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Abstract: Recently, Strain Hardening Cementitious Composite (SHCC) material has been used for the shear 

strengthening and the structural rehabilitation of reinforced concrete structures. However, the shear behavior of this 

material has not been yet fully understood due to lack of an appropriate and accurate direct shear test method. This 

paper aims to investigate the shear properties of the SHCC material. For this purpose, Iosipescu shear test was selected, 

where loads are applied in antisymmetric four points bending, assuring a pure shear section at the center of the 

specimen. A special geometry for the specimen was adopted in order to assure a uniform shear stress distribution in 

the pure shear section. This experimental test can characterize the shear behavior of SHCC material. 

The experimental test was simulated by the FEM-based computer program, FEMIX. To predict the average shear 

stress-sliding response, the shear crack softening diagram, available in the multi-directional fixed smeared crack 

model, was used. After demonstration the good predictive performance of the numerical model, a parametric study 

was carried out to evaluate the influence of shear retention factor, fracture energy of mode II, and crack shear strength 

on the average shear stress-sliding response of the SHCC. The advantage of SHCC instead of conventional mortar 

was also studied. 

 

 

 

 

Keywords: Shear; Strain Hardening Cementitious Composite; Iosipescu; Numerical simulation; FEM analysis; Shear 

retention factor; Shear softening diagram. 

 

 

                                                           
1 PhD, ISISE, Department of Civil Engineering, University of Minho, Guimarães, Portugal, (corresponding author)  

e-mail: hadibaghi@gmail.com. 
 
2 Full Professor, ISISE, Department of Civil Engineering, University of Minho, Guimarães, Portugal,  

e-mail: barros@civil.uminho.pt. 

mailto:hadibaghi@gmail.com
mailto:barros@civil.uminho.pt


Introduction: 

Strain Hardening Cementitious Composite (SHCC) is a class of fiber reinforced cement composites (FRCC) that 

exhibits ductile behavior under tensile load, with a strain hardening response rather than the tension softening character 

presented by conventional FRCC after crack initiation. In SHCC materials, the fiber bridging mechanisms developed 

during the crack opening process allow a gradual increase of tensile capacity from crack initiation up to a relatively 

high tensile strain (more than 1%), where a failure macro-crack occurs, followed by a strain-softening stage (Baghi et 

al. 2015, Gideon and Zijl 2007). The tensile strain hardening phase is accompanied by the formation of a diffuse crack 

pattern of very small crack width. In recent years, SHCC has been used for developing new construction systems and 

for the structural rehabilitation because this material exhibits ductile shear behavior, high energy absorption capacity, 

and stable hysteretic loops at large drifts (Parra-Montesinos and Wight 2000; Baghi 2015; Esmaeeli et al. 2015). 

Hybrid Composite Plate (HCP) has been used to increase the shear capacity of reinforced concrete beams. HCP is a 

thin plate of SHCC that is strengthened by carbon fiber reinforced polymer (CFRP) laminates. Due to the excellent 

bond conditions between SHCC plate and CFRP laminates, these reinforcements provide the necessary tensile strength 

capacity to the HCP. Moreover, the high post-cracking tensile deformability and resistance of SHCC avoid the 

occurrence of premature fracture failure of this cement composite during the stress transfer process between these two 

materials, when the HCP is crossed by a shear crack (Baghi et al. 2015; Baghi 2015). However, the shear behavior of 

SHCC material has not been fully assessed due to the lack of an accurate and appropriate direct shear test method. 

The great difficulty is to develop an accurate test setup capable of introducing a pure shear stress field. Several shear 

test setup configurations have been proposed by various researchers in an attempt of capturing the shear behavior of 

materials (Ohno 1957; Iosipescu 1967; Banks-Sills and Arcan 1983; Reinhardt et al. 1997; Boulifa et al. 2013). 

Iosipescu shear test was proposed by Iosipescu (1967) for determining the shear properties of metal and welded joints. 

