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Abstract 

Much research in recent years has focused on the seismic analysis of concrete and 

earthfill dams, and few works have addressed the case of masonry dams. The structural 

behaviour of masonry dams is controlled essentially by its discontinuous nature, which 

may induce significant non-linear response during an intense earthquake. In this paper a 

numerical tool based on the Discrete Element Method is presented, aimed at the static, 

dynamic and hydromechanical analysis of masonry gravity dams. The use of 

discontinuous models is mandatory for the study of failure mechanisms involving the 

masonry discontinuities, the dam-rock interface or the rock mass joints. The Discrete 

Element Method is able to assemble continuous and discontinuous meshes 

simultaneously in the same model, providing a versatile tool to consider various 

assumptions and levels of analysis, ranging from simplified to detailed structural 

representations. A comprehensive study of the seismic behaviour of Lagoa Comprida 

Dam, located in Portugal, is presented. Both continuous and discontinuous models were 

developed to assess the main failure mechanisms, including overstress, partial and 

global sliding and overturning.  
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1. Introduction 

The seismic action is a central problem in the safety of different type of structures. In 

dam engineering, due to the huge consequences of a failure and high potential risk, the 

dam safety against earthquakes is of great concern. Amongst the consequences of an 

earthquake, in addition to immediate damage, minor vulnerabilities may arise, leading 

to future incidents. ICOLD [2001] analysed a set of dams subjected to seismic events, 

and found that 17% collapsed or suffered serious damages, 36% suffered minor or 

moderated damages and in 47% of the cases no damages were detected. Rogers dam, 

located in Nevada, USA, is an example of a masonry dam collapse, because of the 

Fallon earthquake, in 1954. The cases of Shih-Kang in Taiwan, Koyna in India, 

Hsinfenkiang in China, Sefid Rud in Iran, Pacoima in USA, Rapel in Chile, Honen-ike 

in Japan and Blackbrook in UK are well-known examples of collapses or serious 

damages in concrete dams caused by earthquakes [Léger, 2007]. 

The seismic analyses of dams generated considerable research interest in the last 50 

years with the development of the Finite Element Method as described by Clough and 

Wilson [1999]. Nowadays the uses of sophisticated models, including dam-water-

foundation interaction effects [Chopra and Wang, 2012] are widespread. More recently, 

work has been devoted to the seismic assessment of existing dams using progressive 

analysis methodologies [Bretas et al., 2014a] to overcome the uncertainties of the 

material properties and the loads. Most of those studies are focused on concrete and 

earthfill dams, and few works have addressed the case of masonry dams. 

Most of the existing masonry dams, both in Europe and America, were built in the 

second half of the 19
th

 century [Bretas et al., 2012]. Generally, these structures have 

been subjected to rehabilitation works, and remain in use. Many structural problems of 

masonry dams result from aging and are different from those that occur in concrete 

dams. Often, the problems are related to the cohesion loss of masonry due to the 

chemical and physical effects of the water. In addition, some of these dams present 

structural vulnerabilities that reflect the knowledge available at the time they were 

designed, for example, as earthquake resistance is concerned. Today, the operation of 

these dams represents a relevant challenge for professionals, since structural safety has 

to be verified according to modern standards and regulations. 

The safety assessment of masonry dams using numerical models demands appropriate 

tools to take into account the discontinuous nature, the non-linear behaviour, and the 

hydromechanical interaction, resulting from the water seepage within the dam body and 

the foundation. Equivalent continuum models have been the most common approach in 

the study of masonry dams, namely in the framework of rehabilitation projects [e.g. 

Wittke et al., 2003; Bureau et al., 2005]. An important aspect that needs to be examined 

concerns the representation of the internal structure of the masonry material. The 

Discrete Element Method (DEM) has proved to be suitable for the masonry dams 

analysis, because it allows the explicit modelling of the discontinuities. These 

https://www.researchgate.net/publication/237296143_1_NONLINEAR_SEISMIC_ANALYSIS_OF_SWEETWATER_MAIN_DAM?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/225402592_Reducing_the_earthquake_induced_damage_and_risk_in_monumental_structures_Experience_at_Ecole_Polytechnique_de_Montreal_for_large_concrete_dams_supported_by_hydro-Quebec_and_Alcan?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
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discontinuities may control the structural behaviour of the dam-foundation-reservoir 

system, especially the non-linear response expected during a strong seismic event. 

In this paper a numerical tool based on the DEM is presented for the dynamic analysis 

of masonry gravity dams. Its application to static and hydromechanical studies was 

reported in previous works [Bretas et al., 2013; Bretas et al., 2014b]. A brief overall 

description is provided next, while the extensions required for seismic analysis are 

covered in detail in subsequent sections. To address the main practical situations and 

design requirements, the model may include rigid blocks, deformable blocks and 

continuum FE meshes. Determination of natural frequencies in the elastic range, as well 

as time domain non-linear dynamic analysis, is feasible. A comprehensive study of the 

seismic behaviour of Lagoa Comprida Dam, a 28 m high masonry dam with a length of 

1200 m, located in Portugal, was performed. The dam was heightened several times and 

was subjected to major rehabilitation works. Both continuous and discontinuous models 

were developed in order to assess the main failure mechanisms, including overstress, 

partial and global sliding and overturning. Comparison of results obtained with 

simplified and elaborate models provided useful conclusions about the strengths and 

drawbacks of each approach.  

2. Seismic analysis of masonry gravity dams 

In many countries, the earthquake load is critical in the design of new dams as well as in 

the safety assessment of existing dams. Generally, for gravity dams, the permanent 

sliding along any plane within the dam body, along the interface between the dam and 

the foundation or along geological discontinuities in the rock foundation, is the main 

failure mechanism. Nevertheless, the stress field generated by the earthquake is also 

important, specially the maximum tensile stress, responsible for cracking. A particular 

case is the RCC (Roller Compacted Concrete) dams, whose quasi-horizontal 

construction joints are usually potential sliding planes [Wieland and Ahlehagh, 2013]. 

With less emphasis, concrete cast joints, in dams built with traditional concrete, are also 

planes to be checked. In other cases, geometry singularities of the dam body, as for 

example at the crest, the sliding may occur in association with rocking. Those aspects 

are even more relevant in the case of masonry gravity dams, in which discontinuities are 

subject to high uplift (pore) pressure due to the water seepage. 

For seismic analysis, at least one earthquake with medium probability of occurrence 

(unusual scenario) and another with low probability of occurrence (extreme scenario) 

should be analysed. The regulation produced by USACE [1995], for example, 

recognizes three scenarios where the seismic load is predominant. Two of them involve 

the Operating Basis Earthquake (unusual scenario), being one of those with the 

reservoir empty. The third involves the Maximum Credible Earthquake (extreme 

scenario). The stability is evaluated by means of safety factors, while the stress field 

generated by the seismic loading is assessed by a performance criteria, which 

establishes for unusual scenarios, that the dam should present an elastic behaviour; and 

https://www.researchgate.net/publication/257445431_Hydromechanical_Analysis_of_Masonry_Gravity_Dams_and_their_Foundations?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/259509227_A_DEM_based_tool_for_the_safety_analysis_of_masonry_gravity_dams?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==


4 

for extreme scenarios, the tensile and the compressive stresses may exceed the material 

strength in some points, possibly in conjunction with local or global permanent 

displacements, but without putting at risk the global safety of the dam. The judgement 

of these criteria varies according to the structure characteristics and local conditions. A 

different approach is proposed by FERC [2002], because the assessment of the 

structural safety is done indirectly, considering the stability of the dam after the 

earthquake. This analysis is made for the normal operating conditions, taking into 

account the damages induced by the seismic event.  

