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Faculdade de Ciências, Universidade de Lisboa

Campo Grande, 1749-016 Lisboa, Portugal
e-mail: teresa.faria@fc.ul.pt
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Abstract

For a class of scalar delay differential equations with impulses and satisfying a Yorke-type
condition, criteria for the global asymptotic stability of the zero solution are established. These
equations possess a non-delayed feedback term, which will be used to refine the general results on
stability presented in recent literature. The usual requirements on the impulses are also relaxed.
As an application, sufficient conditions for the global attractivity of a periodic solution for an
impulsive periodic model are given.
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1 Introduction

In this paper, we consider a family of scalar non-autonomous delay differential equations (DDEs)
with impulses, and establish a criterion for the global asymptotic stability of its trivial solution. In
order to establish stability results, the basic approach is to control the growth of the delayed terms
by imposing a Yorke-type condition coupled with limitations on the amplitude of the delays. Since
the classic works of Wright [8], Yorke [13] and Yoneyama [12], this procedure has been often used
by many authors, and has led to notable generalized versions of the so-called “ 3

2 -conditions”, see e.g.
Liz et al. [7]. Some historical conjectures, such as Wright’s conjecture, remain open, in spite of the
long-time investigation by some mathematicians; we refer the reader to the recent work by Bánhelyi
et al. [1]. On the other hand, to deal with the impulsive character of the equation, assumptions on
lower and upper bounds for the jump discontinuities at the instants of impulses are prescribed here.

This note is a continuation of the research recently conducted by the authors in [3]. The family
of impulsive DDEs under consideration possesses a non-delayed feedback term, which will be used to
refine the general criterion for stability in [3].

Although we are mostly concerned with models with bounded, time-varing delays, the present
approach encompasses DDEs with unbounded delays. We shall consider a very general setting for
our method, not presenting however any theoretical results about existence and global continuation
of solutions, since this has been the topic of a variety of papers; see some references given below.
Nevertheless, we need to introduce some notation.

For [α, β] ⊂ R, denote by B([α, β];R) the space of bounded functions ϕ : [α, β] → R and by
PC([α, β];R) the subspace of B([α, β];R) of functions which are piecewise continuous on [α, β] and
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left continuous on (α, β], endowed with the supremum norm. Define the space PC = PC((−∞, 0];R)
as the space of functions ϕ : (−∞, 0]→ R whose restriction to each compact interval [α, β] ⊂ (−∞, 0]
is in the closure of PC([α, β];R) in B([α, β];R). Thus, each ϕ ∈ PC is continuous everywhere
except at most for an enumerable number of isolated points s for which ϕ(s−), ϕ(s+) exist and
ϕ(s−) = ϕ(s). Denote by BPC the subspace of all bounded functions in PC, BPC = {ϕ ∈ PC :
ϕ is bounded on (−∞, 0]}, with the supremum norm ‖ϕ‖ = sups≤0 |ϕ(s)|.

Consider now a finite set of continuous delay functions τi : [0,∞) → [0,∞), i = 1, . . . ,m, such
that lim

t→∞
(t − τi(t)) = ∞. The functions di(t) = infs≥t(s − τi(s)) and d(t) = min1≤i≤m di(t) are

continuous and non-decreasing. In what follows, and without loss of generality, we shall suppose that
the functions t 7→ t− τi(t) are non-decreasing; otherwise, they can be replaced by di(t). For t ≥ 0, we
set

τ(t) = max
1≤i≤m

τi(t), d(t) = t− τ(t), d2(t) = d(d(t)) for t ≥ 0.

For each t ≥ 0, the spaces PCi(t) = PC([−τi(t), 0];R) (1 ≤ i ≤ m) and PC(t) = PC([−τ(t), 0];R)
are taken as subspaces of BPC, with PCi(t) ⊂ PC(t) ⊂ PC for all i. For x(t) defined on (−∞, a]
and σ ≤ a, we denote by xσ the function defined by xσ(s) = x(s+ σ) for s ≤ 0.

Consider a family of scalar impulsive DDEs of the form

x′(t) + a(t)x(t) =

m∑
i=1

fi(t, x
i
t), 0 ≤ t 6= tk,

∆(x(tk)) := x(t+k )− x(tk) = Ik(x(tk)), k ∈ N,
(1.1)

where: x′(t) is the left-hand derivative of x(t); 0 < t1 < t2 < · · · < tk < · · · and tk →∞; a : [0,∞)→
[0,∞) is piecewise continuous and Ik : R → R continuous, k = 1, 2, . . . ; τi : [0,∞) → [0,∞) are
continuous with di(t) := t − τi(t) non-decreasing, for i = 1, . . . ,m, and let τ(t) = max1≤i≤m τi(t);
xit denotes the restriction of x(t) to the interval [t − τi(t), t], so that fi(t, x

i
t) = fi(t, x|[t−τi(t),t]), with

xit ∈ PCi(t) given by
xit(θ) = x(t+ θ) for − τi(t) ≤ θ ≤ 0;

fi(t, ϕ) is a functional defined for t ≥ 0 and ϕ ∈ PCi(t) with some regularity discussed below. We
shall also assume that f(t, 0) = 0 for t ≥ 0 and Ik(0) = 0 for k ∈ N, thus x ≡ 0 is a solution of (1.1).
For the impulsive DDE (1.1), we consider initial conditions of the form xt0 = ϕ, or in other words