This test method was considered appropriate for composite materials, and it was adopted by ASTM standard D-5379 

(1993). The Iosipescu specimens are loaded in antisymmetric four points bending with a double notch in a region with 

high shear force and zero bending moment, which can constitute a pure shear section. As shown in Fig. 1, the specimen 

consists of a depth between two notch roots (
0h ), angle of notch root ( ), and notch radius ( r ). This geometry of 

the specimen can assure a uniform shear stress distribution in the notched plane. 



In the present work, the shear behavior of a developed SHCC was investigated by executing Iosipescu shear tests. For 

this purpose, an experimental program of the Iosipescu shear test was carried out, composed by 10 specimens. The 

experimental program is detailed and the obtained results are presented and discussed. 

Advanced numerical simulation was carried out by using a multi-directional fixed smeared crack model available in 

the FEMIX computer program that includes a crack shear softening law to simulate the crack shear stress transfer 

degradation with the crack widening (Sena-Cruz et al. 2007). After have been demonstrated that the adopted model is 

capable of fitting with good accuracy the average shear stress-sliding relationship and the crack pattern, a parametric 

study was carried out to study the influence of the parameters that define the crack shear softening diagram on the 

shear stress-sliding response of SHCC specimen submitted to direct shear test. The advantage of using SHCC instead 

of conventional mortar was also analyzed in this parametric study. 

 

Review of Mode II Testing Methods: 

Pure shear panel test method has been developed to measure the relationship between principal stresses and 

corresponding principal strains (Collins and Mitchell 1991) (Fig. 2a). However, the required facility is highly 

complicated and the shear stress in the specimen is not uniform (Shang and Zijl 2007).  

Double edge notched compression test has been proposed for materials made by high compressive strength ( '

cf  85 

MPa and 
tf  5 MPa), because the results of this test on high strength concrete agreed with the theoretical prediction 

(Reinhardt et al. 1997). As shown in Fig. 2b, one side of the specimen is loaded in compression and the other side is 

free. Shortly after mode II crack initiation at the tip of the notch, concrete failed in compression. Hence, this technique 

is not able to measure fracture energy mode II. 

Short beam shear test is one of the simplest tests (Fig. 2c), and is widely used for composites materials (ASTM 2000). 

However, the short beam shear test cannot give acceptable results due to non-uniform shear stress distribution, and 

the presence of normal flexural stress. 

Ohno shear beam test has been developed to create a pure shear zone (Ohno 1957). The concept of the Ohno shear 

beam test is presented in Fig. 3a. Based on the shear force (Fig. 3b) and bending moment diagrams (Fig. 3c), a state 

of pure shear exists at the center of the beam where the bending moment is zero. Bending moment varies along the 

beam with the maximum ( . / 2p a ) and the minimum values (0) at the two inner loading points (Fig. 3c). Hence, the 

failure of the specimen becomes uncertain. Shear failure, flexural failure or a combination of shear and flexural failure 



may occur during this test (Shang and Zijl 2007). In an improvement on the Ohno shear test, a notched specimen has 

been proposed by Iosipescu (1967), whereby a uniform shear stress distribution in the zero bending moment is possible 

to assure. 

 

Iosipescu Shear Test: 

This test method is recommended by the ASTM D-5379 (1993) standard for the composite materials. It has been also 

used for characterizing the shear behavior of fiber reinforced polymer (FRP) (Morton et al. 1992; Odegrad and 

Kumosa 2000) and wood (Xavier et al. 2004). As shown in the Fig. 4, the concept and mechanism of the Iosipescu 

shear test is similar to Ohno shear beam test. However, the Iosipescu specimen has a double V-edge notched region 

of an angle (), with the minimum height (h0) at the section of null bending moment. This section is also characterized 

by a tip radius (r) at the center, whose values are defined in an attempt of assuring a uniform shear stress distribution 

in this section. Based on the Fig. 4, the center section of the specimen, where the bending moment is zero, is 

theoretically subjected to pure shear. 

A notable amount of experimental research and numerical analysis have been performed either with a single notch 

(Fig. 5) or double notch (Fig. 4) (Swartz et al. 1987; Ballatore et al. 1990; Barr and Derradj 1990; Ho et al. 1993; 

Derradj and Kaci 2008). The results of the single notch specimens have shown that cracks initiate in mode II, however 

it quickly change to a mixed mode. Furthermore, finite element simulations have shown the mode I is the dominant 

crack propagation mode in this test, therefore single notched specimen is not suitable for the determination of mode 

II fracture parameters (Swartz et al. 1987). 

