosslinked with #% glyoxal (% based on the protein content); 24TT-
SIip: heat treated soy protein thermoplastics; D: diffusion coefficient;
ISS: isotonic saline solution, NaCl 9g/1, buffered at pH 7.4 with 0.2 M
Tris—HCI.
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Fig. 3. Change in weight of soy protein based materials as a function
of the respective crosslinking degree in (a) isotonic saline solution (9 g/
1 NaCl, pH 7.4, 37 °C) or (b) isotonic saline solution with bacterial
collagenase (100 U/ml, pH 7.4, 37 °C).

Fig. 1, are presented in Fig. 4 as a function of the
amount of free amine groups in the protein.

A decrease in free amine groups results in a lower
degradation rate. It appears that a crosslinking degree
of 50% must be reached, above which only slow degra-
dation is observed in both media.

3.1.2. Heat treatment
The free amine group and the carboxyl contents of the
heat treated soy materials are given in Table 1. Fig. 5
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collagenase (100 U/ml, pH 7.4, 37 °C), considering the respective
crosslinking degree.
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presents the weight loss of the heat treated soy plotted
as a function of the immersion time. The represented
lines were determined in two different ways: 1) experi-
mental: using the procedure described in Section 2.3.3;
and ii) predicted: only considering the effect of the
amount of free amine groups (using the linear curve fit-
ting of the results presented in Fig. 3).

The heat treated materials present a smaller suscept-
ibility towards non-enzymatic degradation than the
glyoxal crosslinked ones (Fig. la). By the contrary,
when submitted to enzymatic media showed faster
release rates (Fig. 2a). From the results presented in
Fig. 5 it is possible to conclude that the crosslinking
through the amine groups of soy should not be the only
mechanism responsible for the degradation behaviour
of the heat treated soy materials. The experimental
degradation rates observed for heat treated soy are
always slower than the theoretical predictions based
only on the amine groups reactions (Fig. 5).

3.2. Mechanical properties

The change in mechanical properties of non-cross-
linked soy (SI,), soy crosslinked with glyoxal (0.6X-
SIip) and heat treated soy (24TT-SI,) as function of
degradation time was evaluated. The content of amine
groups and the mechanical properties of the soy mate-
rials are presented in Table 3.

The mechanical properties of the soy materials
depend on the crosslinking methodology. Crosslinking
with glyoxal (0.6X-SI,) resulted in materials which
have a decreased tensile strength and strain at break and
an increased stiffness as compared to Sl,. Heat treat-
ment afforded a material with a higher tensile strength
and stiffness and lower strain at break as compared to
Slp.

3.2.1. Non-enzymatic degradation

After 24 h of immersion, non-crosslinked soy (SIy,)
retained over 92% of its original weight, whereas a 1%
and 0.7% decrease in weight were observed for glyoxal
crosslinked soy (0.6X-SI;,) and heat treated soy (24TT-
Slip), respectively. During degradation, the free amine
group content of SI, increased from 97.6 to 100%,

Table 3

from 55.9 to 60.5% for 0.6X-SI;;, and from 72.2 to
80.2% for 24TT-SI,,.

The mechanical properties of SlIp, 0.6X-SI;, and
24TT-SI;, were reasonably affected upon degradation,
as shown in Fig. 6.

An increase of the E-modulus was observed for all
materials. The tensile strength also increased from 3.5 to
8.7 MPa for Sl;;, and from 3.9 to 9.4 MPa for 24TT-
SIip. By the contrary, glyoxal crosslinked soy showed a
slight decrease in this property (from 3.1 to 2 MPa).
Furthermore, the strain at break was highly decreased
from: i) 36.4-5.5% for Sl; ii) 25.5-1.8% for 0.6X-SI;;
and iii) 21.7-9.8% for 24TT-SI,.

3.2.2. Collagenase degradation

The effect of collagenase on the mechanical properties
of Sl,, 0.6X-SI,, and 24TT-SI;,, as a function of
immersion time, is presented in Fig. 7.

After 24 h of immersion, non-crosslinked soy (SI;y)
retained over 89% of its original weight, whereas a
1.7% decrease in weight was obtained for glyoxal
crosslinked soy (0.6X-SI;,). The 24TT-SI;, material
seemed to be the most affected by the collagenase
action. After 24 h of immersion, it suffered a decrease of
6% in weight compared to the only 0.7% decrease
observed during the non-enzymatic tests. During degra-
dation, the free amine group content of Sl;, increased
from 97.6 to 100%, from 55.9 to 68.1% for 0.6X-SI,
and from 72.2 to 97.7% for 24TT-SI,,.