The method applied for dynamic analysis of gravity dams depends on the degree of 

sophistication required. The combination of different methods can be part of a 

progressive methodology, bringing benefits to the understanding of the dam behaviour 

and lower analysis costs. Among the most expedite methods, the pseudo-static analysis 

considers inertia forces as the product of mass times the ground acceleration. This 

procedure disregards the amplification effect due to the flexibility of the dam, as well as 

the oscillatory nature of the seismic load. Another simplified method called pseudo-

dynamic, developed by Chopra [1988], is similar to the pseudo-static seismic analysis 

except that it recognizes the dynamic amplification of the inertia forces along the height 

of the dam, by the simplified response spectra method. The dynamic amplification is 

considered only in the horizontal direction. The dynamic flexibility of the dam-

foundation is modelled by means of the Young’s modulus of the concrete and the rock 

mass. The oscillatory nature of the inertia forces is not considered, the horizontal and 

vertical loads are continuously applied. Among the more elaborate methods, those based 

on the Finite Element method stand out. This procedure assumes that the structural 

response in the elastic range can be evaluated from the combination of the vibration 

modes most relevant for the scenario in analysis. This procedure can be implemented 

with the response spectra or, in alternative, from an acceleration history using the 

Duhamel integral. 

For non-elastic behaviour, either finite element or discrete element models can be used, 

based on time domain analysis methods. The Discrete Element Method (DEM) has been 

applied to the analysis of gravity dams mostly in static and hydromechanical studies 

[e.g. Gimenes and Fernández, 2006; Barla et al., 2004]. In the numerical model 

presented in this paper, based on the DEM, seismic analysis is carried out by direct 

integration of the equation of motion for each degree of freedom. The formulation 

developed includes deformable blocks based on finite elements to allow a good 

representation of the dam deformability [Bretas et al., 2014b]. It thus allows the 

determination of natural modes of vibration and frequencies if linear elasticity is 

assumed, but it is mainly intended for the analysis of structural failure modes, damage 

and permanent displacements resulting from seismic action. For this purpose, it takes 

advantage of the ability of DEM models to represent explicitly discontinuities with non-

elastic behaviour, either in the dam body, the dam-rock interface, or in the rock mass. 

The occurrence of separation or sliding along any joint or interface during the seismic 

https://www.researchgate.net/publication/259509227_A_DEM_based_tool_for_the_safety_analysis_of_masonry_gravity_dams?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/237372526_Hydromechanical_analysis_of_flow_behavior_in_concrete_gravity_dam_foundations?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
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event, and its effects on structural safety, can therefore be assessed with the present 

model. 

3. Fundaments of the Discrete Element Method (DEM) model 

The model presented in this paper, based on the DEM [Bretas et al., 2014b; Bretas, 

2012], is intended to represent in an integrated manner the masonry dam and the rock 

foundation as components of a blocky system (Fig. 1a). The DEM approach starts from 

an initial discontinuity network, which corresponds to a simplified representation of the 

masonry structure and the rock mass joints, assumed to be preferential paths for fracture 

propagation. It thus differs from numerical models of fracture propagation in a 

continuum unaffected by pre-existing discontinuities [e.g. Domaneschi, 2012], or 

smeared crack formulations based on equivalent continuum models of the dam and rock 

mass [e.g. Hariri-Ardebili, 2014]. 

For gravity dams, the standard two-dimensional analysis is conservatively assumed, 

disregarding the arch effect across the valley. The fundamental element of numerical 

discretization is the block with three or four edges (faces), which may be rigid or 

deformable. In case of deformable blocks, each block is assumed here as an 

isoparametric linear Finite Element with full Gauss integration. Blocks of general 

shapes may be created by assembling the 3 and 4 node blocks into macroblocks (Fig. 

1b). A rigid block has 3 degrees-of-freedom (2 translations and 1 rotation), while for 

deformable blocks, there are 2 (translational) degrees of freedom per node.  

The mechanical interaction between two blocks is defined as a numerical contact. All 

contacts, created in the first iteration, are assumed to be of the type face-to-face. This 

type of contact is implemented with two sub-contacts (Fig. 1c). It is possible that the 

face-to-face contact degenerates to a vertex-to-face contact type, if one sub-contact 

opening is greater than a given tolerance, while the other sub-contact opening remains 

below that tolerance. The face-to-face contact allows a linear stress distribution, with a 

trapezoidal shape, and a proper application of the joint constitutive model (Fig. 1d). 

Thus, the distribution of the contact forces is statically consistent with the diagrams and 

the bending stiffness is correct. The contact forces are calculated from the integration of 

the stress diagram established in the contact. The method of integration controls the 

rotation stiffness of the contact. The point contact model (Fig. 1e), typically used in 

most DEM codes, is the most rigid, while trapezoidal models used herein provide a 

better approximation, as shown by comparisons presented in [Bretas et al., 2014b]. 

Numerically, the time domain calculation involves setting up and integrating the 

equation of motion for each degree of freedom of the model. The integration of the 

equation of motion, which is a second order differential equation, is made explicitly, 

according to the method of the central differences. Static solutions are also obtained 

with this algorithm, by dynamic relaxation, using scaled masses and artificial damping. 

Viscous mass-proportional damping is used, with an adaptive scheme that updates the 

https://www.researchgate.net/publication/277214253_Development_of_a_Discrete_Element_Model_for_Masonry_Gravity_Dams_Analysis_in_Portuguese?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/277214253_Development_of_a_Discrete_Element_Model_for_Masonry_Gravity_Dams_Analysis_in_Portuguese?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/259509227_A_DEM_based_tool_for_the_safety_analysis_of_masonry_gravity_dams?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/259509227_A_DEM_based_tool_for_the_safety_analysis_of_masonry_gravity_dams?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/275557770_Experimental_and_numerical_study_of_standard_impact_tests_on_polypropylene_pipes_with_brittle_behaviour?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/263199567_Impact_of_Foundation_Nonlinearity_on_the_Crack_Propagation_of_High_Concrete_Dams?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
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damping coefficient step-by-step based on the dominant frequency of the structure from 

the Rayleigh quotient. The seismic analysis, the flow analysis and the structural 

strengthening analysis are integrated in the mechanical cycle, sharing the same model 

data and allowing fully coupled analysis. 