Krishnan and Xu (2009) performed a numerical study to measure the variation of the shear stress along the center 

cross section of the Iosipescu and Ohno specimens. Both specimens had the same sectional area at the pure shear 

section, for this purpose the thickness of the specimens were different. As shown in Fig. 6, the variation of the shear 

stress for Ohno specimen is parabolic, while in Iosipescu specimen is almost constant. The geometry of Iosipescu 

shear specimen (r, 
0h ,  ) has been modified by FEM analysis for SHCC material to find a uniform shear stress 

distribution along the critical section (Shang and Zijl 2007 and Gideon and Zijl 2007). The shear behavior of SHCC 

was studied by Gideon and Zijl (2007). They observed, the two initial fine cracks that formed at notch upper and lower 

edge were arrested after which multiple diagonal cracks arose in the notch. The numerical simulation that was carried 

out by Gideon and Zijl (2007) confirmed the experimental observation.  



 

Two versions of the Iosipescu shear fixture and specimen were developed for composite materials (Ho et al. 1993) 

(Fig. 7). The original fixture and specimen (Fig. 7a) produced a very small region of uniform shear stress as a result 

of small depth of notched section and significant normal strains in the specimen test section. To overcome these 

deficiencies, a modified fixture and specimen were developed (Fig. 7b). The modified fixture can accommodate 

specimens of larger cross section height, larger fixture-to-specimen contact regions, and the innermost fixture-to-

specimen contact zones were moved further away from the critical section. The uniform shear stress region increased 

but normal strains still exist in this section (Ho et al. 1993). 

 

Experimental Program: 

The experimental program aims, mainly, to determine the crack shear strength and the shear stress versus crack sliding 

of SHCC material, as well as it fracture energy of mode II, 
sf

G . The dimensions of the specimens were 380×140×14.5 

mm3 with depth of the critical cross section (
0h ) of 25 mm, angle of notch root of ( ) 90°, and tip radius at notches 

equal to ( r ) 2.5 mm (Fig. 8a). The specimen was designed by considering the comprehensive study was carried out 

by Shang and Zijl (2007) and Gideon and Zijl (2007) for finding the geometry of Iosipescu SHCC specimen that 

assures an uniform shear stress distribution. The fixture developed in the scope of the research carried out (Baghi 

2015) is identical to the modified Iosipescu fixture. As shown in Fig. 8b, this fixture contacts entirely the horizontal 

top and bottom surfaces of the specimen, and it can also support specimens of other materials, thicknesses (up 70 

mm), and dimensions. 

 

Material Properties 

The SHCC was composed of a cementitious mortar reinforced with 2% of volume of short discrete polyvinyl alcohol 

(PVA) fibers. The SHCC mix was prepared based on a previous study (Esmaeeli et al. 2013). The dry ingredient 

materials (sand, cement, and fly ash) were firstly mixed. In the second step, the superplasticizer and a quarter of the 

water were combined and added to the dry ingredient materials. The rest of the water and the viscous modifier agent 

were then combined and introduced into the mix. Finally, PVA fibers were added to the mortar. Each Iosipescu 

specimen required about 1 liter of SHCC mix. After casting, these specimens were sealed by a plastic sheet and were 

kept in a room environment for 24 hours before de-molding. After de-molding, the specimens were transferred to the 



climate room and were cured under the constant conditions of 20°C temperature and 80% humidity up to the age of 

28 days, in order to follow the curing procedure recommended in Esmaeeli et al. (2012). The average tensile stress at 

crack initiation and the average tensile strength of the SHCC was 2.35 and 3.4 MPa, respectively (Esmaeeli et al. 

2013). More details on the preparation and testing the SHCC can be found elsewhere (Esmaeeli et al. 2012; Esmaeeli 

et al. 2013). The material properties of SHCC are presented in Table 1. 