x(t0 + s) = ϕ(s), s ≤ 0, (1.2)

with t0 ≥ 0 and ϕ ∈ BPC.
For t ≥ 0, ϕ ∈ PCi(t) and i ∈ {1, . . . ,m}, we take the extension ϕ̃ ∈ BPC of ϕ which is ϕ(−τi(t))

on (−∞,−τi(t)]. In this way, each function fi can be regarded as the restriction of some function
Fi : [0,∞) × PC → R, with fi(t, ϕ) = fi(t, Li(t, ϕ̃)) =: Fi(t, ϕ̃), where Li(t, ϕ̃) = ϕ̃|[−τi(t),0] . In view
of our purposes, we assume that these extensions Fi of fi are continuous or piecewise continuous
(for simplicity, we abuse the language and refer to fi as being continuous or piecewise continuous as
well), but in fact less regularity could be prescribed. It is important to mention that these conditions
together with the set of assumptions imposed in the next section imply that the initial value problem
(1.1)-(1.2) has a unique solution x(t) defined on [t0,∞), which will be denoted by x(t, t0, ϕ), see e.g.
[2, 5, 11].

We should emphasize that many authors restrict their analysis to impulsive DDEs with impulses
given by linear functions Ik(u) = bku (k ∈ N), whereas we treat the more general case of impulses
given by functions Ik satisfying bku ≤ Ik(u) ≤ aku, and prescribe some behaviour for the sequences
(bk), (ak). Our method to study the stability of the zero solution of (1.1) improves several results in
the latest literature. Clearly, it is applicable to the study of the global attractivity of other solutions,
such as periodic solutions, as illustrated in Section 3 with an example.
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2 Preliminaries

In what follows, we denote

f(t, xt) =

m∑
i=1

fi(t, x
i
t), t ≥ 0, xt ∈ BPC, (2.3)

where fi(t, x
i
t) = fi(t, x|[t−τi(t),t]), τi(t) (1 ≤ i ≤ m) are as in (1.1)

In a previous paper [3], the authors gave sufficient conditions for the stability and global attractivity
of the trivial solution of (1.1), relative to solutions with initial conditions (1.2) in BPC. The main
assumptions in [3], where either hypotheses (H2) or (H3) were adopted (but not both simultaneously),
are the following:

(H1) there exist positive sequences (ak) and (bk) such that

bkx
2 ≤ x[x+ Ik(x)] ≤ akx2, x ∈ R, k ∈ N;

(H2) (i) the sequence Pn =

n∏
k=1

ak is bounded; (ii)

∫ ∞
0

a(u) du =∞;

(H3) (i) the sequence Pn =

n∏
k=1

ak is convergent;

(ii) if w : [0,∞) → R is a bounded, non-oscillatory and piecewise differentiable function with
w′(t)w(t) ≤ 0 on (tk, tk + 1), k ∈ N, and lim

t→∞
w(t) = c 6= 0, then∫ ∞

0

f(s, ws) ds = −sgn(c)∞;

(H4) there exist piecewise continuous functions λ1,i, λ2,i : [0,∞)→ [0,∞) such that

−λ1,i(t)Mi
t(ϕ) ≤ fi(t, ϕ|[−τi(t),0]) ≤ λ2,i(t)Mi

t(−ϕ), t ≥ 0, ϕ ∈ PC(t), (2.4)

where Mi
t(ϕ) = max{0, sup

θ∈[−τi(t),0]

ϕ(θ)}, for i = 1, . . . ,m;

(H5) there exists T > 0 with d(T ) ≥ 0 such that

α∗1α
∗
2 < 1,

where the coefficients α∗j := α∗j (T ) are given by

α∗j (T ) = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
−

∫ t
s
a(u)duBi(s) ds, j = 1, 2, (2.5)

and

Bi(t) := max
θ∈[−τi(t),0]

( ∏
k:t+θ≤tk<t

b−1
k

)
, i = 1, . . . ,m. (2.6)

The above hypotheses (H1) and (H4) imply that Ik(0) = 0 and fi(t, 0) = 0 for k ∈ N, t ≥ 0, 1 ≤
i ≤ m, thus x = 0 is an equilibrium point of (1.1). In (2.6), the standard convention that a product
Bi(t) is equal to one if the number of factors is zero is used. We recall here some usual definitions for
stability.
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Definition 2.1. Let S ⊂ BPC be a set of initial conditions. The solution x = 0 of (1.1) is said to
be stable in S if for any ε > 0 and t0 ≥ 0, there exists δ = δ(t0, ε) > 0 such that

||ϕ|| < δ ⇒ |x(t, t0, ϕ)| < ε, for t ≥ t0, ϕ ∈ S.

We say that x = 0 of (1.1) is globally attractive in S if all solutions of (1.1) with initial conditions
in S tend to zero as t → ∞. We say that x = 0 is globally asymptotically stable if it is stable
and global attractive. If either S = BPC or it is clear which set S we are dealing with, we omit the
reference to it.

In what concerns the stability of (1.1), some of the main results from [3] are summarized below
(see [3, Theorems 2.1, 2.2, and 2.3]).