Fig. 2 shows the calculation cycle. In the initial stage (Fig. 2, step 1), forces are 

computed and added to each independent degree of freedom. All the loads type, as dead 

loads, dynamic loads, hydraulic loads and the use of structural reinforcements, are 

managed simultaneously and in a consistent arrangement. Next, the equations of motion 

are established and solved (Fig. 2, step 2). Subsequently, absolute and relative position 

of all blocks is updated (Fig. 2, step 3) and the verification of active contacts and the 

attempt to detect new ones take place (Fig. 2, step 4).  

For seismic analysis, real masses and damping values have to be employed, and the 

boundary conditions are modified from the static model, imposing the dynamic load 

through a velocity or stress history. The analysis also requires other extensions to the 

standard DEM formulation, to consider aspects, such as: (i) the influence of the 

reservoir on the dynamic behaviour of the structure, (ii) discretization refinement of the 

model according to the maximum wave frequency which is propagated through the 

mesh, (iii) the boundary conditions according to the method of applying the dynamic 

load and, finally, (iv) the type of damping to be assumed and the numerical issues. 

4. Extension of the DEM model to seismic analysis 

4.1. Application of seismic loading 

Three different procedures to model dynamic loads and to define boundary conditions 

were implemented. In the first scheme (Fig. 3a), modelling the foundation as a rigid 

block, the seismic load is applied as a velocity history. In the second scheme (Fig. 3b), 

modelling the foundation as a deformable block, a stress history is applied in only one 

of the directions, either horizontal or vertical, superimposed on a viscous boundary to 

absorb the reflected waves by the free surface and the structure. The third scheme (Fig. 

3c), adopting a deformable block to model the foundation, allows the input of the 

dynamic load in two directions simultaneously, using the free-field condition on the 

lateral boundaries. These procedures may be complementary, corresponding to different 

levels of analysis. An initial analysis with rigid foundation requires fewer parameters 

and resources. The results are usually conservative and may be an upper limit, possibly 

more adequate for a preliminary study. The use of a deformable foundation requires 

more information about the characteristics of the reservoir-dam-foundation system, but 

allows for results that are more realistic. The last approach should be used for an 

advanced phase of analysis, when better knowledge is already established about the 

structural behaviour of the dam. For all cases, the static analysis of the dam, under the 

action of permanent loads, precedes the seismic analysis. The loads involved in that 
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analysis include the self-weight, the hydrostatic pressure and the uplift pressure. Before 

changing the boundary conditions and applying the dynamic load, the initial boundary 

restrictions should be released and the resulting reactions from the static analysis should 

be added as external forces. 

4.1.1. Model with rigid foundation and application of the dynamic load using a 

velocity history 

In this procedure the seismic load is applied as a velocity history. The procedure can be 

adopted when the earthquake is considered in one direction or in two directions. For the 

horizontal component, the direction (𝑥) is associated with a velocity history, and in the 

vertical direction (𝑦) the velocity is set null (Fig. 3a). A similar procedure can also be 

applied when the earthquake has only the vertical component. In the general case, both 

horizontal and vertical components are applied, with different velocity histories 

prescribed in each direction. 

4.1.2. Model with deformable foundation and application of the dynamic load using a 

stress history 

In this case, it becomes unfeasible to introduce the seismic load using a velocity history 

at the base of the model, because it is necessary to apply, at the same time, a non-

reflecting boundary to absorb the waves reflected by the free surface, the foundation and 

the structure. The viscous boundary formulation proposed by [Lysmer and Kuhlemeyer, 

1969] was used. Thus the seismic load is applied through a shear or normal stress 

history, computed from the velocity history, considering the rock mass elastic 

properties. Using this methodology, it is possible to apply one of the components of the 

dynamic load at a time, the horizontal or the vertical component. In the case of a 

vertically propagating shear wave, shear stresses are applied at the model base, resulting 

in horizontal displacements, and the lateral boundaries of the foundation are fixed in the 

vertical direction to ensure that theoretical shear wave conditions (Fig. 3b). At the base 

of the foundation, a viscous boundary is also applied in the horizontal direction. If a 

vertical P-wave is considered, then the lateral boundaries of the foundation are 

restrained in the horizontal direction to ensure that the load is essentially imposed on the 

vertical direction. In this case, at the base of the foundation, a viscous boundary is 

applied in the vertical direction. The model is intended to include the case of non-elastic 

behaviour in the foundation rock mass, for this reason the traditional hypothesis of a 

massless and an elastic medium are not invoked. The rock mass is represented with its 

real mass and constitutive model.  

The seismic wave propagation through the model is conditioned by the degree of 

discretization of the dam and foundation. The wavelength for the reference frequency 

should be equivalent to the width of at least eight elements [Lysmer and Kuhlemeyer, 

1969]. For a discontinuous field, for example in case of highly fractured foundations, 

https://www.researchgate.net/publication/246191293_Finite_Dynamic_Model_for_Infinite_Media?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/246191293_Finite_Dynamic_Model_for_Infinite_Media?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/246191293_Finite_Dynamic_Model_for_Infinite_Media?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/246191293_Finite_Dynamic_Model_for_Infinite_Media?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
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the properties of the discontinuities must be considered to compute the equivalent bulk 

and shear modulus. 

4.1.3. Model with deformable foundation and application of the dynamic load using a 

free-field condition 

The third option of seismic load modelling uses a technique known as free-field [Lemos 

and Cundall, 1999], applied at the lateral boundaries to simulate an infinite lateral 

extension of the model. A complementary model mesh is computed in parallel with the 

main model, composed by two columns, one on each side of the foundation, with 

unitary width, whose height is coincident with the discretization of the foundation. At 

the base of these columns, the same boundary conditions and dynamic loads of the main 

model are applied (Fig. 3c). The analysis of the 1D propagation of this input in the 

vertical direction provides the velocities and stresses for a horizontally infinite medium. 

The columns are composed by four side elements, with four nodal points, using four 

Gauss points to integrate the stiffness matrix. Each free-field element is associated with 

the element of the foundation, which inherits the material and properties. 

The columns represent the dynamic behaviour of the free-field, at some distance from 

the dam. At each time step, the horizontal and shear stresses of the free-field mesh are 

applied to the main model. In addition, in order to absorb waves reflected from the dam 

and foundation, viscous dampers are used between the main mesh and free-field. These 

dampers are applied to the difference in velocities, following the Lysmer and 

Kulhmeyer 1969 formulation. At each time step, the nodes of the lateral boundaries of 

the main mesh are applied the following forces by the free-field: 

𝑓𝑥 = (𝜎𝑥𝑥𝑛 − 𝜌𝐶𝑃(𝑣𝑥 − 𝑣𝑥,𝑓𝑓)) 𝐿
 

(1) 

𝑓𝑦 = (𝜎𝑥𝑦𝑛 − 𝜌𝐶𝑆(𝑣𝑦 − 𝑣𝑦,𝑓𝑓)) 𝐿 
(2) 

where: 𝜎𝑥𝑥 is the horizontal stress of the free-field element; 𝜎𝑥𝑦 is the shear stress of the 

free-field element; 𝑛 is -1 or 1 for the left and right lateral boundaries; 𝜌 is the density 

of the rock mass; 𝐶𝑆 is the propagation velocity of a transversal wave in a continuous 

medium; 𝐶𝑃 is the propagation velocity of a longitudinal wave in a continuous medium; 

𝑣𝑥 and 𝑣𝑦 are the main mesh velocity in the x- and y-direction; 𝑣𝑥,𝑓𝑓 is the velocity of 

the free-field in the x direction; 𝑣𝑦,𝑓𝑓 is the velocity of the free-field in the y direction; 

and 𝐿 is the influence area of the point. 