Test setup and monitoring system 

The load was applied by using a servo closed loop control equipment, taking the signal read in the displacement 

transducer (LVDT) of the servo-actuator to control the test at a displacement rate of 0.005 mm/s. The load was 

recorded by using a load cell of 10 kN capacity. The weight and the slight friction of the movable portion of fixture 

were taken into account on the evaluation of the strict load applied to the specimen. As shown in Fig. 8b, one LVDT 

was installed at the load cell to measure the displacement rate of the specimen, and another one was installed at the 

notched section (Fig. 9) to measure the sliding of the crack. 

 

Test results and discussion 

Ten specimens were tested. The average shear stress was determined by dividing the total applied load (P) (measured 

by the load cell) by the area of the cross section between the two notches (Eq. 1): 

avg

P

A
    (1) 

The envelope and the average curve corresponding to the average shear stress versus sliding relationship of the 

specimens are presented in Fig. 10a. Figure 10b shows the typical crack pattern of the specimens. Iosipescu specimens 

had similar failure mode and their shear stress-sliding curves denote the existence of three main phases. The first phase 

corresponds to the linear behavior up to a shear stress of about 0.8 MPa (0.09 mm) and formation of initial vertical 

cracks (Fig. 11a). These cracks were detected by spraying oil (WD-40) on the surface of the specimens. In the second 

phase, more micro cracks were formed up to peak load (Fig. 11b). When specimens reached their maximum load, the 

micro cracks were connected to each other and the load started decreasing (softening stage – Fig. 11c) up to end of 

the test (Fig. 10b). Based on the Fig. 11, for an average slip 2 times the average slip at peak load, the SHCC was still 

capable of supporting 50% of the average shear strength, which denotes the ductility of this composite material when 

subjected to shear deformations. 



By calculating the area under the curve of average shear stress versus sliding after crack initiation (Fig. 10a), the mode 

II fracture energy of the SHCC material was estimated about 1.4 N/mm, which corresponds to approximately 40% of 

its mode I fracture energy determined by direct tensile tests with notched specimens (Esmaeeli et al. 2013). 

 

Numerical Simulation: 

The two dimensional multi-directional fixed smeared crack model described in Sena-Cruz (2004), implemented in the 

FEM-based computer program FEMIX (Sena-Cruz et al. 2007), was used in the numerical simulations carried out in 

this work. To simulate the crack initiation and the fracture mode I propagation of SHCC, the tri-linear tension-

softening diagram represented in Fig. 12a was adopted (Sena-Cruz 2004), which is defined by the parameters 
i  and 

i , relating stress with strain at the transitions between the linear segments that compose this diagram. The ultimate 

crack strain, ,

cr

n u , is defined as a function of the parameters 
i  and 

i , the fracture energy, 
I

fG , the tensile strength, 

,1

cr

n ctf  , and the crack bandwidth, 
bl . More information about this diagram can be found in Sena-Cruz (2004) and 

Barros et al. (2013). The values of this diagram are indicated in Table 2. This table also includes the data necessary to 

define the shear-softening diagram that simulates the degradation of crack shear stress transfer after crack initiation 

(Ventura-Gouveia et al. 2008; Ventura-Gouveia 2011; Barros et al. 2013; Soltanzadeh et al. 2015) represented in Fig. 

12b.  

To simulate the fracture mode II modulus, cr

IID , a shear retention factor is used (Sena-Cruz 2004) (Eq. 2): 

1

cr

II cD G






 (2) 

where 
cG  is the concrete elastic shear modulus and   is the shear retention factor. The parameter   is defined as a 

constant value or as a function of the current crack normal strain, cr

n , and of the ultimate crack normal strain, ,

cr

n u , 

as follows (Eq. 3), 

1

,

(1 )
cr

pn

cr

n u





   (3) 

when 
1 1P   a linear decrease of   with the increase of cr

n  is assumed. Larger values of the exponent 
1P  correspond 

to a more pronounced decrease of the   parameter. 



In structures governed by flexural failure modes, this strategy leads to simulations with reasonable accuracy. 

Exceptions occur in structures that fail by the formation of a critical shear crack. To simulate accurately the 

deformational response and the crack pattern up to the failure of this type of structures, the adoption of a softening 

crack shear stress versus crack shear strain relationship is the strategy explored in the present work (Fig. 12b). 