Theorem 2.2. (i) Assume (H1), (H4), either (H2) or (H3), and α∗1α
∗
2 ≤ 1, where α∗1, α

∗
2 are as in

(2.5). Then all solutions of (1.1) are defined and bounded on [0,∞) and the trivial solution of (1.1)
is uniformly stable.

(ii) Assume (H1), (H4), (H5), and either (H2) or (H3). Then the zero solution of (1.1) is globally
asymptotically stable.

3 Asymptotic Stability

In this section, we claim that the assertions in Theorem 2.2 remain valid if (H5) is replaced by a
weaker hypothesis and the other ones are kept unchanged. Instead of (H5), we shall impose:

(H5*) there exists T > 0 with d2(T ) ≥ 0 such that

l (α1, α
∗
1) l (α2, α

∗
2) < 1, (3.7)

where l :
{

(z, w) ∈ R2 : z ≥ w ≥ 0
}
→ R is defined by

l(z, w) =

 wmin
{

1, z − w
2

}
, w ≤ 1

min
{
w, z − 1

2

}
, w > 1

, (3.8)

and the coefficients αj := αj(T ) and α∗j := α∗j (T ) are given by

αj(T ) = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
∫ s
t−τ(t) a(u) duBi(s) ds, (3.9)

α∗j (T ) = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
−

∫ t
s
a(u) duBi(s) ds, (3.10)

with Bi(t) given by (2.6), for i = 1, . . . ,m and j = 1, 2.

Some comments about our new hypothesis (H5*) are useful (for a discussion of the other ones, see
[3]). The coefficients α∗j are the ones in the former assumption (H5). Since a(t) ≥ 0, for

γ∗j (t) =

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
−

∫ t
s
a(u) duBi(s) ds, γj(t) =

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
∫ s
t−τ(t) a(u) duBi(s) ds,

we have γj(t) = γ∗j (t)e
∫ t
t−τ(t) a(u) du, thus α∗j ≤ αj for t ≥ 0, j = 1, 2. For a : [0,∞)→ [0,∞) piecewise

continuous and not identically zero, with the possible exception of a countable set of points, then
γ∗j (t) < γj(t), j = 1, 2, for t > 0. As we shall see, (3.7) is satisfied if either α∗1(T )α∗2(T ) < 1 or

4



α1(T )α2(T ) < 9/4 for some T ≥ 0. As a consequence, (H5) is strictly stronger than (H5*) for a(t)

as in (1.1) and such that lim inft→∞
∫ t
t−τ(t)

a(u) du > 0. In some situations, which depend on the

values of a(t), one might have α∗1(t)α∗2(t) > 1 for all t > 0 and α1(T )α2(T ) < 9/4 for some T > 0,
in which case Theorem 2.2 is not applicable, but (H5*) is fulfilled. For a comparison with alternative
hypotheses in the literature, see Remark 3.1, as well as [3] and references therein.

The proof of our main result, stated below, will be given in appendix.

Theorem 3.1. (i) Assume (H1), (H4), either (H2) or (H3), and l (α1, α
∗
1) l (α2, α

∗
2) ≤ 1, where

l, αj , α
∗
j (j = 1, 2) are defined by formulae (3.8)-(3.10). Then all solutions of (1.1) are defined and

bounded on [0,∞) and the trivial solution of (1.1) is uniformly stable.
(ii) Assume (H1), (H4), (H5*), and either (H2) or (H3). Then the zero solution of (1.1) is globally

asymptotically stable.

In applications, it is useful to have criteria to easily check wether (3.7) is satisfied or not.

Theorem 3.2. For l(z, w) as in (3.8) and αj , α
∗
j , j = 1, 2, as in (3.9),(3.10), the estimate (3.7) is

satisfied if one of the following conditions holds:

(i) α∗1α
∗
2 < 1;

(ii) α1α2 < (3/2)2;

(iii) L(α1)L(α2) < 1, where L(z) := l(z, z) =


z2

2
, z ≤ 1

z − 1

2
, z > 1

.

Proof. Since l(z, w) ≤ w for (z, w) ∈ dom (l) = {(x, y) ∈ R2 : x ≥ y ≥ 0}, condition α∗1α
∗
2 < 1

implies (3.7). Now, we show that the generalized “ 3
2 -type condition” (ii) is more restrictive than (iii).

In fact, assuming that 0 < α1α2 < 9/4, we have: if max{α1, α2} ≤ 1, obviously L(α1)L(α2) < 1;

if min{α1, α2} > 1, then L(α1)L(α2) = (2α1−1)(2α2−1)
4 ≤ (2α1 − 1)

(
9

2α1
− 1
)

1
4 =

−4α2
1+20α1−9
8α1

< 1;

if α1 ≤ 1 < α2 (similarly if α2 ≤ 1 < α1), we get L(α1)L(α2) =
α2

1

2

(
α2 − 1

2

)
≤ α2

1

2

(
9

4α1
− 1

2

)
=

α1(9−2α1)
8 < 1.

Finally, we deduce that (iii) implies (3.7). It is sufficient to show that l(z, w) ≤ l(z, z) for any

(z, w) with z ≥ w > 0. For the case z ≤ 1, we have l(z, w)− l(z, z) ≤ w(z− w
2 )− z2

2 = − 1
2 (z−w)2 ≤ 0.