The main advantage of using free-field compared to previous solutions is the 

simultaneous application of the vertical and horizontal components of the seismic load. 
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Another advantage is the absorption of the reflected wave, incident on the sides of the 

model, which in the previous case was only possible at the base.  

4.2. Hydrodynamic pressure of the reservoir 

The Westergaard added mass method is employed to represent the dam-reservoir 

dynamic interaction. Experimental evidence has shown that this solution reproduces 

reasonably well the decrease of dam natural frequencies caused by the presence of the 

reservoir [e.g. Scheulen et al., 2010; Kuo, 1982]. Formulations with more precise 

representation of the fluid-structure interaction, using fluid elements, have been used, 

mainly, for arch dams, where hydrodynamic effect of the reservoir is more relevant. 

During an earthquake, the dam is subject to a variation of the water pressure along the 

upstream. Westergaard [1933] proposed a solution to estimate the pressure diagram, 

according to the (i) acceleration imposed by the earthquake, (ii) density of the water, 

(iii) reservoir height, (iv) deformation modulus of water and (v) the fundamental 

vibration frequency of the structure. The same author also proposed a simplified 

solution, known as added masses, considering the effect of a water volume that moves 

with the dam during an earthquake, giving rise to inertial forces. This volume is 

parabola-shaped and is given by, 

𝑚ℎ,𝑖 =
7

8
𝜌𝑤√𝐻𝑦𝑖𝐴𝑖

 

(3) 

where: 𝑚ℎ,𝑖 is the mass associated to the point 𝑖 on the horizontal direction; 𝜌𝑤 is the 

water density; 𝐻 is the reservoir elevation; 𝑦𝑖 is the water depth at node 𝑖 measured 

from the surface; and 𝐴𝑖 is the tributary area of the point 𝑖. 

The additional mass obtained is added to the mass of the points that define the upstream 

face. This formulation has been developed for a dam with vertical upstream face. For its 

generalization, the formulation must be adjusted according the inclination of the 

upstream face [Priscu et al., 1985]. In general, the upstream face of gravity dams is 

moderately inclined, consequently the horizontal component is almost not affected, and 

the vertical component is reduced, both with small impact on the dynamic behaviour of 

the structure. 

4.3. Rayleigh damping for DEM dynamic analysis  

For dynamic analysis, Rayleigh damping was adopted, considering the two components, 

proportional to the mass (𝛼) and proportional to the stiffness (𝛽). In cases where both 

components are not null, the Rayleigh damping is almost constant for a frequency range 

around the damping curve minimum. The damping selected is adjusted to the dominant 

frequencies according the problem under analysis. For the natural frequencies 
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assessment, the method of vector reverse iteration was adopted, in combination with the 

orthogonalization method of Gram-Schmidt.  

The damping component proportional to the mass is taken into account in the equations 

of motion. The stiffness-proportional component is considered by adding damping 

forces to the normal and tangential contact forces, and to the nodal forces of each finite 

element. The Rayleigh damping proportional to the stiffness should only be applied in 

the contact forces when the joint presents an elastic behaviour, since the corrections by 

the constitutive model already involve some energy dissipation. Thus, if the contact 

exceeds the maximum tension or compression, the damping proportional to the stiffness 

is not considered in any direction. If the contact remains within the limits of normal 

stress, but does not respect the constitutive model in the tangential direction, the 

damping component is only applied in the normal direction. 

For numerical stability of the explicit algorithm, the time step should be reduced when 

damping proportional to the stiffness is used. According to Belytschko [1983], the 

adjusted time step is given by, 

∆𝑡𝑑𝑦𝑛 = ∆𝑡𝑠𝑡𝑎 (√1 + 𝜆2 − 𝜆) 
(4) 

where: ∆𝑡𝑑𝑦𝑛 is the dynamic time step considering the damping proportional to the 

stiffness; ∆𝑡𝑠𝑡𝑎 is the static (reference) time step; and 𝜆 is the relative damping 

coefficient for the maximum frequency. 

Although reducing ∆𝑡 may be a significant disadvantage in terms of computational 

performance, the use of the stiffness-proportional component in nonlinear analysis is 

important, namely in failure scenarios of gravity dams, especially for the sliding failure 

mechanism. In this case, for example, the trend is for a gradual failure and reduction of 

the natural frequency of the structure. The damping proportional to the stiffness 

decreases, when the damping proportional to the mass increases [Hall, 2006]. In 

addition, the damping proportional to the stiffness seems to be most appropriate as it is 

applied directly to the dam-foundation interface, while the damping proportional to the 

mass is applied to the entire structure. 

4.4.  Example of validation 

The example of validation [Bretas, 2012] is based on the report of Chopra and Zhang 

[1991] aimed at the study of the base sliding response of concrete gravity dams under 

earthquakes. These authors employed analytical procedures considering hydrodynamic 

effects for the case of a gravity dam, 400 ft (ca. 121.9 m) high, assuming the dam 

flexibility by the contribution of only the fundamental mode of vibration. The DEM 

model used a rigid foundation, with seismic loading applied at the model by means of a 

https://www.researchgate.net/publication/277214253_Development_of_a_Discrete_Element_Model_for_Masonry_Gravity_Dams_Analysis_in_Portuguese?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
https://www.researchgate.net/publication/229599330_Problems_encountered_from_the_use_or_misuse_of_Rayleigh_damping?el=1_x_8&enrichId=rgreq-513473ae81d0ffd9a5c39e77f0682846-XXX&enrichSource=Y292ZXJQYWdlOzI4MjM5NDkyMTtBUzoyODg2OTgyMjM2MTE5MDRAMTQ0NTg0MjQyODI2Nw==
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shear velocity history, as explained in the previous sections. The excitation was the 

S69E component of the Taft (1952) ground motion with peak acceleration amplified to 

0.5g. In Fig. 4 is plotted the response history of earthquake-induced sliding on a purely 

frictional horizontal planar surface of rock. Comparing with the Chopra and Zhang 

example, the results show that the total permanent sliding are in the same order-of-

magnitude, being 0.38 m for the example of Chopra and Zhang, and 0.39 m for the 

DEM model. The displacement history is also comparable. The differences could be 

explained by the method employed by Chopra and Zhang to represent the deformation 

of the dam, using only the fundamental mode of vibration, ignoring the higher modes. 