The crack shear stress increases linearly until the crack shear strength is reached, ,

cr

t p , (first branch of the shear crack 

diagram), followed by a decrease in the shear residual strength (softening branch). The diagram represented in Fig. 

12b is defined by Eq. 4: 
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 (4) 

The initial shear fracture modulus, ,1

cr

tD , is defined by Eq. 2 ( cr

IID  is replaced by ,1

cr

tD ) by assuming for   a constant 

value in the range ]0,1[. The peak crack shear strain, ,

cr

t p , is obtained using the crack shear strength (from the input 

data), ,

cr

t p , and the crack shear modulus (Eq. 5): 

,

,

,1

cr

t pcr

t p cr

tD


   (5) 

The ultimate crack shear strain, ,

cr

t u , depends on the crack shear strength, ,

cr

t p , on the shear fracture energy (mode II 

fracture energy), ,f sG , and on the crack bandwidth, 
bl  (Eq. 6): 

,

,

,

2 f scr

t u cr

t p b

G

l



  (6) 

In the present approach it is assumed that the crack bandwidth, used to assure that the results are independent of the 

mesh refinement (Rots 1988). When the softening constitutive law represented in Fig. 12b is used to evaluate the 

fracture mode II softening modulus, cr

IID , its value depends on the branches defining the diagram. For this reason five 

shear crack statuses are proposed and their meaning is schematically represented in Fig. 12b. 

The crack mode II modulus of the first linear branch of the diagram is defined by Eq. 2, the second linear softening 

branch is defined by Eq. 7: 



,

,2

, ,

cr

t pcr cr

II t cr cr

t u t p

D D


 
  


 (7) 

and the crack shear modulus of the unloading and reloading branches is obtained from Eq. 8: 

,max

,3 4

,max

cr

tcr cr

II t cr

t

D D



   (8) 

being ,max

cr

t  and ,max

cr

t  the maximum crack shear strain already attained and the corresponding crack shear stress 

determined from the softening linear branch. Both components are stored to define the unloading/reloading branch 

(see Fig. 12b). 

In free-sliding status (
,

cr cr

t t u  ) the crack mode II stiffness modulus, ,5

cr cr

II tD D , is null. To avoid numerical 

instabilities in the calculation of the stiffness matrix and in the calculation of the internal forces, when the crack shear 

status is free-sliding, a residual value is assigned to this term. 

A free-sliding status is assigned to the shear crack status when ,

cr cr

n n u  . The physical meaning of the remaining 

variables of this constitutive model can be found elsewhere (Sena-Cruz 2004; Barros et al. 2013). 

Figure 13 represents the finite element mesh used for the simulation of the specimen. The FE mesh was composed of 

2015 nodes and 1920 serendipity 4 nodes plain stress elements with 2×2 Gauss-Legendre integration scheme. The 

adopted mesh refinement was adopted after some preliminary simulations in terms of assuring mesh objectivity of the 

results. This figure also shows the support and load conditions. The SHCC specimens can be considered as isotropic 

material in its plane due to random orientation nature of the short fibers (Shang and Zijl 2007). In fact, due to the 

relatively small thickness of the specimens from which the Iosipescu beam specimens are extracted, it is assumed 

fibers are oriented primarily in the plane. The force P is the sum of all vertical forces in each node in contact with the 

movable part of the fixture. This force represents the uniform load imposed on the specimens and measured by the 

load cell in the experimental tests.  

The inverse analysis process executed with simulation of the experimental test allowed determining the fracture energy 

of mode II and also shear retention factor. The experimental and the numerical relationship between average shear 

stress and the sliding of the crack at the notched plane for the tested specimens are compared in Fig 14a. The crack 

pattern of this specimen at the end of the analysis is represented in Fig 14b. The first crack appeared experimentally 

and numerically at a load of about 0.31 kN and 0.4 kN, respectively. And softening stage started at a load of 1.3 kN 



and 1.35 kN for experimental and numerical, respectively. As it is shown in Fig 14, the numerical model is capable to 

capture, with acceptable accuracy, the shear behavior of the tested specimens. 