If z > 1 and w ≥ 1, then clearly l(z, w) ≤ z − 1
2 = l(z, z). For 0 < w < 1 < z, we have: if

z − w
2 ≥ 1, then l(z, w)− l(z, z) = w − (z − 1

2 ) = w+1
2 − z < 0; if z − w

2 < 1, then l(z, w)− l(z, z) =
− 1

2 (w2 − 2wz + 2z − 1) < 0.

Remark 3.1. In [14], Zhang studied the stability of system (1.1) only for the situation a(t) ≡ 0
and m = 1. The global attractivity of the zero solution was proven assuming that the impulsive
functions Ik satisfy (H1) with ak = 1 for all k ∈ N, the function f = f1 satisfies (H3)(ii) and (H4),
and that the “ 3

2 -type condition” α1α2 < (3/2)2 holds. As observed, with a(t) = 0 for all t ≥ 0, then
αj = α∗j , j = 1, 2, and condition l(α1, α

∗
1)l(α2, α

∗
2) < 1 reads as L(α1)L(α2) < 1, thus our Theorem 3.1

generalizes the stability result in [14, Theorem 2.2]. On the other hand, in [10], Yan considered (1.1)
with m = 1 and obtained the global attractivity of its zero solution assuming a set of more restrictive
hypotheses: again the impulsive functions Ik are required to satisfy (H1) with ak = 1 for all k ∈ N,
the Yorke condition (H4) for f = f1 in (2.3) was assumed with a unique function λ1(t) = λ2(t) =: λ(t)
providing the left and right growth control of f in (2.4), and the “ 3

2 -type condition”

α := sup
t≥0

∫ t

t−τ(t)

λ(s)e
∫ s
t−τ(t) a(u) duB(s) ds <

3

2
, (3.11)

with B(t) = B1(t) as in (2.6), was imposed. In the case λ1(t) = λ2(t) = λ(t), it is clear that
α1 = α2 =: α and α∗1 = α∗2 =: α∗ and the inequality l(α1, α

∗
1)l(α2, α

∗
2) < 1 reads simply as

l(α, α∗) < 1. (3.12)
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If α∗ ≥ 1, then inequalities (3.11) and (3.12) (with T = 0) are equivalent; however, if α∗ < 1, condition
(3.11) is more restrictive than (3.12). In conclusion, our Theorem 3.1 also improves the stability result
in [10, Theorem 4.2].

Remark 3.2. As l(z, w) is a continuous function and condition (3.7) is a strict inequality, the defi-
nitions of αj and α∗j , j = 1, 2, given in (3.9) and (3.10) can be replaced by, respectively,

αi = lim sup
t→+∞

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
∫ s
t−τ(t) a(u) duBi(s) ds, j = 1, 2, (3.13)

α∗i = lim sup
t→+∞

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
−

∫ t
s
a(u)duBi(s) ds, j = 1, 2. (3.14)

For the situation without impulses, we obtain the following criterion:

Corollary 3.1. For a, τi : [0,+∞) → [0,+∞) and fi(t, ϕ) as in (1.1), and τ(t) = max1≤i≤m τi(t),
consider the scalar DDE

x′(t) + a(t)x(t) =

m∑
i=1

fi(t, x
i
t), t ≥ 0, (3.15)

and assume either (H2)(ii) or (H3)(ii), the Yorke condition (H4), and l(α1, α
∗
1)l(α2, α

∗
2) < 1, where

l(·, ·) is defined by (3.8) and

αj = sup
t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
∫ s
t−τ(t) a(u) du ds, α∗j = sup

t≥T

∫ t

t−τ(t)

m∑
i=1

λj,i(s)e
−

∫ t
s
a(u) du ds,

j = 1, 2, for some T > 0. Then the zero solution of (3.15) is globally asymptotically stable.

Example 3.1. Consider a periodic Lasota-Wazewska model with impulses and time independent
delays multiple of the period (see e.g. [4, 6, 9]):

N ′(t) + a(t)N(t) =

n∑
i=1

bi(t)e
−βi(t)N(t−miω), 0 ≤ t 6= tk,

∆N(tk) := N(t+k )−N(tk) = Ik(N(tk)), k = 1, 2, . . . ,

(3.16)

where 0 < t1 < t2 < · · · < tk < · · · with tk →∞, and

(f0) the functions a(t), bi(t), βi(t) are continuous, positive and ω-periodic and mi ∈ N, for some
constant ω > 0 and for 1 ≤ i ≤ n, t ∈ R;

(i0) the functions Ik : [0,∞) → R are continuous with Ik(0) = 0, u + Ik(u) > 0 for u > 0, k ∈ N;
moreover, there is a positive integer p such that

tk+p = tk + ω, Ik+p(u) = Ik(u), k ∈ N, u > 0;

(i1) there exist constants a1, . . . , ap and b1, . . . , bp, with bk > −1, and such that

bk ≤
Ik(x)− Ik(y)

x− y
≤ ak, x, y ≥ 0, x 6= y, k = 1, . . . , p;

(i2)

p∏
k=1

(1 + ak) ≤ 1.
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To fix our setting, and without loss of generality, we suppose that there are exactly p instants
t1, t2, . . . , tp of impulses on the interval [0, ω]. In view of the biological interpretation of the model,
only positive solutions of (3.16) are to be considered.