5. The case study of Lagoa Comprida dam 

Lagoa Comprida dam is a masonry gravity dam, located in Portugal, in Seia 

municipality, with an M-shape plan, 28 m high above the foundation, crest elevation of 

1600 m, and 1200 m length. The construction of Lagoa Comprida dam began in 1912, 

reaching 6 m height in 1914. Subsequently, the structure was heightened several times, 

until the last heightening carried out during a major rehabilitation work, between 1964 

and early 1967, when the height reached 28 m. This reinforcement works of Lagoa 

Comprida dam comprised the construction of a concrete slab over the upstream face, 

anchored to the dam and adequately drained. These works also included a grouting 

treatment aimed at the consolidation of the dam body and reduction of the foundation 

permeability, and the execution of a drainage system in the foundation (Fig. 5). The 

thickness of the concrete slab varies between 0.5 m near the crest and 0.7 m near the 

foundation. Above the old crest of the dam (1597 m) a new concrete block was erected, 

connecting to the concrete curtain, with a section of 2.0 m by 3.0 m [Silveira and 

Ramos, 1994]. 

A comprehensive study of the seismic behaviour of Lagoa Comprida dam was carried 

out [Bretas, 2012]. Four models were developed (Fig. 6), using different discretization 

techniques and dynamic load modelling. In the first model (model R-R) both dam and 

foundation are assumed rigid, corresponding to a simple 2-block system. The dynamic 

input is applied to the foundation block as a velocity history. In the second model 

(model D-R), the dam is modelled using deformable blocks while the foundation is a 

rigid block. The way that the dynamic load is applied is similar to the model R-R. In the 

third model (model D-D) both dam and foundation are modelled using deformable 

blocks. The dynamic load is applied as a stress history at the foundation base. The 

fourth model (model F-F) is also modelled with deformable blocks, but using the lateral 

free-field boundary condition.  

Based on these models, a set of analyses was developed, summarized in Table 1. For the 

static loads, the stress on the dam-foundation interface was examined, using a rigid 

foundation (model D-R-1), and a deformable foundation (model D-D-1). A series of 

analyses for the sliding scenario along the dam-rock interface were carried out, 

considering only the horizontal component of the earthquake. In the first case, the dam 
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and the foundation were modelled with rigid blocks (model R-R-1). For the dam 

modelled with deformable blocks, models with rigid foundation (model D-R-2) and 

with deformable foundation (model D-D-2) were analysed.  

For the earthquake, which induced higher sliding, the stress envelope of the upstream 

face was estimated (model D-D-3). For the same load case, the stress history at the 

upstream heel and at the downstream toe was analysed (model D-D-4). The model D-D-

5 was developed in order to assess the amplification effect owing to the dam flexibility, 

between the base and the crest, in terms of the horizontal velocity and displacement, and 

computing the relative displacement. Furthermore, a parametric study was subsequently 

conducted regarding to different types of damping (model D-D-6), i.e., mass-

proportional, stiffness-proportional, and both components, all with 5% of critical 

damping at the fundamental frequency. Those analyses were repeated for the scenario of 

full uplift on the base of the dam, and for the load case defined by the design seismic 

load, magnified by a factor of two. 

The analysis considering the seismic load in the horizontal and vertical directions 

simultaneously was also undertaken (model F-F-1). Six combinations, using 

accelerograms 1 and 5 (artificially generated according to the spectrum provided in the 

applicable code) which produced the largest displacements in model D-D-2, were 

considered. Based on model F-F-1, the stability of the concrete block located at the top 

of the dam was also discussed (model F-F-2). Finally, a detailed model of the dam, 

representing the masonry laid out in horizontal layers, and considering the construction 

joint arising from a heightening that occurred in 1934 was analysed (model F-F-3), to 

examine the failure through the masonry discontinuities. The meshes representing the 

dam are showed in detail in Fig. 7. 

5.1. Main input data required to carry out the seismic analysis 

In the models D-R, D-D and F-F the dam body is modelled as a continuous finite 

element mesh (i.e., a single macroblock). In those cases, the density of the material is 

2500 kg/m
3
, Poisson's ratio is 0.2 and the Young’s modulus is 11 GPa. In the models D-

D and F-F the foundation is also modelled as a macroblock. The Young’s modulus for 

the rock mass is 20 GPa, while the rest of the values are assumed the same as before. 

Those values were obtained by back-analysis from the monitoring system of Lagoa 

Comprida dam [Bretas, 2012], and might include some 3D effects not considered in the 

2D model. For the rigid blocks, both dam and foundation, the same density is adopted. 

An inelastic joint is assumed on the dam-foundation interface, with null tensile strength, 

null cohesion and a friction angle of 45º. For this discontinuity, a normal stiffness of 20 

GPa/m, and a tangential stiffness of 6.7 GPa/m were adopted. 

The load combination corresponds to the normal operating scenario of the dam, in 

addition to the maximum expected earthquake, for the region where the dam is located. 

The hydrostatic pressure was defined for a reservoir elevation at the crest, 28 m above 
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the foundation plan, as well as the hydrodynamic pressure. The uplift pressure 

corresponds to the conventional triangular diagram, with a reduction of 2/3 upstream 

due the drainage system, whose gallery is located at the dam heel.  

The Rayleigh damping was taken as 5 % of critical damping, as suggested by the USBR 

[1987], centred to the frequency of 6 Hz, which approximately corresponds to the 

fundamental frequency of the structure. The first four eigenmodes are shown in Fig. 8. 

Five accelerograms are selected, with peak acceleration of 0.15g and full duration of 20 

s, with intense phase of 15s (Fig. 9), generated artificially from the EC8 spectrum for a 

short-distance earthquake scenario. This value corresponds to the maximum design 

earthquake for dams in this region. 

First, the dead loads are applied, i.e. the self-weight, the hydrostatic pressure and, 

finally, the uplift. The seismic analysis starts from the model after the static analysis, 

releasing the fixed points of the boundaries, and applying the added mass due the 

hydrodynamic pressure of water. 

5.2. Model R-R (Rigid dam - Rigid foundation) 

The first analysis (model R-R-1) was performed using rigid blocks for both foundation 

and dam. In this case, the results show a great variability according to the deformability 

given to the dam-foundation joint. In the case of Lagoa Comprida dam, after the 

application of earthquake number 5, the dam has a displacement of 10 mm when a 

normal stiffness of 2 GPa/m is assumed, 0.1 mm for 20 GPa/m stiffness and 0.001 mm 

for 200 GPa/m stiffness. This is a consequence of the different natural frequencies of 

the dam rigid block, supported by two contact springs, which drastically change the 

dynamic response. This model is therefore oversimplified, and is not a reliable tool to 

examine the seismic sliding behaviour. 