 

Parametric Study: 

The computer program, whose good predictive performance for the simulation of the behavior of the specimens under 

consideration was confirmed in the previous section, was adopted to execute a parametric study for the evaluation of 

the influence on the shear stress-sliding, and also on the crack pattern, of the following parameters: shear retention 

factor, fracture energy mode II, and crack shear strength that define the crack shear softening diagram. The advantages 

of using SHCC instead of plain cementitious material (PCM) was also analyzed. The finite element mesh, support, 

and load conditions were the same adopted in the numerical simulation of the specimen in previous section. 

 

Influence   parameter defining the first branch of the cr cr

t t   diagram 

In Fig. 15a, the influence of   parameter on the average shear stress versus sliding response of the specimen is 

represented by adopting the following three values for this parameter: 0.01, 0.15, and 0.99 (all the remaining 

parameters were maintained the same). The first one is lower and the last one is higher than the value considered in 

the analysis of the specimen.  

The results show that after formation of first shear crack at the notched plane at a sliding of about 0.10 mm, the average 

shear capacity increases with   for relatively small sliding values, as well as the brittleness of the response due to 

the increase of the stiffness of the pre-peak branch of the cr cr

t t   diagram (Fig. 15b). By decreasing the   parameter 

the crack shear deformation at crack shear strength, ,

cr

t p , increases leading to a much higher ductile response up to the 

peak average shear stress, which has also increased.  

 

Shear retention factor versus softening diagram for modeling the crack shear behavior 

The relationship between the average shear stress and sliding for specimen when using the concept of shear retention 

factor,  , (Eq. (3) with P1=3) and adopting the cr cr

t t 
 
diagram is presented in Fig. 16a. Up to a sliding of about 

0.10 mm (that corresponds to the formation of first shear crack at the notched plane) the responses are similar, but, 

above this sliding limit, the two approaches start diverging significantly. By using   obtained according to Eq. (3), 



the load carrying capacity was much higher than the one predicted by using the cr cr

t t   diagram. Then, the concept 

of the shear retention factor is not capable of simulating the decrease of the crack shear stress transfer ( cr

t ) with the 

increase of the crack shear strain ( cr

t ). Figure 16b compares the crack patterns of the specimen with   factor and 

cr cr

t t 
 
diagram. As expected, the shear retention factor approach has predicted an incorrect failure mode and crack 

pattern. 

 

Influence of fracture energy mode II
 

The average shear stress versus sliding for three different values of the shear fracture energy (
,f sG ), 0.1, 0.5 and 1.0 

N/mm (all the remaining parameters were maintained the same) are compared in Fig 17a, where the first value is lower 

and the last one is higher than the 
,f sG considered in the analysis of the experimentally tested specimen (0.5 N/mm). 

The results show that the load carrying and sliding capacity increase with 
,f sG , since the crack shear stress degradation 

in the softening stage is less pronounced with the increase of 
,f sG  (Fig. 17b). 

 

Influence of crack shear strength 

Figure 18a compares the average shear stress versus sliding obtained for three different values of the crack shear 

strength ( ,

cr

t p ), 0.1, 1.0 and 2.0 MPa (all the remaining parameters were maintained the same), the first one is lower 

and the last one is higher than the value considered in the analysis of the experimentally tested specimen (1.0 MPa). 

The obtained results show that the average shear strength increases with ,

cr

t p , since the entrance in the crack shear 

softening stage is postponed for later stages of the sliding process, ,

cr

t p  (Fig. 18b). Since the fracture energy mode II 

was the same in the three simulations, the post-peak response of the specimen is, however, as brittle as higher is ,

cr

t p  

(Fig. 18b).  

 

Plain cementitious material versus SHCC 

Figure 19a compares the shear stress versus sliding relationship obtained when the specimen is made by a plain 

cementitious material (PCM) and a SHCC. The material properties of the PCM are presented in Table 3 (Baghi 2015). 