The mechanical properties of SIi, and 0.6X-SI,, were
not further affected by the presence of collagenase. By
the contrary, heat treated soy was the most affected by
the enzymatic action. It was observed a lower increase
in stiffness and strength when compared with those
observed during immersion in the non-enzymatic med-
ium. The strain at break also decreased. It was observed
a decrease from 21.7 to 9.8% for the non-enzymatic
medium compared with a decrease from 21.7 to 5.3%
for the medium with collagenase.

3.3. Molecular weight distributions

SDS-PAGE patterns of the soy thermoplastics (S,
0.6X-SI;, and 24TT-SI;;,) were obtained to examine the

Amine group content and mechanical properties of (non)-crosslinked and heat treated soy

Material Free-NH, group Tensile strength Strain at Eo05-0.25%- Moisture
content (%) (MPa) break (%) modulus (MPa) content (%)
STy, 97.6+0.5 3.5+0.3 36.4+0.5 33+10 16.8+£0.2
0.6X-SI;, 559+1.0 3.1+0.1 25.5+4.7 68+1 16.3+0.1
24TT-SIy, 72.2+1.1 3.9+0.1 21.7+2.1 88+3 14.6+04

SIip: soy protein thermoplastic; 0.6X-SI;,,. soy protein thermoplastic crosslinked with 0.6% glyoxal (% based on the protein content); 24TT-SI:

heat treated soy protein thermoplastics.
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Fig. 6. Changes in (a) E-modulus, (b) tensile strength and (c) strain at break as a function of degradation time during exposure to an isotonic saline
solution (NaCl 9¢g/1, pH 7.4 and 37 °C).
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Fig. 8. SDS-PAGE results for standard: (0) protein markers; (1) native soy isolate; (2) thermoplastic soy (SI,); (3) heat treated soy (24TT-SI,); (4)
glyoxal crosslinked soy (0.6X-SIy,); (5) Sl after 3 days immersion; (6) 24TT-SI;, after 3 days immersion; (7) 0.6X-SI, after 3 days immersion; (8)
Sl after 14 days immersion; (9) 24TT-SI;, after 14 days immersion in an isotonic saline solution (NaCl 9 g/I, pH 7.4 and 37 °C).

molecular weight distributions of the proteins after dif-
ferent degradation periods (Fig. 8).

All the thermoplastics soy materials presented a large
band on the top of the gel (M,,>94,000 D) which was
absent in the soy isolate. Thus, the average molecular
weight was slightly increased by extrusion and injection
moulding operations, indicating that some inter-
molecular bonds were formed during processing.
Glyoxal crosslinked samples (0.6X-SI,) showed a very
weak intensity, partly reflecting the low solubility of this
protein in the electrophoresis. Heat treated samples
(24TT-S1,;,) also showed a band intensity weaker than
SI but stronger than 0.6X-SI,,,, proving its lower degree
of crosslinking. After degradation, all the protein pat-
terns showed a decrease of intensity of the fractions
correspondent to a lower Mw, and reflecting the pre-
ferential leaching of these fractions during the degrada-
tion tests. This observation was specially visible for SI;,
confirming its higher susceptibility to degradation than
the correspondent crosslinked matrices.

4. Discussion

The degradation behaviour of protein-based materials
can be controlled by the respective degree of cross-
linking (induced by chemical or physical methods).
Traditionally, glutaraldehyde, carbodiimides and epoxy
compounds have been extensively used as crosslinking
agents to stabilise arteries and pericardial heart valves
[35-37].

The resistance against degradation of protein based
materials can be studied by in-vitro tests, in isotonic
saline solutions, including (or not) enzymes such as
bacterial collagenase, and is mainly monitored by
changes in weight as a function of the immersion time.
The selected collagenase enzyme from Clostridium his-
tolyticum is capable of cleaving peptide bonds within
the protein structure and has a specificity for the Pro-X-
Gly-Pro-Y region, splitting between X and Gly where X

and Y are predominantly apolar amino acid residues.
So, the degradation rate of the protein-based material
will be mainly determined by the crosslinking density,
the accessibility of the cleavage sites and the extent of
denaturation [24,25]. Changes in the mechanical prop-
erties of the materials also become important when they
are intended to withstand loads during implantation.
Therefore, the influence of degradation on the mechan-
ical performance of the non-crosslinked and crosslinked
soy was also evaluated.

Treatment of soy with glyoxal or exposure to heat
decreased the free amine group content of the material,
evidencing the role of these groups on the crosslinking
reactions (Table 1). The lowest free amine group con-
tent was observed for soy crosslinked with 0.6% glyoxal
(0.6X-SI;p,). Furthermore, the free amine group contents
vary from 97.6% for Sl,, to 55.9% and 72.2% for
0.6X-SI;, and 24TT-SI,, respectively. However, the
behaviour of each material (Figs. 1 and 2) should be
related not only with its degree of crosslinking but also
with the respective nature.