5.3. Model D-R (Deformable dam - Rigid foundation) 

5.3.1. Analysis D-R-1: Stress on the interface (static) 

Fig. 10a shows the normal and tangential stress along the dam-foundation interface, 

after the application of all static loads, including self-weight, hydrostatic pressure and 

uplift, for the model with rigid foundation and deformable dam. In this case, a shear 

failure occurs in the first 6m of the base, near the heel of the dam, where the two stress 

diagrams, shear and normal, are superimposed. This implies, based on the Mohr-

Coulomb criterion with a friction angle of 45 degrees, null tensile stress and null 

cohesion, that the tangential stress is equivalent to the tangential strength capacity. A 

failure by tension at the first contact upstream is observed, since the normal stress is 

zero. 
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5.3.2. Analysis D-R-2: Permanent displacement 

The permanent displacements are assessed qualitatively looking at the horizontal 

displacement history at the dam heel, on the upstream face. The displacement is 

computed as the difference between the initial displacement, from the static calculation, 

and the final displacement, after the earthquake. The results obtained for the five 

earthquakes, for the model with rigid foundation, are shown in Fig. 11, and display a 

typical behaviour, with short episodes in which sliding accumulates rapidly. The dam 

presents the larger displacement for earthquake number 4, about 14.4 mm.  

5.4. Model D-D (Deformable dam - Deformable foundation) 

5.4.1. Analysis D-D-1: Stress on the interface (static) 

Fig. 10b shows the normal and tangential stress on the dam-foundation interface, after 

the application of all static loads, including self-weight, hydrostatic pressure and uplift, 

for the model with deformable foundation. The results show a failure by shear in the 

first 3 m of the base, along the heel of the dam. No failure by tension is detected. 

Comparing the models with deformable and rigid foundation (D-R-1), in the latter 

model the failure is more extensive, implying less resistance against the seismic load. 

The inclusion of the foundation deformability leads to a better representation of the 

interfaces stresses, with the largest normal stresses reached downstream. 

5.4.2. Analysis D-D-2: Permanent displacement 

The results obtained from the five earthquakes, for the model with deformable 

foundation, are shown in Fig. 12a. The maximum sliding, about 3.6 mm, is obtained 

from accelerogram 5. Fig. 12b compares the sliding history of the dam heel and the dam 

toe, for earthquake number 5. The analysis of those results shows that the sliding is 

mainly a global movement. The portion due to the horizontal deformation of the 

structure is reduced. Comparing with the model with rigid foundation (D-R-2), the 

present model gives less sliding. For example for earthquake 5, the sliding was about 3 

times larger, approximately 10.6 mm in Fig. 11. The model with deformable foundation 

allows a more rigorous stress diagram along the interface. In addition, the seismic input 

is represented more realistically as an upward moving wave, instead of forcing the same 

history at all points. This has a clear effect on the sliding behaviour.  

5.4.3. Analysis D-D-3: Stress at the upstream face (dynamic) 

Fig. 13 shows the minimum and maximum vertical stresses peaks in the upstream face 

(model with the deformable foundation) for the five earthquakes. The maximum 

compressive stress is equal to -0.95 MPa, and takes place at a height of 16 m above the 

foundation; the maximum tensile stress is +0.45 MPa, at 20 m height. Both cases arise 
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for accelerogram 2. For this same earthquake, the calculation was repeated, but now 

considering an elastic joint at the dam-foundation interface. There is a general reduction 

of compressive stress, the minimum is -0.72 MPa (4 m height). In contrast, the peak of 

tension is higher, +0.55 MPa at 20 m above the foundation. 

5.4.4. Analysis D-D-4: Stress at the interface (dynamic) 

For the model with deformable foundation, considering the earthquake number five, 

Fig. 14a represents the vertical stress history at the dam-rock interface at the dam heel. 

The dam loses the contact with the foundation for many short periods. At these instants, 

the stress is zero, since the joint does not withstand tensile stress. The highest 

compressive stress is -0.92 MPa, at the time 8.07 s. Fig. 14b represents the vertical 

stress history at the dam toe (downstream). In this zone, the stress remains in 

compression and the minimum stress is -1.03 MPa, at time 8.20 s.  

5.4.5. Model D-D-5: Amplification effect of the seismic load 

For earthquake number 5, Fig. 15 represents horizontal velocity histories, measured at 

the base and crest of the dam. The histories are correlated, but the velocities measured at 

the top are amplified. The horizontal displacement histories at these 2 points have a 

similar evolution, with a maximum difference of about 7 mm. As a reference, the 

horizontal displacement of the dam crest, due the hydrostatic pressure, is about 4 mm. 

5.4.6. Model D-D-6: Permanent displacement. Effect of damping and uplift pressure 

Fig. 16 represents the sliding due the earthquake number 5 for the model with 

deformable foundation, comparing the results for 5% Rayleigh damping centred at a 

frequency of 6 Hz, considering 3 cases: proportional to the mass, proportional to the 

stiffness and proportional to the mass and stiffness. The highest permanent sliding of 

4.4 mm is reached for the Rayleigh damping proportional to the stiffness, but the 

differences between the three cases are within a 20% difference. The lowest permanent 

sliding of 3.4 mm occurs for the full Rayleigh damping. To assess the effect of the input 

magnitude, similar calculations were carried out with earthquake number 5 multiplied 

by a factor of 2, with a peak acceleration of 0.3g. The values of sliding for the three 

damping options are even closer. However, the permanent sliding was multiplied by 

approximately 10 times, from 4-5 mm to 45-55 mm [Bretas, 2012]. 

The seismic analysis was again repeated for earthquake number 5 and model with 

deformable foundation, but now considering the scenario of full uplift, without the 

reduction of 2/3 at the drains. This analysis simulates the loss of efficiency of the 

drainage system, as in case of clogged drains. A permanent sliding of approximately 

154 mm is achieved, in contrast with the value obtained for the drained case, about 3.6 

mm, which shows the great importance of the drainage system for the seismic safety. 
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The 3 cases of Rayleigh damping were also considered. The highest sliding was 

registered for the model with the damping proportional to the mass and the smaller is 

for the model with the damping proportional to the stiffness, with a reasonable 

difference (about 30%).  

The applicability of the type of Rayleigh damping seem to be dependent on many 

simultaneous factors, such as the dynamic characteristics of the structure, characteristics 

and magnitude of the dynamic load, the reference frequency used to centre the damping, 

and the consideration of nonlinear behaviour during the analysis. The use of Rayleigh 

damping proportional to the stiffness, for numerical stability reasons, requires a drastic 

reduction of the time step. Therefore, the number of calculation steps, in many cases, is 

very high. Table 2 shows the value of the time step, the coefficients of the viscous 

damping proportional to mass and stiffness, and the number of calculation steps that 

were required according to the damping type. As the processing time of each calculation 

cycle is similar for all three hypotheses, the time required to process a model with 

damping proportional to the mass is about 20 times faster than the case with the 

damping proportional to the mass and stiffness, and about 40 times faster than the use of 

damping proportional to the stiffness. In this example, the advisable choice seems to be 

the damping proportional to the mass, as the model shows relatively close results for all 

three cases, keeping a reasonable computational performance. 

5.5. Model F-F (Free-field boundary conditions) 

5.5.1. Analysis F-F-1: Permanent displacement 

The last analysis of global sliding corresponds to the simultaneous application of the 

horizontal and vertical components of the earthquake, which is necessary to use a free-

field condition. This model is similar to the model with deformable foundation, except 

for the dynamic lateral boundary conditions. A set of load combinations was created, 

using the earthquakes numbers 1 and 5, which had induced the largest response in Fig. 