The existence a positive ω-periodic solution N∗(t) of (3.17) has been established by some authors
(see e.g. [4, 6]), under some severe additional restrictions, both on the impulses and on the delays.
Here, we assume that such an ω-periodic solution N∗(t) exists, and effect the change of variables
x(t) = N(t)−N∗(t). Eq. (3.16) is transformed into

x′(t) + a(t)x(t) =

n∑
i=1

bi(t)e
−βi(t)N∗(t)

[
e−βi(t)x(t−miω) − 1

]
, 0 ≤ t 6= tk,

∆x(tk) = Ĩk(x(tk)), k ∈ N,

(3.17)

where
Ĩk(u) = Ik

(
N∗(tk) + u

)
− Ik

(
N∗(tk)

)
, k = 1, . . . , p.

For (3.17), we take S = {ϕ ∈ PC([−m̄ω, 0];R) : ϕ(θ) ≥ −N∗(θ) for − m̄ω ≤ θ < 0, ϕ(0) > −N∗(0)},
where m̄ = max1≤i≤nmi, as the set of admissible initial conditions; the spaces PCi(t) in (1.1) are
replaced here by Si(t) = {ϕ ∈ PCi(t) : ϕ(θ) ≥ −N∗(t− θ) for −miω ≤ θ ≤ 0}.

In the next theorem, for an ω-periodic real function f : R → R, we use the notation f :=
supt∈[0,ω] f(t).

Theorem 3.3. Consider (3.16) and set m̄ = max1≤i≤nmi. Assume (f0), (i0)–(i2) and that there is

a positive ω-periodic solution N∗(t) of system (3.16). If either σ < 1 or σ em̄
∫ ω
0
a(u) du < 3

2 , where

σ = Bm̄
(
β N∗(eβN

∗ − 1)
) 1

2
(

1− e−m̄
∫ ω
0
a(u) du

)
·

[
1−

(
1− e−

∫ ω
0
a(u) du

)−1
p∑
k=1

min(bk, 0)

]
,

(3.18)

and B = max
1≤l,j≤p

j∏
k=1

(1 + bl+k)−1, then N∗(t) attracts any positive solution N(t) of (3.16).

Proof. It was proven in [3, Theorem 3.3] that the assumptions (f0), (i0)–(i2) imply that (3.17) satisfies
(H1), (H2) and (H4), with λj,i(t), for j = 1, 2, i = 1, . . . , n, given by

λ1,i(t) = βi(t)bi(t)e
−βi(t)N∗(t), λ2,i(t) =

1

N∗
(eβN

∗ − 1)bi(t)e
−βi(t)N∗(t), 0 ≤ t 6= tk.

Note that condition (i2) implies B ≥ 1 for B defined above, hence for t ≥ 0 and 1 ≤ i ≤ n we have

Bi(t) := max
θ∈[−miω,0]

 ∏
k:t+θ≤tk<t

(bk + 1)−1

 ≤ Bmi ≤ Bm̄.
For the sake of simplicity, in what follows we suppose that the coefficients bk in (i1) satisfy bk ∈
(−1, 0] (1 ≤ k ≤ p); otherwise we may replace bk by min{0, bk}, as it appears in (3.18).

Since N∗(t) is an ω-periodic solution of (3.16), for t > 0, t 6= tk, it was derived in [3] that

α∗1(t) :=

∫ t

t−m̄ω

n∑
i=1

λ1,i(s)Bi(s)e
−

∫ t
s
a(u) du ds

≤ Bm̄β̄N∗
(

1− e−m̄
∫ ω
0
a(u) du

)[
1−

(
1− e−

∫ ω
0
a(u) du

)−1
p∑
k=1

bk

]
=: σ1 ,
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α∗2(t) :=

∫ t

t−m̄ω

n∑
i=1

λ2,i(s)Bi(s)e
−

∫ t
s
a(u) du ds

≤ Bm̄(eβN
∗ − 1)

(
1− e−m̄

∫ ω
0
a(u) du

)[
1−

(
1− e−

∫ ω
0
a(u) du

)−1
p∑
k=1

bk

]
=: σ2.

We have σ1σ2 = σ2, for σ as in (3.18). Clearly, condition σ1σ2 < 1 is equivalent to σ < 1. On the
other, for the present situation

αj(t) = α∗j (t)e
m̄

∫ ω
0
a(u) du, j = 1, 2,

thus σ em̄
∫ ω
0
a(u) du < 3/2 implies α1α2 < 3/2. The result follows by Theorems 3.1 and 3.2.

4 Appendix: proof of Theorem 3.1

The proof of Theorem 3.1 follows exactly along the lines of the arguments in [3], with the exception
that assumptions α∗1α

∗
2 ≤ 1 and α∗1α

∗
2 < 1 are replaced by the weaker conditions l(α1, α

∗
1)l(α2, α

∗
2) ≤ 1

and l(α1, α
∗
1)l(α2, α

∗
2) < 1, respectively. Therefore, here we only present the part of the proof which

has to be modified accordingly: to be more precise, this amounts to substitute Lemma 2.4 in [3] by
Lemma 4.1 below.