The use of glyoxal leads to the crosslinking between
the free amine groups of soy and the aldehyde groups of
glyoxal. As previously discussed [22], the resulting
crosslinks are mainly of intramolecular nature. Thus,
the degradation behaviour of the glyoxal treated mate-
rials should be mainly related with their intramolecular
crosslinking density. As observed in Fig. 3, the weight
loss of these crosslinked samples was always directly
proportional to its crosslinking density and always sub-
stantially lower than SI;, specimens (Figs. 1 and 2).

The heat treatment of the soy materials results in the
establishment of: i) crosslinks with the free amine
groups (intramolecular crosslinking); ii) disulphide
bonding (of intermolecular nature [22]); iii) hydrogen
bonding; and iv) hydrophobic interactions. Conse-
quently, the degradation behaviour of the heat treated
materials (Figs. 1 and 2) should result from the com-
bined effect of the respective intra- and intermolecular
crosslinking density and degree of hydrophobicity. For
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this reason, in both media (Fig. 5), these materials
always present degradation rates slower than those pre-
dicted only taking into considering the contribution of
the intramolecular crosslinks.

It has been shown that enzymatic degradation of
polyesters occurs by a surface erosion process which is
experimentally characterized by a zero order weight loss
in the initial stage of the degradation [38]. A zero order
weight loss was always observed in this work for the
degradation of either non-crosslinked or crosslinked
soy, during the first hours of immersion (Figs. 1a and
2a). This suggests that the degradation of soy materials
can be depicted as a surface erosion process. These
conclusions can also be supported by the observed
decrease in the thickness of the tested bars as a function
of immersion time (Figs. 1b and 2b), specially during
the enzymatic degradation (Fig. 2b). In general, the
decrease in the overall samples thickness corresponded
to the percentage of material lost due to degradation
(Figs. 1 and 2).

The very important changes in mechanical properties
during the immersion period (Figs. 6 and 7) revealed a
clear two stage process. Furthermore, it is also evident
that this behaviour is the result of other contribution
than only the degradation (and consequent weight loss)
of the soy matrix.

In fact, if crosslinking prevents the penetration of the
degrading solution in the protein matrix and only sur-
face erosion occurs, the crosslinked materials would be
able to retain the strength for a longer period during
degradation. However, it was observed an increase in
both strength and stiffness of the materials, accom-
panied by a sharp decrease in strain at break. As repor-
ted previously for other biopolymers containing glycerol
[39], the degradation of these polymeric systems always
involves the leaching of the plasticiser. So, the evidenced
mechanical behaviour can be divided in two distinct
phases:

a) First, glycerol is leached during the first three hours
of immersion and masked the effects of the matrix
degradation on the mechanical properties of the
materials. This process is followed by an increase in
the material stiffness and a severe loss of ductility (the
strain at break drops to values between 1 and 6%);

b) The behaviour in the second stage, after 3 h of
immersion, should be explained by the following
mechanisms: 1) as the matrix degradation occurs it
enables a moisture uptake by the materials, which can
slightly compensate the glycerol loss; ii) so, the
strength and stiffness decrease and tend to stabilise,
what is followed by a small increment and stabili-
zation of the ductility (Figs. 6¢ and 7c¢); iii) these
effects are less pronounced in the crosslinked materi-
als because the water uptake of the respective mac-
romolecular structures is more restricted; in fact,

glyoxal crosslinked materials (0.6X-SI;,) are more
stable than the thermal treated ones (24TT-SIp)
because the intramolecular crosslinks are important
on preventing the referred water uptaking process;
and iv) comparison between Figs. 6 and 7 show that,
in general terms, the above referred processes are
enhanced when the degradation occurs in the presence
of enzymatic action.

5. Conclusions

Crosslinking of SI;, with glyoxal (X-SI;,) or by heat
treatment (24TT-SI;,) result in materials with different
characteristics concerning mechanical properties and in-
vitro stability. The susceptibility of the materials
towards (non-) or enzymatic degradation could be con-
trolled by varying the degree of crosslinking or hydro-
phobicity of the samples. Different degrees of
crosslinking could be achieved using glyoxal or heat
treatment. Samples crosslinked using the former
method seemed to be more resistant toward degradation
by a solution of bacterial collagenase. Contrarily, heat
treated samples proved to be more resistant to degra-
dation in the absence of collagenase. Upon degradation,
the change in mechanical properties of Sl,, 0.6X-SIy,
and 24TT-SI;, samples were more sensitive to the
leaching of glycerol than to matrices degradation. In
general, soy thermoplastics are slightly sensitive to
degradation with collagenase.
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