12a.  

The analysis was carried for H1+2/3V5 (earthquake number 1 in horizontal direction and 

earthquake number 5 in vertical direction reduced by a factor of 2/3), H1-2/3V5 (the 

same as above, but the earthquake number 5 is applied with negative sign), H5+2/3V1, 

H5-2/3V1 and, finally, H5+2/3V5 and H5-2/3V5. The reduction of 2/3 of the vertical 

component is a common practice in the design of dams. In the latter two cases, the use 

of the same accelerogram for the horizontal and vertical components is an unusual 

procedure.  

Based on the results shown in Fig. 17, the highest permanent sliding is reached, as 

expected, for the combinations H5+2/3V5 and H5-2/3V5, which are correlated inputs. 

Compared to the deformable foundation model (model D-D-2), only with the shear 

component, the maximum permanent sliding is increased by about 60%, owing to the 
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vertical component. In at least one case, the combination H1+2/3V5, the permanent 

sliding is lower than the permanent sliding obtained with only the horizontal component 

of the earthquake number 1 (Fig. 12a). Considering only uncorrelated accelerograms, 

combinations of accelerograms 1 and 5, the maximum permanent sliding is increased 

about 40%. 

5.5.2. Analysis F-F-2: Rocking of the concrete block on the crest 

The stability of the concrete block (2.0 x 3.0 m
2
) constructed on the crest of the dam is 

also checked. An unfavourable hypothesis was assumed, with a nonlinear joint between 

the block and the dam, with null tensile strength and cohesion. Again, a friction angle of 

45º was adopted. The analysis was performed for the model with free-field condition, 

taking into account the load H5+2/3V5. The results indicate a permanent sliding of about 

5 cm (Fig. 18a). The sliding displacements measured upstream and downstream are 

almost identical. Therefore, the block presents a rigid body motion. The effect of 

rocking is reduced, with a maximum rotation of 0.04° in the forward direction (counter 

clockwise) (Fig. 18b), is observed. Although reduced, it is possible to correlate the 

effect of rocking and the displacement history. 

5.5.3. Model F-F-3: Discontinuous model of the dam body 

A more detailed model of the dam was undertaken, which represents the masonry laid 

out in horizontal layers (Fig. 19). The joint resulting from the heightening of 1934 (15 

m high) was modelled explicitly. Three different materials were considered to model the 

concrete, the masonry and the rock mass. For all materials, density is 2500 kg/m
3
 and 

Poisson's ratio is 0.2. The Young’s modulus varies depending on the material type, 

being 30 GPa for the concrete, 11 GPa for the masonry and 20 GPa for rock mass. For 

all joints, 20 GPa/m for the normal stiffness, 6.7 GPa/m for the tangential stiffness, 0.3 

MPa for the tensile strength, 0.15 MPa for the cohesion, and 35º for the friction angle, 

were adopted. For the heightening joint, the tensile strength and cohesion are null. It 

was assumed that, during the earthquake, the concrete slab in the upstream face is not 

effective. 

The earthquake is applied with the free-field condition. Four combinations of 

earthquakes from 1 to 5 were used, including combinations H1+2/3V5, H1-2/3V5, 

H5+2/3V1 and H5-2/3V1, as previously described. The largest permanent sliding takes 

place at the dam-foundation joint (elevation 1572 m) and in the masonry joint at 

elevation 1592 m. This masonry joint coincides with the base of the crest, where the 

section geometry changes. Fig. 20 shows the sliding history at elevation 1572 m (dam 

base) and 1592 m (below crest) for the four combinations. Sliding histories in both 

joints are similar. In two cases, the permanent sliding in elevation 1592 m is greater 

than the sliding registered at the foundation. In Fig. 20 it is also possible to observe the 

joint opening history at elevation 1592 m. A strong connection between the opening and 
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the sliding episodes on the joint may be observed. The heightening joint seems to have 

no influence on the dynamic response of the dam. 

The post-earthquake safety was checked using the same model. The purpose is to 

determine a global sliding safety factor, through the dam-foundation interface, after the 

seismic analysis, i.e. taking into account the cracks and permanent displacements 

resulting from the application of the earthquake (Fig. 21). Thus, the internal pressure 

due to water infiltration through the dam was considered, by means of a full coupled 

hydraulic calculation [Bretas et al., 2013]. The loads correspond to the normal operating 

scenario, i.e. normal headwater and uplift. The safety factor is determined by 

progressively reducing the joint strength properties, until failure takes place. The safety 

factor of 1.75 is obtained, fulfilling the Portuguese regulation of dam design [NPB, 

2002], that states a limit of 1.5.  

5.6. Discussion of the main results 

Three different procedures to carry out the seismic analysis of gravity dams have been 

presented. For the sliding scenario of the dam along the dam-foundation interface, the 

assumption of a rigid foundation is the most unfavourable procedure. This can be partly 

explained by the initial stress state that is established in the dam-foundation interface 

after the application of the dead-loads, i.e. the self-weight, the hydrostatic pressure and 

the uplift. The use of free-field is important because it allows the application of the two 

components of the earthquake, horizontal and vertical, simultaneously. In the example, 

the model with free-field led to the largest permanent sliding, but the results are 

sensitive to the accelerogram combination. Even for earthquakes with identical 

characteristics, the value of the sliding has a great variability between different 

accelerograms with the same spectrum. Therefore, it is necessary to carry out a large 

number of analyses, typically three to seven, as recommended by EC8 [2003], 

preferably including also recorded accelerograms.  

Following the seismic analysis obtained from model D-D-3, the maximum stress in the 

upstream face was determined according to two different scenarios: nonlinear and an 

elastic dam-foundation joint. The elastic joint increases the maximum tensile peak and, 

in contrast, reduces the maximum compression peak. Therefore this type of analysis, 

considering the cases of elastic and inelastic interfaces, is an advisable solution, since 

the maximum tensile peak is usually the main concern, while compressive stress are 

usually well below the upper limit of the material strength. The range of stress variation 

in the dam for different accelerograms is small compared to the range of values of total 

sliding. 

Based on the models developed in this work, a general conclusion about the most 

suitable Rayleigh damping type cannot be enunciated. Apparently, in nonlinear 

analyses, the damping proportional to the stiffness leads the largest permanent sliding. 

Nevertheless, for the same model, the difference between the results of the three 
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different type of damping is moderate, similar to the difference found when different 

accelerograms with the same peak acceleration are used. The problem may be related to 

the dynamic behaviour of the structure during the earthquake, as the frequency that is 

preferentially excited by the earthquake changes, and the actual damping may be higher 

or lower than expected. 

The concrete block located at the top of the dam, after the earthquake, has a relative 

sliding of about 5 cm. This damage probably does not affect the global safety of the 

structure. The discontinuous model (F-F-3) is essential for the full understanding of the 

seismic behaviour of Lagoa Comprida Dam. The results showed that, in two cases, the 

permanent displacement at elevation 1592 m is larger than the permanent displacement 

at elevation 1572 m, at the dam base. 