Apart the properties of these two materials, the remaining simulation conditions (geometry, loading and supports) 



were the same in both analyses. As expected, the specimen consisting of PCM failed at lower average shear strength 

than the specimen of SHCC. The PCM specimen had a brittle behavior, with an abrupt load decay just after peak load, 

while the SHCC specimen developed a pronounced nonlinear phase up to the average shear strength, followed by a 

relatively smooth softening response. The typical failure mode of PCM reported by Shang and Zijl (2007) and Gideon 

and zijl (2007) is presented in Fig. 19b, which was very well captured by numerical simulation (Fig. 19c). In fact, first 

cracks are formed near the notch tips (red circle in Fig. 19c), and propagated with an inclination of about 45°.  

 

Conclusion: 

The shear behavior of the SHCC was investigated by Iosipescu shear test method. The shear stress-sliding curves 

obtained in this test was characterized by three phases: 1) a first linear response that ends at an average shear stress of 

0.8 MPa at a sliding of 0.09 mm; a second phase corresponding to the development of micro cracks with a continuous 

decrease of shear stiffness up to peak load (at an average shear strength of 3.9 MPa and sliding of 0.5 mm); and the 

third phase where a shear softening stage was occurred due to the degeneration of micro- in macro-cracks in the shear 

critical region; however, for an average slip 2 times the average slip at peak load the SHCC was still capable of 

supporting 50% of the average shear strength, which denotes the ductility of this composite material when subjected 

to shear deformations. By calculating the area under the curve of average shear stress versus sliding, the fracture 

energy mode II of SHCC material was estimated about 1.4 N/mm, which corresponds to 40% of its mode I fracture 

energy. 

The capability of a FEM-based computer program to predict the behavior up to its failure of SHCC elements subjected 

to direct shear was investigated. From this study it was verified that the crack shear softening diagram available in the 

multi-directional fixed smeared crack model, implemented in the FEMIX computer program, allows simulating the 

shear behavior of the Iosipescu specimen. This has allowed the evaluation, from inverse analysis, the fracture 

parameters mode II of SHCC. 

A parametric study was carried out: i) to study the influence of parameters that define the shear softening diagram on 

the shear stress-sliding response of SHCC specimens submitted to direct shear, ii) to illustrate the advantages of SHCC 

versus mortar when shear loading is governing the failure mode. It was verified that the shear stress of the specimens 

decrease by increasing the shear retention factor,  , due to the higher crack shear stress transfer, by using the concept 

of shear retention factor,  , for modeling the crack shear stress transfer, an abnormal high shear stress was estimated, 



with an incorrectly predicted failure mode, while adopting softening diagram, not only the response of the specimen, 

but also the failure mode and the crack pattern were correctly estimated. It was verified that load carrying and sliding 

capacity of the specimen increase with 
,f sG . The obtained results also showed by increasing ,

cr

t p  the average shear 

strength increased, since the entrance in the crack shear softening stage is postponed for later stages of the sliding 

process. The specimen consisting of plain cementitious material (PCM) failed at a lower shear stress than of the 

specimen with SHCC. The specimen with PCM had a brittle behavior, with an abrupt load decay just after peak load.  
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Fig. 1 - Geometry parameters of Iosipescu shear test 

hr 0



  

a) Pure shear test b) Double edge notched compression 

 

c) short beam shear test 

Fig. 2 - Different mode II test setups: a) Pure shear panel test; b) Double-Edge Notched compression; c) short beam 

shear test 



 

  

a) concept of Ohno shear beam test b) shear force diagram c) bending moment diagram 

Fig. 3 - Ohno shear beam test: a) test setup; b) shear force diagram; c) bending moment diagram 
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a) Iosipescu specimen 

 

b) shear force diagram 

 

c) bending moment diagram 

Fig. 4 - Shear force and bending moment diagrams in Iosipescu test 
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Fig. 5 - Single notch specimen 
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a) Ohno shear beam test (b) Iosipescu shear test 

Fig. 6 – Shear stress distribution on the critical section for the specimen a) Ohno , and b) Iosipescu 
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a) Original Iosipescu Fixture and specimen 
b) Modified Iosipescu Fixture and specimen 

Fig. 7 - Developed Iosipescu fixtures and specimens (Ho et al. 1993) 