Recall the definition of f(t, xt) given in (2.3). A standard change of variables introduced in [10] is
useful: let x(t) be a solution of (1.1) on [0,∞), and define y(t) by

y(t) =
∏

k:0≤tk<t

Jk(x(tk))x(t), (4.19)

where

Jk(u) :=
u

u+ Ik(u)
, u ∈ R \ {0}, k ∈ N. (4.20)

From (H1), we have

a−1
k ≤ Jk(u) ≤ b−1

k for u 6= 0, k ∈ N. (4.21)

In [10], Yan showed that y(t) is a continuous function satisfying

y′(t) + a(t)y(t) =
∏

k:0≤tk<t

Jk(x(tk))f(t, xt), t ≥ 0, t 6= tk. (4.22)

Note that (H4) implies that fi(t, ϕ
i) ≤ 0 if ϕi ≥ 0 and fi(t, ϕ

i) ≥ 0 if ϕi ≤ 0, for t ≥ 0, ϕi ∈
PCi(t), 1 ≤ i ≤ m. This condition and either (H2) or (H3), jointly with hypothesis (H1), which enables
us to control the impulses, were used in [3] to derived that all non-oscillatory solutions converge to
zero as t → ∞. To deal with oscillatory solutions, hypotheses (H1), (H4) and (H5) were imposed:
some essential estimates on the amplitude of solutions were deduced in [3, Lemma 2.4], and further
used to show that all oscillatory solutions go to zero as t → ∞. As announced, we prove a lemma
which asserts that the estimates given in [3, Lemma 2.4] remain true with α∗1α

∗
2 ≤ 1 replaced by the

weaker hypothesis

l(α1, α
∗
1)l(α2, α

∗
2) ≤ 1. (4.23)

Lemma 4.1. Assume (H1), (H4), and (4.23) for some αj = αj(T ) <∞ and α∗j = α∗j (T ) as in (3.9)
and (3.10) respectively, j = 1, 2. Let x(t) be a solution of (1.1) on [0,∞) and y(t) defined by (4.19).
Then, for any η > 0 and t0 > T such that d2(t0) > 0 and y(t0) = 0, the following conditions hold:

(i) If −η ≤ y(t) ≤ ηl(α2, α
∗
2) for t ∈ [d2(t0), t0], then −η ≤ y(t) ≤ ηl(α2, α

∗
2) for all t ≥ t0;
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(ii) If −ηl(α1, α
∗
1) ≤ y(t) ≤ η for t ∈ [d2(t0), t0], then −ηl(α1, α

∗
1) ≤ y(t) ≤ η for all t ≥ t0.

Proof. For simplicity of exposition, we consider the case m = 1 in (1.1), so that (1.1) reads as

x′(t) + a(t)x(t) = f(t, xt), 0 ≤ t 6= tk,

∆(x(tk)) := x(t+k )− x(tk) = Ik(x(tk)), k = 1, 2, . . . ,
(4.24)

where f(t, ϕ) is defined for t ≥ 0 and ϕ ∈ PC(t): in fact, a careful reading of this proof shows that
the arguments are carried out in a straightforward way to the situation of m > 1.

With m = 1, condition (2.4) reads as

−λ1(t)Mt(ϕ) ≤ f(t, ϕ) ≤ λ2(t)Mt(−ϕ), t ≥ 0, ϕ ∈ PC(t), (4.25)

for some piecewise continuous functions λ1, λ2 : [0,∞)→ [0,∞). We shall use the notation

A(t) =

∫ t

0

a(u)du, t ≥ 0. (4.26)

Let x(t) be a solution of (4.24), and recall that y(t) given by (4.19) satisfies (4.22). We now prove
(i); the proof of (ii) is similar, so we omit it.

If the assertion (i) is false, there exists T0 > t0 such that either y(T0) > ηl(α2, α
∗
2) or y(T0) < −η.

We consider these two situations separately.

Case 1. Suppose that y(T0) > ηl(α2, α
∗
2) for some T0 > t0, with −η ≤ y(t) < y(T0) for t ∈

[d2(t0), T0).

We first prove that there is ξ0 ∈ [T0 − τ(T0), T0] such that y(ξ0) = 0. Otherwise, we obtain
necessarily that y(t) > 0 for t ∈ [T0 − δ − τ(T0 − δ), T0] and some small δ > 0 (recall that y(t) and
τ(t) are continuous), and from (4.22) and (4.25) it follows that

y′(t) ≤ −a(t)y(t) +
∏

k:0≤tk<t

Jk(x(tk))λ2(t)Mt(−xt) ≤ 0, t ∈ [T0 − δ, T0],

implying that y(T0 − δ) ≥ y(T0), which contradicts the definition of T0.
Choose ξ0 ∈ [T0 − τ(T0), T0] such that y(ξ0) = 0. We may suppose that y(t) > 0 for ξ0 < t < T0,

thus t0 ≤ ξ0. Let A(t) be given by (4.26). By (4.19), (4.21), (4.22) and (4.25), for s ∈ [ξ0− τ(ξ0), T0]\
{tk} we obtain(

eA(s)y(s)
)′

=
∏

k:0≤tk<s

Jk(x(tk))eA(s)f(s, xs) ≤ eA(s)λ2(s)
∏

k:0≤tk<s

Jk(x(tk))Ms(−xs)