Finally, the role of the drainage effectiveness on the seismic behaviour and safety of 

gravity dams should be stressed. The uplift is similar to a phenomenon of self-weight 

reduction. This is crucial in the case of gravity dams, because it is the self-weight that 

withstands the hydrostatic pressure of the reservoir. The installation, maintenance and 

sometimes the reinforcement of the existing drainage systems are mandatory measures. 

6. Conclusions 

In dam engineering, due to the high potential risk, the safety against earthquakes is a 

great concern, but it has not been the subject of much research for masonry dams. 

Today, the operation of these older dams represents a relevant challenge for the 

professionals, since the structural safety has to be guaranteed according to modern 

regulations. The choice of representation of masonry dams should be based on the 

objectives of the analysis. The proposed DEM tool is intended to support various 

degrees of modelling complexity required in practical applications, as it allows both 

rigid and deformable blocks, as well as macroblocks with general FE meshes. Elastic 

analysis to characterize dynamic properties or the response to low level seismic events 

may be performed with the present model, employed as an equivalent continuum. The 

global stability problem is a typical case in which a continuous model of the dam fits 

well, with only the sliding surface represented as a discontinuity. For this purpose, the 

present model provides a better approximation than simplified techniques that assume 

the gravity dam to behave as a single rigid body. Failure mechanisms involving the 

masonry discontinuities, or the rock mass joints, are clear examples in which the use of 

a blocky system as the one proposed here is mandatory. The ability to assess the 

possibility of sliding or overturning of blocks near the dam crest during the earthquake 

has a great practical interest, particularly for older dams in which horizontal cracks or 

weaker interface may already be present.  

The comprehensive study of the seismic behaviour of Lagoa Comprida Dam allowed a 

comparison of the performance of the various types of model. This study showed that 

oversimplified models using only two rigid blocks are not adequate to study the sliding 
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behaviour under seismic action. The dam dynamic response always needs to be properly 

reproduced, by means of its discretization into finite elements. In these analyses, the 

representation of the rock mass deformability provides a more accurate stress 

distribution on the dam-foundation interface, and therefore of its nonlinear behaviour. 

The use of free-field boundary conditions also improves the representation of the 

dynamic behaviour of the rock mass under general seismic actions. The significant 

variability in sliding displacements resulting from the numerical simulations requires 

that analyses with multiple earthquake records be performed to obtain meaningful 

estimates. 

The known sensitivity of dam foundations to water pressures and drainage conditions 

was highlighted, as well as the strong effect that increasing ground acceleration has on 

sliding movements. The parametric studies involving the effects of damping showed 

that while including the stiffness-proportional component of Rayleigh damping is 

advisable, it imposes a high computational cost in explicit time domain analysis. In this 

study, the results with only the mass-proportional component provided adequate results. 

However, this cannot be taken as a general conclusion, and for each structure, a 

preliminary comparison of the two options is advisable. 

The proposed model has the capacity to handle complex types of masonry's internal 

structure, considering its irregular nature, for example, by means of Voronoi polygons 

or other block geometries. This is an important field, in which further research is 

welcome, so that more accurate safety estimates may be obtained, avoiding over 

conservative assumptions.  
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Fig. 1 – Modelling aspects of the Discrete Element Method (DEM) 
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Fig. 2 –Calculation cycle of the developed DEM tool 
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Fig. 3 – Model with (a) rigid foundation and application of the dynamic load using a velocity 

history; model with (b) deformable foundation and application of the dynamic load using a 

stress history; and model with (c) deformable foundation and application of the dynamic load 

using the free-field condition 
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Fig. 4 – Sliding displacement of a gravity dam due to Taft S69E ground motion from the 

Chopra and Zhang model [1991] and from the DEM model 
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Fig. 5 – Lagoa Comprida main section after the rehabilitation works carried out between 1964 

and 1967 [elevations in m] 
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Fig. 6 – Main characteristics and designation of the numerical models 
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Fig. 7 – Dam mesh discretization of the continuous and discontinuous models 
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Fig. 8 – Eigenmodes and eigenfrequencies 
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Fig. 9 – Accelerograms with peak acceleration of 1.5 m/s2 
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Fig. 10 – Stress on the base of the dam, for dead-loads, i.e. self-weight, hydrostatic pressure and 

uplift, (a) considering a rigid foundation (model D-R-1), and (b) a deformable foundation 

(model D-D-1) 
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Fig. 11 – Permanent displacement history of the dam along the dam-foundation interface 

considering accelerograms 1 to 5, for the model with rigid foundation (model D-R-2) 
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Fig. 12 – Permanent sliding history of the dam along the dam-foundation interface, for the 

model with deformable foundation (model D-D-2), (a) considering accelerograms 1 to 5; and (b) 

permanent displacement history measured at the heel and at the toe of the dam, for accelerogram 

5 
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Fig. 13 – Vertical stress, minimum and maximum peak values, on the upstream face (model D-

D-3) 
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Fig. 14 – Vertical stress history on the dam heel (a), and on the dam toe (b) (model D-D-4) 
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Fig. 15 – Horizontal velocity history at the base and at the crest of the dam (model D-D-5) 
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Fig. 16 – Sliding displacement history of the dam along the dam-foundation interface for 

different damping conditions (model D-D-6) 
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Fig. 17 – Sliding history of the dam along the dam-foundation interface with free-field condition 

(model F-F-1) 
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Fig. 18 – Sliding history (a) and rocking (b) of the concrete block located on the crest of the 

dam (model F-F-2) 
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Fig. 19 – Detailed model of the dam with masonry discretization (model F-F-3) 
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Fig. 20 – Displacements observed on the base of the dam (elev. 1572m) and on a superior 

section below the crest (elev. 1592m) (model F-F-3) 
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Fig. 21 – Cracks and permanent displacements resulting from the application of the earthquake 

(model F-F-3) 
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Table 1 – Description of the seismic analyses 

Model Analysis 
Rayleigh 

damping 
Seismic load 

Model R-R (1) Permanent displacement Mass Horizontal 

Model D-R 

(1) Stress on the interface (static) - - 

(2) Permanent displacement Mass Horizontal 

Model D-D 

(1) Stress on the interface (static) - - 

(2) Permanent displacement Mass Horizontal 

(3) Stress on the upstream face Mass Horizontal 

(4) Stress on the interface (dynamic) Mass Horizontal 

(5) Amplification effect of the seismic load Mass Horizontal 

(6) Permanent displacement (varying damping) Var. Horizontal 

Model F-F 

(1) Permanent displacement Mass Hor. and ver. 

(2) Rocking of the concrete block on the crest Mass Hor. and ver. 

(3) Discontinuous model of the dam body Mass Hor. and ver. 
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Table 2 – Time step and damping coefficients 

Damping type t  [s] 
N. of steps 

(Earthquake duration: 20s) 

  

[1/s] 
  [s] 

Proportional to the mass 1.413e-4 141543 3.770 - 

Proportional to the stiffness 3.760e-6 5319149 - 2.653e-3 

Proportional to the mass and stiffness 7.500e-6 2666667 1.885 1.326e-3 
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