 

a) Iosipescu specimen 

 

b) Fixture and position of the load cell and LVDTs 

Fig. 8 - a) Adopted Iosipescu specimen; b) Iosipescu fixture developed at the University of Minho
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Fig. 9 - The position of the LVDT to measure the sliding of the shear crack formed in the notched section 

20mm12.5mm

12.5mm



 

 

a) b) 

Fig. 10 – a) The envelope and average stress versus crack sliding; b) Typical crack pattern in the tested Iosipescu 

specimens 



  

a) Crack pattern in the first phase (linear pre-peak up to a slide of around 0.09mm) 

  

b) Crack pattern in the second phase (nonlinear pre-peak) 

  

c) Crack pattern in shear softening (nonlinear post-peak) 

Fig. 11 – Representative crack patterns in the relevant stages of a tested specimen 



 
 

a) b) 

Fig. 12 – a) Tri-linear stress-strain diagram to simulate the fracture mode I crack propagation ( cr cr

n,2 1 n,1   , 

cr cr

n ,3 2 n,1   , 
,2 1 ,

cr cr

n n u   , 
,3 2 ,

cr cr

n n u   ); b) Diagram to simulate the relationship between the crack shear stress 

and crack shear strain component, and possible shear crack statuses 
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Fig 13 - Finite element mesh of the Iosipescu specimen 



 

 

a)  b) 

Fig. 14 – a) Comparison between experimental and numerical average shear stress versus sliding relationship; b) 

Crack pattern of the specimens



 

a) shear stress-sliding relationship 



 

b) crack shear stress crack shear strain diagram 

Fig. 15 – a) Influence of shear retention factor on average shear stress-sliding relationship; b) The crack shear stress-

crack shear strain diagram for the   equal to 0.01, 0.15, and 0.99 



 

a) shear stress-sliding relationship 

  

b) shear retention factor P1=3 c) shear softening (  0.15) 

Fig. 16 - Influence of using the crack shear softening diagram versus shear retention factor with P1 = 3 on the 

average shear stress-sliding relationship and crack pattern 



  

a) shear stress-sliding relationship  b) crack shear stress crack shear strain diagram 

Fig. 17 – a) Influence of the fracture energy mode II on average shear stress-sliding relationship; b) The crack shear 

stress-crack shear strain diagram for the fracture energy mode II equal to 0.1, 0.5, and 1.0 N/mm 



 

a) shear stress-sliding relationship 

 

b) crack shear stress crack shear strain diagram 

Fig. 18 – a) Influence of crack shear strength on average shear stress-sliding relationship; b) The crack shear stress-

crack shear strain diagram for the crack shear strength equal to 0.1, 1.0, and 2.0 MPa



 

a) shear stress-sliding relationship 

 
 

b) final crack pattern of PCM c) crack pattern of the PCM 

Fig. 19 – Shear response and crack pattern of a specimen made by SHCC and Plain Cementitious Material (PCM) 
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Table 1 - Values of the properties of SHCC materials 

SHCC 

Tensile stress at 

crack initiation 
Tensile strength 

Tensile strain at 

tensile strength 

Compressive 

strength 

Young’s 

modulus 

2.35 MPa 3.4 MPa 1.3% 31.6 MPa 18.4 GPa 



Table 2 - Values of the parameters of the SHCC constitutive model 

c  
cE
 

(
2/N mm ) 

cf  

(
2/N mm ) 

ctf
 

(
2/N mm ) 

fG
 

( /N mm ) 

1  
1  

2  
2  

,

cr

t p
 

(
2/N mm ) 

,f sG  

( /N mm ) 

  

0.10 14000 31.60 2.35 3.5 0.11 1.27 0.54 0.11 1.0 0.5 0.15 

 



Table 3 - Values of the parameters of the constitutive model for the PCM  1 

c  
cE
 

(
2/N mm ) 

cf  

(
2/N mm ) 

ctf
 

(
2/N mm ) 

fG
 

( /N mm ) 

1  
1  

2  
2  

,

cr

t p
 

(
2/N mm ) 

,f sG  

( /N mm ) 

  

0.10 14000 31.60 1.8 0.08 0.005 0.3 0.1 0.3 1.0 0.045 0.60 

 2 

 3 

 4 