= eA(s)λ2(s)
∏

k:0≤tk<s

Jk(x(tk))

·max

0, sup
θ∈[−τ(s),0]

−y(s+ θ)
∏

k:0≤tk<s+θ

Jk(x(tk))−1


= eA(s)λ2(s) max

0, sup
θ∈[−τ(s),0]

−y(s+ θ)
∏

k:s+θ≤tk<s

Jk(x(tk))


≤ eA(s)λ2(s)B(s)Ms(−ys), (4.27)

with B(s) = B1(s) as in (2.6). Now, as ys(θ) ≥ −η for s ∈ [ξ0 − τ(ξ0), T0] and θ ∈ [−τ(s), 0], we have(
eA(s)y(s)

)′
≤ ηeA(s)λ2(s)B(s), ∀s ∈ [ξ0 − τ(ξ0), T0] \ {tk}. (4.28)
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Integrating over [ξ0, T0], we get

y(T0) ≤ ηe−A(T0)

∫ T0

ξ0

eA(s)λ2(s)B(s) ds = η

∫ T0

ξ0

e−
∫ T0
s

a(u) duλ2(s)B(s) ds ≤ ηα∗2,

and deduce that

y(T0) ≤ ηα∗2. (4.29)

From (4.28) and integrating over [s, ξ0], with s ∈ [ξ0 − τ(ξ0), ξ0], we obtain

−y(s) ≤ ηe−A(s)

∫ ξ0

s

eA(r)λ2(r)B(r) dr = η

∫ ξ0

s

λ2(r)e
∫ r
s
a(u) duB(r) dr,

which implies that

y(s) ≥ −η
∫ ξ0

s

λ2(r)e
∫ r
s
a(u) duB(r) dr, ∀s ∈ [ξ0 − τ(ξ0), ξ0]. (4.30)

For s ∈ [ξ0, T0] and θ ∈ [−τ(s), 0], we therefore have y(s + θ) > 0 if s + θ ∈ (ξ0, T0], and y(s + θ) ≥

−η
∫ ξ0

s+θ

λ2(r)B(r)e
∫ r
s+θ

a(u)dudr if s+ θ ∈ [ξ0 − τ(ξ0), ξ0]. Now, for s ∈ [ξ0, T0] \ {tk}, we have

(
eA(s)y(s)

)′
≤ eA(s)λ2(s) max

0, sup
θ∈[−τ(s),0]

−y(s+ θ)
∏

k:s+θ≤tk<s

Jk(x(tk))


≤ eA(s)λ2(s) ·max

0, sup
θ∈[−τ(s),0]

η ∫ ξ0

s+θ

λ2(r)B(r)e
∫ r
s+θ

a(u)dudr
∏

k:s+θ≤tk<s

Jk(x(tk))


≤ ηeA(s)λ2(s)B(s)

∫ ξ0

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr. (4.31)

From (4.28) and (4.31), for all s ∈ [ξ0, T0] \ {tk} we have(
eA(s)y(s)

)′
≤ ηeA(s)λ2(s)B(s) min

{
1,

∫ ξ0

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

}
. (4.32)

For Λ2 :=

∫ T0

ξ0

λ2(r)B(r)e−
∫ T0
r

a(u)dudr, clearly Λ2 ≤ α∗2. Integrating over [ξ0, T0], we obtain

y(T0) ≤ η

∫ T0

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)du

(∫ ξ0

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

)
ds

= η

∫ T0

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)du

·

(∫ s

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr −

∫ s

ξ0

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

)
ds

≤ η

(
α2

∫ T0

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)duds

−
∫ T0

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)du

∫ s

ξ0

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudrds

)
. (4.33)
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Using the definition of Λ2, (4.33) yields the estimate

y(T0) ≤ η

(
α2Λ2 −

∫ T0

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)du

∫ s

ξ0

λ2(r)B(r)e−
∫ T0
r

a(u)dudrds

)

= η

α2Λ2 −
1

2

(∫ T0

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)duds

)2


= η

(
α2Λ2 −

1

2
Λ2

2

)
. (4.34)

Since Λ2 ≤ α∗2 ≤ α2 and the function x 7→ α2x− x2/2 is increasing on (−∞, α2], we obtain

y(T0) ≤ ηα∗2
(
α2 −

α∗2
2

)
(4.35)

and, from (4.29) and (4.35), we conclude that

y(T0) ≤ ηα∗2 min

{
1, α2 −

α∗2
2

}
. (4.36)

If α∗2 ≤ 1, then we obtain y(T0) ≤ ηl(α2, α
∗
2), which is not possible by definition of T0, thus we have

α∗2 > 1.
If Λ2 ≤ 1, again by (4.34) we get

y(T0) ≤ η
(
α2 −

1

2

)
. (4.37)

If Λ2 > 1, then there exists ζ ∈ (ξ0, T0) such that∫ T0

ζ

λ2(r)B(r)e−
∫ T0
s

a(u)dudr = 1,

and from (4.32) we have∫ T0

ξ0

(
eA(s)y(s)

)′
ds ≤

∫ ζ

ξ0

ηeA(s)λ2(s)B(s)ds

+

∫ T0

ζ

ηeA(s)λ2(s)B(s)

∫ ξ0

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudrds,

11



which implies

y(T0) ≤ η

[∫ ζ

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)duds

+

∫ T0

ζ

λ2(s)B(s)e−
∫ T0
s

a(u)du

(∫ ξ0

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

)
ds

]

≤ η

[∫ ζ

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)duds+

∫ T0

ζ

λ2(s)B(s)e−
∫ T0
s

a(u)du

·

(∫ ζ

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr −

∫ ζ

ξ0

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

)
ds

]

≤ η

[∫ ζ

ξ0

λ2(s)B(s)e−
∫ T0
s

a(u)duds

−
∫ T0

ζ

λ2(s)B(s)e−
∫ T0
s

a(u)du

(∫ ζ

ξ0

λ2(r)B(r)e−
∫ T0
r

a(u)dudr

)
ds

+

∫ T0

ζ

λ2(s)B(s)e−
∫ T0
s

a(u)du

(∫ ζ

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

)
ds

]

= η

∫ T0

ζ

λ2(s)B(s)e−
∫ T0
s

a(u)du

(∫ ζ

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

)
ds,

because Λ2 > 1. This yields

y(T0) ≤ η

∫ T0

ζ

λ2(s)B(s)e−
∫ T0
s

a(u)du

(∫ s

s−τ(s)

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

−
∫ s

ζ

λ2(r)B(r)e
∫ r
s−τ(s) a(u)dudr

)
ds

≤ η

∫ T0

ζ

λ2(s)B(s)e−
∫ T0
s

a(u)du

(
α2 −

∫ s

ζ

λ2(r)B(r)e−
∫ T0
r

a(u)dudr

)
ds

= η

α2 −
1

2

(∫ T0

ζ

λ2(r)B(r)e−
∫ T0
r

a(u)dudr

)2
 = η

(
α2 −

1

2

)
. (4.38)

Thus, from (4.29), (4.37) and (4.38), we obtain

y(T0) ≤ ηmin

{
α∗2, α2 −

1

2

}
, (4.39)

and, since α∗2 > 1, we conclude that
y(T0) ≤ ηl(α2, α

∗
2),

which again contradicts the definition of T0.

Case 2. Suppose that y(T0) < −η for some T0 > t0, with y(T0) < y(t) ≤ ηl(α2, α
∗
2) for all

t ∈ [t0, T0).
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Reasoning as above, we deduce that there is ξ0 ∈ [t0, T0)∩ [T0− τ(T0), T0) such that y(ξ0) = 0 and
y(t) < 0 for ξ0 < t ≤ T0. Since ys(θ) ≤ ηl(α2, α

∗
2) for s ∈ [ξ0 − τ(ξ0), T0] and θ ∈ [−τ(s), 0], by “dual”

arguments, for all s ∈ [ξ0, T0] \ {tk} we now obtain

(
eA(s)y(s)

)′
≥ −ηl(α2, α

∗
2)eA(s)λ1(s)B(s) min

{
1,

∫ ξ0

s−τ(s)

λ1(r)B(r)e
∫ r
s−τ(s) a(u)dudr

}
(4.40)

instead of (4.32). On one hand, integration over [ξ0, T0] leads to

y(T0) ≥ −ηl(α2, α
∗
2)e−A(T0)

∫ T0

ξ0

eA(s)λ1(s)B(s) ds

= −ηl(α2, α
∗
2)

∫ T0

ξ0

e−
∫ T0
s

a(u) duλ1(s)B(s) ds ≥ −ηl(α2, α
∗
2)α∗1,

which implies

y(T0) ≥ −ηl(α2, α
∗
2)α∗1. (4.41)

On the other hand, defining Λ1 :=

∫ T0

ξ0

λ1(r)B(r)e−
∫ T0
r

a(u)dudr, and again integrating (4.40) over

[ξ0, T0], by dual arguments as in (4.34), we derive

y(T0) ≥ −ηl(α2, α
∗
2)

(
α1Λ1 −

1

2
Λ2

1

)
.

Since Λ1 ≤ α∗1 ≤ α1 and the function x 7→ α1x− x2/2 is increasing on (−∞, α1], we obtain

y(T0) ≥ −ηl(α2, α
∗
2)α∗1

(
α1 −

α∗1
2

)
, (4.42)

and from (4.41) and (4.42) we conclude that

y(T0) ≥ −ηl(α2, α
∗
2)α∗1 min

{
1, α1 −

α∗1
2

}
. (4.43)

If α∗1 ≤ 1, then, using the inequality (4.23), we obtain y(T0) ≥ −ηl(α2, α
∗
2)l(α1, α

∗
1) ≥ −η, which is

not possible. Thus we have α∗1 > 1.
By similar arguments to the ones in (4.37), (4.38) and from (4.41), we now obtain

y(T0) ≥ −ηl(α2, α
∗
2) min

{
α∗1, α1 −

1

2

}
, (4.44)

with α∗1 > 1. Consequently, using again the inequality (4.23), we deduce

y(T0) ≥ −ηl(α2, α
∗
2)l(α1, α

∗
1) ≥ −η,

which is a contradiction. This ends the proof.
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